Digital Systems Section 2

Chapter (5)

STUDENTS-HUB.com

In Digital Systems, Logic circuits can be categorized as **combinational** or **sequential**

S Combinational Circuit

- Circuit made of logic gates only and perform an operation that can be specified logically by a set of Boolean functions.
- Circuit output at any time are determined only by the current combination (current state/value) of inputs.
- Sequential Circuit
 - Circuit is made of storage/memory elements and logic gates.
 - Circuit output depend on the current combination of inputs and previously stored values.

- S A sequential circuit consists of a combinational circuit to which storage elements are connected to form a feedback path.
 - It can store, retain and then retrieve this information

So The storage/memory elements are devices capable of storing binary information
The stored binary information define the current/present state (Q(t)) of the sequential circuit at any given <u>time</u>.

S A sequential circuit receives information from an external inputs as well as the current/present state of the memory elements to determine the output and next state (Q(t+1)).

The **outputs** of the sequential circuit are **functions** of the **inputs** and the **present state** of the **memory** elements.

3STUDENTS-HUB.com

Block Diagram of Sequential Giffetts By: 1230358@student.birzeit.egh

Sequential vs. Combinational Circuits

20 24

S The **combinational** circuit of a 4-bit binary adder comprises 4 full-adders

So The sequential circuit of a 4-bit binary adder comprises a full-adder and **memory**

4STUDENTS-HUB.com

ENCS 2340

A **sequential** circuit is specified by a **time sequence** of inputs, outputs, and **internal** <u>states</u>.

Solution **Sequential** circuits based on the **timing** of their signals

- S Asynchronous Sequential circuits: behavior depends on the order of change of input signals and can be affected at any instant of time [Out of this Course Scope]
- Synchronous Sequential Circuits behavior is defined from the knowledge of signals at discrete instants of time.

Synchronous Sequential Circuit

- Uses a clock signal as an additional input
- Changes in the memory elements are controlled by the clock
- Changes happen at **discrete** instances of time

Sequential Circuit

- No clock signal
- Changes in the memory elements can happen at any instance of time

Solution of the sequential of the sequence of the sequ

Easier to design and analyze compared to asynchronous sequential circuits

⁵STUDENTS-HUB.com

- Synchronous sequential circuits use a clock signal
- So The clock signal is an **input** to the **memory** elements
- Solution The clock determines when the memory should be updated
- Solution State = output value of memory (stored)
- Solution State = input value to memory (NOT stored yet)

Block Diagram of **Synchronous** Sequential Circuits

- Sclock generator provides a clock signal having the form of a **periodic** train of clock **pulses**
- Solution from $0 \rightarrow 1$, or $1 \rightarrow 0$ (Transition from $0 \rightarrow 1$, or $1 \rightarrow 0$)
- Solution Storage St
- Synchronous sequential circuits that use clock pulses to control storage elements are called clocked sequential circuits

- S T_{pos} = Time of the **positive** portion of the clock
- Solution of a complete cycle
- Solve and half series for the clock period into half positive and half series (negative)
- Solution States Sta

²⁰₂₄ Clock (CLK)

Solve the second stress of the second

- Some series and the series of the clock is 1
- Solution Section Se
- Solution Series Strain Seri

Solve Falling Edge (Negative Edge): when the clock goes from 1 down to 0

9STUDENTS-HUB.com

- S Memory elements can **store and maintain** binary states (0's or 1's)
 - Until directed by an input signal to change state Or the power source is lost
- Solution Main differences between memory elements are the **number** of **inputs** and **how** they **change** state

S Two main types:

- Latches are level-sensitive (sensitive to the level of the clock)
- Flip-Flops (FF) are edge-sensitive (sensitive to the edge of the clock The Transition)
- Solution States (Section 2014) Sequential circuits (Section 2014) Sequential circuits (Section 2014) Sequential circuits (Section 2014) Section 2014 (Section 2014) Sec

One latch or flip-flop can **store one** bit of information

Four main types of latches and flip-flops: SR, D, JK, and T

ENCS 2340

S A latch is a temporary binary storage element that can store 0 or 1
Two stable states – Bi-stable
Can "remember" one bit of information

S Latches are the **basic** building blocks of more practical types of flip-flops

Seedback connection – outputs are connected back to the inputs

Seasily constructed from a pair of NOR gates or a pair of NAND gates

STwo types: SR Latch, D Latch

Two inputs: S (Set) and R (Reset)

SR stands for Set-Reset

Two outputs: Q and \overline{Q}

S Two types of SR latches:

- Sctive-**HIGH** input SR latch (two cross-coupled **NOR** gates)
- Sective-LOW input SR latch (two cross-coupled NAND gates)

Solutput of each gate is connected to an **input** of the **opposite** gate

NOR SR Latch

²⁰ NAND SR Latch

ENCS 2340

S An additional **Enable/Control** input signal **En** is used

Senable controls when the state of the latch can be changed

- 1) $En=0 \rightarrow S$ and R inputs have **NO** effect on the latch [Latch is Disabled]
 - The latch will remain in the same state, regardless of S and R
- 2) En=1 \rightarrow normal SR latch operation [Latch is Enabled]

