Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

Mustafa Jarrar

5.1 Sequences

5.2 Mathematical Induction I

5.3 Mathematical Induction II

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Online Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on (but not limited to) to chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

Part 1: **Why we need Sequences** (**Real-life examples**).

□ Part 2: Sequence and Patterns

□ Part 3: Summation: Notation, Expanding & Telescoping

□ Part 4: Product and Factorial

□ Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Dummy Variables
STUDENTS-HUB.com Kowerds Sequences patterns Summation Telescoping Product Factorial Dummy variabled

STUDENTS-HUB.com Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, ded By: anonymous

Motivation

هل يمكن النظر الى علم الرياضيات كعلم اكتشاف انماط في الحياة وتعميم إإهذه الانماط كنظريات وقوانين؟ إإما هو المشترك بين الفن وعلم الرياضيات؟

4 \bullet . The Uploaded By: anonymous *A mathematician, like a painteror poet, is a maker of patterns.* -G. H. Hardy, *A Mathematicians Apology, 1940*

 $A_k = 2^k$

,

STUDENTS-HUB.com

Train Schedule

6 STUDENTS-HUB.com (1999), state of the controller of the Uploaded By: anonymous

In Nature

https://www.youtube.com/watch?v=ahXIMUkSXX0

7 STUDENTS-HUB.com , the state of the state of the Uploaded By: anonymous

IQ Tests

Determine the number of points in the 4th and 5th figure

8TUDENTS-HUB.com , the computation of the control of the Uploaded By: anonymous

In programing

Any difference between these loops

1. for $i := 1$ to $n = 2$. for $j := 0$ to $n - 1 = 3$. for $k := 2$ to $n + 1$ **print** $a[j+1]$ **print** $a[k-1]$ **print** $a[i]$ $next i$ next j $next k$

> $\sum_{k=1}^n a[k].$ $s := 0$ $s := a[1]$ for $k := 1$ to n for $k := 2$ to n $s := s + a[k]$ $s := s + a[k]$ $next k$ $next k$

9 STUDENTS-HUB.com (1997), the state of the Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

 \Box Part 1: Why we need Sequences (Real-life examples).

Part 2: **Sequence and Patterns**

□ Part 3: Summation: Notation, Expanding & Telescoping

□ Part 4: Product and Factorial

□ Part 5: Properties of Summations and Products

□ Part 6: Sequence in Computer Loops and Change of Variables

STUDENTS-HUB.com (Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, ded By: anonymous

 a_{m} , a_{m+1} , a_{m+2} , ..., a_{n}

a Sequence is a set of elements written in a row.

Each individual element a_k is called a **term.**

The k in a_k is called a **subscript** or **index**

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1 **,** a_2 **,** a_3 **, ... and** b_2 **,** b_3 **,** b_4 **, ... by the following explicit formulas:**

$$
a_k = \frac{k}{k+1}
$$
 for some integers $k \ge 1$

$$
b_i = \frac{i-1}{i}
$$
 for some integers $i \ge 2$

Compute the first five terms of both sequences.

Finding Terms of Sequences Given by Explicit Formulas

Compute the first six terms of the sequence c_0 , c_1 , c_2 , ... defined as **follows:** $C_j = (-1)^j$ for all integers $j \ge 0$.

Solution:

$$
C_0 = (-1)^0 = 1
$$

\n
$$
C^1 = (-1)^1 = -1
$$

\n
$$
C^2 = (-1)^2 = 1
$$

\n
$$
C^3 = (-1)^3 = -1
$$

\n
$$
C^4 = (-1)^4 = 1
$$

\n
$$
C^5 = (-1)^5 = -1
$$

15 STUDENTS-HUB.com (1) \blacksquare

Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$
1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, -\frac{1}{36}, \dots
$$

$$
a_k = \frac{(-1)^{k+1}}{k^2} \text{ for all integers } k \ge 1.
$$

$$
a_k = \frac{(-1)^k}{(k+1)^2} \text{ for all integers } k \ge 0.
$$

 \rightarrow How to prove such formulas of sequences? **17** Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

 \Box Part 1: Why we need Sequences (Real-life examples).

□ Part 2: Sequence and Patterns

Part 3: **Summation: Notation, Expanding & Telescoping**

Q Part 4: Product and Factorial

□ Part 5: Properties of Summations and Products

□ Part 6: Sequence in Computer Loops and Change of Variables

STUDENTS-HUB.com (Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, ded By: anonymous

Summation

199 STUDENTS-HUB.com , the state of the state of the Uploaded By: anonymous

Summation

• Definition

If m and n are integers and $m \le n$, the symbol $\sum a_k$, read the summation from $k = m$ k equals m to n of a-sub-k, is the sum of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We say that $a_m + a_{m+1} + a_{m+2} + \ldots + a_n$ is the **expanded form** of the sum, and we write

$$
\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \cdots + a_n.
$$

We call k the **index** of the summation, m the **lower limit** of the summation, and n the **upper limit** of the summation.

