
Verilog – Part II

Uploaded By: anonymousSTUDENTS-HUB.com

Presentation Outline

❖ Modeling Latches and Flip-Flops

❖ Blocking versus Non-Blocking Assignments

❖ Modeling Sequential Circuit Diagrams

❖ Modeling Mealy and Moore State Diagrams

❖ Modeling Registers and Counters

Uploaded By: anonymousSTUDENTS-HUB.com

Recall: Sensitivity List of always block

❖ Syntax:

always @(sensitivity list) begin

procedural statements

end

❖ Sensitivity list is a list of signals: @(signal1, signal2, …)

❖ The sensitivity list triggers the execution of the always block

When there is a change of value in any listed signal

Otherwise, the always block does nothing until another

change occurs on a signal in the sensitivity list

Uploaded By: anonymousSTUDENTS-HUB.com

Guidelines for Sensitivity List

❖ For combinational logic, the sensitivity list must include ALL

the signals that are read inside the always block

Combinational logic can also use: @(*) or @*

❖ For sequential logic, the sensitivity list may not include all the

signals that are read inside the always block

❖ For edge-triggered sequential logic use:

always @(posedge signal1, negedge signal2, …)

❖ The positive edge or negative edge of each signal can be

specified in the sensitivity list

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a D Latch with Enable

// Modeling a D Latch with Enable and output Q

// Output Q must be of type reg

// Notice that the if statement does NOT have else

// If Enable is 0, then value of Q does not change

// The D_latch stores the old value of Q

module D_latch (input D, Enable, output reg Q);

always @(D, Enable)

if (Enable) Q <= D; // Non-blocking assignment

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a D-type Flip-Flop

// Modeling a D Flip-Flop with outputs Q and Qbar

module D_FF (input D, Clk, output reg Q, Qbar);

// Q and Qbar change at the positive edge of Clk

// Notice that always is NOT sensitive to D

always @(posedge Clk)

begin

Q <= D; // Non-blocking assignment

Qbar <= ~D; // Non-blocking assignment

end

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Negative-Edge Triggered D-type Flip-Flop

// Modeling a Negative-Edge Triggered D Flip-Flop

// The only difference is the negative edge of Clk

module D_FF2 (input D, Clk, output reg Q, Qbar);

// Q and Qbar change at the negative edge of Clk

always @(negedge Clk)

begin

Q <= D; // Non-blocking assignment

Qbar <= ~D; // Non-blocking assignment

end

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

D-type Flip-Flop with Synchronous Reset

// Modeling a D Flip-Flop with Synchronous Reset input

module D_FF3 (input D, Clk, Reset, output reg Q, Qbar);

// always block is NOT sensitive to Reset or D

// Updates happen only at positive edge of Clk

// Reset is Synchronized with Clk

always @(posedge Clk)

if (Reset)

{Q, Qbar} <= 2'b01;

else

{Q, Qbar} <= {D, ~D};

endmodule
Uploaded By: anonymousSTUDENTS-HUB.com

D-type Flip-Flop with Asynchronous Reset

// Modeling a D Flip-Flop with Asynchronous Reset input

module D_FF4 (input D, Clk, Reset, output reg Q, Qbar);

// Q and Qbar change at the positive edge of Clk

// Or, at the positive edge of Reset

// Reset is NOT synchronized with Clk

always @(posedge Clk, posedge Reset)

if (Reset)

{Q, Qbar} <= 2'b01;

else

{Q, Qbar} <= {D, ~D};

endmodule
Uploaded By: anonymousSTUDENTS-HUB.com

JK flip-flop

module JK_FF (input J, K, Clk, output reg Q, output Q_b);

assign Bib = ~Q;

always @ (posedge Clk)

case ({J,K})

2'b00: Q <= Q;

2'b01: Q <= 1'b0;

2'b10: Q <= 1'b1;

2'b11: Q <= !Q;

encase;

endmodule;

Uploaded By: anonymousSTUDENTS-HUB.com

T flip-flop

module T_FF (Q,T,CLK,RST);

output Q;

input T,CLK,RST;

reg Q;

always @ (posedge CLK or negedge RST)

if (~RST) Q = 1'b0;

else Q = Q ^ T;

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Procedural Assignment

❖ Procedural assignment is used inside a procedural block only

❖ Two types of procedural assignments:

❖ Blocking assignment:

variable = expression; // = operator

Variable is updated before executing next statement

Similar to an assignment statement in programming languages

❖ Non-Blocking assignment:

variable <= expression; // <= operator

Variable is updated at the end of the procedural block

Does not block the execution of next statements

Uploaded By: anonymousSTUDENTS-HUB.com

Read: in, q2, q1

Parallel Assignment at the end

module nonblocking

(input in, clk, output reg out);

reg q1, q2;

always @ (posedge clk) begin

q2 <= in;

q1 <= q2;

out <= q1;

end

endmodule

Blocking versus Non-Blocking Assignment

Guideline: Use Non-Blocking Assignment for Sequential Logic

D Q D Q D Qin
q2 q1

out

clk

module blocking

(input in, clk, output reg out);

reg q1, q2;

always @ (posedge clk) begin

q2 = in;

q1 = q2; // q1 = in

out = q1; // out = in

end

endmodule

D Qin
q2 q1

out

clk

Uploaded By: anonymousSTUDENTS-HUB.com

Parallel Assignment at the end

Evaluate all
expressions

module nonblocking

(input a,b,c, output reg x,y);