So NOR SR \rightarrow AND Gates are used with En

Solution SR → NAND Gates are used with En [Inverted Behavior]

All SR Latches have One Major **Issue** \rightarrow Undefined/Indeterminant/Forbidden **State**

- S This **undefined** state only exists when **both** inputs (S,R) are equal to 1/0 (depends on the used gates)
- S A solution is to make sure that both inputs are NOT 1/0 at the same time, is to have a single input only (D) → D Latch
 - Only one data input D
 - An **inverter** is added: S=D and R=D'
 - \bigcirc S and R can never be 11/00 simultaneously \rightarrow No undefined state
 - When En=0, Q remains the same (No change in state), When En=1, Q=D and Q'=D'
 - It is also called a transparent latch because whatever appears at the D input follows at the Q output (Q=D)

🗘 Q follows D

- \bigcirc When D = 1, Q becomes 1 and so on
- O However, if the enable input E is 0, **Q will retain its state** (Q will not change, it will not follow D)
- ♦ In short, if a D latch is **disabled** \rightarrow it can **store/retain** one **data** bit (0 or 1)

19STUDENTS-HUB.com

- S A latch is **level-sensitive** (sensitive to the **level** of the **En**)
- Solution As long as the enable signal (control) is high then
 Any change in the value of input *D* appears in the output *Q*

Solution of the second s

Solution Solution

Solution To overcome these issues, a synchronized latch is needed Flip-Flop (FF)

- 1) A Clock Signal is <u>connected</u> to the En input → Clocked Latch (Synchronized Level-Triggering)
 The data might change while the clock is HIGH
- 2) **Construct** the clock in a way that **enable** the latch/FF for a **very small amount** of time
 - At signal **transition only** [clock edge] \rightarrow Edge-Triggering (Positive or Negative)
 - Edge **detection** circuit is needed

Flip-Flop is a synchronized Edge Triggered Latch with Edge detection circuit connected to its Enable input

²CSTUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

ENCS 2340

- Secall: In Level-Trigger elements (latches), As long as the control (En) is high → output may change state.
- Solution S
- rigger → a clock (CLK) signal is used to drive the control (enable) input of a latch
 - ♦ This clock will **trigger** the flip-flop to **change** state only at the **transition**

- Solution We connect the **edge-detection** circuit at the **enable** input of the D latch
 - This converts it to an edge-triggered D latch
 - This new circuit is also called an Edge-Triggered D Flip Flop (D-FF)
- % We usually specify it as
 - a positive-edge triggered flip-flop
 - OR as a negative-edge triggered flip-flop

S The **dynamic** indicator (>) denotes that flip-flop responds to the edge **transition** of the clock

A **bubble** adjacent to the dynamic indicator denotes that it is a **negative-edge** triggered flip-flop

23STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

ENCS 2340

- When the input clock (Clk) makes a positive transition (i.e., moves from 0 to 1), the value of D is transferred to Q
- A negative edge of the clock does NOT affect the output
- Solution The output is NOT affected by changes in D when the Clk is in the steady logic-1 level or the logic-0 level
- Solution This type of flip-flop responds to the transition from 0
 to 1 and nothing else

- When the input clock (Clk) makes a negative transition (i.e., moves from 1 to 0), the value of D is transferred to Q
- A positive edge of the clock does NOT affect the output
- Solution The output is NOT affected by changes in D when the Clk is in the steady logic-1 level or the logic-0 level
- Solution This type of flip-flop responds to the transition from 1
 to 0 and nothing else

- Sommon Design/Configuration of the Negative Edge-Triggered D Flip-Flop
- Solution Built using **two** latches in a **master-slave** configuration
 - A master latch (D-type) receives external inputs
 - A slave latch (D-type) receives inputs from the master latch
- Solve the second second
 - When Clk=1, the master is enabled and the D input is latched (slave is disabled)
 - When Clk=0, the slave is enabled to generate the outputs (master is disabled)

Uploaded By: 1230358@student_birzeit_eduil

ENCS 2340

Master-Slave D-FF (Negative Edge-Triggered)

ENCS 2340

- **Slave** is enabled during negative CLK period.
- ✓ D → Y during + ve CLK period, while Q is NOT changed.
- ✓ Y → Q during ve CLK period, while
 Y is NOT changed

- So The behavior of the master-slave flip-flop dictates that
 - The output may change only **once**
 - A change in the output is **triggered** by the **edge** of the clock
 - The change may occur only during the clock's negative level
- Solution The value that is produced at the output of the flip -flop is the value that was stored in the master stage immediately before the negative edge occurred

26STUDENTS-HUB.com

20 24

- Solution Series Seri
- Solution CLK=0 → Q(t+1)=Q(t) (NC: NO Change) Solution CLK=1 & D=0 → Q=0 Solution CLK=1 & D=1 → Q=1
- If D changes after CLK becomes 1, the output is NOT changed
- Solution CLK transition from $0 \rightarrow 1$, and no other change

