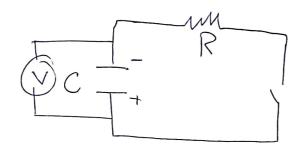
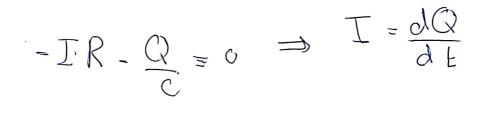
CAP9: RC - Circut The aim: 15 to find the time constant T of an RC Circuit and the value of its capacitor. heary initially the capacitor is unchargeel : Q.=0 at E=0 51 when the switch is closed Charge will start accumulating in de capacitor. $V_c = \frac{Q}{C}$ Powt A: charging by Kirchboff's second rule. ≤ V; = ° $\therefore \xi - IR - \frac{Q}{C} = 0$ $I = \frac{1}{2}$

STUDENTS-HUB.com

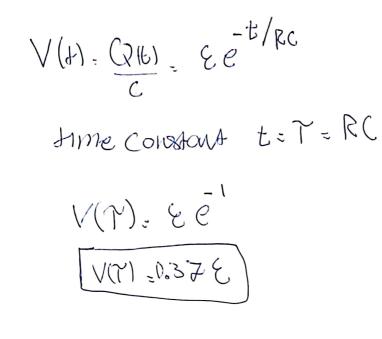

 $\mathcal{E} - \mathcal{R} \frac{\partial \mathcal{Q}}{\partial \mathcal{Q}} - \mathcal{Q} = 0$ $\frac{dQ}{dt} = \frac{\mathcal{E}C - Q}{RC}$ $\int \frac{dQ}{EC-Q} = \int \frac{1}{RC} dt$ $-\int \frac{du}{u} = \frac{1}{Rc} \int dt$ let U: EC -Q du: - dA $lw[\underline{\epsilon}(-4)] = e^{-t/RC}$ $\therefore \frac{f(t)}{C} = \frac{C \varepsilon \left(1 - e^{t/RC}\right)}{V(t)}$ Changing $V(t) = \mathbb{E} \varepsilon \left(1 - e^{t/RC}\right)$ [T=RC Constart. $V(T) = \mathcal{E}(1 - \vec{e}') = 0.63\%$... time constat : is the time needed for the posential diffrencess on the Capacitor V(+) to reach 0.63 of He max woltage E.

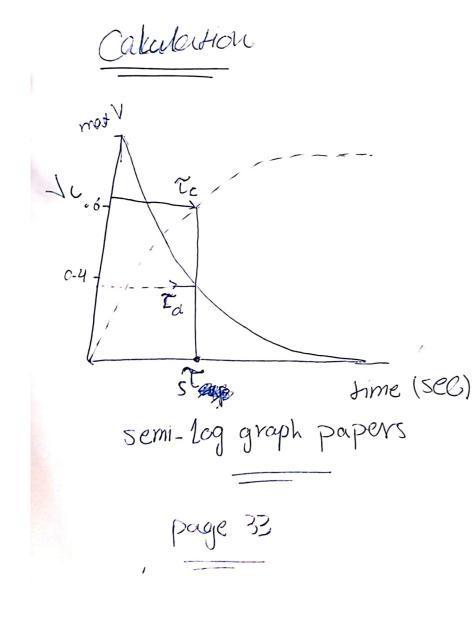

STUDENTS-HUB.com

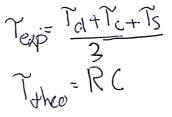
Uploaded By: Aycs makehani

Pant B: Discharging

the Capacitar has an initial potential difference & and initial Q = C & By removing 11 =>





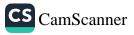

$$-\frac{dQ}{dF}R-\frac{Q}{c}=0$$

divide by RQ $Q(H) = \int_{a}^{b} -\frac{dt}{RC}$ $Q(H) = G_{a} = \frac{t}{RC}$

STUDENTS-HUB.com

time	Valantine	Volischaying
time		BUSCIE
5		
10		
10 15		
60		
70		
80		
70 80 120		
140		

STUDENTS-HUB.com


Uploaded By: Aycs Calkabaai

P DC \bigtriangledown L) \rightarrow R color code 4 $= \delta_{m}(r)$ RRR for the three volcues

ない

2t 2

Uploaded By: Ayham Nobani

