Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2021

Sequences & Mathematical Induction

Mustafa Jarrar

5.1 Sequences

5.2 Mathematical Induction I

5.3 Mathematical Induction II

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Online Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

This lecture is based on (but not limited to) to chapter 5 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

Part 1: Why we need <u>Sequences</u> (Real-life examples).

□ Part 2: Sequence and Patterns

□ Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Dummy Variables

STUDENTS-HUB.com

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, anonymouts

Motivation

هل يمكن النظر الى علم الرياضيات كعلم اكتشاف انماط في الحياة وتعميم !!هذه الانماط كنظريات وقوانين؟ !!ما هو المشترك بين الفن وعلم الرياضيات؟

A mathematician, like a painteror poet, is a maker of patterns. -G. H. Hardy, A Mathematicians Apology, 1940 STUDENTS-HUB.com

(المتتاليات) Sequences ؟ (حتى المستوى الاول :كم عدد أجدادك ؟ (حتى المستوى الثاني) ؟ (حتى المستوى الثالث) ؟ (حتى المستوى اخامس) 7... **Position in the row** 2 3 4 5 6 1 Number of ancestors 8 32 64 128... 2 4 16

?(Kحتى المستوى)

 $A_{k} = 2^{K}$

STUDENTS-HUB.com

Train Schedule

Uploaded By: anonymours

STUDENTS-HUB.com

,

In Nature

https://www.youtube.com/watch?v=ahXIMUkSXX0

STUDENTS-HUB.com

,

IQ Tests

Determine the number of points in the 4th and 5th figure

STUDENTS-HUB.com

In programing

Any difference between these loops

 1. for i := 1 to n 2. for j := 0 to n - 1 3. for k := 2 to n + 1

 print a[i] print a[j + 1] print a[k - 1]

 next i next j next k

 $\sum_{k=1}^{n} a[k].$ s := a[1] s := 0for k := 2 to n s := s + a[k]next k s := s + a[k]next k

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

STUDENTS-HUB.com

□ Part 1: Why we need <u>Sequences</u> (Real-life examples).

Part 2: Sequence and Patterns

Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy Variables, ded By: anonymoils

 $a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$

a Sequence is a set of elements written in a row.

Each individual element a_k is called a **term**.

The k in a_k is called a **subscript** or **index**

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1, a_2, a_3, \ldots and b_2, b_3, b_4, \ldots by the following explicit formulas:

$$a_k = \underline{k}$$
 for some integers $k \ge 1$
 $b_i = \underline{i-1}$ for some integers $i \ge 2$
 i

Compute the first five terms of both sequences.

Finding Terms of Sequences Given by Explicit Formulas

Compute the first six terms of the sequence c_0, c_1, c_2, \ldots defined as follows: $C_j = (-1)^j$ for all integers $j \ge 0$.

Solution:

$$C_{0} = (-1)^{0} = 1$$

$$C^{1} = (-1)^{1} = -1$$

$$C^{2} = (-1)^{2} = 1$$

$$C^{3} = (-1)^{3} = -1$$

$$C^{4} = (-1)^{4} = 1$$

$$C^{5} = (-1)^{5} = -1$$

Uploaded By: anonymolis

Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, -\frac{1}{36}, \dots$$

$$a_{k} = \frac{(-1)^{k+1}}{k^{2}} \quad \text{for all integers } k \ge 1.$$
or
$$a_{k} = \frac{(-1)^{k}}{(k+1)^{2}} \quad \text{for all integers } k \ge 0.$$

→How to prove such formulas of sequences? STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

STUDENTS-HUB.com

Part 1: Why we need Sequences (Real-life examples).

Part 2: Sequence and Patterns

Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables ded By: anonymous

Summation

STUDENTS-HUB.com

Summation

Definition

If *m* and *n* are integers and $m \le n$, the symbol $\sum_{k=m}^{n} a_k$, read the summation from *k* equals *m* to *n* of *a*-sub-*k*, is the sum of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We say that $a_m + a_{m+1} + a_{m+2} + \ldots + a_n$ is the expanded form of the sum, and we write

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n.$$

We call k the **index** of the summation, m the **lower limit** of the summation, and n the **upper limit** of the summation.