2008 STUDENTS-HUB.com (2008) (2008) 37 anonymously uploaded By: anonymously

Example

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. **Compute the following:**

a.
$$
\sum_{k=1}^{5} a_k
$$
 b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

22 \blacksquare Uploaded By: anonymous

Example

When the Terms of a Summation are Given by a Formula

Compute the following summation:

 $\sum_{k=1}^{5} k^2$.

$$
\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.
$$

24 \blacksquare Uploaded By: anonymous

Useful Operations

- Summation to Expanded Form
- Expanded Form to Summation
- Separating Off a Final Term
- Telescoping

These concepts are very important to understand computer loops

25 \blacksquare **25** Uploaded By: anonymous

Summation to Expanded Form

Write the following summation in expanded form:

$$
\sum_{i=0}^{n} \frac{(-1)^i}{i+1}
$$

$$
\sum_{i=0}^{n} \frac{(-1)^i}{i+1} = \frac{(-1)^0}{0+1} + \frac{(-1)^1}{1+1} + \frac{(-1)^2}{2+1} + \frac{(-1)^3}{3+1} + \dots + \frac{(-1)^n}{n+1}
$$

$$
= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^n}{n+1}
$$

$$
= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n+1}
$$

27 \blacksquare \blacksquare

Expanded Form to Summation

Express the following using summation notation:

$$
\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}
$$

Solution

$$
\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}.
$$

29 \blacksquare Uploaded By: anonymous

Separating Off a Final Term and Adding On a Final Term n

Rewrite

\n
$$
\sum_{i=1}^{n+1} \frac{1}{i^2} \quad \text{by separating off the final term.}
$$
\n
$$
\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2}
$$
\nWrite

\n
$$
\sum_{k=0}^{n} 2^k + 2^{n+1} \quad \text{as a single summation.}
$$
\n
$$
\sum_{k=0}^{n} 2^k + 2^{n+1} = \sum_{k=0}^{n+1} 2^k
$$

32 STUDENTS-HUB.com (1999), \blacksquare

Telescoping

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation [wiki].

Example:
$$
\sum_{i=1}^{n} i - (i+1) = (1-2) + (2-3) + ... + (n - (n+1))
$$

$$
= 1 - (n+1)
$$

=-*n*

This is very useful in programing:

 $S=0$ For $(i=1;i == n;i++)$ $S = S + i-(i+1);$ $S = -n$;

STUDENTS-HUB.com , which is a set of the set of the Uploaded By: anonymous

Telescoping

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation [1].

34 STUDENTS-HUB.com , the state of the state of the state of the Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

 \Box Part 1: Why we need Sequences (Real-life examples).

□ Part 2: Sequence and Patterns

□ Part 3: Summation: Notation, Expanding & Telescoping

Part 4: **Product and Factorial**

□ Part 5: Properties of Summations and Products

□ Part 6: Sequence in Computer Loops and Dummy Variables

STUDENTS-HUB.com, Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, ded By: anonymods

Product Notation

• Definition

 \boldsymbol{n} If *m* and *n* are integers and $m \le n$, the symbol $\prod a_k$, read the **product from** *k* $k = m$ equals *m* to *n* of *a*-sub-*k*, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n .

We write

$$
\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n.
$$

$$
\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 \qquad \prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}
$$

36 STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999)

Factorial Notation

• Definition

For each positive integer n , the quantity n factorial denoted $n!$, is defined to be the product of all the integers from 1 to n :

$$
n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.
$$

Zero factorial, denoted 0!, is defined to be 1:
 $\mathbf{n} = \prod_{k=1}^{n} \mathbf{k}$ 0! = 1. $0! = 1.$

0! =1 2! = 2·1 = 2 4! = 4·3·2·1 = 24 6! = 6·5·4·3·2·1 = 720 8! = 8·7·6·5·4·3·2·1 = 40,320 1! =1 3! =3·2·1=6 5! = 5·4·3·2·1 = 120 7! = 7·6·5·4·3·2·1 = 5,040 9! = 9·8·7·6·5·4·3·2·1 = 362,880

