STUDENTS-HUB.com Uploaded By: anonymous



Presentation Outline
¢ Modeling Latches and Flip-Flops

¢ Blocking versus Non-Blocking Assignments
“* Modeling Sequential Circuit Diagrams
*+ Modeling Mealy and Moore State Diagrams

»» Modeling Registers and Counters

STUDENTS-HUB.com Uploaded By: anonymous



Recall: Sensitivity List of always block

 Syntax:
always @(sensitivity List) begin
procedural statements
end
» Sensitivity list is a list of signals: @(signall, signal2, ..)
¢ The sensitivity list triggers the execution of the always block
When there is a change of value in any listed signal

Otherwise, the always block does nothing until another
change occurs on a signal in the sensitivity list

STUDENTS-HUB.com Uploaded By: anonymous



Guidelines for Sensitivity List

*» For combinational logic, the sensitivity list must include ALL
the signals that are read inside the always block

Combinational logic can also use: @(*) or @*

¢ For sequential logic, the sensitivity list may not include all the
signals that are read inside the always block

*» For edge-triggered sequential logic use:
always @(posedge signall, negedge signal2, ..)

*» The positive edge or negative edge of each signal can be
specified in the sensitivity list

STUDENTS-HUB.com Uploaded By: anonymous



Modeling a D Latch with Enable

// Modeling a D Latch with Enable and output Q

// Output Q must be of type reg

// Notice that the if statement does NOT have else
// If Enable is @, then value of Q does not change
// The D _latch stores the old value of Q

module D latch (input D, Enable, output reg Q);
always @(D, Enable)
if (Enable) Q <= D; // Non-blocking assignment
endmodule

STUDENTS-HUB.com Uploaded By: anonymous



Modeling a D-type Flip-Flop

// Modeling a D Flip-Flop with outputs Q and Qbar
module D _FF (input D, Clk, output reg Q, Qbar);
// Q and Qbar change at the positive edge of Clk
// Notice that always is NOT sensitive to D
always @(posedge Clk)
begin
Q <= D; // Non-blocking assignment
Qbar <= ~D; // Non-blocking assignment
end

endmodule

STUDENTS-HUB.com Uploaded By: anonymous



Negative-Edge Triggered D-type Flip-Flop

// Modeling a Negative-Edge Triggered D Flip-Flop
// The only difference is the negative edge of Clk
module D _FF2 (input D, Clk, output reg Q, Qbar);
// Q and Qbar change at the negative edge of Clk
always @(negedge Clk)
begin
Q <= D; // Non-blocking assignment
Qbar <= ~D; // Non-blocking assignment
end

endmodule
STUDENTS-HUB.com Uploaded By: anonymous



D-type Flip-Flop with Synchronous Reset

// Modeling a D Flip-Flop with Synchronous Reset input
module D _FF3 (input D, Clk, Reset, output reg Q, Qbar);
// always block is NOT sensitive to Reset or D
// Updates happen only at positive edge of Clk
// Reset is Synchronized with Clk
always @(posedge Clk)
if (Reset)
{Q, Qbar} <= 2'b0O1;
else
{Q, Qbar} <= {D, ~D};

endmodule
STUDENTS-HUB.com Uploaded By: anonymous



D-type Flip-Flop with Asynchronous Reset

// Modeling a D Flip-Flop with Asynchronous Reset input
module D _FF4 (input D, Clk, Reset, output reg Q, Qbar);
// Q and Qbar change at the positive edge of Clk
// Or, at the positive edge of Reset
// Reset is NOT synchronized with Clk
always @(posedge Clk, posedge Reset)
if (Reset)
{Q, Qbar} <= 2'b0O1;
else
{Q, Qbar} <= {D, ~D};

endmodule
STUDENTS-HUB.com Uploaded By: anonymous



JK flip-flop

module JK_FF (input J, K, CIk, output reg Q, output Q b);
assign Bib = ~Q;
always @ (posedge CIk)
case ({J,K})
2'b00: Q <= Q;
2'b01: Q <= 1'bO;
2'b10: Q <= 1'b1;
2'bll: Q <=1Q;
encase;

endmodule;

