$$\begin{aligned}
+ (\theta, D\theta, W, X) & \Rightarrow (\theta, County clackwise) \\
\Rightarrow \Theta clackwise
\\
Sample problem (10,01) \\
Disk, \theta = -1 = 0.6t + 0.25t^{1} \\
\theta plot \theta vs. t \\
\theta find t for \theta is be

Minimum?

 θ is minimum $\frac{d\theta}{dt} = 0$

 $-0.6 + 0.5t = 0$

 $t = 1.2 \text{ s.c}$

 $\theta_{min} = -1 = 0.6(1.2) + 0.25(1.2)^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $t = -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} = -1.36 \text{ red} (\frac{180}{(11)})^{1}$

 $= -1.36 \text{ red} (\frac{180}{(11)})^{$$$

sample problem lo.2

$$\begin{aligned}
& \forall = 5t^{3} - 4t \quad rad/s^{3} \\
& at t=0 \quad , \ \theta = 2rad \\
& w_{0} = 5rad/s
\end{aligned}$$

$$a) w(t)^{3}?! \\
& \forall = \frac{dw}{dt} \quad \Rightarrow \int dw = \int \infty dt \\
& w = \int 5t^{3} - 4t \, dt \\
& w = \int 5t^{3} - 4t \, dt \\
& w = \int 5t^{3} - 4t \, dt \\
& w = \frac{5}{4}t^{4} - \frac{4}{2}t^{3} + c
\end{aligned}$$

$$w(o) = 5 = \frac{5}{4}(o)^{4} - \frac{4}{2}(o)^{3} + c$$

$$\Rightarrow \boxed{[C=5]} \\
& w(1): = \frac{5}{4}t^{4} - 2t^{2} + 5
\end{aligned}$$

$$b) \ \theta(t)? \\
& w = \frac{d\theta}{dt} \quad \Rightarrow \int d\theta = \int w \, dt \\
& \theta = \int \frac{5}{4}t^{4} - 2t^{2} + 5 \, dt \\
& = \frac{t^{5}}{4} - \frac{1}{3}t^{3} + 5t + c^{3} \\
& \theta(o) = 2 = 0 - 0 + 0 + c^{3} \\
& (c) = \frac{5}{2}
\end{aligned}$$
Stubents ty ubic confirmation in the second secon

* Rotation with constant angular acceleration

$$\alpha = \text{Const.}$$

Translational motion Angular mation
 $\Rightarrow V = V_{s} + a t$
 $\Rightarrow V^{2} = V_{s}^{2} + 2aD$
 $\Rightarrow D = V_{s}t + \frac{1}{2}at^{2}$
 $sample problem (10.3)$
 $\alpha = 0.35 \text{ rad}/s^{2}$
 $at + zo$, $w_{z} = -4.6 \text{ rad}/s$
 $\theta_{z} = 0$
 $\varphi = 0$
 $find t$ when $\theta = 5 \frac{r_{1}V}{r_{c}\sigma}$?
 $find t$ when $\theta = 5 \frac{r_{1}V}{r_{c}\sigma}$?
 $\theta = 5 \text{ ref}\left(\frac{2\pi \text{ rad}}{r_{c}\sigma}\right)$
 $\theta = 10 \pi \text{ rad}$, $\pi = 3.14$
 $z = 31.4 \text{ rad}$
 $\theta = 0 = w.t + \frac{1}{2}\alpha t^{2}$
 $g_{1} u = -4.6t + \frac{1}{2}\alpha t^{2}$
 $g_{1} u = -4.6t + \frac{1}{2}\alpha t^{2}$
 $g_{1} u = -4.6t + \frac{1}{2}(0.35)t^{2}$
 $\sigma = 10 \text{ TS-HUB.com}$
Uploaded By: Ayham Nobani

b) Find t, when
$$w=0?$$

 $w=w_0 + \alpha t$
 $o = -4.6 + 0.35 t$
 $t = 13$ sic
sample problem (10-4)

$$w_{s} = 3.4 \text{ rad/s} \quad after 20 \text{ rev} :$$

$$b\theta = 20 \text{ rev} \longrightarrow w = 20 \text{ rad/s}$$
Find t . &?
$$b\theta = 20 \text{ rev} = 20(2\pi) \text{ rad}$$

$$= 125.66 \text{ rad} \quad \Theta \text{ (conclusion)}$$

a)
$$w^2 = w_1^2 + 2XBB$$

 $(20)^2 = (3.4)^2 + 2X(125.66)$
 $=> X = -0.03 \text{ rad/s}^2$

b)
$$w = w_0 + \alpha t$$

 $20 = 3.4 - 0.03 t$
 $t = 46.5 s.c.$

STUDENTS-HUB.com

Uploaded By: Ayham Nobanis

RI CARTHING CONTRACTOR

(c) 1 5 1 L (c) (c)

