
Combinational Logic

ENCS2340 - Digital Systems

Dr. Ahmed I. A. Shawahna

Electrical and Computer Engineering Department

Birzeit University

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 2

Presentation Outline

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 3

Combinational Circuits

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates

❖ The logic diagram has no feedback paths or memory elements



Combinational

Circuit


𝑛 inputs 𝑚 outputs

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 4

Combinational Circuits

❖ Analysis:

 Given a circuit (a logic diagram), find out its function

 Function may be expressed as:

▪ Boolean function

▪ Truth table

❖ Design:

 Given a desired function, determine its circuit (logic diagram)

 Function may be expressed as:

▪ Boolean function

▪ Truth table
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 5

Functional Blocks

❖ A functional block is a combinational circuit

❖ We will study blocks, such as decoders and multiplexers

❖ Functional blocks are very common and useful in design

❖ In the past, functional blocks were integrated circuits

SSI: Small Scale Integration = tens of gates

MSI: Medium Scale Integration = hundreds of gates

LSI: Large Scale Integration = thousands of gates

VLSI: Very Large Scale Integration = millions of gates

❖ Today, functional blocks are part of a design library

❖ Tested for correctness and reused in many projects

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 6

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 7

Analysis Procedure - Boolean Function

1. Label all gate outputs that are a function of input variables with

symbols. Determine the Boolean function for each gate output.

2. Label the gates that are a function of input variables and

previously labeled gates with other symbols. Find the Boolean

functions for these gates.

3. Repeat step 2 until output of circuits are obtained.

4. By repeated substitution of previously defined functions, obtain

the output Boolean functions in terms of input variables.

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 8

Analysis Procedure - Boolean Function

𝑻𝟏 = 𝐴𝐵𝐶

𝑻𝟐 = 𝐴 + 𝐵 + 𝐶

𝑻𝟑 = 𝐴𝐵

𝑻𝟒 = 𝐴𝐶

𝑻𝟓 = 𝐵𝐶

𝑭𝟐 = 𝑻𝟑 + 𝑻𝟒 + 𝑻𝟓

= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

𝑭𝟐 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

= 𝐴′ + 𝐵′ 𝐴′ + 𝐶′ 𝐵′ + 𝐶′

𝑻𝟔 = 𝑭𝟐 ∙ 𝑻𝟐

= 𝐴′𝐵′ + 𝐴′𝐶′ + 𝐵′𝐶′ 𝐴 + 𝐵 + 𝐶

= 𝐴′𝐵′𝐶 + 𝐴′𝐵𝐶′ + 𝐴𝐵′𝐶′

𝑭𝟏 = 𝑻𝟏 + 𝑻𝟔

= 𝐴′𝐵′𝐶 + 𝐴′𝐵𝐶′

+ 𝐴𝐵′𝐶′ + 𝐴𝐵𝐶

= 𝐴′𝐵′ + 𝐴′𝐶′ + 𝐵′𝐶′

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 9

Analysis Procedure - Truth Table

1. Determine the number of input variables in the circuit. For n

inputs, form the 2n possible input combinations and list the

binary numbers from 0 to (2n – 1) in a table.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates which are a

function of the input variables only.

4. Proceed to obtain the truth table for the outputs of those gates

which are a function of previously defined values until the

columns for all outputs are determined.

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 10

Analysis Procedure - Truth Table

Truth Table

A B C 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑭𝟐 𝑭𝟐 𝑻𝟔 𝑭𝟏

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

𝑻𝟏

𝑻𝟐

𝑻𝟑

𝑻𝟒

𝑻𝟓

𝑭𝟐

𝑻𝟔

𝑭𝟏 = 𝐴′𝐵′𝐶 + 𝐴′𝐵𝐶′ + 𝐴𝐵′𝐶′ + 𝐴𝐵𝐶𝑭𝟐 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1 1

0 1 0 0 1 1 0 0 0

0 1 0 0 0 0 1 1 1

0 1 0 1 0 1 0 0 0

0 1 1 0 0 1 0 0 0

1 1 1 1 1 1 0 0 1

𝑭𝟐 𝑭𝟏

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 11

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure
 Designing a BCD to Excess-3 Code Converter

 Designing a BCD to 7-Segment Decoder

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 12

How to Design a Combinational Circuit

1. Specification

 Specify the inputs, outputs, and what the circuit should do

2. Formulation

 Convert the specification into truth tables or logic expressions for outputs

3. Logic Minimization

 Minimize the output functions using K-map or Boolean algebra

4. Technology Mapping

 Draw a logic diagram using ANDs, ORs, and inverters

 Map the logic diagram into the selected technology

 Considerations: cost, delays, fan-in, fan-out

5. Verification

 Verify the correctness of the design, either manually or using simulation

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 13

Verification Methods

❖Manual Logic Analysis

 Find the logic expressions and truth table of the final circuit

 Compare the final circuit truth table against the specified truth table

 Compare the circuit output expressions against the specified expressions

 Tedious for large designs + Human Errors

❖ Simulation

 Simulate the final circuit, possibly written in HDL (such as Verilog)

 Write a test bench that automates the verification process

 Generate test cases for ALL possible inputs (exhaustive testing)

 Verify the output correctness for ALL input test cases

 Exhaustive testing can be very time consuming for many inputs

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 14

Designing a BCD to Excess-3 Code Converter

1. Specification:

 Input: BCD code for decimal digits 0 to 9

 Output: Excess-3 code for digits 0 to 9

 Convert BCD code to Excess-3 code

2. Formulation:

 Done easily with a truth table

 BCD input: 𝑎, 𝑏, 𝑐, 𝑑

 Excess-3 output: 𝑤, 𝑥, 𝑦, 𝑧

 Output is don't care for 1010 to 1111

BCD

a b c d

Excess-3

w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1010 to 1111 X X X X

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 15

Designing a BCD to Excess-3 Code Converter

3. Logic Minimization using K-maps:

00 01 11 10

00

𝑎𝑏

𝑐𝑑
K-map for 𝑤

01

11

10

K-map for 𝑥 K-map for 𝑦 K-map for 𝑧

00 01 11 10 00 01 11 10 00 01 11 10

1

11

11 1 1

XX XX

XX 1

1

1 1 1

XX XX

XX

1

1

XX XX

XX

1

1

XX XX

XX1

1

1

1

Minimal Sum-of-Products expressions:

𝑤 = 𝑎 + 𝑏𝑐 + 𝑏𝑑 , 𝑥 = 𝑏′𝑐 + 𝑏′𝑑 + 𝑏𝑐′𝑑′ , 𝑦 = 𝑐𝑑 + 𝑐′𝑑′ , 𝑧 = 𝑑′

Additional 3-Level Optimizations: extract common term (𝑐 + 𝑑)

𝑤 = 𝑎 + 𝑏(𝑐 + 𝑑) , 𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ , 𝑦 = 𝑐𝑑 + (𝑐 + 𝑑)′
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 16

Designing a BCD to Excess-3 Code Converter

4. Technology Mapping:

Draw a logic diagram using ANDs, ORs, and inverters

Other gates can be used, such as NAND, NOR, and XOR

a

b

c

d

w

x

y

z

Using XOR gates

𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ = 𝑏  𝑐 + 𝑑

𝑦 = 𝑐𝑑 + 𝑐′𝑑′ = 𝑐  𝑑 ′ = 𝑐  𝑑′

a

b

c

d

w

x

y

z

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 17

Designing a BCD to Excess-3 Code Converter

5. Verification:

Can be done manually

Extract output functions from circuit diagram

Find the truth table of the circuit diagram

Match it against the specification truth table

Verification process can be automated

Using a simulator for complex designs

a

b

c

d

w = a + b(c + d)

x = b  (c + d)

y = c  d'

z = d'

BCD
a b c d c+d b(c+d)

Excess-3
w x y z

0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 1 0 0 1 1 0

0 1 0 0 0 0 0 1 1 1

0 1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 0 0 1

0 1 1 1 1 1 1 0 1 0

1 0 0 0 0 0 1 0 1 1

1 0 0 1 1 0 1 1 0 0

Truth Table of the

Circuit Diagram

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 18

Designing a BCD to Excess-3 Code Converter

5. Verification:

Run the simulation of the circuit

Do the simulation output combinations match the original specification

truth table?

0 50 ns 100 ns

 INPUTS

A

B

C

D

OUTPUTS

W

X

Y

Z

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 19

BCD to 7-Segment Decoder

❖ Seven-Segment Display:

 Made of Seven segments: light-emitting diodes (LED)

 Found in electronic devices: such as clocks, calculators, etc.

❖ BCD to 7-Segment Decoder

 Accepts as input a BCD decimal digit (0 to 9)

 Generates output to the seven LED segments to display the BCD digit

 Each segment can be turned on or off separately

BCD to

7-Segment

Decoder

A

B

C

D

a
b
c
d
e
f
g

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 20

Designing a BCD to 7-Segment Decoder

1. Specification:

 Input: 4-bit BCD (A, B, C, D)

 Output: 7-bit (a, b, c, d, e, f, g)

 Display should be OFF for

Non-BCD input codes

2. Formulation:

 Done with a truth table

 Output is zero for 1010 to 1111

BCD input

A B C D

7-Segment decoder

a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1010 to 1111 0 0 0 0 0 0 0

Truth Table

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 21

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps:

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑎

01

11

10 11

1 1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑏

01

11

10 11

1

11

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑐

01

11

10 11

1

1 1

11

11

𝑎 = 𝐴′𝐶 + 𝐴′𝐵𝐷 + 𝐴𝐵′𝐶′ + 𝐵′𝐶′𝐷′

𝑏 = 𝐴′𝐵′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷′ + 𝐴′𝐶𝐷

𝑐 = 𝐴′𝐵 + 𝐵′𝐶′ + 𝐴′𝐷

Extracting common terms

Let 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′, 𝑇3 = 𝐴′𝐷

Optimized Logic Expressions

𝑎 = 𝐴′𝐶 + 𝑇1 𝐷 + 𝑇2 𝐴 + 𝑇2 𝐷′

𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3

𝑇1, 𝑇2, 𝑇3 are shared gates

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 22

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑑

01

11

10 11

1

1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑒

01

11

10 1

1

1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑓

01

11

10 11

1

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑔

01

11

10 11

1 1

1 1

1

Optimized Logic Expressions

𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7

𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9

𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Common AND Terms

➔ Shared Gates

𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 23

Designing a BCD to 7-Segment Decoder

4. Technology Mapping:

Many Common AND terms: 𝑇0 thru 𝑇9

𝑇0 = 𝐴′𝐶, 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′

𝑇3 = 𝐴′𝐷, 𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Optimized Logic Expressions

𝑎 = 𝑇0 + 𝑇1 𝐷 + 𝑇4 + 𝑇5

𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3

𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7

𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9

𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Showing only

Outputs e, f, g

T4

T2

T5

A

B'
C'

D'

T0

T6

T7

B'

A'
C

D'

T8

T1

T9

C'

A'
B

D'

e f g
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 24

Designing a BCD to 7-Segment Decoder

5. Verification:

Run the simulation of the circuit. All sixteen input test cases of A, B, C, D

are generated between t=0 and t=160ns. Verify that outputs a to g match

the truth table.