always @ (a, b, c) begin

x <= a & b;

y <= x | c;

end

endmodule

module blocking

(input a,b,c, output reg x,y);

always @ (a, b, c) begin

x = a & b; // update x

y = x | c; // y = a&b | c;

end

endmodule

Blocking versus Non-Blocking Assignment

Guideline: Use Blocking Assignment for Combinational Logic

a

b

c

x

y

a

b

c

x

y
Old x

Old x is

Latched

Uploaded By: anonymousSTUDENTS-HUB.com

Verilog Coding Guidelines

1. When modeling combinational logic, use blocking assignments

2. When modeling sequential logic, use non-blocking assignments

3. When modeling both sequential and combinational logic within

the same always block, use non-blocking assignments

4. Do NOT mix blocking with non-blocking assignments in the same

always block

5. Do NOT make assignments to the same variable from more than

one always block

Uploaded By: anonymousSTUDENTS-HUB.com

Structural Modeling of Sequential Circuits

// Mixed Structural and Dataflow

module Seq_Circuit_Structure

(input x, Clock, output y);

wire DA, DB, A, Ab, B, Bb;

// Instantiate two D Flip-Flops

D_FF FFA(DA, Clock, A, Ab);

D_FF FFB(DB, Clock, B, Bb);

// Modeling logic

assign DA = (A & x) | (B & x);

assign DB = Ab & x;

assign y = (A | B) & ~x;

endmodule

Modeling the Circuit Structure

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a State Diagram

❖ A state diagram can be modeled directly in Verilog

❖Without the need of having the circuit implementation

❖ An example of a Mealy state diagram is shown below

❖ This is the state diagram of the 111 sequence detector

❖ State assignment: S0 = 00, S1 = 01, and S2 = 10

0 / 0

0 / 0

00

0 / 0

reset 1 / 0 01 1 / 0 10

1 / 1

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Mealy State Diagram
module Mealy_111_detector (input x, clock, reset, output z);

reg [1:0] state; // present state

always @(posedge clock, posedge reset)

if (reset) state <= 'b00;

else case(state)

'b00: if (x) state <= 'b01; else state <= 'b00;

'b01: if (x) state <= 'b10; else state <= 'b00;

'b10: if (x) state <= 'b10; else state <= 'b00;

endcase

// output depends on present state and input x

assign z = (state == 'b10) & x;

endmodule

0 / 0

0 / 0

00

0 / 0

reset 1 / 0 01 1 / 0 10

1 / 1

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Moore State Diagram

module Moore_Comparator (input A, B, clk, rst, output GT, LT, EQ);

reg [1:0] state; // present state

assign GT = state[1];

assign LT = state[0];

assign EQ = ~(GT | LT);

always @(posedge clk, posedge rst)

if (rst) state <= 'b00;

else case (state)

'b00: state <= ({A,B}=='b01)?'b01:

({A,B}=='b10)?'b10:'b00;

'b01: state <= ({A,B}=='b10)?'b10:'b01;

'b10: state <= ({A,B}=='b01)?'b01:'b10;

endcase

endmodule

01

10

00

11

01

00

11

10

10

100

1001

01

010

00

001
rst

00, 11

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Register with Parallel Load

module Register #(parameter n = 4)

(input [n-1:0] Data_in, input load, clock, reset,

output reg [n-1:0] Data_out);

always @(posedge clock, posedge reset) // Asynchronous reset

if (reset) Data_out <= 0;

else if (load) Data_out <= Data_in;

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Shift Register

module Shift_Register #(parameter n = 4)

(input Data_in, clock, reset, output Data_out);

reg [n-1:0] Q;

assign Data_out = Q[0];

always @(posedge clock, negedge reset) // Asynchronous reset

if (!reset) Q <= 0; // Active Low reset

else Q <= {Data_in, Q[n-1:1]}; // Shifts to the right

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Counter with Parallel Load

module Counter_with_Load #(parameter n = 4) // n-bit counter

(input [n-1:0] D, input Load, EN, clock,

output reg [n-1:0] Q, output Cout);

assign Cout = (&Q) & EN;

// Sensitive to Positive-edge

always @(posedge clock)

if (Load)

Q <= D;

else if (EN)

Q <= Q + 1;

endmodule

𝑐𝑙𝑜𝑐𝑘

4-bit Counter

𝐸𝑁𝐶𝑜𝑢𝑡𝐶𝑜𝑢𝑡 𝐸𝑁

𝐿𝑜𝑎𝑑

𝐷3 𝐷2 𝐷1 𝐷0

𝑄3 𝑄2 𝑄1 𝑄0

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Generic Up-Down Counter

module Up_Down_Counter #(parameter n = 16) // n-bit counter

(input [n-1:0] Data_in,

input [1:0] f, input reset, clock,

output reg [n-1:0] Count);

// Asynchronous reset

always @(posedge clock, posedge reset)

if (reset) Count <= 0;

else if (f == 1) Count <= Count + 1;

else if (f == 2) Count <= Count – 1;

else if (f == 3) Count <= Data_in;

endmodule

Up-Down

Counter

n

n

Data_in

Count

f

clock

2

reset

f = 0 ➔ Disable counter

f = 1 ➔ Count up

f = 2 ➔ Count down

f = 3 ➔ Load counter

Uploaded By: anonymousSTUDENTS-HUB.com