37 STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999), $\frac{1}{2}$

Factorial Notation

A recursive definition for factorial

$n! = \begin{cases} 1 & \text{if } n = 0 \text{ if } n = 0 \text{ if } n = 0 \end{cases}$	\n $\text{if } n \geq 1$ \n $\text{if } n \geq 0$ \n $\text{if } n \geq 1$ \n $\text{if } n \geq 1$ <
---	--

 $0! =1$

 $2! = 2 \cdot 1 =$

38 STUDENTS-HUB.com (1999), STUDENTS-HUB.com (1999)

int fact(int x)

Computing with Factorials

$$
\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8
$$
\n
$$
\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10
$$

$$
\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1
$$

$$
\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)
$$

= $n^3 - 3n^2 + 2n$

37UDENTS-HUB.com , the community of the control of the Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

- \Box Part 1: Why we need Sequences (Real-life examples).
- □ Part 2: Sequence and Patterns
- **□ Part 3: Summation: Notation, Expanding & Telescoping**
- **Q** Part 4: Product and Factorial

Part 5: **Properties of Summations and Products**

□ Part 6: Sequence in Computer Loops and Dummy Variables

STUDENTS-HUB.com (Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, ded By: anonymods

Properties of Summations and Products

Theorem 5.1.1

If a_m , a_{m+1} , a_{m+2} , ... and b_m , b_{m+1} , b_{m+2} , ... are sequences of real numbers and c is any real number, then the following equations hold for any integer $n \geq m$:

1.
$$
\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)
$$

\n2.
$$
c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k
$$
 generalized distributive law
\n3.
$$
\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k).
$$

\rightarrow Remember to apply these in programing Loops

41 \blacksquare \blacksquare

Example

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers *k*. Write each of the following expressions as a single summation or product:

$$
\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k
$$
\n
$$
\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)
$$
\n
$$
= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)
$$
\n
$$
= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))
$$
\n
$$
= \sum_{k=m}^{n} (3k-1)
$$
\n
$$
\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \left(\prod_{k=m}^{n} (k+1)\right) \cdot \left(\prod_{k=m}^{n} (k-1)\right)
$$
\n
$$
= \prod_{k=m}^{n} (k+1) \cdot (k-1)
$$
\n
$$
= \prod_{k=m}^{n} (k^2 - 1)
$$

43 STUDENTS-HUB.com , the state of the state of the state of Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

 \Box Part 1: Why we need Sequences (Real-life examples).

□ Part 2: Sequence and Patterns

□ Part 3: Summation: Notation, Expanding & Telescoping

□ Part 4: Product and Factorial

□ Part 5: Properties of Summations and Products

Part 6: **Sequence in Computer Loops & Change of Variables**

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

44 STUDENTS-HUB.com , the state of the state of the Uploaded By: anonymous

Change of Variable

Observe: $\sum_{k=1}^{3} k^2 = 1^2 + 2^2 + 3^2$ $\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2$. Hence: $\sum_{k=1}^{3} k^2 = \sum_{i=1}^{3} i^2$. Also Observe: $\sum_{j=2}^{4} (j-1)^2 = (2-1)^2 + (3-1)^2 + (4-1)^2$ $= 1^2 + 2^2 + 3^2$ $=\sum_{n=1}^{3} k^2$.

Replaced Index by any other symbol (called a **dummy variable**).

45 STUDENTS-HUB.com (1995), the state of the Uploaded By: anonymous

Programing Loops

Any difference between these loops

1. for $i := 1$ to $n = 2$. for $j := 0$ to $n - 1$ 3. for $k := 2$ to $n + 1$ **print** $a[j+1]$ **print** $a[k-1]$ **print** $a[i]$ $next k$ $next\ i$ next j

$$
\sum_{k=1}^{n} a[k],
$$

\n
$$
s := a[1]
$$

\n
$$
s := 2 \text{ to } n
$$

\n
$$
s := s + a[k]
$$

46 \blacksquare Uploaded By: anonymous

Change Variables

Transform the following summation by making the specified change of variable.

$$
\sum_{k=0}^{6} \frac{1}{k+1}
$$
 Change variable $j = k+1$ For (k=0; k\le6; k++)
Sum = Sum + 1/(k+1)

$$
\sum_{j=1}^{7} \frac{1}{j} = \sum_{k=1}^{7} \frac{1}{k}.
$$

HIR com
$$
\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{k=1}^{7} \frac{1}{k}
$$

For $(k=1; k\le 7; k++)$ $Sum = Sum + 1/(k)$

474 STUDENTS-HUB.com , \blacksquare

Change Variables

Transform the following summation by making the specified change of variable.

$$
\sum_{k=1}^{n+1} \frac{k}{n+k}
$$

\n*Change of variable: j = k - 1*
\n
$$
\sum_{j=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
$$