Example

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a.
$$\sum_{k=1}^{5} a_k$$
 b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

Solution:
a.
$$\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0$$

b. $\sum_{k=2}^{2} a_k = a_2 = -1$
c. $\sum_{k=1}^{2} a_{2k} = a_{2\cdot 1} + a_{2\cdot 2} = a_2 + a_4 = -1 + 1 = 0$

STUDENTS-HUB.com

Example

When the Terms of a Summation are Given by a Formula

Compute the following summation:

 $\sum_{k=1}^{5} k^2.$

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.$$

Useful Operations

- Summation to Expanded Form
- Expanded Form to Summation
- Separating Off a Final Term
- Telescoping

→ These concepts are very important to understand computer loops

STUDENTS-HUB.com

Summation to Expanded Form

Write the following summation in expanded form:

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1}.$$

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

STUDENTS-HUB.com

Expanded Form to Summation

Express the following using summation notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$

Solution

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}.$$

STUDENTS-HUB.com

Separating Off a Final Term and Adding On a Final Term n

STUDENTS-HUB.com

Telescoping

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation [wiki].

Example:
$$\sum_{i=1}^{n} i - (i+1) = (1-2) + (2-3) + \dots + (n - (n+1))$$

= $1 - (n+1)$

=-n

This is very useful in programing:

S=0 For (i=1;i<=n;i++) S= S+ i-(i+1); S= S+ i-(i+1);

STUDENTS-HUB.com

Telescoping

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after cancellation [1].

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

STUDENTS-HUB.com

□ Part 1: Why we need Sequences (Real-life examples).

Part 2: Sequence and Patterns

Part 3: Summation: Notation, Expanding & Telescoping

Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops and Dummy Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy arabes ded By: anonymods

Product Notation

• Definition

If *m* and *n* are integers and $m \le n$, the symbol $\prod_{k=m}^{n} a_k$, read the **product from** *k* equals *m* to *n* of *a*-sub-*k*, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n .

We write

$$\prod_{k=m}^n a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n.$$

$$\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 \qquad \prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$$

STUDENTS-HUB.com

Factorial Notation

• Definition

STUDENTS-HUB.com

For each positive integer *n*, the quantity *n* factorial denoted *n*!, is defined to be the product of all the integers from 1 to *n*:

$$n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.$$

Zero factorial, denoted 0!, is defined to be 1:

 $\mathbf{n}! = \prod_{\mathbf{k}=1}^{n} \mathbf{k} \qquad 0! = 1.$

$$0! = 1$$

$$2! = 2 \cdot 1 = 2$$

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

$$8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 40,320$$

$$1! = 1$$

$$3! = 3 \cdot 2 \cdot 1 = 6$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5,040$$

$$9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= 362,880$$

Factorial Notation

STUDENTS-HUB.com

0! = 1

Computing with Factorials

$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8 \qquad \qquad \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

$$\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$$

$$\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$$
$$= n^3 - 3n^2 + 2n$$

STUDENTS-HUB.com

,

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

STUDENTS-HUB.com

- □ Part 1: Why we need Sequences (Real-life examples).
- □ Part 2: Sequence and Patterns
- Part 3: Summation: Notation, Expanding & Telescoping
- Part 4: Product and Factorial

Part 5: Properties of Summations and Products

□ Part 6: Sequence in Computer Loops and Dummy Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables, ded By: anonymodes

Properties of Summations and Products

Theorem 5.1.1

If $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and c is any real number, then the following equations hold for any integer $n \ge m$:

1.
$$\sum_{k=m}^{n} a_{k} + \sum_{k=m}^{n} b_{k} = \sum_{k=m}^{n} (a_{k} + b_{k})$$