- When CLK=0 and D=0, then the outputs of gates 1, 2, 3, and 4 are going to be 0111.
- When CLK=0 and D=1, then the outputs of these gates are going to be 1110 instead.
- 𝔅 In both cases, S=R=1 → No Change
- Suppose that CLK becomes 1 while D=0. The output of gate 3 (which is R) becomes 0. this will reset the output flip-flop.
- Source R is 0, then **D can change to 1 and R remains 0**.
- Solution This means that Q remains 0 while CLK is 1. No change will occur to Q until the clock returns to 0 and then goes to 1 on the next clock pulse. This scenario shows that the flip-flop is a positive edge triggered.
- Similar procedure occurs if D=1 while the clock goes from 0 to 1. In this case, S=0 and Q=1.

28<mark>5</mark>TUDENTS-HUB.com

- Setup Time (Ts): There is a minimum time during which the D must be valid and stable before the clock edge.
- **Solution** Hold Time (Th): there is a minimum time during which D must not change after the clock edge.
- Solution Section Se

³CTUDENTS-HUB.com

Timing Considerations

20 24

- If the setup and hold times are violated, a gate may produce an unknown logic signal at its output.
- Solution is called as metastability.

- In practical applications, the CLK (clock) signal, like all digital signals, requires a finite amount of time to transition between states and does NOT change instantaneously.
- Solution For simplicity in theoretical studies, we assume that the clock signal transitions instantly, **neglecting** any transition **delays**.

31STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

ENCS 2340

- Solution States
 Solution of gates
 Solution of gates
- Solution of the second structed using the D-FF and external logic
- Solution of the set of

- So The JK is another type of Flip-Flop with inputs: **J**, **K**, and Clk
 - Typically constructed using the D-FF and external gates
 - **Four** operations: **set** to 1, **reset** to 0, **no change**, & **invert** output
 - 1) When JK = $10 \rightarrow$ Set
 - 2) When JK = $01 \rightarrow \text{Reset/Clear}$
 - 3) When $JK = 11 \rightarrow Invert/Complement$ output
 - 4) When $JK = 00 \rightarrow No$ change
- S JK can be implemented using two Clocked SR latches and gates

Circuit Diagram (using D-FF) 33STUDENTS-HUB.com

$$Q(t + 1) = JQ' + K'Q$$
 Characteristic Equation

JK Flip-Flop							
J	K	Q(t + 1))				
0	0	Q(t)	No change				
0	1	0	Reset				
1	0	1	Set				
1	1	Q'(t)	Complement				

T (Toggle) Flip-Flop

JK-FF

1) 2)

6

20 24

B

S

- Next state is defined in terms of the current state and the inputs
- $\Re Q(t)$ refers to current state **before** the clock edge arrives
- Q(t+1) refers to **next state after** the clock edge arrives

							JK Flip-Flop				
D Flip-Flop			7 Flip-Flop			J	K	Q(t + 1)			
D	Q(t + 1	I)	T	Q(t + 1)		0	0	Q(t)	No change		
0	0	Reset	0	O(t)	No change	0	1	0	Reset		
1	1	Set	1	O'(t)	Complement	1	0	1	Set		
	-			Q (1)	complement	1	1	Q'(t)	Complement		

S The characteristic equation defines the operation of a flip-flop

355TUDENTS-HUB.com

- S Direct Inputs are Asynchronous inputs that force the FF to a particular state regardless of the clock.
- Solution The Input (S/PR) that sets the Flip-Flop to 1 (Q=1) is called **preset** or **direct set**.
- Solution The Input (R/CLR) that sets the Flip-Flop to 0 (Q=0) is called **clear** or **direct reset**.

S When Flip-Flops are powered, their **initial** state is **unknown**

Solution \mathbb{S} **Direct** Inputs are **Asynchronous** inputs that force the FF to a particular state <u>regardless</u> of the **clock**.

- So The Input (S/PR) that sets the Flip-Flop to 1 (Q=1) is called **preset** or **direct set**.
- So The Input (\mathbb{R}/\mathbb{CLR}) that sets the Flip-Flop to 0 ($\mathbb{Q}=0$) is called **clear** or **direct reset**.
- S When Flip-Flops are powered, their initial state is unknown

37STUDENTS-HUB.com

- Secall: Analysis is describing what a given circuit do
- S A logic diagram is recognized as a **clocked sequential circuit** if it includes **flip-flops with clock input**
- Solution for the sequential circuit is determined from the inputs, the outputs, and the state of its flip —flops
- Solution The **outputs** and the **next state (NS)** are both a <u>function</u> of the **inputs** and the **present** state (**PS**)
- Solution The analysis of sequential circuits consists of:
 - 1) Determine the Circuit Type from the Circuit/Logic Diagram (Sequential or Combinational)
 - 2) Deriving **State Equations** for the next states of memory elements
 - 3) Obtaining a **State Table** for the <u>time sequence</u> of inputs, internal states and outputs of the circuit
 - 4) Obtaining a State Diagram