\n*For (k=1; k<=n+1; k++)*
\n*Sum = Sum + k/(n+k)*
\n*sum = 1*
\n*Proof (k=0; k<=n; k++)*

48 MUDENTS-HUB.com (1995), STUDENTS-HUB.com (1995)

 $Sum = Sum + (k+1)/(n+k+1)$

Programing Loops

All questions in the exams will be loops

Thus, I suggest: Convert all previous examples into loops and play with them

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences

& Mathematical Induction

5.1 Sequences

الاستقراء الرياضي) 5.2&3 Mathematical Induction

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

Part 1: What is Mathematical Induction

- \Box Part 2: Induction as a Method of Proof/Thinking
- Part 3: Proving *sum of integers* and *geometric sequences*
- Part 4: Proving a *Divisibility Property and Inequality*
- Part 5: Proving a *Property of a Sequence*
- **Part 6: Induction Versus Deduction Thinking**

3TUDENTS-HUB.com , the computation of the control of the Uploaded By: anonymous

What is Mathematical Induction

Mathematical induction is one of the more **recently developed methods of proof** in mathematics.

History:

The first use of mathematical induction was by الكرجي/Al-kraji (1000AD) in his book /الفخري/ Al-Fakhri to prove math sequences. In 1883 Augustus De Morgan described it carefully and named mathematical induction.

The idea:

If the *k*th domino falls backward, it pushes the $(k+1)$ st domino backward.

What is Mathematical Induction

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. $P(a)$ is true.

2. For all integers $k \ge a$, if $P(k)$ is true then $P(k + 1)$ is true.

Then the statement

```
for all integers n \ge a, P(n)
```
is true.

Example:

how to know whether this P(n) can be true?

P(n): For all integers *n* ≥ 8, *n* cents can be obtained using 3¢ and 5¢ coins.

 \rightarrow Moves from specific cases to create a general rule (conjecture/ حدس), this is why it is called **Principle, not a theorem**

STUDENTS-HUB.com , the computation of the control of the Uploaded By: anonymous

What is Mathematical Induction

Example

How to know whether this statement can be true?

For all integers $n \ge 8$, *n* cents can be obtained using $3¢$ and $5¢$ coins.

For all integers $n \geq 8$, $P(n)$ is true, **where** $P(n)$ **is the sentence "n cents" can be obtained using 3¢ and 5¢ coins."**

Then we need to prove that $P(n+1)$ is **also true**

6 STUDENTS-HUB.com (1999), state of the controller of the Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

Part 1: *What is Mathematical Induction*

Part 2: Induction as a Method of Proof/Thinking

Part 3: **Proving** *sum of integers* and *geometric sequences*

Part 4: **Proving** a *Divisibility Property and Inequality*

Part 5: **Proving** a *Property of a Sequence*

T Part 6: Induction Versus Deduction Thinking

7 STUDENTS-HUB.com , the state of the state of the Uploaded By: anonymous

Mathematical Induction as a Method of Proof

Proving a statement by mathematical induction is a two-step process. The first step is called the *basis step,* and the second step is called the *inductive step*.

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers $n \ge a$, a property $P(n)$ is true." To prove such a statement, perform the following two steps: Step 1 (basis step): Show that $P(a)$ is true.

Step 2 (inductive step): Show that for all integers $k \ge a$, if $P(k)$ is true then $P(k + 1)$ is true. To perform this step,

> **suppose** that $P(k)$ is true, where k is any particular but arbitrarily chosen integer with $k \ge a$. [This supposition is called the **inductive hypothesis.**]

Then

show that $P(k + 1)$ is true.

8TUDENTS-HUB.com , the computation of the control of the Uploaded By: anonymous

Mathematical Induction as a Method of Proof Example

How to know whether this statement can be true?

For all integers $n \ge 8$, *n* cents can be obtained using $3¢$ and $5¢$ coins.