STUDENTS-HUB.com Uploaded By: anonymous



T flip-flop

module T_FF (Q,T,CLK,RST);
output Q;
input T,CLK,RST,;
reg Q;
always @ (posedge CLK or negedge RST)
If (~RST) Q = 1'b0;
elseQ=0Q"T;
endmodule

STUDENTS-HUB.com Uploaded By: anonymous



Procedural Assignment

¢ Procedural assignment is used inside a procedural block only
*» Two types of procedural assignments:
*» Blocking assignment:

variable = expression; // = operator

Variable is updated before executing next statement

Similar to an assignment statement in programming languages
“* Non-Blocking assignment:

variable <= expression; [/ <= operator

Variable is updated at the end of the procedural block

Does not block the execution of next statements

STUDENTS-HUB.com Uploaded By: anonymous



Blocking versus Non-Blocking Assignment

Guideline: Use Non-Blocking Assignment for Sequential Logic

: g2
Nn——ID Q 1D

Q

gl

o [

T

D

module nonblocking

>

Q

: g2 gl
—> out IN—D Q > out

>

clk —
module blocking

(input in, clk, output reg out); (input inNclk, output regZout);

reg ql, q2;

always @ (posedge clk) begin

g2 <= in;

gl <= q2; Read: in, g2, q1

out <= q1i;

end | Parallel Assignment at the end

endmodule
STUDENTS-HUB.com

endmodule
Uploaded By: anonymous



Blocking versus Non-Blocking Assignment

Guideline: Use Blocking Assignment for Combinational Logic

a— \ a— O\ y
i X b —__/

Old x is
c y Latched Old )c(: D—y
module blocking module nonblocking

(input a,b,c, output reg x,y); (input a,by¢, output reg’x,y);
always @ (a, b, c) begin always @ (a

x = a &b; // update x X Evaluate all
y=x]|c¢c; //y=a&b | c; y |<=x | & pressions
end end | Parallgf Assighment ai\the end
endmodule endmodu

STUDENTS-HUB.com Uploaded By: anonymous



Verilog Coding Guidelines

1. When modeling combinational logic, use blocking assignments
2. When modeling sequential logic, use non-blocking assignments

3. When modeling both sequential and combinational logic within

the same always block, use non-blocking assignments

4. Do NOT mix blocking with non-blocking assignments in the same

always block

5. Do NOT make assignments to the same variable from more than
one always block

STUDENTS-HUB.com Uploaded By: anonymous



Structural Modeling of Sequential Circuits

Modeling the Circuit Structure

// Mixed Structural and Dataflow

module Seq_Circuit_Structure

(input x, Clock, output y);

Clk

4+ wire DA, DB, A, Ab, B, Bb;

// Instantiate two D Flip-Flops

D FF FFA(DA, Clock, A, Ab);

D FF FFB(DB, Clock, B, Bb);

)
L

—p

> Clk

B // Modeling logic
assign DA = (A & x) | (B & x);

Clock

assign DB = Ab & x;
assigny = (A | B) & ~x;

u

>

STUDENTS-HUB.com

endmodule
Uploaded By: anonymous



Modeling a State Diagram

¢ A state diagram can be modeled directly in Verilog

“* Without the need of having the circuit implementation
“ An example of a Mealy state diagram is shown below
“ This is the state diagram of the 111 sequence detector