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 25

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor
 Half Adder and Full Adder

 Binary Adder (Ripple Carry Adder and Carry Lookahead Adder)

 Incrementor

 Binary Subtractor

 Adder/Subtractor Design Examples

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 26

Hierarchical Design

❖Why Hierarchical Design?

To simplify the implementation of a complex circuit

❖What is Hierarchical Design?

Decompose a complex circuit into smaller pieces called blocks

Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough

Any block not decomposed is called a primitive block

The hierarchy is a tree of blocks at different levels

❖ The blocks are verified and well-document

❖ They are placed in a library for future use

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 27

Example of Hierarchical Design

❖ Top Level: 16-input odd function: 16 inputs, one output

 Implemented using Five 4-input odd functions

❖ Second Level: 4-input odd function that uses three XOR gates

16-Input

Odd

Function

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

z

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

z

Hierarchical Design

typically includes

blocks of different

functions and sizes

x0

x1

x2

x3

z

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 28

Testing Hierarchical Design

❖ Exhaustive testing can be very time consuming (or impossible)

 For a 16-bit input, there are 216 = 65,536 test cases (combinations)

 For a 32-bit input, there are 232 = 4,294,967,296 test cases

 For a 64-bit input, there are 264 = 18,446,744,073,709,551,616 test cases!

❖ Testing a hierarchical design requires a different strategy

❖ Test each block in the hierarchy separately

 For smaller blocks, exhaustive testing can be done

 It is easier to detect errors in smaller blocks before testing complete circuit

❖ Test the top-level design by applying selected test inputs

❖Make sure that the test inputs exercise all parts of the circuit

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 29

Top-Down versus Bottom-Up Design

❖ A top-down design proceeds from a high-level

specification to a more and more detailed design by

decomposition and successive refinement

❖ A bottom-up design starts with detailed primitive

blocks and combines them into larger and more

complex functional blocks

❖ Design usually proceeds top-down to a known set of

building blocks, ranging from complete processors to

primitive logic gates

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 30

Half Adder

❖ Half-adder adds 2 bits: x and y

❖ Two output bits:

1. Carry bit: C

2. Sum bit: S

❖ Sum bit is 1 if the number of 1's in

the input is odd (odd function)

𝑺 = 𝒙′𝒚 + 𝒙𝒚′ = 𝒙 ⨁ 𝒚

❖ Carry bit is 1 only when both

inputs are 1

𝑪 = 𝒙 𝒚

x y C S

0 0

0 1

1 0

1 1

Truth Table

x

y

S

C
x

+ y

C S

0 0

0 1

0 1

1 0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 31

Half Adder

❖ The logic diagram of the half adder implemented in sum-of-

products is shown in (a). It can be also implemented with an

exclusive-OR and an AND gate as shown in (b):

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 32

Full Adder

❖ Full adder adds 3 bits: x, y, and z

❖ Two output bits:

1. Carry bit: C

2. Sum bit: S

❖ Sum bit is 1 if the number of 1's in

the input is odd (odd function)

𝑺 = 𝒙𝒚′𝒛′ + 𝒙′𝒚𝒛′ + 𝒙′𝒚′𝒛 + 𝒙𝒚𝒛

❖ Carry bit is 1 if the number of 1's in

the input is 2 or 3

𝑪 = 𝒙𝒚 + 𝒙𝒛 + 𝒚𝒛

x y z C S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth Table

x

z

S

C

y Full-

Adder 0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 33

❖ The logic diagram for the full adder implemented in sum-of-

products form:

Full Adder

𝑪 = 𝒙𝒚 + 𝒙𝒛 + 𝒚𝒛

00 01 11 10

0

1

𝑥
𝑦𝑧

0 1 0 1

1 0 1 0

K-Map of 𝑆

00 01 11 10

0

1

𝑥
𝑦𝑧

0 0 1 0

0 1 1 1

K-Map of 𝐶

𝑺 = 𝒙𝒚′𝒛′ + 𝒙′𝒚𝒛′ + 𝒙′𝒚′𝒛 + 𝒙𝒚𝒛

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 34

Full Adder

❖ Full adder can also be implemented with two half adders and

one OR gate:

𝑺 = 𝒙𝒚′𝒛′ + 𝒙′𝒚𝒛′ + 𝒙′𝒚′𝒛 + 𝒙𝒚𝒛

= 𝒛′ 𝒙𝒚′ + 𝒙′𝒚 + 𝒛 𝒙′𝒚′ + 𝒙𝒚

= 𝒛′ 𝒙 ⨁ 𝒚 + 𝒛 𝒙 ⨁ 𝒚 ′

= 𝒙 ⨁ 𝒚 ⨁ 𝒛 = 𝒙 ⨁ 𝒚 ⨁ 𝒛

𝑪 = 𝒙𝒚 + 𝒙𝒛 + 𝒚𝒛

= 𝒙𝒚 + 𝒙 ⨁ 𝒚 𝒛

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 35

Binary Adder (Ripple Carry Adder)

❖ Start with the least significant bit (rightmost bit)

❖ Add each pair of bits

❖ Include the carry in the addition

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 36

Iterative Design: Ripple Carry Adder

❖ Using identical copies of a smaller circuit to build a large circuit

❖ Addition of n-bit numbers requires:

 A chain of n full adders, or

 A chain of one-half adder and (n – 1) full adders

❖ Example: Building a 4-bit adder using 4 copies of a full adder

 The cell (iterative block) is a full adder

▪ Adds 3 bits: ai, bi, ci

▪ Computes: Sum si and Carry-out ci+1
ciFull

Adder

ai bi

si

ci+1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 37

Iterative Design: Ripple Carry Adder

❖ The Figure below shows the interconnection of four full-adder

(FA) circuits to provide a four-bit binary ripple carry adder

 Carry-out of cell i becomes carry-in to cell (i +1)

 The input carry to the least significant position is fixed at 0

0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 38

Carry Propagation

❖ Major drawback of ripple-carry adder is the carry propagation

❖ The carries are connected in a chain through the full adders

❖ The carry ripples (propagates) through all the full adders

❖ This is why it is called a ripple-carry adder

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 39

Longest Delay Analysis

❖ Suppose the XOR delay is 1 (Delay of XOR > Delay of AND) and

AND-OR delay is 2

❖ For an N-bit ripple-carry adder, if all inputs are present at once:

1. Most-significant sum-bit delay =

2. Final Carry-out delay =

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4
2222

1

1

21 + (N – 1) 2

1 + N 2
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 40

❖ Is it possible to eliminate carry propagation?

❖ Observation: 𝑐𝑖+1 = 𝑎𝑖 𝑏𝑖 + 𝑎𝑖  𝑏𝑖 𝑐𝑖

❖ If both inputs 𝑎𝑖 and 𝑏𝑖 are 1s then

𝑐𝑖+1 will be 1 regardless of input 𝑐𝑖

❖ Therefore, define 𝑔𝑖 = 𝑎𝑖 𝑏𝑖

 𝑔𝑖 is called carry generate: generates 𝑐𝑖+1 regardless of 𝑐𝑖

❖ In addition, define 𝑝𝑖 = 𝑎𝑖  𝑏𝑖 𝑎𝑖 or 𝑏𝑖 is 1, not both

 𝑝𝑖 is called carry propagate: propagates value of 𝑐𝑖 to 𝑐𝑖+1

❖ Equation of output sum carry becomes:

𝑠𝑖 = 𝑝𝑖  𝑐𝑖 and 𝑐𝑖+1 = 𝑔𝑖 + 𝑝𝑖 𝑐𝑖

 If both inputs 𝑎𝑖 and 𝑏𝑖 are 0s then 𝑔𝑖 = 𝑝𝑖 = 0 and 𝑐𝑖+1 = 0

Carry Lookahead Adder
ai

ci

si

bi

ci+1

gi pi

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 41

Carry Bits

Carry bits are generated by a Lookahead Carry Unit as follows:

𝑐0 = input carry

𝑐1 = 𝑔0 + 𝑝0 𝑐0

𝑐2 = 𝑔1 + 𝑝1 𝑐1 = 𝑔1 + 𝑝1 𝑔0 + 𝑝0𝑐0 = 𝑔1 + 𝑝1 𝑔0 + 𝑝1 𝑝0 𝑐0

𝑐3 = 𝑔2 + 𝑝2 𝑐2 = 𝑔2 + 𝑝2 𝑔1 + 𝑝2 𝑝1 𝑔0 + 𝑝2 𝑝1 𝑝0 𝑐0

𝑐4 = 𝑔3 + 𝑝3 𝑐3 = 𝑔3 + 𝑝3 𝑔2 + 𝑝3 𝑝2 𝑔1 + 𝑝3 𝑝2 𝑝1 𝑔0 + 𝑝3 𝑝2 𝑝1 𝑝0 𝑐0

Define Group Generate: 𝐺𝐺 = 𝑔3 + 𝑝3 𝑔2 + 𝑝3 𝑝2 𝑔1 + 𝑝3 𝑝2 𝑝1 𝑔0

Define Group Propagate: 𝐺𝑃 = 𝑝3 𝑝2 𝑝1 𝑝0

𝑐4 = 𝐺𝐺 + 𝐺𝑃 𝑐0

Carry does not ripple anymore

Reduced delay when generating 𝑐1 to 𝑐4 in parallel

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 42

4-Bit Carry Lookahead Adder

All generate and propagate signals (gi, pi) are generated in parallel

All carry bits (c1 to c4) are generated in parallel

The sum bits are generated faster than ripple-carry adder

ai

ci

si

bi

gi pi

c4

c01-bit

Adder

a0 b0

1-bit

Adder

a1 b1

1-bit

Adder

a2 b2

1-bit

Adder

a3 b3

Lookahead Carry Unit

s0

g0 p0

GG GP

c1

c1

c2

c2

c3

c3

s1

g1 p1

s2

g2 p2

s3

g3 p3 c0
c0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 43

Lookahead Carry Unit

Lookahead Carry UnitGG GP

g3 p3 c3 g2 p2 c2 g1 p1 g0 p0c1

c4 c0

c0

p0g0c1p1g1c2p2g2c3p3g3

c4

GGGP
Two-Level AND-OR Logic

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 44

Longest Delay of the 4-bit CLA

❖ All generate and propagate signals are produced in parallel

❖ Delay of all gi and pi = 1 (Delay of XOR > Delay of AND)

❖ Carry bits c1, c2, and c3 are generated in parallel (Delay = 2)

 Carry-out bit c4 is not needed to compute the sum bits

❖ Longest Delay of the 4-bit CLA =

ai

ci

si

bi

gi pi

1

1

c0

p0g0c1p1g1c2p2g2c3p3g3

c4

GGGP Delay = 2

1 + 2 + 1 = 2 1 + 2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 45

Hierarchical 16-Bit Carry Lookahead Adder

❖ Designed with Four 4-bit Carry Lookahead Adders (CLA)

❖ A Second-Level Lookahead Carry Unit is required

❖ Uses Group Generate (GG) and Group Propagate (GP) signals

c16

Lookahead Carry Unit (Level 2)GG GP

4-bit

CLA Adder

c12

s [15:12]

b [15:12]

4 4

4

a [15:12]

4-bit

CLA Adder

c8

s [11:8]

b [11:8]

4 4

4

a [11:8]

4-bit

CLA Adder

c4

s [7:4]

b [7:4]

4 4

4

a [7:4]

4-bit

CLA Adder

c0

s [3:0]

g0 p0

GPGGGPGGGPGGGPGG

g1 p1g2 p2g3 p3

b [3:0]

4 4

4

a [3:0]4-bit

input

vectors

c1c2c3
c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 46

Hierarchical 64-Bit Carry Lookahead Adder

❖ Designed with Four 16-bit Carry Lookahead Adders (CLA)

❖ A Third-Level Lookahead Carry Unit is required

❖ Uses Group Generate (GG) and Group Propagate (GP) signals

c64

Lookahead Carry Unit (Level 3)GG GP

16-bit

CLA Adder

c48

s [47:32]

b [47:32]

16 16

16

a [47:32]

16-bit

CLA Adder

c32

s [47:32]

b [47:32]

16 16

16

a [47:32]

16-bit

CLA Adder

c16

s [31:16]

b [31:16]

16 16

16

a [31:16]

16-bit

CLA Adder

c0

s [15:0]

g0 p0

GPGGGPGGGPGGGPGG

g1 p1g2 p2g3 p3

b [15:0]

16 16

16

a [15:0]16-bit

input

vectors

c1c2c3
c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 47

Incrementor Circuit

❖ An incrementer is a special case of an adder

Sum = A + 1 (B = 0, C0 = 1)

❖ An n-bit Adder can be simplified into an n-bit Incrementer

𝑎0

1

𝑠0

0𝑎1

𝑠1

0𝑎2

𝑠2

0𝑎3

𝑠3

0

𝑐3 𝑐2 𝑐1

𝑐4

𝒂𝟎

𝒂𝟎
′

0 𝒂𝟎
0 𝒂𝟏

0 𝒂𝟐
0 𝒂𝟑

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 48

Design by Contraction

❖ Contraction is a technique for simplifying the logic

❖ Applying 0s and 1s to some inputs

❖ Equations are simplified after applying fixed 0 and 1 inputs

❖ Converting a function block to a more simplified function

❖ Examples of Design by Contraction

 Incrementing a number by a fixed constant

 Comparing a number to a fixed constant

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 49

Simplifying the Incrementer Circuit

❖Many gates were eliminated

❖ No longer needed when an input is a constant

❖ Last cell can be replicated to implemented an n-bit incrementer

𝑐4

𝑎3

𝑠3

𝑎2

𝑠2

𝑐3

Incrementer

4

4

a [3:0]

s [3:0]

c4

𝑎1

𝑠1

𝑐2

𝑎0

𝑠0

𝑐1 1
𝑐0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 50

Simplifying the Incrementer Circuit

❖ First half adder can be simplified and replaced with an inverter

𝑎1

𝑠1

𝑐4

𝑎0

𝑠0

𝑎2

𝑠2

𝑐2

𝑎3

𝑠3

𝑐3 𝑐1

Incrementer

4

4

a [3:0]

s [3:0]

c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 51

Binary Subtractor
❖When computing A – B, convert B to its 2's complement

A – B = A + (2’s complement of B)

❖ Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

❖ Final carry is ignored, because

A + (2's complement of B) = A + (2n – B) = (A – B) + 2n

Final carry = 2n, for n-bit numbers

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

– 0 0 1 1 1 0 1 0 + 1 1 0 0 0 1 1 0 (2's complement)

 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 (same result)

borrow: carry:-1-1-1 1111

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 52

Adder/Subtractor for 2's Complement

❖ Same adder is used to compute: (A + B) or (A – B)

❖ Subtraction (A – B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

❖ Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

n-bit Adder

n

A [n-1:0]

S [n-1:0]

n

n

n

B [n-1:0]

c0

OP

cn

n-bit input
vectors

n-bit output
vector

n XOR
gates

OP = 0 (ADD)

B XOR 0 = B

S = A + B + 0 = A + B

OP = 1 (SUBTRACT)

B XOR 1 = 1's complement of B

S = A + (1's complement of B) + 1

S = A + (2's complement of B)

S = A – B
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 53

Carry versus Overflow

❖ Carry is important when …

 Adding unsigned integers

 Indicates that the unsigned sum is out of range

 Sum > maximum unsigned n-bit value

❖ Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

❖ Overflow occurs when …

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

❖ Simplest way to detect Overflow: V = Cn–1  Cn

 Cn-1 and Cn are the carry-in and carry-out of the most-significant bit

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 54

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143 (-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples

❖We can have carry without overflow and vice-versa

❖ Four cases are possible (Examples on 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 55

❖Unsigned Integers: n-bit representation

❖Signed Integers: 2's complement representation

Range, Carry, Borrow, and Overflow

max = 2
n
–1min = 0

Carry = 1 for

Addition

Number > max

Borrow for

Subtraction

Number < 0

Positive

Overflow

Number > max

Negative

Overflow

Number < min

max = 2
n-1

–1

Finite Set of Signed Integers

0min = -2
n-1

Finite Set of Unsigned Integers

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 56

Binary Adder/Subtractor

❖ Example: A 4-bit adder/subtractor with carry/overflow detection

 Two operations: M = 0 (S = A + B), M = 1 (S = A - B)

 The C bit detects a carry after addition or a borrow after subtraction

 The V bit detects an overflow

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 57

Zero versus Sign Extension

❖ Unsigned Integers are Zero-Extended

❖ Signed Integers are Sign-Extended

❖ Given that X is a 4-bit unsigned integer ➔ Range = 0 to 15

❖ Given that Y is a 4-bit signed integer ➔ Range = -8 to +7

❖ If unsigned X = 4’b1101 (binary), then X = 13 (decimal)

❖ If signed Y = 4’b1101 (binary), then Y = -3 (decimal)

❖ If X is zero-extended from 4 to 6 bits then X = 6’b001101 = 13

❖ If Y is sign-extended from 4 to 6 bits then Y = 6’b111101 = -3

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 58

Unsigned Addition S = X + Y

❖ Design a circuit that computes: S = X + Y (unsigned X and Y)

❖ X[3:0] and Y[3:0] are 4-bit unsigned integers ➔ Range = 0 to 15

Solution:

❖Maximum S = 15 + 15 = 30 ➔ unsigned S must be 5 bits

FA

X0 Y0

S0

0FA

X1 Y1

S1

FA

X2 Y2

S2

FA

X3

S3S4

Y3

c1c2c3c4 c0

Most-significant

sum bit S4 is

the carry bit c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 59

Signed Addition S = X + Y

❖ Design a circuit that computes: S = X + Y (signed X and Y)

❖ X[3:0] and Y[3:0] are 4-bit signed integers ➔ Range = -8 to +7

Solution:

❖ Minimum S = (-8) + (-8) = -16, Maximum S = (+7) + (+7) = + 14

❖ Therefore, signed range of S = -16 to +14 ➔ S must be 5 bits

X and Y are

sign-extended

X3 and Y3 are

replicated to

produce S4

FA

X0 Y0

S0

0FA

X1 Y1

S1

FA

X2 Y2

S2

FA

X3

S3

Y3

c1c2c3 c0
FA

S4

c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 60

Unsigned Subtraction S = X - Y

❖ Design a circuit that computes S = X – Y (unsigned X and Y)

❖ X[3:0] and Y[3:0] are 4-bit unsigned integers ➔ Range = 0 to 15

Solution: S = X – Y = X + 2’s complement of Y = X + Y’ + 1

❖ Minimum S = 0 – 15 = -15, Maximum S = 15 – 0 = +15

❖ S is signed, even though X are Y are unsigned ➔ S is 5 bits

X–Y = X+Y’+1

X and Y are

zero-extended. FA

X0 Y0

S0

1FA

X1 Y1

S1

FA

X2 Y2

S2

FA

X3

S3

FA

S4

Y30 1

c1c2c3c4 c0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 61

Unsigned Subtraction S = X - Y

❖ Most-significant bit: S4 = 0 + 0’ + c4 = 1 + c4 = c4’