16 - 1800 NV

x-st-4 _ 4 t , d/st

1 to 2 - (1) w

allor as a contraction of the

Ocals red

AL ST BEE -

 $W_{o} = 30 \text{ rev}/\text{s}$, W = 0, $Dt = 2 \text{ min} = 2 \times 60 \text{ scc}$ How many revolutions ?? D0 ?? $W = W_{o} + X t$

 $\omega = \omega_{s}^{2} + \alpha (120)$ $\omega^{2} = \omega_{s}^{2} + 2 \varkappa \delta \theta$ $\omega^{2} = \omega_{s}^{2} + 2 \varkappa \delta \theta$

$$0 = 30 + 2(-0.25) D \theta$$

 $D \theta = 1800 r v$

$$\frac{\text{Problem 8}}{\text{CX} = 6 t^4 - 4 t^2 \text{ rad/s}^2}$$

at t=0 $\rightarrow w_0 = 2.5 \text{ rad/s}$
 $\theta_0 = 1.5 \text{ rad}$

a) Find w(t) $w(t) = \int \alpha dt$ $= \int 6t^{4} - 4t^{2} dt$ $= \frac{6}{5}t^{5} - \frac{4}{3}t^{3} + c$ w(a) = 0 - 0 + c = 2.5 c = 2.5STUDENTS-HUB.com

 $\Rightarrow w(t) = \frac{6}{5}t^5 - \frac{4}{7}t^3 + 2.5 rad/2$ Uploaded By: Ayham Nobani 6

b) $\theta(t)$?

$$\begin{aligned} \theta(t) &= \int w \, dt \\ &= \int \frac{6}{5} t^5 - \frac{4}{3} t^3 + 2.5 \, dt \\ &= \frac{t^6}{5} - \frac{t^4}{3} + 2.5 t + C^3 \\ \theta(0) &= C^3 = 1.5 \\ \theta(t) &= \frac{t^6}{5} - \frac{t^4}{3} + 2.5 t + 1.5 \, rad \end{aligned}$$

1. 4. 6.

2 1 1

Nobani

problem 16:

$$\chi = 1.2 \text{ red/s}^2$$
, we = 0
Find t to rotate through the first 2 rev?
 $D\theta = 2(2\pi) \text{ red}$
 $= 12.56 \text{ red}$
 $D\theta = w_0 t + \frac{1}{2} \propto t^2$
 $12.56 = 0 + \frac{1}{2} (1.2) t^2$
 $t_1 \simeq 4 \text{ sec}$
b) Find t to rotate through the second 2 rev?
 $D\theta = 4 \text{ rev} = 8 \pi \text{ red}$
 $\theta = w_0 t + \frac{1}{2} \propto t^2$
 $D\theta = w_0 t + \frac{1}{2} \propto t^2$
 $D\theta = w_0 t + \frac{1}{2} \propto t^2$
 $D\theta = w_0 t + \frac{1}{2} \propto t^2$
 $S\pi = 0 + \frac{1}{2} (1.2) t^2 \Rightarrow t = 5.74 \text{ sec}$
STUDENTS-HUB.com

 $t_{2} = t - t_{1}$ = 5.79 - 4 $t_{2} = 1.79 \quad s_{c}C$

that all the track in the second the

the tax the state

A = 12 rolls in the owners if first 2 rolls bill to the owners if first 2 rolls obtained and a state of the state of the to the state of the state o

a start have i 21 m still at the start of th

the ? was

STUDENTS-HUB.com

Ch 6 :

problem 33 m = 1000 kg fr = 70V N V: = 100km/h Ve = 45 km/h Find t?? $\Sigma F_{x} = ma_{x}$ $-70V = M \frac{dV}{dL}$ $\int \frac{-70}{m} dt = \int \frac{dv}{v}$ $-\frac{70}{m} t = ln V$ $-\frac{70}{m}t = hV_f - hV_i$ $\frac{-70}{m}t = \frac{h}{V_{i}} \frac{V_{f}}{V_{i}}$

