Chapter 18 Two-Port Circuits

STUDENTS-HUB.com

ENEE234 – Circuit Analysis

Two-port networks

Suppose that a network N has two ports as shown below. How could it be represented or modeled? A common way to represent such a network is to use one of 6 possible *two-port networks*. These networks are circuits that are based on one of 6 possible sets of *two-port equations*. These equations are simply different combinations of two equations that relate the variables V_1 , V_2 , I_1 , and I_2 to one another. The coefficients in these equations are referred to as *two-port parameters*.

ENEE234 – Circuit Analysis

Note that I_1 , I_2 , V_1 , and V_2 are labeled as shown by convention. Often there is a common negative terminal between the input and the output so the figure above could be redrawn as:

Evo-port equations Evo-port equations are sets of tw he diagram of the two-port netw of two equations which express to variables. The 6 possible sets of	vo equations relating the four variables labeled on york above. There are 6 possible ways to form sets two of the variables in terms of the other two equations are shown below.
z-parameters z-parameter equations:	<u>g-parameters</u> g-parameter equations:
$\begin{split} \mathbf{V}_1 &= \mathbf{z}_{11} \cdot \mathbf{I}_1 + \mathbf{z}_{12} \cdot \mathbf{I}_2 \\ \mathbf{V}_2 &= \mathbf{z}_{21} \cdot \mathbf{I}_1 + \mathbf{z}_{22} \cdot \mathbf{I}_2 \end{split}$	$\begin{split} \mathbf{I}_1 &= \mathbf{g}_{11} \cdot \mathbf{V}_1 + \mathbf{g}_{12} \cdot \mathbf{I}_2 \\ \mathbf{V}_2 &= \mathbf{g}_{21} \cdot \mathbf{V}_1 + \mathbf{g}_{22} \cdot \mathbf{I}_2 \end{split}$
y-parameters y-parameter equations:	<u>a-parameters</u>
$\begin{split} \mathbf{I}_1 &= \mathbf{y}_{11} \cdot \mathbf{V}_1 + \mathbf{y}_{12} \cdot \mathbf{V}_2 \\ \mathbf{I}_2 &= \mathbf{y}_{21} \cdot \mathbf{V}_1 + \mathbf{y}_{22} \cdot \mathbf{V}_2 \end{split}$	
<u>h-parameters</u> h-parameter equations:	<u>b-parameters</u>
$\begin{split} \mathbf{V}_1 &= \mathbf{h}_{11} \cdot \mathbf{I}_1 + \mathbf{h}_{12} \cdot \mathbf{V}_2 \\ \mathbf{I}_2 &= \mathbf{h}_{21} \cdot \mathbf{I}_1 + \mathbf{h}_{22} \cdot \mathbf{V}_2 \end{split}$	
Applications:	
<i>z- and y-parameters</i> : circuit modeling	aitanaa at hich fraguanaias

Six possible sets of terminal equations (1)

$$\begin{cases} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \times \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}; [Z] \text{ is the impedance matrix;} \\ \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \times \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}; [Y] = [Z]^1 \text{ is the admittance matrix;} \\ \begin{cases} \begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}; [A] \text{ is a transmission matrix;} \\ \begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \times \begin{bmatrix} V_1 \\ I_1 \end{bmatrix}; [B] = [A]^1 \text{ is a transmission matrix;} \end{cases}$$

Six possible sets of terminal equations (2) $\begin{cases}
\begin{bmatrix}
V_1 \\
I_2
\end{bmatrix} = \begin{bmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{bmatrix} \times \begin{bmatrix}
I_1 \\
V_2
\end{bmatrix}; [H] \text{ is a hybrid matrix;} \\
\begin{bmatrix}
I_1 \\
V_2
\end{bmatrix} = \begin{bmatrix}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{bmatrix} \times \begin{bmatrix}
V_1 \\
I_2
\end{bmatrix}; [G] = [H]^1 \text{ is a hybrid matrix;}$

Which set is chosen depends on which variables are given. E.g. If the source voltage and current {V₁, I₁} are given, choosing transmission matrix [B] in the analysis.