❖ Full Adder for S4 can be replaced by an inverter

FA

X0 Y0

S0

1FA

X1 Y1

S1

FA

X2 Y2

S2

FA

X3

S3S4

Y3

c1c2c3c4 c0
FA

S4

0 1

c4

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 62

Signed Subtraction S = X - Y

❖ Design a circuit that computes S = X – Y (signed X and Y)

❖ X[3:0] and Y[3:0] are 4-bit signed integers ➔ Range = -8 to +7

Solution: S = X – Y = X + Y’ + 1

❖ Minimum S = -8 – (+7) = -15, Maximum S = +7 – (-8) = +15

❖ Signed range for S is -15 to +15 ➔ S is 5 bits

X–Y = X+Y’+1

X and Y are

sign-extended. FA

X0 Y0

S0

1FA

X1 Y1

S1

FA

X2 Y2

S2

FA

X3

S3

FA

S4

Y3

c1c2c3c4 c0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 63

S = 2*X + Y (Unsigned X and Y)

❖ Design a circuit that computes S = 2*X + Y (unsigned X and Y)

❖ X[3:0] and Y[3:0] are 4-bit unsigned integers ➔ range = 0 to 15

Solution:

❖ 2*X + Y = (X << 1) + Y (Shift-Left X by 1 bit)

❖ Maximum value of S = 2*15 + 15 = 45 ➔ S is 6 bits = S[5:0]

FA

X0 Y1

S1

c1c2c3c4c5

S0

Y0

0FA

X1 Y2

S2

FA

X2 Y3

S3

FA

X3 0

S4S5

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 64

S = 2*X + Y (Signed X and Y)

❖ Design a circuit that computes S = 2*X + Y using Full Adders

❖ X[3:0] and Y[3:0] are 4-bit signed integers ➔ range = -8 to +7

Solution:

❖ Range of X and Y is -8 to +7 ➔ Minimum S = 2*(-8) + (-8) = -24

❖Maximum S = 2*(+7) + 7 = +21 ➔ S is 6 bits = S[5:0]

FA

X0 Y1

S1 S0

Y0

0FA

X1 Y2

S2

FA

X2 Y3

S3

FA

X3

S4

FA

S5

c1c2c3c4c5

X and Y are

sign-extended.

Sign bits X3 and Y3

are replicated.

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 65

Design a Circuit for Unsigned S = X + Y + Z

❖ X, Y, and Z are 4-bit unsigned integers ➔ Range = 0 to 15

Solution: Maximum S = 15 + 15 + 15 = 45 ➔ S must be 6 bits

X[3:0]

4

Y[3:0]

4

04-bit Adder cincout

05-bit Adder cincout

0, Z[3:0]

54

5

S[5], S[4:0] S = 6-bit Unsigned Sum

T[4] T[3:0]
One 4-bit Adder

One 5-bit Adder

Z is zero-extended

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 66

Design a Circuit for Signed S = W + X – Y – Z

❖W, X, Y, and Z are 4-bit signed integers ➔ Range = -8 to +7

Solution: S = W + X – Y – Z = (W+X) – (Y+Z) ➔ 6 bits are used

W[3], W[3:0]

5

X[3], X[3:0]

5

05-bit Adder cincout

5

16-bit Adder cincout

6

S[5:0] S = 6-bit Signed Sum

Sign-Bit

Extension

U[4] U[4:0]

Two 5-bit Adders

One 6-bit Adder

Y[3], Y[3:0]

5

Z[3], Z[3:0]

5

05-bit Adder cincout

V[4:0]

V’[4]
5

V’[4:0]Sign bit is

replicated

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 67

Absolute Difference |X – Y| of Signed X, Y

❖ Design a circuit that computes A = |X – Y| (absolute difference)

Solution: Maximum A = |X – Y| = |-8 – +7| = 15 ➔ 4 bits are used

4-bit Absolute Difference

4-bit Incrementor

is implemented

using Half Adders

Sign-bit

extension

4 A[3:0]

X[3], X[3:0]

5

Y[3], Y[3:0]

4 S[3:0]S[4]

4

S[4] = sign-bit of (X – Y)4-bit Inc cincout

15-bit Adder cincout

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 68

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

 BCD Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 69

BCD Addition

❖ Consider adding two decimal digits in BCD

❖ Operands and Result: 0 to 9

❖ Output sum cannot exceed 9 + 9 + 1 = 19

 The 1 in the sum is the input carry from previous digit

❖We use a 4-bit binary adder to add the BCD digits

 The adder will produce a result that ranges from 0 through 19

 If the result is more than 9, it must be corrected to use 2 digits

 To correct the digit, add 6 to the digit sum (a 4-bit binary adder)

8
+ 5

 13 (>9)
+ 6 (add 6)

 19 (carry + 3)

1000
+ 0101

1101
+ 0110

1 0011
Final answer

in BCD
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 70

BCD Adder
In

va
lid

 C
od

es

(n
ee

d
C

or
re

ct
io

n)
V

al
id

 C
od

es

+6

+0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 71

BCD Adder

Correction is required if:

1) Z > 9 or

2) K = 1

𝐶 = 𝐾 + 𝑍8𝑍4 + 𝑍8𝑍2

Correction circuit adds 0 or 6

4

S [3:0]

BCD Adder

4

A [3:0]

4

B [3:0]

CinCout

00 01 11 10

00

𝑍8𝑍4

𝑍2𝑍1

01

11

10

1 1

1

1

1

1

𝑍 > 9

𝑍8𝑍4 + 𝑍8𝑍2

𝑍8 𝑍4 𝑍2 𝑍1

+ 0 0 0 0
 𝑆3 𝑆2 𝑆1 𝑆0

𝐶 = 0

𝑍8 𝑍4 𝑍2 𝑍1

+ 0 1 1 0
 𝑆3 𝑆2 𝑆1 𝑆0

𝐶 = 1

𝑍8 𝑍4 𝑍2 𝑍1

+ 0 𝐶 𝐶 0
 𝑆3 𝑆2 𝑆1 𝑆0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 72

Cout

BCD Adder

4

S [3:0]

4

A [3:0]

4

B [3:0]

Cin
4-bit binary Adder

Z8 Z4 Z2 Z1

k

4-bit binary Adder
S3 S2 S1 S0

0

0

Detection

Circuit

Correction

Circuit

Add 0 or 6

C

𝐶 = 𝐾 + 𝑍8𝑍4 + 𝑍8𝑍2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 73

BCD Adder

S3

4

A [3:0]

4

B [3:0]

Cin

Cout

4-bit binary Adder

HAFA

S2 S1 S0

z8 z4 z2 z1

HA = Half Adder

FA = Full Adder

Correction

Circuit

Add 0 or 6

Detection

Circuit k

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 74

Multiple Digit BCD Addition

Add: 2905 + 1897 in BCD

Showing carries and digit corrections

+1

0101

0111

1100

0110

0010

0000

1001

1010

0110

0000

+1

1001

1000

10010

0110

1000

+1

0010

0001

0100

0100

+

carry

digit correction

Final answer: 2905 + 1897 = 4802

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 75

Ripple-Carry BCD Adder

❖ Inputs are BCD digits: 0 to 9

❖ Sum are BCD digits: ones, tens, hundreds, thousands, etc.

❖ Can be extended to any number of BCD digits

❖ BCD adders are larger in size than binary adders

BCD

Adder

c3

S [15:12]

B [15:12]

4 4

4

A [15:12]

c4 BCD

Adder

c2

S [11:8]

B [11:8]

4 4

4

A [11:8]

BCD

Adder

c1

S [7:4]

B [7:4]

4 4

4

A [7:4]

Tens

BCD

Adder

c0

S [3:0]

B [3:0]

4 4

4

A [3:0]

OnesHundredsThousands

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 76

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 77

❖ Binary Multiplication is simple:

0×0=0, 0×1=0, 1×0=0, 1×1=1

Multiplicand 11002 = 12

Multiplier × 11012 = 13

1100

0000

1100

1100

Product 100111002 = 156

❖ n-bit multiplicand × m-bit multiplier = (n + m)-bit product

Binary Multiplication

Binary multiplication

0 × multiplicand = 0

1 × multiplicand = multiplicand

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 78

2-bit × 2-bit Binary Multiplier

❖ Suppose we want to multiply two

numbers B = B1B0 and A = A1A0

❖ Step 1: AND (multiply) each bit

of A with each bit of B
 Requires 2x2 AND gates and

produces 2x2 product bits

❖ Step 2: Add the partial product
 Requires (2 - 1) 2-bit binary adders

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 79

4-bit × 3-bit Binary Multiplier

❖ Suppose we want to multiply two numbers B = B3B2B1B0 and

A = A2A1A0

❖ Step 1: AND (multiply) each bit of A with each bit of B
 Requires 4x3 AND gates and produces 4x3 product bits

❖ Step 2: Add the partial product
 Requires (3 - 1) 4-bit binary adders

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 80

4-bit × 3-bit Binary Multiplier

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 81

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 82

Magnitude Comparator

❖ A combinational circuit that compares two unsigned integers

❖ Two Inputs:

 Unsigned integer A (m-bit number)

 Unsigned integer B (m-bit number)

❖ Three outputs:

 A > B (GT output)

 A == B (EQ output)

 A < B (LT output)

❖ Exactly one of the three outputs must be equal to 1

❖While the remaining two outputs must be equal to 0

m-bit

Magnitude

Comparator

A[m–1:0]
m

B[m–1:0]
m

GT: A > B

EQ: A == B

LT: A < B

A

B

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 83

Example: 4-bit Magnitude Comparator

❖ Inputs:

 𝐴 = 𝐴3𝐴2𝐴1𝐴0

 𝐵 = 𝐵3𝐵2𝐵1𝐵0

 8 bits in total ➔ 256 possible combinations

Not simple to design using conventional K-map techniques

❖ The magnitude comparator can be designed at a higher level

❖ Let us implement first the 𝐸𝑄 output (𝐴 is equal to 𝐵)