ENCS 2340

A state equation describes the next state as a <u>function</u> of the present state and inputs
 Also called a transition equation

State Table

20 24

- Solution The time sequence of inputs, outputs and states can be described using **state tables**
- State tables contain four sections:
 - Present state, Input, Next State, Output
- Solution Write all possible binary **combinations** for **Present** state and **Input** together
- Solution Next state values are determined from either the logic diagram or the state equations
- A sequential circuit with **m** flipflops and **n** inputs \rightarrow
 - A. Normal Form: 2^{m+n} rows
 - B. Compact Form: 2^m rows
- The next-state section has m columns, one for each flip-flop
- The output section has as many columns as there are output variables

Dre	cent		Next	State	Output		
Sta	ate	x = 0		<i>x</i> =	= 1	x = 0	<i>x</i> = 1
Α	В	Α	B	Α	В	y	у
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Compact Form (2-D) : State Table

45 TUDENTS-HUB.com

	2 1	A(t+1) = A $B(t+1) = A$	x + Bx x'	y(t)	= (A+B)x'
Pres Sta	sent ate	Input	Ne Sta	ext ate	Output
Α	В	x	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Normal Form (1-D): State Table

State Diagram

- 20 24
 - **State diagram** is a **graphical** way of showing the **state table** S
 - More convenient to understand the behavior of a circuit
 - In this diagram, states are represented by circles
 - The transition from one state to another is represented by a line (Arrow) between the circles

ENCS 2340

Lines/Arrows are labeled as: (Inputs / Outputs)

ENCS 2340

- Sequential circuits \rightarrow combinational circuits + flip-flops
- Solution We need **two** types of equations for drawing the logic diagram of the sequential circuit:
 - 1) Set of Boolean functions that describes algebraically the **combinational** circuit that <u>generates</u> **outputs**
 - Output Equations
 - 2) Set of Boolean functions that describes algebraically the circuit that <u>generates</u> the **inputs to flip-flop**
 - **O** Input Equations or Excitation Equations

Consider the previous example:

$$D_{A} = A x + B x$$

$$D_{B} = A' x$$

$$y = x' (A+B)$$
 input equations

$$y = u' (A+B)$$

Flip-Flops Analysis Steps (Mainly for JK & T Flip-Flops)

1) Determine the flip-flop input equations in terms of the current state and circuit inputs

2) List the binary values of each input equation

3) Use the flip-flop characteristic table to determine the next state values in the state table

42STUDENTS-HUB.com

43STUDENState Table Con3

20 24

S

Sharacteristic Equations:

D Flip-Flop: Q(t+1) = DJK Flip-Flop: Q(t+1) = JQ' + K'QT Flip-Flop: Q(t+1) = TQ' + T'Q

State Equations:

$$\begin{array}{l} A(t+1) = Ax + Bx \\ B(t+1) = A'x \end{array} \quad \mbox{Examples} \end{array}$$

Sinput/Output Equations:

Input
$$\begin{cases} D_A = Ax + Bx \\ D_B = A'x \end{cases}$$
Examples Output
$$\begin{cases} y = (A+B)' \end{cases}$$

44STUDENTS-HUB.com

45STUDENTS-HUB.com

S

S

B

Alternative Method using Characteristic Equations

- S The next-state values can also be obtained by evaluating the state equations from the characteristic equation. This is done as:
 - **1) Determine** the FF **input** equations

47STUDENTS-HUB.com

- 2) Substitute the input equations into the FF characteristic equation to get the state equation
- 3) Use corresponding state equations to determine next state values in the state table

JK-Characteristic equation:
$$Q(t + 1) = JQ' + K'Q$$

Characteristic equation: $A(t + 1) = J_AA' + K'_AA$
 $B(t + 1) = J_BB' + K'_BB$
Input equation: $J_A = B$, $K_A = Bx'$
 $J_B = x'$, $K_B = A \oplus x$
Substitute
 $J_B = x'$, $K_B = A \oplus x$
State equations

State equations

A(t + 1) = A'B + AB' + AxB(t + 1) = B'x' + ABx + A'Bx'

Pre St	sent ate	Input	Ne Sta	ext ate
A	B	x	A	B
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

49STUDENTS-HUB.com

ENCS 2340 **7 Flip-Flop** Q(t + 1)Т Input equation: $T_A = B_X$ 0 Q(t)No change $T_B = x$ Q'(t)Complement Use T-FF Characteristic Table to fill the Derive the **T columns** by substituting **PS/Input** 1 2 next state columns combinations into the **Input equations** Output equation: y = ABPS NS Next Present **Output** Column <u>always</u> Input Output State State constructed from the В T_A T_B В x A y **Output Equation** 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 Notice: No need to find 0 0 0 0 0 0 the **state equations**. 1 0 0 1 1 1 0 The **Characteristic** Table 0 0 0 0 0 0 is directly used to find **NS** 0 0 1 0 values in the state table 0 0 0 0 Uploaded By: 1230358@student.birzeit.ed 0 50STUDENTS-HUB.com