TABLE 18.1 Parameter Conversion Table	
$z_{11} = \frac{y_{22}}{\Delta y} = \frac{a_{11}}{a_{21}} = \frac{b_{22}}{b_{21}} = \frac{\Delta h}{h_{22}} = \frac{1}{g_{11}}$	$b_{21} = \frac{1}{z_{12}} = -\frac{\Delta y}{y_{12}} = \frac{a_{21}}{\Delta a} = \frac{h_{22}}{h_{12}} = -\frac{g_{11}}{g_{12}}$
$z_{12} = -\frac{y_{12}}{\Delta y} = \frac{\Delta a}{a_{21}} = \frac{1}{b_{21}} = \frac{h_{12}}{h_{22}} = -\frac{g_{12}}{g_{11}}$	$b_{22} = \frac{z_{11}}{z_{12}} = \frac{y_{22}}{y_{12}} = \frac{a_{11}}{\Delta a} = \frac{\Delta h}{h_{12}} = -\frac{1}{g_{12}}$
$z_{21} = \frac{-y_{21}}{\Delta y} = \frac{1}{a_{21}} = \frac{\Delta b}{b_{21}} = -\frac{h_{21}}{h_{22}} = \frac{g_{21}}{g_{11}}$	$h_{11} = \frac{\Delta z}{z_{22}} = \frac{1}{y_{11}} = \frac{a_{12}}{a_{22}} = \frac{b_{12}}{b_{11}} = \frac{g_{22}}{\Delta g}$
$z_{22} = \frac{y_{11}}{\Delta y} = \frac{a_{22}}{a_{21}} = \frac{b_{11}}{b_{21}} = \frac{1}{h_{22}} = \frac{\Delta g}{g_{11}}$	$h_{12} = \frac{z_{12}}{z_{22}} = -\frac{y_{12}}{y_{11}} = \frac{\Delta a}{a_{22}} = \frac{1}{b_{11}} = -\frac{g_{12}}{\Delta g}$
$y_{11} = \frac{z_{22}}{\Delta z} = \frac{a_{22}}{a_{12}} = \frac{b_{11}}{b_{12}} = \frac{1}{h_{11}} = \frac{\Delta g}{g_{22}}$	$h_{21} = -\frac{z_{21}}{z_{22}} = \frac{y_{21}}{y_{11}} = -\frac{1}{a_{22}} = -\frac{\Delta b}{b_{11}} = -\frac{g_{21}}{\Delta g}$
$y_{12} = -\frac{z_{12}}{\Delta z} = -\frac{\Delta a}{a_{12}} = -\frac{1}{b_{12}} = -\frac{h_{12}}{h_{11}} = \frac{g_{12}}{g_{22}}$	$h_{22} = \frac{1}{z_{22}} = \frac{\Delta y}{y_{11}} = \frac{a_{21}}{a_{22}} = \frac{b_{21}}{b_{11}} = \frac{g_{11}}{\Delta g}$
$y_{21} = -\frac{z_{21}}{\Delta z} = -\frac{1}{a_{12}} = -\frac{\Delta b}{b_{12}} = \frac{h_{21}}{h_{11}} = -\frac{g_{21}}{g_{22}}$	$g_{11} = \frac{1}{z_{11}} = \frac{\Delta y}{y_{22}} = \frac{a_{21}}{a_{11}} = \frac{b_{21}}{b_{22}} = \frac{h_{22}}{\Delta h}$
$y_{22} = \frac{z_{11}}{\Delta z} = \frac{a_{11}}{a_{12}} = \frac{b_{22}}{b_{12}} = \frac{\Delta h}{h_{11}} = \frac{1}{g_{22}}$	$g_{12} = -\frac{z_{12}}{z_{11}} = \frac{y_{12}}{y_{22}} = -\frac{\Delta a}{a_{11}} = -\frac{1}{b_{22}} = -\frac{h_{12}}{\Delta h}$
	10