 𝐸𝑄 = 1 𝐴3 == 𝐵3 , 𝐴2 == 𝐵2 , 𝐴1 == 𝐵1 , and 𝐴0 == 𝐵0

Define: 𝐸𝑖 = 𝐴𝑖 == 𝐵𝑖 = 𝐴𝑖 ⨁ 𝐵𝑖
′ = 𝐴𝑖𝐵𝑖 + 𝐴𝑖

′𝐵𝑖
′

 Therefore, 𝐸𝑄 = 𝐴 == 𝐵 = 𝐸3𝐸2𝐸1𝐸0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 84

The Greater Than Output

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 > 𝐵3 then 𝐺𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐺3 = 𝐴3𝐵3
′ (𝐴3 == 1 and 𝐵3 == 0)

2. If 𝐴3 == 𝐵3 (𝐸3 == 1), we compare 𝐴2 with 𝐵2

Define: 𝐺2 = 𝐴2𝐵2
′ (𝐴2 == 1 and 𝐵2 == 0)

3. If 𝐴3 == 𝐵3 and 𝐴2 == 𝐵2, we compare 𝐴1 with 𝐵1

Define: 𝐺1 = 𝐴1𝐵1
′ (𝐴1 == 1 and 𝐵1 == 0)

4. If 𝐴3 == 𝐵3 and 𝐴2 == 𝐵2 and 𝐴1 == 𝐵1, we compare 𝐴0 with 𝐵0

Define: 𝐺0 = 𝐴0𝐵0
′ (𝐴0 == 1 and 𝐵0 == 0)

Therefore, 𝐺𝑇 = 𝐺3 + 𝐸3𝐺2 + 𝐸3𝐸2𝐺1 + 𝐸3𝐸2𝐸1𝐺0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 85

The Less Than Output

We can derive the expression for the 𝐿𝑇 output, similar to 𝐺𝑇

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 < 𝐵3 then 𝐿𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐿3 = 𝐴3
′ 𝐵3 (𝐴3 == 0 and 𝐵3 == 1)

2. If 𝐴3 = 𝐵3 (𝐸3 == 1), we compare 𝐴2 with 𝐵2

Define: 𝐿2 = 𝐴2
′ 𝐵2 (𝐴2 == 0 and 𝐵2 == 1)

3. Define: 𝐿1 = 𝐴1
′ 𝐵1 (𝐴1 == 0 and 𝐵1 == 1)

4. Define: 𝐿0 = 𝐴0
′ 𝐵0 (𝐴0 == 0 and 𝐵0 == 1)

Therefore, 𝐿𝑇 = 𝐿3 + 𝐸3𝐿2 + 𝐸3𝐸2𝐿1 + 𝐸3𝐸2𝐸1𝐿0

Knowing 𝐺𝑇 and 𝐸𝑄, we can also derive 𝐿𝑇 = (𝐺𝑇 + 𝐸𝑄)′

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 86

Example: 4-bit Magnitude Comparator
𝐸3

𝐸2

𝐸1

𝐸0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 87

Iterative Magnitude Comparator Design

❖ The Magnitude comparator can also be designed iteratively

❖ Each Cell 𝑖 receives as inputs:

Bit 𝑖 of inputs 𝐴 and 𝐵: 𝐴𝑖 and 𝐵𝑖

𝐺𝑇𝑖, 𝐸𝑄𝑖, and 𝐿𝑇𝑖 from cell (𝑖 − 1)

❖ Each Cell 𝑖 produces three outputs:

𝐺𝑇𝑖+1, 𝐸𝑄𝑖+1, and 𝐿𝑇𝑖+1

Outputs of cell 𝑖 are inputs to cell (𝑖 + 1)

❖ Output Expressions of Cell 𝑖

𝐸𝑄𝑖+1 = 𝐸𝑖 ∙ 𝐸𝑄𝑖 𝐸𝑖 = 𝐴𝑖
′𝐵𝑖

′ + 𝐴𝑖𝐵𝑖 (𝐴𝑖 equals 𝐵𝑖)

𝐺𝑇𝑖+1 = 𝐴𝑖 𝐵𝑖
′ + 𝐸𝑖 ∙ 𝐺𝑇𝑖 𝐴𝑖𝐵𝑖

′ (𝐴𝑖 > 𝐵𝑖)

𝐿𝑇𝑖+1 = 𝐴𝑖
′𝐵𝑖 + 𝐸𝑖 ∙ 𝐿𝑇𝑖 𝐴𝑖

′𝐵𝑖 (𝐴𝑖 < 𝐵𝑖)

Third output can be produced for first two: 𝐿𝑇𝑖+1 = (𝐸𝑄𝑖+1 + 𝐺𝑇𝑖+1)′

𝐺𝑇𝑖

𝐸𝑄𝑖

𝐿𝑇𝑖

Cell 𝑖

𝐺𝑇𝑖+1

𝐸𝑄𝑖+1

𝐿𝑇𝑖+1

𝐴𝑖 𝐵𝑖

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 88

Iterative Magnitude Comparator Design

❖ 4-bit magnitude comparator is implemented using 4 identical cells

Design can be extended to any number of cells

❖ Comparison starts at least-significant bit

❖ Final comparator output: 𝐺𝑇 = 𝐺𝑇4 , 𝐸𝑄 = 𝐸𝑄4 , 𝐿𝑇 = 𝐿𝑇4

𝐺𝑇3

𝐸𝑄3

𝐿𝑇3

Cell 3

𝐺𝑇4

𝐸𝑄4

𝐿𝑇4

𝐴3 𝐵3

𝐺𝑇2

𝐸𝑄2

𝐿𝑇2

Cell 2

𝐴2 𝐵2

𝐺𝑇1

𝐸𝑄1

𝐿𝑇1

Cell 1

𝐴1 𝐵1

𝐺𝑇0 = 0

𝐸𝑄0 = 1

𝐿𝑇0 = 0

Cell 0

𝐴0 𝐵0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 89

DM74LS85: A 4-Bit Magnitude Comparator

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 90

Cascading Two Comparators

𝑿𝟎

𝑿𝟏

𝑿𝟐

𝑿𝟑

𝒀𝟎

𝒀𝟏

𝒀𝟐

𝒀𝟑

𝑿𝟒

𝑿𝟓

𝑿𝟔

𝑿𝟕

𝒀𝟒

𝒀𝟓

𝒀𝟔

𝒀𝟕

𝟎

𝟎

𝟏

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 92

Signed Less Than: LT = X < Y

❖ Design a circuit that computes signed LT (Signed X and Y)

Solution:

❖ If (X < Y) then (X – Y) < 0, If (X == Y) then (X – Y == 0)

❖ Do signed subtraction, LT = S4 = sign-bit of the result

S0S1S2S3LT = S4

EQ

Equality

(X – Y == 0)FA

X0 Y0

1FA

X1 Y1

FA

X2 Y2

FA

X3

FA

Y3

c1c2c3c4 c0

Sign Extension

GT
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 93

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 94

Binary Decoders

❖ Given a n-bit binary code, there are 2n possible code values

❖ The decoder has an output for each possible code value

❖ The n-to-2n decoder has n inputs and 2n outputs

❖ Depending on the input code, only one output is set to logic 1

❖ The conversion of input to output is called decoding

n to 2n

Decoder 



n
 I
n

p
u

ts

2
n
 O

u
tp

u
ts A decoder can have less

than 2n outputs if some

input codes are unused

𝐼0
𝐼1

𝐼𝑛−1

𝑂0

𝑂2

𝑂2𝑛−1

𝑂1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 95

Examples of Binary Decoders

Inputs Outputs

a1 a0 d0 d1 d2 d3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Truth Tables

2-to-4

Decoder2
 I
n

p
u

ts

4
 O

u
tp

u
ts

a1

a0

d0

d1

d2

d3

0

1

2

3

1

0

𝑑0 = 𝑎1
′ 𝑎0

′

𝑑1 = 𝑎1
′ 𝑎0

𝑎1

𝑎0

𝑑2 = 𝑎1𝑎0
′

𝑑3 = 𝑎1𝑎0

2-to-4 Decoder

Implementation

Each decoder output is a minterm

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 96

Examples of Binary Decoders

Inputs Outputs

a2 a1 a0 d0 d1 d2 d3 d4 d5 d6 d7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Truth Tables

3-to-8

Decoder

8
 O

u
tp

u
ts

3
 I
n

p
u

ts a2

a1

a0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

1

0

2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 97

3-to-8 Decoder Implementation

Each decoder output

is a minterm

𝑎2

𝑎1

𝑑1 = 𝑎2
′ 𝑎1

′ 𝑎0

𝑎0
𝑑0 = 𝑎2

′ 𝑎1
′ 𝑎0

′

𝑑2 = 𝑎2
′ 𝑎1 𝑎0

′

𝑑3 = 𝑎2
′ 𝑎1 𝑎0

𝑑4 = 𝑎2 𝑎1
′ 𝑎0

′

𝑑5 = 𝑎2 𝑎1
′ 𝑎0

𝑑6 = 𝑎2 𝑎1 𝑎0
′

𝑑7 = 𝑎2 𝑎1 𝑎0

3-to-8 Decoder

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 98

Using Decoders to Implement Functions
❖ A decoder generates all the minterms

❖ A Boolean function can be expressed as a sum of minterms

❖ Any function can be implemented using a decoder + OR gate

Note: the function must not be minimized

❖ Example: Full Adder sum = ∑(1, 2, 4, 7), cout = ∑(3, 5, 6, 7)

Inputs Outputs

a b c cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3-to-8

Decoder

a

b

c

d0

d1

d2

d3

d4

d5

d6

d7

2

1

0

sum

cout

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 99

Using Decoders to Implement Functions

❖ Good if many output functions of the same input variables

❖ If number of minterms is large ➔ Wider OR gate is needed

❖ Use NOR gate if number of maxterms is less than minterms

❖ Example: f(a,b,c) = ∑(2, 5, 6), g(a,b,c) = ∏(3, 6), h(a,b,c) = ∑(0, 5)

Inputs Outputs

a b c f g h

0 0 0 0 1 1

0 0 1 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 1 0 1 0

3-to-8

Decoder

a

b

c

d0

d1

d2

d3

d4

d5

d6

d7

2

1

0

g

f

h

➔ g' = ∑(3, 6)