Construct the **State table** directly from the **State equations**

Output Column <u>always</u> constructed from the **Output Equation** A(t+1) = (xB)'A + xBA' = x'A + AB' + xA'BB(t+1) = x'B + xB'

Notice: We put the **output inside** the state **circle** because it does **Not depend** on the Input

Output	xt ite	Ne Sta	Input	Present State	
y	B	A	<u>x</u>	B	A
0	0	0	0	0	0
0	1	0	1	0	0
0	1	0	0	1	0
0	0	1	1	1	0
0	0	1	0	0	1
0	1	1	1	0	1
1	1	1	0	1	1
1	0	0	1	1	1

State equations

- Shere are **two** ways to design a clocked sequential circuit (differ only in the way **output** is **generated**)
 - Mealy FSM: Outputs depend on present state and inputs-
 - 2) Moore FSM: Outputs depend on present state only
- S A circuit may have **both** types of **outputs**

⁵³STUDENTS-HUB.com

B

53STUDENTS-HUB.com

Uploaded By: 1230358@studentabirzeit_eduil

54STUDENTS-HUB.com

- Solution The outputs are a <u>function</u> of the present state and Inputs
- Solution The **outputs** are **NOT synchronized** with the clock
- Solution The outputs may change if inputs change during the clock cycle
- Solution States The outputs may have momentary false values (called glitches)
- Solution The correct outputs are present just before the edge of the clock

ENCS 2340

Notice: We indicate the output over the line/arrow because it depend on the Input

Mealy FSM Uploaded By: 1230358@student_bit_reit_edulii

Tracing a Mealy FSM: Timing Diagram

20 24

When the circuit is powered, the initial state (AB) is unknown

- Seven though the initial state is unknown, the input x = 0 forces a transition to state AB = 00, regardless of the present state
- Sometimes, a reset input is used to initialize the state to 00

55 TUDENTS-HUB.com

56STUDENTS-HUB.com

- S The outputs are a function of the Flip-Flop outputs only
- Solution The outputs depend on the current state only
- Solution The **outputs** are **synchronized** with the clock
- **Glitches** cannot appear in the outputs (even if inputs change)

Search line/arrow is labeled with Input only
 Search line/arrow is labeled with Input only
 The output is shown inside the state: (State / Output)
 The output depends on the current state only

A given design might **mix** between Mealy and Moore

ENC5 2340

Notice: We indicate the output inside the state circle because it depend on the state only

Uploaded By: 1230999955Mdenthbitzeiter

Tracing a Mealy FSM: Timing Diagram

Cycle	0	1	2	3	4	5	6	7	8
Input <i>x</i>	0	1	1	0	1	1	1	1	0
Present	?	0	0	1	0	0	1	1	1
State A B	?	0	1	0	0	1	0	1	1
Output z	?	0	0	0	0	0	0	1	1

- When the circuit is
 powered, the initial
 state (AB) and output are
 unknown
- Input x = 0 resets the state AB to 00. Can also be done with a reset signal.

The output is **synchronized** with the clock. **No false** output (or **glitch**) may appear.

ENCS 2340

57STUDENTS-HUB.com

- Secall: The number of states in the system determines the number of FFs needed 2^m states → m FF
- S Two sequential circuits may have **same input-output** behavior but **different number of internal** states
- Sertain properties of sequential circuits allow us to reduce their number of states
- State-Reduction is referred to the reduction of the number of states in a sequential circuit to reduce the number of FFs (Less FFs → Cost reduction)
 Reducing the number of states while preserving the input/output relationship

State **Reduction** \equiv State Minimization \equiv Eliminate **Redundant** States

Notice: Reduction of states does **NOT** always result in reduction of flip-flops

Sometimes, reduction in flip-flops result in a **bigger combinational circuit** to realize the next state and the outputs

Example: Consider the input sequence: **01010110100** starting from the **initial** state a

State	а	a	b	С	d	е	f	f	g	f	g	а
Input	0	1	0	1	0	1	1	0	1	0	0	
Output	0	0	0	0	0	1	1	0	1	0	0	

Only interested in **input-output relationship**, states are of secondary importance

There are an **infinite** number of <u>input sequences</u> that may be applied to the circuit; each results in a **unique** <u>output sequence</u>

Only **input-output sequences are important**, the internal states are used to provide required sequences

58 TUDENTS-HUB.com

- S Two circuits are said to be identical if the same applied input sequence gives the same output sequence
- Solution The challenge with state-reduction is to find ways to reduce the number of states without affecting the input-output relationships

Two states are said to be **equivalent**, if, for each set of inputs, they **give exactly** the **same output** and **send** the circuit to the **same state** or to an **equivalent state**

When two states are **equivalent**, one of them can be **removed** without **altering** the input–output relationships

It is easier to work with **state tables**

605 TUDENTS-HUB.com

- Systematically determines which states can be considered equivalent
- Steps (Let n = Number of States in the original Diagram/Table)
 - 1) Start with the **state** table

- 2) Construct the Implication table
 - a) Stair Case Structure
 - b) Shall contains a **square** for each **pair** of states
 - c) Rows (2 to n) | Columns (1 to n-1)
- 3) For every square, compare each pair of rows in the state table:
 - a) If any of the **outputs** for the rows being compared **differ**, place an **X** in the square.
 - b) If the **outputs** are the **same**, list the **implied pairs** in the square.
 - Any implied pair that is **identical** or the states **themselves** is **omitted**.
 - c) If the **outputs** are the **same** and if both the **implied pairs** are **identical** and/or the states **themselves**, then place a √ in the square.
- 4) For all squares in the table with implied pairs, examine the square of each implied pair. If any of the implied pair squares has an X, then put an X in this square
- 5) Repeat the step 4 until **NO** more **Xs** are added.
- 6) Upon completion of the previous step, squares **without X's** indicate **equivalent states**.