2.
$$c \cdot \sum_{k=m}^{n} a_{k} = \sum_{k=m}^{n} c \cdot a_{k}$$
 generalized distributive law
3.
$$\left(\prod_{k=m}^{n} a_{k}\right) \cdot \left(\prod_{k=m}^{n} b_{k}\right) = \prod_{k=m}^{n} (a_{k} \cdot b_{k}).$$

Remember to apply these in programing Loops

STUDENTS-HUB.com

Example

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expressions as a single summation or product:

$$\sum_{k=m}^{n} a_{k} + 2 \cdot \sum_{k=m}^{n} b_{k} \qquad \qquad \prod_{k=m}^{n} a_{k} \cdot \prod_{k=m}^{n} b_{k}$$

$$\sum_{k=m}^{n} a_{k} + 2 \cdot \sum_{k=m}^{n} b_{k} = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$

$$= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$$

$$= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))$$

$$= \sum_{k=m}^{n} (3k-1)$$

STUDENTS-HUB.com

Mustafa Jarrar: Lecture Notes on **Sequences & Mathematical Induction**. Birzeit University, Palestine, 2015

Sequences & Mathematical Induction

5.1 Sequences

In this lecture:

Part 1: Why we need Sequences (Real-life examples).

- Part 2: Sequence and Patterns
- Part 3: Summation: Notation, Expanding & Telescoping
- Part 4: Product and Factorial

Part 5: Properties of Summations and Products

Part 6: Sequence in Computer Loops & Change of Variables

Keywords: Sequences, patterns, Summation, Telescoping, Product, Factorial, Dummy variables,

Uploaded By: anonymo

Change of Variable

Observe: $\sum_{k=1}^{3} k^2 = 1^2 + 2^2 + 3^2$ $\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2$. Hence: $\sum_{k=1}^{3} k^2 = \sum_{i=1}^{3} i^2$. Also Observe: $\sum_{j=2}^{4} (j-1)^2 = (2-1)^2 + (3-1)^2 + (4-1)^2$ $= 1^2 + 2^2 + 3^2$ $=\sum_{i=1}^{3}k^{2}.$

Replaced Index by any other symbol (called a dummy variable).

STUDENTS-HUB.com

Programing Loops

Any difference between these loops

 1. for i := 1 to n 2. for j := 0 to n - 1 3. for k := 2 to n + 1

 print a[i] print a[j + 1] print a[k - 1]

 next i next j next k

$$\sum_{k=1}^{n} a[k].$$

$$s := a[1]$$

$$s := 0$$
for $k := 2$ to n

$$s := s + a[k]$$

STUDENTS-HUB.com

Change Variables

Transform the following summation by making the specified change of variable.

$$\sum_{k=0}^{6} \frac{1}{k+1}$$
 Change variable $j = k+1$ For (k
Sum =

$$\sum_{j=1}^{7} \frac{1}{j} = \sum_{k=1}^{7} \frac{1}{k}.$$

$$\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{k=1}^{7} \frac{1}{k}$$
 STUDENTS-HUB.com

For (k=1; k≤7; k++) Sum = Sum + 1/(k)

Change Variables

Transform the following summation by making the specified change of variable.

$$\sum_{k=1}^{n+1} \frac{k}{n+k}$$
For (k=1; k<=n+1; k++)
Sum = Sum + k/(n+k)
Change of variable: $j = k - 1$

$$\sum_{j=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$$

$$\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$$
For (k=0; k<=n; k++)

STUDENTS-HUB.com

For (k=0; k<=n; k++) Sum = Sum + (k+1)/(n+k+1)

Programing Loops

All questions in the exams will be loops

Thus, I suggest: Convert all previous examples into loops and play with them

Sequences

& Mathematical Induction

5.1 Sequences

(الاستقراء الرياضي) 5.2&3 Mathematical Induction

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

Part 1: What is Mathematical Induction

- Part 2: Induction as a Method of Proof/Thinking
- Part 3: Proving sum of integers and geometric sequences
- □ Part 4: Proving a *Divisibility Property and Inequality*
- □ Part 5: Proving a *Property of a Sequence*
- Part 6: Induction Versus Deduction Thinking

STUDENTS-HUB.com

What is Mathematical Induction

Mathematical induction is one of the more **recently developed methods of proof** in mathematics.