ENEE234 – Circuit Analysis
Reading Assignment: Chapter 18 in Electric Circuits, 8th Ed. by Nilsson

$$I_{2} = V_{2} \left(\frac{1}{300} + \frac{1}{200}\right) - V_{1} \left(\frac{1}{100}\right) = V_{2} \left(\frac{1+1.5}{300}\right) - V_{1} \left(\frac{1}{100}\right)$$

$$= V_{2} \left(\frac{1+1.5}{300}\right) - V_{1} \left(\frac{3}{300}\right) = > 300I_{2} = -3V_{1} + 2.5V_{2}$$

$$0 = V_{1} \left(\frac{1}{100} + \frac{1}{200}\right) - V_{2} \left(\frac{1}{200}\right) = V_{1} \left(\frac{2+1}{200}\right) - V_{2} \left(\frac{1}{200}\right)$$

$$0 = 3V_{1} - V_{2}$$

$$300I_{2} = -3V_{1} + 2.5V_{2} \qquad (1) \qquad h_{22} = \frac{I_{2}}{V_{2}} \Big|_{I_{1}=0} = \frac{1.5}{300} = 5 \text{ mS}$$

$$0 = 3V_{1} - V_{2} \qquad (2) \qquad h_{12} = \frac{V_{1}}{V_{2}} \Big|_{I_{1}=0} = \frac{1}{3}$$

$$300I_{2} = 1.5V_{2} \qquad 22$$

ENEE234 - Circuit Analysis

$$\therefore \quad V_1 = (0.2 + j0.4)V_2$$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0} = 0.2 + j0.4$$

$$h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0} = \frac{1+j2}{250} = 4 + j8 \text{ mS}$$
Summary:

$$h_{11} = 10 + j20\Omega; \quad h_{12} = 0.2 + j0.4; \quad h_{21} = 0; \quad h_{22} = 4 + j8 \text{ mS}$$
26

ENEE234 - Circuit Analysis

Calculation of 2-port parameters using network equations

Consider the z-parameter equations shown below.

 $V_1 = \mathbf{z}_{11} \cdot \mathbf{I}_1 + \mathbf{z}_{12} \cdot \mathbf{I}_2$ $V_2 = \mathbf{z}_{21} \cdot \mathbf{I}_1 + \mathbf{z}_{22} \cdot \mathbf{I}_2$

Note that V_1 and V_2 are functions of I_1 and I_2 . If general sources, I_1 and I_2 are added to a network and the voltages V_1 and V_2 are calculated, the result will be expressions for V_1 and V_2 that are functions of I_1 and I_2 . So the z-parameter equations are naturally generated.

Similarly, y-parameters can be found by adding two general voltage sources V_1 and V_2 and solving for the currents I_1 and I_2 .

27

ENEE234 - Circuit Analysis

Reciprocal Two-Port Circuits

If a two-port circuit is **reciprocal**, the following relationships exist among the port parameters:

 $z_{12} = z_{21},$ $y_{12} = y_{21},$ $a_{11}a_{22} - a_{12}a_{21} = \Delta a = 1,$ $b_{11}b_{22} - b_{12}b_{21} = \Delta b = 1,$ $h_{12} = -h_{21},$ $g_{12} = -g_{21}.$ 29

ENEE234 - Circuit Analysis

A reciprocal two-port circuit is **symmetric** if its ports can be interchanged without disturbing the values of the terminal currents and voltages. Figure 18.6 shows four examples of symmetric two-port circuits. In such circuits, the following additional relationships exist among the port parameters:

For a symmetric reciprocal network, only two calculations or measurements are necessary to determine all the two-port parameters.

ENEE234 -	Circuit Analysis
LIVLL2JT =	Circuit Analysis

EXE23 – Circuit Analysis The parameters h_{12} and h_{22} cannot be obtained directly from the open-circuit test. However, a check of Eqs. 18.7–18.15 indicates that the four a parameters can be derived from the test data. Therefore, h_{12} and h_{22} can be obtained through the conversion table. Specifically. $h_{12} = \frac{\Delta a}{a_{22}}$.

STUDENTS-HUB.com

$$\Rightarrow \begin{bmatrix} -1 & 0 & z_{11} & z_{12} \\ 0 & -1 & z_{21} & z_{22} \\ 1 & 0 & Z_g & 0 \\ 0 & 1 & 0 & Z_L \end{bmatrix} \times \begin{bmatrix} V_1 \\ V_2 \\ I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ V_g \\ 0 \end{bmatrix}, \quad \{V_1, I_1, V_2, I_2\} \text{ are derived by inverse matrix method.}$$

ENEE234 – Circuit Analysis

Practical Perspective Audio Amplifier

Q: Whether it would be safe to use a given audio amplifier to connect a music player modeled by {V_g=2 V (rms), Z_g=100 Ω} to a speaker modeled by a load resistor Z_L=32 Ω with a power rating of 100 W?