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 100

2-to-4 Decoder with Enable Input

Inputs Outputs

EN a1 a0 d0 d1 d2 d3

0 X X 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

If EN input is zero then

all outputs are zeros,

regardless of a1 and a0

𝑑0 = 𝐸𝑁 𝑎1
′ 𝑎0

′

𝑑1 = 𝐸𝑁 𝑎1
′ 𝑎0

𝑑2 = 𝐸𝑁 𝑎1𝑎0
′

𝑑3 = 𝐸𝑁 𝑎1𝑎0

𝑎1

𝑎0

𝐸𝑁

Truth Table

2-to-4

Decoder

with Enable

d0

d1

d2

d3

a1

a0

EN

1

0

0

1

2

3

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 101

Building Larger Decoders

❖ Larger decoders can be build using smaller ones

❖ A 3-to-8 decoder can be built using:

Two 2-to-4 decoders with Enable and an inverter (1-to-2 decoder)

Inputs Outputs

a2 a1 a0 d0 d1 d2 d3 d4 d5 d6 d7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

2-to-4

Decoder

with Enable

(Top)

1

0

d0

d1

d2

d3
EN

2-to-4

Decoder

with Enable

(Bottom)

1

0

d4

d5

d6

d7
EN

a1

a0

a2

1
-t

o
-2

 D
e
c
o
d
e
r

0

1

2

3

0

1

2

3

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 102

Building Larger Decoders

A 4-to-16

decoder with

enable can be

built using five

2-to-4 decoders

with enables

Larger decoders can be built

hierarchically in a similar way

a1

a0

2-to-4

Decoder

with Enable

0

1

0

d0

d1

d2

d3EN

2-to-4

Decoder

with Enable

1

1

0

d4

d5

d6

d7EN

2-to-4

Decoder

with Enable

2

1

0

d8

d9

d10

d11EN

2-to-4

Decoder

with Enable

3

1

0

d12

d13

d14

d15EN

2-to-4

Decoder

with Enable

1

0

ENEN

a3

a2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 103

BCD to 7-Segment Decoder

❖ Seven-Segment Display:

 Made of Seven segments: light-emitting diodes (LED)

 Found in electronic devices: such as clocks, calculators, etc.

❖ BCD to 7-Segment Decoder

 Called also a decoder, but not a binary decoder

 Accepts as input a BCD decimal digit (0 to 9)

 Generates output to the seven LED segments to display the BCD digit

 Each segment can be turned on or off separately

BCD to

7-Segment

Decoder

I3

I2

I1

I0

a
b
c
d
e
f
g

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 104

BCD to 7-Segment Decoder

Specification:

 Input: 4-bit BCD (I3, I2, I1, I0)

 Output: 7-bit (a, b, c, d, e, f, g)

 Display should be OFF for Non-BCD

input codes.

Implementation can use:

 A binary decoder

 Additional gates

BCD input

I3 I2 I1 I0

7-Segment Output

a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1010 to 1111 0 0 0 0 0 0 0

Truth Table

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 105

𝐼3(𝐼2 + 𝐼1)

Implementing a BCD to 7-Segment Decoder

I3 I2 I1 I0 a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1010 – 1111 0 0 0 0 0 0 0

Truth Table
a

b

c

d

f

e

g

Input > 9
NOR gate is used for 0's

I2

I1

I0

I3 4-to-10

Binary

Decoder

0

1

2

3

4

5

6

7

8

9

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 106

NAND Decoders with Inverted Outputs

Inputs Outputs

EN a1 a0 d0 d1 d2 d3

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

Some decoders are constructed

with NAND gates. Their outputs

are inverted. The Enable input is

also active low (Enable if zero)

Truth Table

𝑑0 = (𝐸𝑁′𝑎1
′ 𝑎0

′)′

𝑎1

𝑎0

𝐸𝑁

𝑑1 = (𝐸𝑁′𝑎1
′ 𝑎0)′

𝑑2 = (𝐸𝑁′𝑎1𝑎0
′)′

𝑑3 = (𝐸𝑁′𝑎1𝑎0)′

2-to-4

Decoder

with Enable

d0

d1

d2

d3

a1

a0

EN

1

0

0

1

2

3

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 107

f

g

h

Using NAND Decoders

❖ NAND decoders can be used to implement functions

❖ Use NAND gates to output the minterms (if fewer ones)

❖ Use AND gates to output the maxterms (if fewer zeros)

❖ Example: f = ∑(2, 5, 6), g = ∏(3, 6), h = ∑(0, 5)

Inputs Outputs

a b c f g h

0 0 0 0 1 1

0 0 1 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 1 0 1 0

a

b

c

3-to-8

Decoder

(Inverted

Outputs

- NAND)

d0

d1

d2

d3

d4

d5

d6

d7

2

1

0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 108

Example

❖ Implement the Boolean function: 𝑭 𝑨, 𝑩, 𝑪 = 𝑨𝑩 + 𝑨′𝑪 + 𝑨′𝑩′

a) Using a single 3x8 decoder and an OR gate.

b) Using a single NOR gate and the minimum number of 2x4

decoders with enable.

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 109

Example

❖ Consider the following truth table, in which X2, X1, and X0 are

the inputs and Y2, Y1, and Y0 are the outputs. Using a

minimum-size decoder and a minimum number of additional

gates, show how to implement Y2, Y1, and Y0. Your additional

logic gates must use the smallest possible number of inputs.

X2 X1 X0 Y2 Y1 Y0

0 0 0 0 1 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 0 1

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 1 0 1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 110

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 111

Encoders

❖ An encoder performs the opposite operation of a decoder

❖ It converts a 2n input to an n-bit output code

❖ The output indicates which input is active (logic 1)

❖ Typically, one input should be 1 and all others must be 0's

❖ The conversion of input to output is called encoding

2n to n

Encoder
 


n
 O

u
tp

u
ts

2
n
 I
n

p
u

ts

An encoder can have less

than 2n inputs if some

input lines are unused

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 112

Example of an 8-to-3 Binary Encoder

❖ 8 inputs, 3 outputs, only one input is 1, all others are 0's

❖ Encoder generates the output binary code for the active input

❖ Output is not specified if more than one input is 1

Inputs Outputs

d7 d6 d5 d4 d3 d2 d1 d0 a2 a1 a0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

8-to-3

Binary

Encoder 3
 O

u
tp

u
tsa2

a1

a08
 I
n

p
u

ts

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

1

0

2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 113

8-to-3 Binary Encoder Implementation

a2 = d4 + d5 + d6 + d7

a1 = d2 + d3 + d6 + d7

a0 = d1 + d3 + d5 + d7

a2

d4

d5

d6

d7

a1

d2

d3

d6

d7

a0

d1

d3

d5

d7

8-to-3 binary

encoder

implemented

using three

4-input OR gates

Inputs Outputs

d7 d6 d5 d4 d3 d2 d1 d0 a2 a1 a0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

8-to-3

Binary

Encoder

a2

a1

a0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

1

0

2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 114

Binary Encoder Limitations

❖ Exactly one input must be 1 at a time (all others must be 0's)

❖ If more than one input is 1 then the output will be incorrect

❖ For example, if d3 = d6 = 1

Then a2 a1 a0 = 111 (incorrect)

❖ Two problems to resolve:

1. If two inputs are 1 at the same time, what should be the output?

2. If all inputs are 0's, what should be the output?

❖ Output a2 a1 a0 = 000 if d0 = 1 or all inputs are 0's

How to resolve this ambiguity?

a2 = d4 + d5 + d6 + d7

a1 = d2 + d3 + d6 + d7

a0 = d1 + d3 + d5 + d7

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 115

Priority Encoder

❖ Eliminates the two problems of the binary encoder

❖ Inputs are ranked from highest priority to lowest priority

❖ If more than one input is active (logic 1) then priority is used

Output encodes the active input with higher priority

❖ If all inputs are zeros then the V (Valid) output is zero

Indicates that all inputs are zeros Inputs Outputs

d3 d2 d1 d0 a1 a0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

Condensed

Truth Table

All 16 cases

are listed

4-to-2 Priority

Encoder

a1

a0

V

d3

d2

d1

d0

3 = highest priority

0 = lowest priority

1

0
2

1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 116

Implementing a 4-to-2 Priority Encoder

Output Expressions:

𝑎1 = 𝑑3 + 𝑑2

𝑎0 = 𝑑3 + 𝑑1 𝑑2
′

𝑉 = 𝑑3 + 𝑑2 + 𝑑1 + 𝑑0

a1

a0

V

d3

d2

d1

d0

Inputs Outputs

d3 d2 d1 d0 a1 a0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

00 01 11 10

00

𝑑3𝑑2

𝑑1𝑑0

X

01

11

10

1 1

1 1

1

1

1

1

1 1 11

K-Map of 𝑎1

00 01 11 10

00

𝑑3𝑑2

𝑑1𝑑0

X

01

11

10

1 1

1 1

1

1

1

1

1 1

K-Map of 𝑎0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 117

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 118

Multiplexers

❖ Selecting data is an essential function in digital systems

❖ Functional blocks that perform selecting are called multiplexers

❖ A Multiplexer (or Mux) is a combinational circuit that has:

 Multiple data inputs (typically 2n) to select from

 An n-bit select input S used for control

 One output Y

❖ The n-bit select input directs one of the data inputs to the output

M
u
x

d0

d1

d2
.
.
.