History:

The first use of mathematical induction was by الكرجي/Al-kraji (1000AD) in his book الفخري Al-Fakhri to prove math sequences. In 1883 Augustus De Morgan described it carefully and named mathematical induction.

The idea:

If the **k**th domino falls backward, it pushes the (**k**+1)st domino backward.

What is Mathematical Induction

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. P(a) is true.

2. For all integers $k \ge a$, if P(k) is true then P(k + 1) is true.

Then the statement

```
for all integers n \ge a, P(n)
```

is true.

Example:

how to know whether this P(n) can be true?

P(n): For all integers $n \ge 8$, n cents can be obtained using 3¢ and 5¢ coins.

Moves from specific cases to create a general rule (conjecture/ مدس), this is why it is called **Principle, not a theorem**

STUDENTS-HUB.com

What is Mathematical Induction

Example

How to know whether this statement can be true?

For all integers $n \ge 8$, *n* cents can be obtained using 3ϕ and 5ϕ coins.

For all integers $n \ge 8$, P(n) is true, where P(n) is the sentence "n cents can be obtained using 3¢ and 5¢ coins."

Then we need to prove that *P(n+1)* is also true

Number of Cents	How to Obtain It
8¢	$3\phi + 5\phi$
9¢	$3\phi + 3\phi + 3\phi$
10¢	$5\phi + 5\phi$
11¢	$3\phi + 3\phi + 5\phi$
12¢	$3\phi + 3\phi + 3\phi + 3\phi$
13¢	$3\phi + 5\phi + 5\phi$
14¢	$3\phi + 3\phi + 3\phi + 5\phi$
15¢	$5\phi + 5\phi + 5\phi$
16¢	$3\phi + 3\phi + 5\phi + 5\phi$
17¢	$3\phi + 3\phi + 3\phi + 3\phi + 5\phi$

STUDENTS-HUB.com

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

Part 1: What is Mathematical Induction

Part 2: Induction as a Method of Proof/Thinking

Part 3: Proving sum of integers and geometric sequences

Part 4: **Proving** a *Divisibility Property and Inequality*

□ Part 5: **Proving** a *Property of a Sequence*

Part 6: Induction Versus Deduction Thinking

STUDENTS-HUB.com

Mathematical Induction as a Method of Proof

Proving a statement by mathematical induction is a two-step process. The first step is called the *basis step*, and the second step is called the *inductive step*.

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers $n \ge a$, a property P(n) is true." To prove such a statement, perform the following two steps: Step 1 (basis step): Show that P(a) is true.

Step 2 (inductive step): Show that for all integers $k \ge a$, if P(k) is true then P(k+1) is true. To perform this step,

suppose that P(k) is true, where k is any particular but arbitrarily chosen integer with $k \ge a$. [This supposition is called the inductive hypothesis.]

Then

show that P(k + 1) is true.

Mathematical Induction as a Method of Proof Example

How to know whether this statement can be true?

For all integers $n \ge 8$, *n* cents can be obtained using 3ϕ and 5ϕ coins.

Let the property P(n) be the sentence: $\underline{n} \notin \text{ can be obtained using } 3 \notin \text{ and } 5 \notin \text{ coins.} \leftarrow P(n)$ Step 1 (basis step): Show P(8) is true: P(8) is true as 8¢ obtained by one 3¢ and one 5¢**Step 2(inductive step):** Show for all integers $k \ge 8$, if P(k) is true then P(k+1) is true: [Suppose that P(k) is true for a particular but arbitrarily chosen integer $k \ge 8$. That is:] Suppose k is any integer $k \ge 8$, k¢ obtained by 3¢ and 5¢. $\leftarrow P(k)$ inductive hypothesis [We must show that P(k + 1) is true. That is:] We must show that $(k + 1) \notin / \text{ can be obtained using } 3 \notin / \text{ and } 5 \notin / \text{ coins.} \leftarrow P(k + 1)$ Case 1 (There is a 5¢ coin among those used to make up the $k\phi$): replace the 5c/ coin by two 3c/ coins; the result will be (k + 1)c/. Case 2 (There is not a 5¢ coin among those used to make up the $k \notin$): because $k \ge 8$, at least three 3¢ must have been used. So remove three 3ϕ and replace them by two 5ϕ ; the result will be $(k + 1)\phi$. Thus in either case $(k + 1)\phi$ can be obtained using 3ϕ and 5ϕ [as was to be shown].

