

Phys111 Report

Experiment #9: RC Circuit

Name:	Malek Zeghari	ID #:	1230358
Partner:	///////////////////////////////////////	ID #:	/////////
Section:	W01		
Date:	25/1/2024		

(1) Abstract:

• Aim of the experiment:

To find the value of an unknown capacitor experimentally using a resistor with known value throughout charging and discharging the capacitor.

• The main results are:

$$*\tau = 42 \pm 1 \sec 47 \pm 4 \mu E$$

$$C = 47 \pm 4 \mu$$

(2) Data:

Charging				Discharging			
Time	Vc	Time	Vc	Time	Vc	Time	Vc
(sec.)	(volts)	(sec.)	(volts)	(sec.)	(volts)	(sec.)	(volts)
0	0.000	70	3.978	0	4.918	70	1.040
5	0.664	80	4.165	5	4.470	80	0.843
10	1.112	90	4.302	10	3.944	90	0.685
15	1.505	100	4.433	15	3.486	100	0.557
20	1.919	110	4.528	20	3.147	110	0.455
25	2.279	120	4.611	25	2.787	120	0.373
30	2.544	130	4.666	30	2.469	130	0.306
35	2.824	140	4.720	35	2.234	140	0.248
40	3.032	150	4.759	40	2.022	150	0.209
45	3.252	160	4.790	45	1.796	160	0.170
50	3.416	170	4.816	50	1.627	170	0.142
55	3.589	180	4.837	55	1.416	180	0.119
60	3.718	190	4.854	60	1.286	190	0.100
65	3.857	200	4.868	65	1.168	200	0.084

$$R = (9.1 \pm 0.5) \times 10^5 \Omega$$

 $C_{manufacture} = 47 \,\mu\text{F}$

(3) Calculations:

Charging/Discharging graph

$$\tau_c = 40 \sec \qquad \qquad \tau_D = 43 \sec$$

Semi-log graph

$$Slope = -0.022627524 \sec^{-1}(\frac{1}{sec})$$
$$\tau_{S} = -\frac{1}{slope} = -\frac{1}{-0.022627524} = 44.19396339 \sec^{-1}(\frac{1}{sec})$$

 $\bar{\tau} = \frac{\tau_D + \tau_C + \tau_S}{3} = \frac{43 + 40 + 44.19396339}{3} = 42.3979878 \text{ sec} \qquad \Delta \bar{\tau} = \frac{\sigma_s}{\sqrt{N}} = \frac{2.160820735}{\sqrt{3}} = 1.247550433 \text{ sec}$ (4) Results: $C = \frac{\bar{\tau}}{R} = \frac{42.3979878}{9.1 \times 10^{5} 5} = 2.46550440529 \times 40^{5} 5$

 $*\tau = 42 \pm 1 \sec t^* C = 47 \pm 4 \mu F$

→ 4.659119538 x 10⁻⁵ F → 46.59119538 x 10⁻⁶ → 47 μF

$$\frac{\Delta C}{c} = \frac{\Delta \bar{\tau}}{\bar{\tau}} + \frac{\Delta R}{R} = C \times \left(\frac{\Delta \bar{\tau}}{\bar{\tau}} + \frac{\Delta R}{R}\right) =$$
→ 4.659119538 x 10⁻⁵ X ($\frac{1}{42} + \frac{0.5 \times 10^{-5}}{9.1 \times 10^{-5}}$) = 3.669269966 x 10⁻⁶ F → 4 μ

(5)Conclusions:

C±

After I did the readings and calculations ,I need to make the Discrepancy Test to check if the result is accepted or not :

*Discrepancy Test = $|true value - exp. Value| \le 2 \times error$

 $= |47\mu - 47\mu| \le 2 \times 4\mu \Rightarrow \Rightarrow \Rightarrow 0\mu \le 8\mu \Rightarrow \Rightarrow \Rightarrow 0 \le 8$

The result is accepted. (The true value of C is 47 μ F).

The acceptance of experimental results relies on the precision and accuracy maintained throughout the experiment.

Mistakes can lead errors, causing the results not to be accepted. Poor circuit connections and environmental effects, such as temperature changes, can introduce errors.

Increasing resistance (R) in a charging capacitor process slows down the charging rate. In the discharging process, higher resistance (R) results in a slower discharge rate.

However, increased resistance slows down both charging and discharging times in an RC circuit with reference to the equation $\tau = CR$. To sum up increasing R leads to increase in the time constant causing the delay in the process of charging and discharging the capacitor.

Charging & discharging Graph

Semi Log Graph

STUDENTS-HUB.com

Uploaded By: anonymous

STUDENTS-HUB.com