61STUDEN Remove redundant states, and replace them with equivalent states loaded By: 1230358@student_birzeit_edual

Example:

Step 1

	Next	State	Output			
Present State	$\boldsymbol{x} = \boldsymbol{0}$	<i>x</i> = 1	x = 0	<i>x</i> = 1		
а	а	b	0	0		
b	с	d	0	0		
С	a	d	0	0		
d	е	f	0	1		
e	a	f	0	1		
f	g	f	0	1		
g	a	f	0	1		

625 TUDENTS-HUB.com

63STUDENTS-HUB.com

Example:

 $n = 7 \rightarrow 6x6$ Table

64STUDENTS-HUB.com

Uploaded By: 1230358@student_birzeit_eduil

ENCS 2340

655TUDENTS-HUB.com

Example:

	Next	State	Out	tput	
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	с	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	g	f	0	1	
g	а	f	0	1	
State $e \equiv S$	tate g	Sta	te $d \equiv Sta$	ate f	
 e and g are equ 1) Remove g 2) Replace g v whenever it next State 	ivalent → row with e occurs as	d and f 1) Re 2) Re what nex	f are equivant move f row place f witt enever it oo at State	alent → w h d ccurs as	

Present	Next	State	Output				
State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1			
а	а	b	0	0			
b	С	d	0	0			
С	а	d	0	0			
d	е	d	0	1			
е	а	d	0	1			

ENCS 2340

Steps 7

66STUDENTS-HUB.com

State Reduction – Alternative Method (Row Matching Method)

20 24

	N	ovt State	0	tout	
Present State	x =	$\frac{1}{0} x = 1$	x = 0	x = 1	-
<i>a</i>	<i>a</i>	b h	0	0	
b	c a	d	0	0	State $e \equiv State g$
С	a	d	0	0	\mathbf{a} and \mathbf{a} are equivalent \rightarrow
d	е	f	0	1	1) Remove a row
е	а	f	0	1	2) Replace g with e
f	g	f	0	1	whenever it occurs as
g	а	f	0	1	next State
Procont	Next		Out	put	
State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	с	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
£	0	f	0	1	

67STUDENTS-HUB.com

ENCS 2340

Example:

68 TUDENTS-HUB.com

State Reduction

Example:

20 24

We did **NOT** save any **FF** in this design, but we have **more Unused states** that we can substitute for as **don't cares during design**, thus **simplifying** some combinational design logic. UDENTS-HUB.com

Notice: No. Unused Sates = Max No. States - No. Used States = $2^3 - 5 = 3$

Example:

State	а	а	b	С	d	е	f	f	g	f	g	а	
Input	0	1	0	1	0	1	1	0	1	0	0		
Output	0	0	0	0	0	1	1	0	1	0	0		
										Ι	dent	ical	Output Sequence
State	а	а	b	С	d	е	d	d	е	d	е	а	
Input	0	1	0	1	0	1	1	0	1	0	0		
Output	0	0	0	0	0	1	1	0	1	0	0		

а

С

d

е

g

h

72STUDENTS-HUB.com

State Assignment Methods

It is necessary to assign unique coded binary values to the states

- So For a circuit with **m** states, the codes must contain at least **n** bits, where $2^n \ge m$.
 - This may generate $(2^n m)$ **unused** states

S A different assignment will result in a state table with different binary values for the states.

Solution The complexity of the combinational circuit depends on the binary state assignment chosen.

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot		
а	000	000	00001		
b	001	001	00010		
с	010	011	00100		
d	011	010	01000		
е	100	110	10000		

Notice: One-hot requires extra FFS, but usually leads to **simpler** logic for the next state and output
S A state table with a binary assignment is called a Transition table

	put	Out	State	Next	Present
	<i>x</i> = 1	x = 0	<i>x</i> = 1	x = 0	State
	0	0	b	а	а
	0	0	d	с	b
State Table	0	0	d	а	с
	1	0	d	е	d
	1	0	d	а	е

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Notice: 101, 110, 111 \rightarrow **Unused** States

Transition Table

Uploaded By: 1230358@student.bitzeit.edulil

73STUDENTS-HUB.com

- ENCS 2340
- Secall: Design goal is to specify the hardware/circuit that will implement a desired behavior
 Starts from a set of specifications and conclude with a logic diagram
- Sequential circuits are made up of flip-flops and combinational logic that may influence the flip-flops inputs and/or the circuit outputs
- Solution of the second seco
- Solution The D-FF is the basic storage element from which all others are derived using additional combinational logic
- Solution Remember, <u>number</u> of FF depends on <u>number</u> of states