STUDENTS-HUB.com

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- □ Part 1: What is Mathematical Induction
- Part 2 : Induction as a Method of Proof/Thinking
 - Part 3: Proving Sum of Integers and Geometric Sequences
- Part 4: Proving a Divisibility Property and Inequality
- □ Part 5: Proving a *Property of a Sequence*
- Part 6: Induction Versus Deduction Thinking

Sum of the First *n* Integers

Who can sum all numbers from 1 to 100?

$$1+2+3+\dots+n = \frac{n(n+1)}{2}$$

STUDENTS-HUB.com

Theorem 5.2.2 Sum of the First *n* **Integers**

For all integers $n \ge 1$, $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

Same Question: Prove that these programs prints the same results in case $n \ge 1$ For (i=1, i \le n; i++)S=S+i;S=(n(n+1))/2Print ("%d", S);

Proving that both programs produce the same results is like proving that:

 $1+2+3+\ldots+n = \frac{n(n+1)}{2} \quad \leftarrow P(n)$ Show that P(1) is true. P(1): 1 = 1(1+1)/2 = Thus P(1) is true **Basis Step:** Show that for all integers $k \ge 1$, if P(k) is true then P(k+1) is also true: Inductive Step: Suppose: 1+2+3+...+k = k(k+1) is true $\leftarrow P(k)$ inductive hypothesis $P(k+1) = 1+2+\ldots+k + (k+1) = \frac{(k+1)(k+2)}{2}$ $\leftarrow P(k+1)$ = P(k) + (k+1) $= \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$ Same $= \frac{k^2 + k}{2} + \frac{2(k+1)}{2} = \frac{k^2 + 3k + 2}{2}$ (k+1)(k+2)Uploaded By: anonymolis

Examples of Sums

Evaluate $2 + 4 + 6 + \dots + 500$.

$$2 + 4 + 6 + \dots + 500 = 2 \cdot (1 + 2 + 3 + \dots + 250)$$
$$= 2 \cdot \left(\frac{250 \cdot 251}{2}\right)$$
$$= 62,750.$$

Evaluate $5 + 6 + 7 + 8 + \dots + 50$.

 $5 + 6 + 7 + 8 + \dots + 50 = (1 + 2 + 3 + \dots + 50) - (1 + 2 + 3 + 4)$ $= \frac{50 \cdot 51}{2} - 10$ = 1,265

For an integer $h \ge 2$, write $1 + 2 + 3 + \dots + (h-1)$ in closed form. $1 + 2 + 3 + \dots + (h-1) = \frac{(h-1) \cdot [(h-1)+1]}{2}$ $= \frac{(h-1) \cdot h}{2}$ Upload

Uploaded By: anonymolds

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer $n \ge 0$,

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.$$

Proof (by mathematical induction):

$$\sum_{i=0}^{0} r^{i} = \frac{r^{0+1} - 1}{r - 1} \quad \leftarrow P(0) = \frac{r - 1}{r - 1} = 1$$
$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1} \quad \leftarrow P(k)$$
inductive hypothesis

$$\begin{split} \sum_{i=0}^{k+1} r^i &= \frac{r^{k+2} - 1}{r - 1}. \quad \leftarrow P(k+1) \\ &= \sum_{i=0}^k r^i + r^{k+1} \\ &= \frac{r^{k+1} - 1}{r - 1} + r^{k+1} \\ &= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1} \\ &= \frac{(r^{k+1} - 1) + r^{k+1}(r - 1)}{r - 1} \\ &= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1} \\ &= \frac{r^{k+2} - 1}{r - 1} \end{split}$$