Step 2(inductive step): *Show for all integers* $k \ge 8$, *if* $P(k)$ *is true then* $P(k+1)$ *is true: Case 1 (There is a 5*¢ *coin among those used to make up the k*¢*):* replace the 5c/ coin by two 3c/ coins; the result will be $(k + 1)c$. *Case 2 (There is not a 5*¢ *coin among those used to make up the k* ¢*):* Let the property $P(n)$ be the sentence: $n \notinfty$ can be obtained using $3 \notinfty$ and $5 \notinfty$ coins. $\leftarrow P(n)$ **Step 1 (basis step): Show P(8) is true:** $P(8)$ is true as $8¢$ obtained by one $3¢$ and one $5¢$ *[Suppose that P(k) is true for a particular but arbitrarily chosen integer k* ≥ 8 *. That is:]* **Suppose** *k* is any integer $k \geq 8$, $k\phi$ obtained by 3 ϕ and 5 ϕ . \leftarrow *P*(*k*) inductive hypothesis *[We must show that P*(*k* + 1) *is true. That is:]* We must show that ($k + 1$) ϕ / can be obtained using 3 ϕ / and 5 ϕ / coins. $\leftarrow P(k + 1)$ because $k \geq 8$, at least three 3ϕ must have been used. So remove three 3ϕ and replace them by two 5ϕ ; the result will be $(k + 1)\phi$. Thus in either case $(k + 1)\notin$ can be obtained using $3\notin$ and $5\notin$ *[as was to be shown]*.

9 STUDENTS-HUB.com (1997), the state of the Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- \Box Part 1: What is Mathematical Induction
- □ Part 2 : Induction as a Method of Proof/Thinking
- Part 3: **Proving Sum of Integers and Geometric Sequences**
- Part 4: Proving a *Divisibility Property and Inequality*
- Part 5: Proving a *Property of a Sequence*
- \Box Part 6: Induction Versus Deduction Thinking

Sum of the First *n* **Integers**

Who can sum all numbers from 1 to 100?

$$
1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}
$$

¹¹ , STUDENTS-HUB.com Uploaded By: anonymous

Theorem 5.2.2 Sum of the First *n* **Integers**

For all integers $n \ge 1$, $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

Same Question: Prove that these programs prints the same results in case $n \geq 1$ For $(i=1, i \leq n; i++)$ $S=$ S+i: Print ("%d", S); $S=(n(n+1))/2$ Print ("%d",S);

Proving that both programs produce the same results is like proving that:

Basis Step: Show that P(1) is true. $P(1): 1 = 1(1+1)/2 =$ Thus P(1) is true $\leftarrow P(n)$ **Inductive Step:** *Show that for all integers k* ≥ **1**, *if P(k) is true then P*(*k* + **1**) *is also true*: Suppose: $1+2+3+\ldots+k=\frac{k(k+1)}{2}$ is true $\leftarrow P(k)$ inductive hypothesis *P*(*k*+1) = 1+2+…+k + (*k*+1) = (*k*+1)(*k*+2) /2 $\leftarrow P(k+1)$ $P(k+1) = 1+2+...+k + (k+1) = (k+1)(k+2)$ $= P(k) + (k+1)$ $=\frac{k(k+1)}{2}+(k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$ Same $=\frac{k^2+k}{2}+\frac{2(k+1)}{2}$ $=\frac{k^2+3k+2}{2}$ STUDENTS-HUB.com $=\left|\frac{(k+1)(k+2)}{2}\right|$ Uploaded By: anonymous

Examples of Sums

Evaluate $2 + 4 + 6 + \cdots + 500$.

$$
2 + 4 + 6 + \dots + 500 = 2 \cdot (1 + 2 + 3 + \dots + 250)
$$

$$
= 2 \cdot \left(\frac{250 \cdot 251}{2}\right)
$$

$$
= 62,750.
$$

Evaluate 5 + 6 + 7 + 8 + ··· + 50. $5+6+7+8+\cdots+50 = (1+2+3+\cdots+50) - (1+2+3+4)$ $=\frac{50\cdot 51}{2}-10$ $= 1,265$

For an integer *h* **≥ 2, write** $1 + 2 + 3 + \cdots + (h-1)$ **in closed form.** $1+2+3+\cdots+(h-1)=\frac{(h-1)\cdot[(h-1)+1]}{2}$ **1** \blacksquare \blacksquare

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer $n \ge 0$,

$$
\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.
$$

Proof (by mathematical induction):

$$
\sum_{i=0}^{0} r^{i} = \frac{r^{0+1} - 1}{r - 1} \quad \leftarrow P(0) = \frac{r - 1}{r - 1} = 1
$$

$$
\sum_{k=0}^{n} r^i = \frac{r^{i-1}}{r-1} \leftarrow P(k)
$$
inductive hypothesis

$$
\sum_{i=0}^{k+1} r^{i} = \frac{r^{k+2} - 1}{r - 1}. \quad \leftarrow P(k+1)
$$