 $t = \frac{m}{-70} \frac{4s}{100} = 11.4 sc$

STUDENTS-HUB.com

Uploaded By: Ayham Nobani

₽ ₽ ¢

Ch 10 : Lec 2
• Relating the Linear & Angular Variables:
•
$$\frac{\operatorname{arc}(\sigma_{S}(t_{1})_{S})}{S = r \theta}$$
 (m)
• $\frac{\operatorname{speed}}{\operatorname{dt}}$:
 $\frac{\operatorname{ds}}{\operatorname{dt}} = r \frac{\operatorname{d\theta}}{\operatorname{dt}}$
 $V = r w$ (m/s)
• $W = r w$ (m/s)
• $W = r \frac{\operatorname{dw}}{\operatorname{dt}}$
• $W = r \frac{\operatorname{dw}}{\operatorname{dt}}$
• $Acceluration =$
 $\frac{\operatorname{dv}}{\operatorname{dt}} = r \frac{\operatorname{dw}}{\operatorname{dt}}$
• $a_{t} = r \alpha$ (m/s')
 $E responsible for changes in the magnitude of the linear velocity \overline{v}]
• $a_{r} = \frac{v^{2}}{r} = \frac{(wr)^{2}}{r} = w^{2}r$
 $[responsible for changes in the direction of the linear velocity \overline{v}]$$

*'If
$$x = 0 \Rightarrow a_{1} = x r = 0$$

but $a_{1} : \frac{dV}{dt} = 0 \Rightarrow V = ronst$
If V is Carst \Rightarrow Uniform Circular motion.
 $V = \frac{2\pi r}{T} = wr \Rightarrow T = \frac{2\pi r}{V}$ (Puriod fin)
 $\Rightarrow w = \frac{2\pi}{T}$
Sample problem (15.5)
radius = 33.1 m
 $\theta = ct^{3} \cdot c = 6.39 \text{ xls}^{2}$ [from $t = 0 \Rightarrow t = 2.3 \text{ scc}$]
 $at = 2.2 \text{ scc}$ find
 $a = w?$
 $w = \frac{d\theta}{dt} = 3ct^{2} \Rightarrow w(2.2 \text{ scc}) = 3c(2.2)^{2}$
 $w = \frac{d\theta}{dt} = 3ct^{2} \Rightarrow w(2.2 \text{ scc}) = 3c(2.2)^{2}$
 $w = \frac{d\theta}{dt} = 3ct^{2} \Rightarrow w(2.2 \text{ scc}) = 3c(2.2)^{2}$
 $v = wR$
 $= 0.928 \text{ rad/s}$
 $h = ct^{3} / C = 6.24$
 $v = wR$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ p})$
 $= 0.928 \text{ rad/s}$
 $(1 \text{ rad } w \text{ ra$

d)
$$a_t = R d$$
 (a) $t = 2.2 s.c$)
= 33.1 x 0.843
= 27.9 m/s
c) $a_r = a_c = \frac{V'}{R} = \omega^2 R$
 $= \frac{(307)}{33.1} = 28.5 m/s^2$

$$a_{nel} = \sqrt{a_r^2 + a_{\tilde{t}}^2}$$

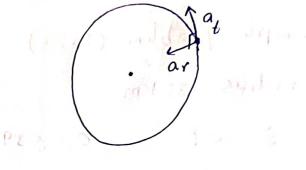
= $\sqrt{(27.9)^2 + (28.5)^2}$
= 39.9 m/s²

$$a_{T} = \frac{dV}{dt} \implies V = \int a_{T} dt$$

$$V = \int 0.6 dt$$

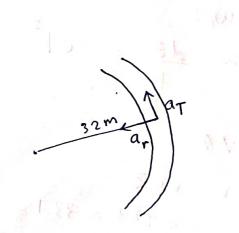
$$V = a_{T} dt$$

$$but, V(0) = 0 = 0 = 0$$



1×

C



P.a

V(15 s.c) = 0.6(15)= 9 m/s Uploaded By: Ayham Nobani

STUDENTS-HUB.com

$$a_{c}(or a_{r}) = \frac{V^{2}}{R} = \frac{(q)^{2}}{32} = 2.53 \text{ m/s}^{2}$$

$$a_{n,l} = \sqrt{a_{r}^{2} + a_{k}^{2}} = \sqrt{(0.6)^{2} + (2.53)^{2}}$$

$$= 2.6 \text{ m/s}^{2}$$

b) what angle does this net accileration vector make with car velocity at this time?

$$tan \Theta = \frac{\alpha r}{\alpha_T} \implies \Theta = tan^2 \left(\frac{\alpha r}{\alpha_T}\right) \qquad a_{n,l} = 76.6^\circ$$

 Θ (bt. $a_{net} \notin V$); since V is in the direction of a_T .