Design of Sequential Circuits

Example: Sequence Detector

- Solution This kind of sequential circuits is commonly known as A sequence detector
- It Detects a specific sequence of bits in the input
- So The input is a serial bit stream: **One** input bit **x** is fed to the sequence detector **each cycle**
- Some sequence is detected or NOT
 Some output bit z each cycle indicates whether a given sequence is detected or NOT

$$\begin{array}{cccc} x & \longrightarrow & Sequence \\ clk & \longrightarrow & Detector & \end{array} \end{array} \xrightarrow{} z$$

Uploaded By: 1230358@student.birzeit.edulil

77STUDENTS-HUB.com

Verbal Description

Example: Design a **sequence detector** that will **detect three or more <u>consecutive</u> 1's**. When the three <u>consecutive</u> 1's (111) are detected, the <u>output</u> is **set** to 1 for **one clock cycle**. If any **further <u>consecutive</u> 1** is detected the <u>output remains</u> to be 1. If a **zero** occurs in between the 1's, the **output** become **0** and the detector goes to its **initial state** and starts all over again.

State Diagram

- 1) Begin in an **initial** state: call it **S**₀
- 2) **S**₀ <u>indicates</u> that a **1** is **NOT detected** yet
- 3) As long as the input x is 0, remain in the initial state S_0
- 4) Add a state (call it S_1) that <u>detects</u> the **first** "1" in the input
- 5) Add a state (call it **S**₂) that <u>detects</u> the input sequence "**11**"
- 6) Add a state (call it **S**₃) that <u>detects</u> the input sequence "**111**"

Design of Sequential Circuits

Example:

State Diagram

Complete the State Diagram

When the input is 0: Add transitions from S₁, S₂, and S₃ back to S₀

Sequence Detector

When the input is 1: Add transition from S3 to itself to detect sequences longer than three 1's

Consider Moore FSM

Assign Output to States

- **D** The output in S_0 , S_1 , and S_2 should be **O**
- **D** The output in S_3 should be **1**

	State		
Present	Next	State	Output
State	<i>x</i> = 0	<i>x</i> = 1	Z
S ₀	S ₀	S ₁	0
S ₁	S ₀	S ₂	0
S ₂	S ₀	S ₃	0
S ₃	S ₀	S ₃	1

Uploaded By: 1230358@student.birzeit.eduil

State Reduction is NOT necessary

Example: Sequence Detector State Assignment

Recall: for *m* states

The minimum number of state bits: $n = [log_2 m]$

[x] is the smallest integer $\ge x$ (ceiling function)

Each <u>state</u> must be assigned a **unique** binary code

In this example:

- **Four** states: S_0 , S_1 , S_2 , and S_3 (m=4) → Minimum number of state bits (FFs) is (n=2)
- State assignment: $S_0 = 00$, $S_1 = 01$, $S_2 = 10$, and $S_3 = 11$
- Recall: If n bits are used, the number of unused states = (2ⁿ m)
 In this example, there are NO unused states

75 TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

80STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edu

Z

0

0

0

1

Present	Next	State	Output][
State	<i>x</i> = 0	<i>x</i> = 1	Z	
0 0	00	01	0	
01	00	10	0	
10	00	11	0	
11	00	11	1	

81STUDENTS-HUB.com

2 St	ate Bits \rightarrow 2 Flip-F	lops
Label	: State Bits (FFs) –	→ A,B
	1-D form is easier to derive Equations	

Present State		resent State Input		xt ate	Outpu	
A	В	x	A	В	Z	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Recall: When Using **D-FF**

Next State = Flip-Flop Inputs D_1 and D_0

Uploaded By: 1230358@student.birzeit.eduil

Design of Sequential Circuits

20 24

Example: Sequence Detector **Boolean Equations (D-FF)**

Present State		esent tate Input		xt ate	Output	
A	B	x	A	B	Z	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

$A(t+1) = D_A(A,B,x) = \Sigma(3, 5, 7)$
$B(t+1) = D_B(A,B,x) = \Sigma(1, 5, 7)$
$Z(A,B,x) = \Sigma(6,7)$

FF-Inputs/Output Simplification

Uploaded By: 1230358@student.birzeit.edu

⁸⁴STUDENTS-HUB.com

State Table

20 24

FURC
ENCS
2240
2340

Exa	ample	: Sec	quenc	e Det	ector	– Mealy FSM
	Binar	y-Code	ed Sta	te Tab	le	
Pr	esent	Next	State	Outp	out z	
S	State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1	2 Chata Dita
	00	00	01	0	0	
	01	00	10	0	0	Label: State
	10	00	10	0	1	~ 1/

Unused States \rightarrow **Don't Care Conditions in Next States & Output**

Х

X

XX XX

State Bits \rightarrow **2** Flip-Flops

bel: State Bits (FFs) \rightarrow Q_{1}, Q_{0}

Boolean Equations (D-FF)