$$
= \sum_{i=0}^{k} r^{i} + r^{k+1}
$$

$$
= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}
$$

$$
= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}
$$

$$
= \frac{(r^{k+1} - 1) + r^{k+1}(r - 1)}{r - 1}
$$

$$
= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1}
$$

$$
= \frac{r^{k+2} - 1}{r - 1}
$$

15 STUDENTS-HUB.com , $\frac{1}{r-1}$ Uploaded By: anonymous

Mathematics in Programming
Example: Finding the sum of a geometric series

 $\}$

Prove that these codes will return the same output. Γ and Γ to 3. Write each or equal to 3.

```
int n, r, sum=0;(a) 1+3+32 +···+3m−2
scanf("%d",&n);
scanf("%d",&r);
if(r != 1) {
 for(i=0; i<=n; i++) {
    sum = sum + pow(r,i);print(f("%d\n), sum);
```
int $n, r, sum=0;$ scanf("%d",&n); scanf("%d",&r);

```
if(r != 1) {
     sum=((pow(r, n+1))-1)/(r-1);printf("%d\n\n", sum);
```
This code is proposed by a student/Zaina!

Examples of Sums of a Geometric Sequence

In each of (a) and (b) below, assume that *m* is an integer that is greater than or equal to 3. Write each of the sums in closed form.

(a)
$$
1+3+3^2+\cdots+3^{m-2}
$$

\n
$$
1+3+3^2+\cdots+3^{m-2}=\frac{3^{(m-2)+1}-1}{3-1}
$$
\n
$$
=\frac{3^{m-1}-1}{2}.
$$

(b) 32 +33 +34 +···+3*^m*

$$
3^{2} + 3^{3} + 3^{4} + \dots + 3^{m} = 3^{2} \cdot (1 + 3 + 3^{2} + \dots + 3^{m-2})
$$

$$
= 9 \cdot \left(\frac{3^{m-1} - 1}{2}\right)
$$

177 STUDENTS-HUB.com , the state of the state of the state of Uploaded By: anonymous

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

Q Part 1: What is Mathematical Induction

 \Box Part 2 : Induction as a Method of Proof/Thinking

□ Part 3: Proving Sum of Integers and Geometric Sequences

Part 4: **Proving a Divisibility Property and Inequality**

Part 5: Proving a *Property of a Sequence*

Part 6: Induction Versus Deduction Thinking

18 STUDENTS-HUB.com (1999), the comparison of the Uploaded By: anonymous

so, by definition of divisibility, $2^{2(k+1)} - 1$ is divisible by 3

199 STUDENTS-HUB.com , the state of the state of the Uploaded By: anonymous

Mathematics in Programming Example: Proving Property of a Sequence

What will the output of this program be for any input n?

```
int n;scanf("%d",&n);
                                                                                      312^{24} - 12\mathbb{R}^2 is true \mathbb{R}^2 is true \mathbb{R}^2 is true \mathbb{R}^2 in \mathbb{R}^2 in \mathbb{R}^2 is true \mathbb{R}^2 in \mathbb{R}^2 is true \mathbb{R}^2 in \mathbb{R}^2 is true \mathbb{R}^2 in \mathbb{R}^2 is the \mathbb{R}^2 in \mathbb{if(n >= 0) {
       (f( (pow(2,(2*n)) - 1) %3 == 0)<br>printf("this property is true");
       else
                                                  2k+3 = (2k+1) +2 by algebra
```
2008 STUDENTS-HUB.com (2008) (2008) 37 anonymously uploaded By: anonymously

Mathematics in Programming Example: Proving Property of a Sequence

What will this guy choose to wear today? (What is the output of the program)

int x, **y**; scanf("%d %d", &x, &y);
if(x%2 == 0) $x=x+1$; printf("White Shirt"); else printf("Black Shirt");

```
if((pow(7, y)-1)%6==0)
    printf("Black boot");
else
                        ∴ 2k + 3 < 2 · 2k = 2k+1
```
P(3): 2*.3*+1 < 2 *Show that P(3) is true. ³*which is true. *Show that for all integers k* ≥ **3**, *if P(k) is true then P*(*k* + **1**) *is also true*: \mathbb{Z} in the propose \mathbb{Z} in \mathbb{Z} in \mathbb{Z} in \mathbb{Z} in \mathbb{Z} in \mathbb{Z} 2(*k+*1) +1 < 2*^k*+1 ← *P*(*k*+1) 2*k+*3 = (2*k+*1) +2 by algebra < 2*^k* + 2*^k* as 2k - 1 < 2*^k*by the hypothesis

21 \blacksquare **21**

[This is what we needed to show.]