% State assignment: S, =00, S; =01, and S, =10

0/0
0/0 1/1
0/0 .
reset 00 1/0 01 1/0 @

STUDENTS-HUB.com Uploaded By: anonymous




Modeling a Mealy State Diagram

module Mealy 111 detector (input x, clock, reset, output z);
reg [1:0] state; // present state
always @(posedge clock, posedge reset)
if (reset) state <= 'boo;
else case(state)
'bO0: if (x) state <= 'bOl; else state <= 'b00;
'bO1: if (x) state <= 'b1O; else state <= 'b00;
'blO: if (x) state <= 'b1O; else state <= 'b00;

endcase
// output depends on present state and input x
assign z = (state == 'bl10) & x;
endmodule

0/0 0/0 1/1
0/0 ()
reset OO 1/0 Ol 1/0 @

STUDENTS-HUB.com Uploaded By: anonymous



Modeling a Moore State Diagram

module Moore_Comparator (input A, B, clk, rst, output GT, LT, EQ);

reg [1:0]

assign GT
assign LT
assign EQ

state;

// present state

state[1];
state[0O];

~(GT

LT);

always @(posedge clk, posedge rst)
if (rst) state <= 'boo;

else case (state)

'bo0: state <= ({A,B}=="b0O1)?'bo1l:

({A,B}=="b10)?'b10: 'bO0O;

'bol: state <= ({A,B}=='b10)?'b10: 'b0O1;
'blo: state <= ({A,B}=="'b01)?'b0O1l: 'blo;

endcase

endmodule

STUDENTS-HUB.com

11 11
01 10

Uploaded By: anonymous



Modeling a Register with Parallel Load

module Register #(parameter n = 4)
(input [n-1:0] Data_in, input load, clock, reset,
output reg [n-1:0] Data_out);

always @(posedge clock, posedge reset) // Asynchronous reset
if (reset) Data_out <= 0;
else if (load) Data_out <= Data in;

en d mOd u 1 e Data_in|3] Data_in|2] Data_in|[1] Data_in|0]
mux mux mux —  mux
load T
— D Or= — D Or= < D Q= — D Or—=
— R — R —P R — R
clock w—= - -
reset w - 3 -

| | ‘ ||
Data_out|3] Data_out|2] Data_out[1] Data_out|0]

STUDENTS-HUB.com Uploaded By: anonymous



Modeling a Shift Register

module Shift_Register #(parameter n = 4)

(input Data_in, clock, reset, output Data out);
reg [n-1:0] Q;
assign Data_out = Q[O];

always @(posedge clock, negedge reset) // Asynchronous reset

if (!reset) Q <= 0; // Active Low reset
else Q <= {Data_in, Q[n-1:1]}; // Shifts to the right
endmodule
Data_in Data_out
—oD (0] D 0] D 0 D OF—=
r> r> R r> R > R
clock = T
reset L @ -

STUDENTS-HUB.com Uploaded By: anonymous



Modeling a Counter with Parallel Load

module Counter_with_Load #(parameter n = 4) // n-bit counter
( input [n-1:0] D, input Load, EN, clock,
output reg [n-1:0] Q, output Cout);

assign Cout = (&Q) & EN;

D; D, D, D,
// Sensitive to Positive-edge
ot L4
always @(posedge clock)
if (Load) Cout €«<—1Cout ENfs— EN
Q <= D; 4-bit Counter
else if (EN) clock >

[TT]

endmodule Q3 Q2 Q1 Qo

STUDENTS-HUB.com Uploaded By: anonymous



Modeling a Generic Up-Down Counter

module Up Down_Counter #(parameter n = 16) // n-bit counter

( input [n-1:0] Data_in,
=0 = Disable counter

=1 = Countup
=2 = Count down
=3 = Load counter

input [1:0] f, input reset, clock,
output reg [n-1:0] Count );

// Asynchronous reset

Data_in
always @(posedge clock, posedge reset) n i
if (reset) Count <= 0; 2
f ——
else if (f == 1) Count <= Count + 1; t Up-Down
reset —
: __ _ _ 1 Counter
else if (f 2) Count <= Count - 1; clock S
else if (f == 3) Count <= Data_in; n i
endmodule Count

STUDENTS-HUB.com Uploaded By: anonymous