Y

2
n
 I
n

p
u

ts

n

S

d2n–1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 119

❖ 2-to-1 Multiplexer

if (S == 0) Y = d0 ;

else Y = d1;

Logic expression:

𝑌 = 𝑑0 𝑆′ + 𝑑1 𝑆

❖ 4-to-1 Multiplexer

if (S1S0 == 00) Y = d0 ;

else if (S1S0 == 01) Y = d1;

else if (S1S0 == 10) Y = d2;

else Y = d3;

Logic expression:

𝑌 = 𝑑0 𝑆1
′𝑆0

′ + 𝑑1 𝑆1
′𝑆0 + 𝑑2 𝑆1𝑆0

′ + 𝑑3 𝑆1𝑆2

M
u
x

S1S0

d0

d1

d2

d3

0

1

2

3

𝑌

Examples of Multiplexers

Inputs Output

S d0 d1 Y

0 0 X 0 = d0

0 1 X 1 = d0

1 X 0 0 = d1

1 X 1 1 = d1

Inputs Output

S1 S0 d0 d1 d2 d3 Y

0 0 0 X X X 0 = d0

0 0 1 X X X 1 = d0

0 1 X 0 X X 0 = d1

0 1 X 1 X X 1 = d1

1 0 X X 0 X 0 = d2

1 0 X X 1 X 1 = d2

1 1 X X X 0 0 = d3

1 1 X X X 1 1 = d3

M
u
x

d0

d1

Y

S

0

1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 120

Enabling
AND Gates

Enabling
AND Gates

Implementing Multiplexers

Y

d0

d1

S

d1

Yd2

S0

d0

d3

S1

M
u
x

d0

d1

S

0

1

𝑌 = 𝑑0 𝑆′ + 𝑑1 𝑆
M

u
x

S1S0

d0

d1

d2

d3

0

1

2

3

𝑌 = 𝑑0 𝑆1
′𝑆0

′ + 𝑑1 𝑆1
′𝑆0

+ 𝑑2 𝑆1𝑆0
′ + 𝑑3 𝑆1𝑆0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 121

3-State Gate

❖Logic gates studied so far have two outputs: 0 and 1

❖Three-State gate has three possible outputs: 0, 1, Z

 Z is the Hi-Impedance output

 Z means that the output is disconnected from the input

Gate behaves as an open switch between input and output

❖ Input c connects input to output

 c is the control (enable) input

 If c is 0 then f = Z

 If c is 1 then f = input x

c x f

0 0 Z

0 1 Z

1 0 0

1 1 1

𝑥

𝑐

𝑓

3-state gate

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 122

Variations of the 3-State Gate

❖ Control input c and output f can be inverted

❖ A bubble is inserted at the input c or output f

𝑥

𝑐

𝑓

inverted c

𝑥

𝑐

𝑓

inverted f

𝑥

𝑐

𝑓

inverted c, f

c x f

0 0 0

0 1 1

1 0 Z

1 1 Z

c x f

0 0 Z

0 1 Z

1 0 1

1 1 0

c x f

0 0 1

0 1 0

1 0 Z

1 1 Z
Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 123

Wired Output

𝑎
𝑏

𝑓
𝑐
𝑑

This will result in a

short circuit that

will burn the gates

Logic gates with 0 and 1

outputs cannot have their

outputs wired together

𝑥1

𝑐1

𝑥2

𝑐2

𝑓

𝑥3

𝑐3

c1 c2 c3 f

0 0 0 Z

1 0 0 x1

0 1 0 x2

0 0 1 x3

0 1 1 Burn

1 0 1 Burn

1 1 0 Burn

1 1 1 Burn

3-state gates can wire

their outputs together

At most one 3-state gate

can be enabled at a time

Otherwise, conflicting

outputs will burn the circuit

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 124

Implementing Multiplexers with 3-State Gates

3-State
Gates

1-to-2
Decoder

3-State
Gates

Y

d0

d1

S

A Multiplexer can also

be implemented using:

1. A decoder

2. Three-state gates

M
u
x

d0

d1

Y

S

0

1

S0

S1

Y

d0

d1

d2

d3

2-to-4
Decoder

0 1 2 3

1

0

M
u
x

S1S0

d0

d1

d2

d3

0

1

2

3

𝑌

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 125

Building Larger Multiplexers

Larger multiplexers can be built hierarchically using smaller ones

Building 4-to-1

Mux using three

2-to-1 Muxes

Building 8-to-1 Mux

using two 4-to-1 Muxes

and a 2-to-1 Mux

Y

M
u

xd0

d1

S0

M
u

xd2

d3

S0

M
u

x

S1

0

1

0

1

0

1

8
-t

o
-1

 M
u
x

Y

S2S1S0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

YM
u

x

S2

0

1

M
u
x

d4

d5

S1S0

d6

d7

0

1

2

3
M

u
x

d0

d1

S1S0

d2

d3

0

1

2

3

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 126

Multiplexers with Vector Input and Output

The inputs and output of a multiplexer can be m-bit vectors

2-to-1 Multiplexer with m bits

Inputs and output are m-bit vectors

Using m copies of a 2-to-1 Mux

4-to-1 Multiplexer with m bits

Inputs and output are m-bit vectors

Using m copies of a 4-to-1 Mux

M
u
x

S

A [m–1:0]
m

B [m–1:0]
m

Y [m–1: 0]
m

0

1
mM

u
x

A [m–1:0]
m

B [m–1:0]
m

C [m–1:0]
m

D [m–1:0]
m

Y [m–1: 0]

0

1

2

3

S1S0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 127

Implementing a Function with a Multiplexer

❖ A Multiplexer can be used to implement any logic function

❖ The function must be expressed using its minterms

❖ Example: Implement F(a, b, c) = ∑(1, 2, 6, 7) using a Mux

❖ Solution:
Inputs Output

a b c F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

The inputs are

used as select

lines to a Mux.

An 8-to-1

Mux is used

because there

are 3 variables
a b c

8
-t

o
-1

 M
u

x

F

S2 S1 S0 =

0

1

1

0
0

0

1

1

0

1

2

3

4

5

6

7 0
1

2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 128

Better Solution with a Smaller Multiplexer

❖ Re-implement F(a, b, c) = ∑(1, 2, 6, 7) using a 4-to-1 Mux

❖We will use the two select lines for variables a and b

❖ Variable c and its complement are used as inputs to the Mux

Inputs Output Comment

a b c F F

0 0 0 0
F = c

0 0 1 1

0 1 0 1
F = c'

0 1 1 0

1 0 0 0
F = 0

1 0 1 0

1 1 0 1
F = 1

1 1 1 1

4
-t

o
-1

 M
u
x

F

S1 S0 = a b

c

c'

0

1

0

1

2

3 1
0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 129

Implementing Functions: Example 2

Implement F(a, b, c, d) = ∑(1,3,4,11,12,13,14,15) using 8-to-1 Mux

Inputs Output Comment

a b c d F F
0 0 0 0 0

F = d
0 0 0 1 1

0 0 1 0 0
F = d

0 0 1 1 1

0 1 0 0 1
F = d'

0 1 0 1 0

0 1 1 0 0
F = 0

0 1 1 1 0

1 0 0 0 0
F = 0

1 0 0 1 0

1 0 1 0 0
F = d

1 0 1 1 1

1 1 0 0 1
F = 1

1 1 0 1 1

1 1 1 0 1
F = 1

1 1 1 1 1
a b c

8
-t

o
-1

 M
u

x

F

S2 S1 S0 =

d

0

1

0

1

2

3

4

5

6

7 0
1

2

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 130

Implementing Functions: Example 3

❖ Implement the Boolean function: 𝑭 𝑨, 𝑩, 𝑪 = 𝑨𝑩 + 𝑨′𝑪 + 𝑨′𝑩′

a) Using a single 4x1 multiplexer.

Inputs Output Comment

A B C F F

0 0 0 1
F = 1

0 0 1 1

0 1 0 0
F = C

0 1 1 1

1 0 0 0
F = 0

1 0 1 0

1 1 0 1
F = 1

1 1 1 1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 131

Implementing Functions: Example 3

❖ Implement the Boolean function: 𝑭 𝑨, 𝑩, 𝑪 = 𝑨𝑩 + 𝑨′𝑪 + 𝑨′𝑩′

b) Using a minimum number of 2x1 multiplexers.

Inputs Output Comment

A B C F F

0 0 0 1
F = 1

0 0 1 1

0 1 0 0
F = C

0 1 1 1

1 0 0 0

F = B
1 0 1 0

1 1 0 1

1 1 1 1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 135

Demultiplexer

❖ Performs the inverse operation of a Multiplexer

❖ A Demultiplexer (or Demux) is a combinational circuit that has:

1. One data input I

2. An n-bit select input S

3. A maximum of 2n data outputs

❖ The Demux directs the data input to one of the outputs

According to the select input S

.

.

.

I

2
n
 O

u
tp

u
ts

n

S

d0

d1

d2

d2n–1

D
e
m

u
x

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 136

Examples of Demultiplexers

❖ 1-to-2 Demultiplexer

if (S == 0) { d0 = I ; d1 = 0; }

else { d1 = I ; d0 = 0 ; }

Output expressions:

𝑑0 = 𝐼 𝑆′; 𝑑1 = 𝐼 𝑆

❖ 1-to-4 Demultiplexer

if (S1S0 == 00) { d0 = I ; d1 = d2 = d3 = 0; }

else if (S1S0 == 01) { d1 = I ; d0 = d2 = d3 = 0; }

else if (S1S0 == 10) { d2 = I ; d0 = d1 = d3 = 0; }

else { d3 = I ; d0 = d1 = d2 = 0; }

Output expressions:

𝑑0 = 𝐼 𝑆1
′𝑆0

′ ; 𝑑1 = 𝐼 𝑆1
′𝑆0 ; 𝑑2 = 𝐼 𝑆1𝑆0

′ ; 𝑑3 = 𝐼𝑆1𝑆0

I

4
 O

u
tp

u
ts

S1S0

d0

d1

d2

d3

D
e
m

u
x

0

1

2

301

I

2
 O

u
tp

u
ts

S

d0

d1

D
e
m

u
x 0

1

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 137

Examples of Demultiplexers

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 138

Demultiplexer = Decoder with Enable

❖ A 1-to-4 demux is equivalent to a 2-to-4 decoder with enable

Demux select input S1 is equivalent to Decoder input a1

Demux select input S0 is equivalent to Decoder input a0

Demux Input I is equivalent to Decoder Enable EN

❖ In general, a demux with n select inputs and 2n outputs is

equivalent to a n-to-2n decoder with enable input

Think of a decoder as directing

the Enable signal to one output

2-to-4

Decoder

d0

d1

d2

d3

S1 = a1

S0 = a0

I = EN

1

0

0

1

2

3
I

4
 O

u
tp

u
ts

S1S0

d0

d1

d2

d3

D
e
m

u
x

0

1

2

301

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 139

Next . . .