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- **Q** Part 1: What is Mathematical Induction
- \Box Part 2 : Induction as a Method of Proof/Thinking
- **□** Part 3: Proving Sum of Integers and Geometric Sequences
- \Box Part 4: Proving a Divisibility Property and Inequality

Part 5: **Proving a Property of a Sequence**

Part 6: Induction Versus Deduction Thinking

Proving a Property of a Sequence Example

Define a sequence a_1 **,** a_2 **,** a_3 \ldots **as follows:** $a_1 = 2$ a_k = 5 a_{k-1} for all integers $k \ge 2$.

Write the first four terms of the sequence.

$$
a_1 = 2
$$

\n $a_2 = 5a_{2-1} = 5a_1 = 5 \cdot 2 = 10$
\n $a_3 = 5a_{3-1} = 5a_2 = 5 \cdot 10 = 50$
\n $a_4 = 5a_{4-1} = 5a_3 = 5 \cdot 50 = 250$

 \rightarrow The terms of the sequence satisfy the equation $a_n = 2 \cdot 5^{n-1}$

25 \blacksquare **25** Uploaded By: anonymous

Proving a Property of a Sequence Example

Prove this property:

 $a_n = 2 \cdot 5^{n-1}$ for all integers $n \ge 1$ $a_1 = 2 \cdot 5^{1-1} - 1 = 2 \cdot 5^0 - 1 = 2$ **Inductive Step:** *Show that for all integers k* ≥ **1**, *if P(k) is true then P(k* + **1***) is also true: Show that P(***1***) is true. Suppose:* $a_k = 2 \cdot 5^{k-1}$ $\leftarrow P(k)$ inductive hypothesis $a_{k+1} = 2.5^k \leftarrow P(k+1)$ $= 5a_{(k+1)-1}$ by definition of $a_1, a_2, a_3...$ $= 5a_k$ $= 5 \cdot (2 \cdot 5^{k-1})$ by the hypothesis $= 2 \cdot (5 \cdot 5^{k-1})$ $= 2.5^k$

26 *IThis is what we needed to show.]* **26** Uploaded By: anonymously studies the studies of the stud

Mustafa Jarrar: Lecture Notes in Discrete Mathematics**.** Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- **Q** Part 1: What is Mathematical Induction
- \Box Part 2 : Induction as a Method of Proof/Thinking
- **□ Part 3: Proving Sum of Integers and Geometric Sequences**
- \Box Part 4: Proving a Divisibility Property and Inequality
- \Box Part 5: Proving a Property of a Sequence

Part 6: **Induction Versus Deduction Thinking**

27 \blacksquare \blacksquare

Induction Versus Deduction Reasoning

Deduction Reasoning Induction Reasoning

If Every man is person and Sami is Man, then Sami is Person

For all integers *n* ≥ 8, *n* cents can be obtained using 3¢ and 5¢ coins.

If my highest mark this semester is 82%, then my average will not be more than 82%

We had a quiz each lecture in the past months, so we will have a quiz next lecture

28 Uploaded By: anonymous

Induction Versus Deduction Reasoning

Deduction Reasoning The Induction Reasoning

Based on facts, definitions, , theorems, laws

Moves from general observation to specific results

Provides proofs

Based on observation, past experience, patterns

Moves from specific cases to create a general rule

Provides conjecture/حدس

2 Uploaded By: anonymous

More slides from students

Student: Ehab, 2016

Not reviewed or verified

prove the following property: for all integers $n \ge 1$, $1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (n)(n+1) = (n)(n+1)(n+2)$ 3 basis step : show $p(1)$ is true. $P(1): 1x2 = (1)(2)(3)$ left-hand side is $1 \times 2 = 2$ 3 right-hand side is $(1)(2)(3) = 2$ 3 thus $p(1)$ is true inductive step : Show that for all integers $k ≥ 1$, if $P(k)$ is true then $P(k + 1)$ is also true:
suppose that $p(k)$ is true $p(k) = 1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (k)(k+1) = (k)(k+1)(k+2)$ $\leftarrow P(k)$ inductive hypothesis $p(k+1)= 1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (k)(k+1) + (k+1)((k+1)+1)$ $= [1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (k)(k+1)] + (k+1)((k+1)+1)$ $=(k)(k+1)(k+2) + (k+1)(k+2)$ $=\frac{(k)(k+1)(k+2)}{2} + \frac{3(k+1)(k+2)}{2}$ 3 3 $=\frac{(k+1)(k+2)(k+3)}{k+3}$ = right sidentified is what we needed to show.] 3 Then $p(k)$ works for all $n \geq 1$.