Uploaded By: anonymolis

Mathematics in Programming

Example : Finding the sum of a geometric series

}

Prove that these codes will return the same output.

```
int n, r, sum=0;
int i;
scanf("%d",&n);
scanf("%d",&r);
if(r != 1) {
  for(i=0 ; i<=n ; i++) {
    sum = sum + pow(r,i);
  }
  printf("%d\n", sum);
}
```

```
int n, r, sum=0;
scanf("%d",&n);
scanf("%d",&r);
```

This code is proposed by a student/Zaina!

STUDENTS-HUB.com

n.

Examples of Sums of a Geometric Sequence

In each of (a) and (b) below, assume that *m* is an integer that is greater than or equal to 3. Write each of the sums in closed form.

(a)
$$1+3+3^2+\dots+3^{m-2}$$

 $1+3+3^2+\dots+3^{m-2} = \frac{3^{(m-2)+1}-1}{3-1}$
 $= \frac{3^{m-1}-1}{2}.$

(b) $3^2 + 3^3 + 3^4 + \dots + 3^m$

$$3^{2} + 3^{3} + 3^{4} + \dots + 3^{m} = 3^{2} \cdot (1 + 3 + 3^{2} + \dots + 3^{m-2})$$
$$= 9 \cdot \left(\frac{3^{m-1} - 1}{2}\right)$$

Uploaded By: anonymolis

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- Part 1: What is Mathematical Induction
- Part 2 : Induction as a Method of Proof/Thinking
- Part 3: Proving Sum of Integers and Geometric Sequences
 - **Part 4: Proving a Divisibility Property and Inequality**
- **Part 5: Proving a** *Property of a Sequence*
 - Part 6: Induction Versus Deduction Thinking

STUDENTS-HUB.com

so, by definition of divisibility, $2^{2(k+1)} - 1$ is divisible by 3

STUDENTS-HUB.com

Mathematics in Programming Example : Proving Property of a Sequence

What will the output of this program be for any input n?

```
int n;
scanf("%d",&n);
if(n >= 0) {
    if( (pow(2,(2*n)) - 1) %3 == 0)
    printf("this property is true");
    else
    printf("this property isn't true");
}
```

STUDENTS-HUB.com

Mathematics in Programming Example : Proving Property of a Sequence

What will this guy choose to wear today ? (What is the output of the program)

int x, y; scanf("%d %d", &x, &y); if(x%2 == 0) x=x+1; if(pow(x, 2)%2 != 0) printf("White Shirt"); else printf("Black Shirt");

```
if((pow(7, y)-1)%6==0)
    printf("Black boot");
else
    printf ("White Boot");
```

STUDENTS-HUB.com

l)%6==0) ack boot"); /hite Boot");

STUDENTS-HUB.com

[This is what we needed to show.]

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- Part 1: What is Mathematical Induction
- Part 2 : Induction as a Method of Proof/Thinking
- Part 3: Proving Sum of Integers and Geometric Sequences
- Part 4: Proving a Divisibility Property and Inequality

Part 5: Proving a Property of a Sequence

Part 6: Induction Versus Deduction Thinking

STUDENTS-HUB.com

Proving a Property of a Sequence Example

Define a sequence $a_1, a_2, a_3 \dots$ as follows: $a_1 = 2$ $a_k = 5a_{k-1}$ for all integers $k \ge 2$.