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

❖ Design Examples

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 140

2-by-2 Crossbar Switch

❖ A 2×2 crossbar switch is a combinational circuit that has:

Two m-bit Inputs: A and B

Two m-bit outputs: X and Y

1-bit select input S

❖ Implement the 2×2 crossbar switch using multiplexers

❖ Solution: Two 2-input multiplexers are used

if (S == 0) { X = A; Y = B; }

else { X = B; Y = A; }

2×2

Crossbar

Switch

m
A[m-1:0]

m
B[m-1:0]

X [m-1:0]
m

Y [m-1:0]
m

S

S

A[m–1:0]
m

B[m–1:0]
m

M
u
x0

1

M
u

x0

1

X [m-1:0]
m

Y [m-1:0]
m

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 141

Sorting Two Unsigned Integers

❖ Design a circuit that sorts two m-bit unsigned integers A and B

Inputs: Two m-bit unsigned integers A and B

Outputs: X = min(A, B) and Y = max(A, B)

❖ Solution:

We will use a magnitude comparator to compare A with B, and

2×2 crossbar switch implemented using two 2-input multiplexers

m-bit

Magnitude

Comparator

A[m–1:0]
m

B[m–1:0]
m

A < B

A = B

A > B

S

B[m–1:0]
m

A[m–1:0]
m

M
u
x0

1

M
u

x0

1

X [m-1:0] = min(A, B)
m

m
Y [m-1:0] = max(A, B)

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 142

Arithmetic and Logic Unit (ALU)

❖ Can perform many functions

❖Most common ALU functions

Arithmetic functions: ADD, SUB (Subtract)

Logic functions: AND, OR, XOR, etc.

❖We will design an ALU with 8 functions

❖ The function F is coded with 3 bits as follows:

Function ALU Result Function ALU Result

F = 000 (ADD) R = A + B F = 100 (AND) R = A & B

F = 001 (ADD + 1) R = A + B + 1 F = 101 (OR) R = A | B

F = 010 (SUB – 1) R = A – B – 1 F = 110 (NOR) R = ~(A | B)

F = 011 (SUB) R = A – B F = 111 (XOR) R = (A ^ B)

ALUF[2:0]
3

n

A[n-1:0]

n

B[n-1:0]

R [n-1:0]

n
V C

ALU Symbol

Uploaded By: Sondos hammadSTUDENTS-HUB.com

Combinational Logic ENCS2340 – Digital Systems © Ahmed Shawahna – slide 143

Designing a Simple ALU

n

B[n-1:0]

n-bit Adder

n n

c0

n

n XOR
gates

𝐹0

n n

n

n AND
gates

n n

n XOR
gates

n

n OR
gates

n n

𝑆1 = 𝐹1

n

F[2:0] = 3-bit Function code

cn-1

cn

A[n-1:0]

Result = R[n-1:0]

V C
V = Overflow
C = Carry output

mux

3210

0
1

n

mux
10

n

𝐹2

𝐹1

𝑆

𝑆0 = 𝐹0

Uploaded By: Sondos hammadSTUDENTS-HUB.com

	Slide 1: Combinational Logic
	Slide 2: Presentation Outline
	Slide 3: Combinational Circuits
	Slide 4: Combinational Circuits
	Slide 5: Functional Blocks
	Slide 6: Next . . .
	Slide 7: Analysis Procedure - Boolean Function
	Slide 8: Analysis Procedure - Boolean Function
	Slide 9: Analysis Procedure - Truth Table
	Slide 10: Analysis Procedure - Truth Table
	Slide 11: Next . . .
	Slide 12: How to Design a Combinational Circuit
	Slide 13: Verification Methods
	Slide 14: Designing a BCD to Excess-3 Code Converter
	Slide 15: Designing a BCD to Excess-3 Code Converter
	Slide 16: Designing a BCD to Excess-3 Code Converter
	Slide 17: Designing a BCD to Excess-3 Code Converter
	Slide 18: Designing a BCD to Excess-3 Code Converter
	Slide 19: BCD to 7-Segment Decoder
	Slide 20: Designing a BCD to 7-Segment Decoder
	Slide 21: Designing a BCD to 7-Segment Decoder
	Slide 22: Designing a BCD to 7-Segment Decoder
	Slide 23: Designing a BCD to 7-Segment Decoder
	Slide 24: Designing a BCD to 7-Segment Decoder
	Slide 25: Next . . .
	Slide 26: Hierarchical Design
	Slide 27: Example of Hierarchical Design
	Slide 28: Testing Hierarchical Design
	Slide 29: Top-Down versus Bottom-Up Design
	Slide 30: Half Adder
	Slide 31: Half Adder
	Slide 32: Full Adder
	Slide 33: Full Adder
	Slide 34: Full Adder
	Slide 35: Binary Adder (Ripple Carry Adder)
	Slide 36: Iterative Design: Ripple Carry Adder
	Slide 37: Iterative Design: Ripple Carry Adder
	Slide 38: Carry Propagation
	Slide 39: Longest Delay Analysis
	Slide 40: Carry Lookahead Adder
	Slide 41: Carry Bits
	Slide 42: 4-Bit Carry Lookahead Adder
	Slide 43: Lookahead Carry Unit
	Slide 44: Longest Delay of the 4-bit CLA
	Slide 45: Hierarchical 16-Bit Carry Lookahead Adder
	Slide 46: Hierarchical 64-Bit Carry Lookahead Adder
	Slide 47: Incrementor Circuit
	Slide 48: Design by Contraction
	Slide 49: Simplifying the Incrementer Circuit
	Slide 50: Simplifying the Incrementer Circuit
	Slide 51: Binary Subtractor
	Slide 52: Adder/Subtractor for 2's Complement
	Slide 53: Carry versus Overflow
	Slide 54: Carry and Overflow Examples
	Slide 55: Range, Carry, Borrow, and Overflow
	Slide 56: Binary Adder/Subtractor
	Slide 57: Zero versus Sign Extension
	Slide 58: Unsigned Addition S = X + Y
	Slide 59: Signed Addition S = X + Y
	Slide 60: Unsigned Subtraction S = X - Y
	Slide 61: Unsigned Subtraction S = X - Y
	Slide 62: Signed Subtraction S = X - Y
	Slide 63: S = 2*X + Y (Unsigned X and Y)
	Slide 64: S = 2*X + Y (Signed X and Y)
	Slide 65: Design a Circuit for Unsigned S = X + Y + Z
	Slide 66: Design a Circuit for Signed S = W + X – Y – Z
	Slide 67: Absolute Difference |X – Y| of Signed X, Y
	Slide 68: Next . . .
	Slide 69: BCD Addition
	Slide 70: BCD Adder
	Slide 71: BCD Adder
	Slide 72: BCD Adder
	Slide 73: BCD Adder
	Slide 74: Multiple Digit BCD Addition
	Slide 75: Ripple-Carry BCD Adder
	Slide 76: Next . . .
	Slide 77: Binary Multiplication
	Slide 78: 2-bit × 2-bit Binary Multiplier
	Slide 79: 4-bit × 3-bit Binary Multiplier
	Slide 80: 4-bit × 3-bit Binary Multiplier
	Slide 81: Next . . .
	Slide 82: Magnitude Comparator
	Slide 83: Example: 4-bit Magnitude Comparator
	Slide 84: The Greater Than Output
	Slide 85: The Less Than Output
	Slide 86: Example: 4-bit Magnitude Comparator
	Slide 87: Iterative Magnitude Comparator Design
	Slide 88: Iterative Magnitude Comparator Design
	Slide 89: DM74LS85: A 4-Bit Magnitude Comparator
	Slide 90: Cascading Two Comparators
	Slide 92: Signed Less Than: LT = X < Y
	Slide 93: Next . . .
	Slide 94: Binary Decoders
	Slide 95: Examples of Binary Decoders
	Slide 96: Examples of Binary Decoders
	Slide 97: 3-to-8 Decoder Implementation
	Slide 98: Using Decoders to Implement Functions
	Slide 99: Using Decoders to Implement Functions
	Slide 100: 2-to-4 Decoder with Enable Input
	Slide 101: Building Larger Decoders
	Slide 102: Building Larger Decoders
	Slide 103: BCD to 7-Segment Decoder
	Slide 104: BCD to 7-Segment Decoder
	Slide 105: Implementing a BCD to 7-Segment Decoder
	Slide 106: NAND Decoders with Inverted Outputs
	Slide 107: Using NAND Decoders
	Slide 108: Example
	Slide 109: Example
	Slide 110: Next . . .
	Slide 111: Encoders
	Slide 112: Example of an 8-to-3 Binary Encoder
	Slide 113: 8-to-3 Binary Encoder Implementation
	Slide 114: Binary Encoder Limitations
	Slide 115: Priority Encoder
	Slide 116: Implementing a 4-to-2 Priority Encoder
	Slide 117: Next . . .
	Slide 118: Multiplexers
	Slide 119: Examples of Multiplexers
	Slide 120: Implementing Multiplexers
	Slide 121: 3-State Gate
	Slide 122: Variations of the 3-State Gate
	Slide 123: Wired Output
	Slide 124: Implementing Multiplexers with 3-State Gates
	Slide 125: Building Larger Multiplexers
	Slide 126: Multiplexers with Vector Input and Output
	Slide 127: Implementing a Function with a Multiplexer
	Slide 128: Better Solution with a Smaller Multiplexer
	Slide 129: Implementing Functions: Example 2
	Slide 130: Implementing Functions: Example 3
	Slide 131: Implementing Functions: Example 3
	Slide 135: Demultiplexer
	Slide 136: Examples of Demultiplexers
	Slide 137: Examples of Demultiplexers
	Slide 138: Demultiplexer = Decoder with Enable
	Slide 139: Next . . .
	Slide 140: 2-by-2 Crossbar Switch
	Slide 141: Sorting Two Unsigned Integers
	Slide 142: Arithmetic and Logic Unit (ALU)
	Slide 143: Designing a Simple ALU