32 STUDENTS-HUB.com (STUDENTS-HUB.com extending the state of the state of the state of the Uploaded By: anonymous

Show that For any integer $n \geq 5$, $4n < 2^n$.

basis step : show $P(n = 5)$ is true. $4n = 4 \times 5 = 20$, and $2^n = 2^5 = 32$. Since $20 < 32$, thus $p(n=5)$ is true

suppose $p(k)$ is true for $k \geq 5 \leftarrow P(k)$ inductive hypothesis inductive step : Show that for all integers $k \ge 0$, if $p(k)$ is true then $p(pk+1)$ is true:

```
Since k \geq 5, then 4 < 32 \leq 2^k. Then we get
  2^k + 4 < 2^k + 2^{k}= 2 \times 2^k= 2^1 \times 2^k= 2^{k+1}Then 4(k+1) < 2^{k+1}, hendes plot this true eded to show.
```
 $\begin{array}{c} \text{33} \\ \text{34} \\ \text{35} \\ \text{36} \\ \text{37} \\ \text{38} \\ \text{39} \\ \text{30} \\ \text{30} \\ \text{41} \\ \text{42} \\ \text{55} \\ \text{56} \\ \text{57} \\ \text{58} \\ \text{58} \\ \text{59} \\ \text{69} \\ \text{60} \\ \text{60} \\ \text{61} \\ \text{62} \\ \text{63} \\ \text{64} \\ \text{65} \\ \text{66} \\ \text{67} \\ \text{68} \\ \text{69} \\ \text{69} \\ \text{6$

```
show that For all n \geq 1, 8^n - 3^n is divisible by 5.
```
basis step: show that $p(1)$ is true

 $8^1 - 3^1 =$

 $= 8 - 3$

= 5 which is clearly divisible by 5.

inductive step : Show that for all integers $k>0$, if $p(k)$ is true then $p(pk+1)$ is true: Suppose $p(k)$ is true ($8^k - 3^k$ is divisible by $5) \leftarrow P(k)$ inductive hypothesis

 -3^{k+1} $8^{k+1} - 3^{k+1} =$ $= 8^k(8-3) + 3(8^k - 3^k)$ $= 8^k(5) + 3(8^k - 3^k)$ The first term in $8^k(5) + 3(8^k - 3^k)$ has 5 as a factor (explicitly), and the second term is divisible by 5 (by assumption). Since we can factor a 5 out of both terms, then the entire expression, $8^k(5) + 3(8^k - 3^k) = 8^{k+1} - 3^{k+1}$, must be divisible by 5.

[This is what we needed to show.]

 1^3 + 2³ + 3³ + ... + n³ = <u>n² (n + 1)²</u> .show that this equation is true for all integers n \geq 1.

Basis step: show that p (1) is true.

Left Side = 1^3 = 1

Right Side =
$$
\frac{1^2 (1 + 1)^2}{4} = 1
$$

hence $p(1)$ is true.

Inductive step: Show that for all integers k>0 , if p(k) is true then p(pk+1) is true:
suppose that p (k) is true $\leftarrow P(k)$ inductive hypothesis
 $1^3 + 2^3 + 3^3 + ... + k^3 + (k + 1)^3$ = $k^2 (k+1)^2$ + $(k+1)^3$ $=\frac{k^2 (k+1)^2 + 4(k+1)^3}{2}$ $=(k + 1)^{2}$ [$k^{2} + 4k + 4$] 4 $=\frac{(k+1)^2 [(k+2)^2]}{2}$ $=$ right side [This is what we needed to show.]

students-HUB.com component aken from this book: CALCULUS with Analytic Geometry, Earl W.Swokwski and By: anonymous

Prove that for any integer number $n \ge 1$, $n^3 + 2$ n is divisible by 3

```
Basis Step: show that p (1) is true.
Let n = 1 and calculate n^3 + 2n1^3 + 2(1) = 33 is divisible by 3, hence p (1) is true.
```

```
Inductive Step: Show that for all integers k>0, if p(k) is true then p(pk+1) is true:<br>suppose that p(k) is true \leftarrow P(k) inductive hypothesis
(k + 1)<sup>3</sup> + 2(k + 1)= k^3 + 3k^2 + 5k + 3= [k^3 + 2k] + [3k^2 + 3k + 3]= 3[k<sup>3</sup> + 2k] + 3[k<sup>2</sup> + k + 1]= 3 [[k<sup>3</sup> + 2 k] + k<sup>2</sup> + k + 1]
Hence (k + 1)^3 + 2 (k + 1) is also divisible by 3 and therefore statement P(k + 1) is true.
```
 $\texttt{STUDENTS-HUB.com}$, \blacksquare a question taken from this book: CALCULUS with Analytic Geometry, Earl **Wewelerski**d By: anonymods