Write the first four terms of the sequence.

$$a_1 = 2$$

 $a_2 = 5a_{2-1} = 5a_1 = 5 \cdot 2 = 10$
 $a_3 = 5a_{3-1} = 5a_2 = 5 \cdot 10 = 50$
 $a_4 = 5a_{4-1} = 5a_3 = 5 \cdot 50 = 250$

The terms of the sequence satisfy the equation $a_n = 2 \cdot 5^{n-1}$

STUDENTS-HUB.com

Proving a Property of a Sequence Example

Prove this property:

 $a_n = 2 \cdot 5^{n-1}$ for all integers $n \ge 1$ $a_1 = 2 \cdot 5^{1-1} - 1 = 2 \cdot 5^0 - 1 = 2$ **Basis Step:** *Show that P(1) is true.* **Inductive Step:** Show that for all integers $k \ge 1$, if P(k) is true then P(k + 1) is also true: *Suppose:* $a_k = 2 \cdot 5^{k-1}$ $\leftarrow P(k)$ inductive hypothesis $a_{k+1} = 2 \cdot 5^k \qquad \leftarrow P(k+1)$ by definition of $a_1, a_2, a_3 \dots$ $=5a_{(k+1)-1}$ $= 5a_{k}$ $= 5 \cdot (2 \cdot 5^{k-1})$ by the hypothesis $= 2 \cdot (5 \cdot 5^{k-1})$ $= 2 \cdot 5^k$

[This is what we needed to show.]

STUDENTS-HUB.com

Sequences & Mathematical Induction

5.2&3 Mathematical Induction

In this lecture:

- Part 1: What is Mathematical Induction
- Part 2 : Induction as a Method of Proof/Thinking
- Part 3: Proving Sum of Integers and Geometric Sequences
- Part 4: Proving a Divisibility Property and Inequality
- Part 5: Proving a Property of a Sequence

Part 6: Induction Versus Deduction Thinking

STUDENTS-HUB.com

Induction Versus Deduction Reasoning

Deduction Reasoning

If Every man is person and Sami is Man, then Sami is Person Induction Reasoning

For all integers $n \ge 8$, ncents can be obtained using 3¢ and 5¢ coins.

If my highest mark this semester is 82%, then my average will not be more than 82% We had a quiz each lecture in the past months, so we will have a quiz next lecture

Uploaded By: anonymods

Induction Versus Deduction Reasoning

Deduction Reasoning

Based on facts, definitions, , theorems, laws

Moves from general observation to specific results

Provides proofs

Induction Reasoning

Based on observation, past experience, patterns

Moves from specific cases to create a general rule

حدس/Provides conjecture

Uploaded By: anonymodes

More slides from students

Student: Ehab, 2016

Not reviewed or verified

,

prove the following property: for all integers $n \ge 1$, $1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (n)(n+1) = (n)(n+1)(n+2)$ 3 P(1): 1x2 = (1)(2)(3)basis step : show p(1) is true. left-hand side is 1×2 = 2 3 right-hand side is (1)(2)(3) = 2 3 thus p(1) is true inductive step : Show that for all integers k ≥ 1, if P(k) is true then P(k + 1) is also true: suppose that p(k) is true $p(k) = 1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + (k)(k+1) = \underline{(k)(k+1)(k+2)} \quad \leftarrow P(k) \text{ inductive hypothesis}$ $p(k+1) = 1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (k)(k+1) + (k+1)((k+1)+1)$ $= [1 \times 2 + 2 \times 3 + 3 \times 4 + ... + (k)(k+1)] + (k+1)((k+1)+1)$ = (k)(k+1)(k+2) + (k+1)(k+2)= (k)(k+1)(k+2) + 3(k+1)(k+2)3 3 = (k+1)(k+2)(k+3) = right side is what we needed to show.] 3 Then p(k) works for all $n \ge 1$.

¹ CALCULUS with Analytic Geometry, Earl W.Swokwski Uploaded By: anonymodes

Show that For any integer $n \ge 5$, $4n < 2^n$.