855TUDENTS-HUB.com

11

Uploaded By: 1230358@student.birzeit.eduli

Example: Sequence Detector – Mealy FSM Logic Circuit Diagram

⁸⁶STUDENTS-HUB.com

Uploaded By: 1230358@student_birzeit_eduil

ENCS 2340

Design/Circuit Verification

- Sequential circuits should be verified by showing that the circuit produces the original state diagram
- Solution with the second secon
- Solution State All possible input combinations are applied at each state and the state variables and outputs are observed
- S A reset input is used to reset the circuit to its initial state
- Solution Sequence of inputs to test all the state-input combinations, i.e., all transitions in the state diagram
- Solution State State

Input Test Sequence

- Sequired to verify the correct operation of a sequential circuit
- S It should test each state transition of the state diagram
- S Test sequences can be produced from the state diagram
- Solution So

Input test sequence: **reset** then x = 0, 1, 0, 1, 1, 0, 1, 1, 1, 1

88 TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduil

ENCS 2340

Design of Sequential Circuits: Verification

20 24

Sequence Detector – Mealy FSM Timing Diagram

Input test sequence: **reset** then x = **0**, **1**, **0**, **1**, **1**, **0**, **1**, **1**, **1**, **1**, **1**

Recall: The drawback of Mealy is that **glitches** can appear in the output if the input is not synchronized with the clock

8STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

- Secal: In the design of clocked sequential circuits, we know the present state and next state of the flip-flops
- Solution we wanter the second seco
- S These **functions/equations** can be easily obtained using the **flip flop excitation table**
- Sectimation Tables give us the required inputs that will achieve a given transition from preset state (PS) to next state (NS) [i.e. Q_t to Q_{t+1}]

Flip-Flo	p Excitation	Tables	5				
Q(t)	Q (<i>t</i> = 1)	J	K		Q(t)	Q (<i>t</i> = 1)	T
0	0	0	Х		0	0	0
0	1	1	Х		0	1	1
1	0	X	1		1	0	1
1	1	X	0		1	1	0
((a) JK Flip-Flop (b) T Flip-Flop						
List the	e inputs that	will ca	ause t	he state (change	in the state t	able

What about D Flip-Flop Excitation Table?

ENCS 2340

90STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

91STUDENTS-HUB.com

20 24

Recall: If **present** state is **0**, and **next** state is **1**, then you either had a **Toggle** (J=1, K=1) or you had a **set** (J=1, K=0)

Recall: If **present** state is **0**, and **next** state is **0**, then you either had a **NC** (J=0, K=0) or you had a **reset** (J=0, K=1)

Side Note: Synthesis is a design procedure that follows some predefined steps oaded By: 1230358@student.birzeit.edu

Sequence Detector – Using JK-FF

Present State		ent ite Input		Next State		Flip-Flop Inputs			
A	B	x	A	B	JA	K _A	J _B	K _B	
0	0	0	0	0	0	Х	0	Х	
0	0	1	0	1	0	X	1	Х	
0	1	0	1	0	1	Х	Х	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	Х	
1	0	1	1	1	X	0	1	Х	
1	1	0	1	1	Х	0	X	0	
1	1	1	0	0	Х	1	X	1	

From **State transitions**, and using the **excitation table** of a JK-FF,

derive the JK-FF inputs

925 TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.echuii

ENCS 2340

93STUDENTS-HUB.com

Design of Sequential Circuits: JK-FF

Sequence Detector – Using JK-FF

Circuit Diagram (JK-FF)

Recall: If **present** state and **next** state are different → Toggle (T=1) Recall: If **present** state and **next** state are same \rightarrow NC (T=0)

955 TUDENTS-HUB.com

Uploaded By: 1230358@student_birzeit_eduil

Verbal Description

- When reaching 7, the counter goes back to 0 then repeat
- There is no input to the circuit
- ✓ The counter is **incremented each cycle**
- The output of the circuit is the present state (count value)
- ✓ The circuit should be designed using **T-type** Flip-Flops

Eight states are needed to store the count values 0 to 7
 No input, state transition happens at the edge of each cycle

State Assignment

State Diagram

Eight states → 3 State Bits → 3 FFs
 State Assignment (000 - 111)

State Reduction is NOT necessary

Uploaded By: 1230358@student.birzeit.edulil

Example: Up Counter

Present State			Next State			Flip-Flop Inputs		
A ₂	A 1	Ao	A ₂	A 1	Ao	T _{A2}	T _{A1}	T _{AO}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

From **State transitions**, and using the **excitation table** of a T-FF, derive the T-FFs inputs

Uploaded By: 1230358@student_birzeit_eduil

97STUDENTS-HUB.com

Example: Up Counter

20 24

Clk

T

Clk

Clock

Т

Circuit Diagram

98<mark>5</mark>TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduil

Т

Clk

Practice Problem:

20 24

Design a one-input(x), one-output(y) serial 2's complement with asynchronous reset