basis step : show P(n = 5) is true. $4n = 4 \times 5 = 20$, and $2^n = 2^5 = 32$. Since 20 < 32, thus p(n=5) is true

inductive step : Show that for all integers $k \ge 0$, if p(k) is true then p(pk+1) is true: suppose p(k) is true for $k \ge 5 \leftarrow P(k)$ inductive hypothesis

```
p(k+1): 4(k + 1) = 4k + 4, and, by assumption [4k] + 4 < [2<sup>k</sup>] + 4
Since k ≥ 5, then 4 < 32 ≤ 2<sup>k</sup>. Then we get
    2<sup>k</sup> + 4 < 2<sup>k</sup> + 2<sup>k=</sup>
= 2×2<sup>k</sup>
= 2<sup>1</sup>×2<sup>k</sup>
= 2<sup>1</sup>×2<sup>k</sup>
= 2<sup>k+1</sup>
Then 4(k+1) < 2<sup>k+1</sup>, heiride pi(k+1) distruceeded to show.]
```

STUDENTS-HUB.com

¹ question taken from this book: CALCULUS with Analytic Geometry, Earl W.Swekwski Uploaded By: anonymods

```
show that For all n \ge 1, 8^n - 3^n is divisible by 5.
```

basis step : show that p(1) is true

8¹ – 3¹ =

= 8 – 3

STUDENTS-HUB.com

= 5 which is clearly divisible by 5.

inductive step : Show that for all integers k>0, if p(k) is true then p(pk+1) is true: Suppose p(k) is true ($8^k - 3^k$ is divisible by 5) $\leftarrow P(k)$ inductive hypothesis

 $8^{k+1} - 3^{k+1} =$ $= 8^{k+1} - 3 \times 8^{k} + 3 \times 8^{k} - 3^{k+1}$ $= 8^{k}(8-3) + 3(8^{k} - 3^{k})$ $= 8^{k}(5) + 3(8^{k} - 3^{k})$ The first term in $8^{k}(5) + 3(8^{k} - 3^{k})$ has 5 as a factor (explicitly), and the second term is divisible by 5 (by assumption). Since we can factor a 5 out of both terms, then the entire expression, $8^{k}(5) + 3(8^{k} - 3^{k}) = 8^{k+1} - 3^{k+1}$, must be divisible by 5.

[This is what we needed to show.]

 $1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2 (n + 1)^2}{4}$.show that this equation is true for all integers n ≥ 1 .

```
Basis step: show that p (1) is true.
```

```
Left Side = 1<sup>3</sup> = 1
```

```
Right Side = \frac{1^2 (1+1)^2}{4} = 1
```

hence p (1) is true.

Inductive step: Show that for all integers k>0, if p(k) is true then p(pk+1) is true: suppose that p (k) is true $\leftarrow P(k)$ inductive hypothesis $1^3 + 2^3 + 3^3 + ... + k^3 + (k + 1)^3$ $= \frac{k^2(k+1)^2}{4} + (k+1)^3$ $= \frac{k^2(k+1)^2}{4} + \frac{4(k+1)^3}{4}$ $= \frac{(k+1)^2[k^2+4k+4]}{4}$ $= \frac{(k+1)^2[(k+2)^2]}{4}$ = right side [This is what we needed to show.]

STUDENTS-HUB.com

¹ question taken from this book: CALCULUS with Analytic Geometry, Earl W.Swokwski Uploaded By: anonymods

Prove that for any integer number $n \ge 1$, $n^3 + 2n$ is divisible by 3

```
Basis Step: show that p (1) is true.
Let n = 1 and calculate n<sup>3</sup> + 2n
1<sup>3</sup> + 2(1) = 3
3 is divisible by 3 ,hence p (1) is true.
```

```
Inductive Step: Show that for all integers k>0, if p(k) is true then p(pk+1) is true:
suppose that p(k) is true \leftarrow P(k) inductive hypothesis
(k+1)^3 + 2(k+1)
= k^3 + 3k^2 + 5k + 3
= [k^3 + 2k] + [3k^2 + 3k + 3]
= 3[k^3 + 2k] + 3[k^2 + k + 1]
= 3[[k^3 + 2k] + k^2 + k + 1]
Hence (k+1)^3 + 2(k+1) is also divisible by 3 and therefore statement P(k+1) is true.
```

[This is what we needed to show.]

STUDENTS-HUB.com

¹ question taken from this book: CALCULUS with Analytic Geometry, Earl Wowskid By: anonymods