Kinctic Energy of Rotation :- $K = \frac{1}{2}mV^2$, V = WrRW . K = K, + K2 + K3 + · · · the how the $= \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 + \frac{1}{2} m_3 V_3^2 + \frac{$ V, + V2 + ··· $v_1 \gamma V_2 \quad (v = wr)$ ri y rz 4 , Y , P-1 $K = \frac{1}{2} m_1 (wr_1)^2 + \frac{1}{2} m_2 (wr_2)^2 + (1) m_1 (wr_2)^2$ $= \frac{1}{2} w^{2} \left[m_{1} r_{1}^{2} + m_{2} r_{2}^{2} + m_{3} r_{3}^{2} + \cdots \right]$ $= \frac{1}{2} w^2 \leq m_i r_i$ But z miri = I (rotational Inertia) i lieger lecrizi For rigid body I = Sr'dm , [I] = kg.m' $= \left| K = \frac{1}{2} I w' \right|$ I (rotational Inertia) : Table 10-2, page 238 Rotation around Center of mass.

STUDENTS-HUB.com

+ parallel axis theorem.
If the rotation is not around COM.

$$I_{p} = I_{con} + Mh^{2}$$
Sample public (10.6)
a) Find I_{con}

$$I = \leq m_{1} r_{1}^{2}$$

$$= m_{1} r_{1}^{2} + m_{1} r_{1}^{2}$$

$$= m_{1} (\frac{1}{2})^{2} + m(\frac{1}{2})^{2}$$

$$= \frac{1}{2} m l^{2}$$
b) I = $\leq m_{1} r_{1}^{2}$

$$= m_{1} (0)^{2} + m(l)^{2}$$

$$= m l^{2}$$

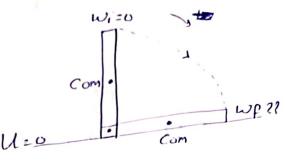
$$= m l^{2}$$
STUDENTS-HUB.com
$$Uploaded By: Ayham Noban2$$

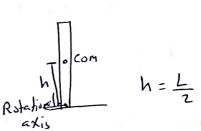
Sample problem 10.7
Uniform rod of mass M f
length L.
a) Find
$$I_{com}$$
?
 $I = \int r^{2} dm$
 $\sin a + b rod$ is uniform $\frac{dm}{dx} = \frac{M}{L}$
 $\Rightarrow dm = \frac{M}{L} dx$
 $I = \int x^{2} dm$ (in one dim (x - dim))
 $= \int x^{2} \left(\frac{M}{L} dx\right) = \frac{M}{L} \int_{0}^{U_{b}} x^{2} dx$
 $I = \frac{M}{L} \frac{x^{3}}{\frac{1}{2}} \int_{-U_{a}}^{U_{b}} x^{3} dx$
 $I = \frac{M}{$

problem 41 M= 0.85 kg M= 1.2 kg $d = 5.6 \text{ cm} = 5.6 \text{ xl}^{-2} \text{ m}$ w = 0.3 rod/s a) Rotational Invitia (1)? Rotation axis $I = I_1 + I_2 + I_3 + I_4$ $I_1 = I_{com} + Mh^2$ $\left(I_{1} = \frac{1}{12}ML^{2} + M\left(\frac{d}{2}\right)^{2}\right)$, L = d $|I_2 = md^2|$ $I_3 = I_{com} + Mh^2$ $h = d + \frac{d}{2} = \frac{3d}{2}$ $I_3 = \frac{1}{12}ML^2 + M\left(\frac{3d}{2}\right)^2$ $I_{\rm H}=m\left(2d\right)^2$ $I = \frac{1}{12}M(d)^{2} + \frac{1}{4}Md^{2} + md^{2} + \frac{1}{12}Md^{2} + \frac{9}{4}Md^{2} + 4Md^{2}$ $I = \frac{8}{7} Md' + 5 Md'$ I = 0.023 kg. m2 or to print the provision has been to be b) $K = -\frac{1}{2} I W^2$ $= \frac{1}{2}(0.023)(0.3)$ dhe beal $K = 1.1 \times 1.5^{-3} T$ STUDENTS-HUB.com Uploaded By: Ayham Nobaŋi

Ch 10 : Lec 3
Problem 63
L = 1m

$$\epsilon$$
 Find $w_p ??$
Using conservation of E_{meh} : Ure
 $E_i = E_p$
 $K_i + U_i = K_p + U_p$
 $o + mg(y_{on}) = \frac{1}{2} I w_p^2 + 0$
 $\boxed{mg(l_{1}) = \frac{1}{2} I \cdot w_p^2}$
 $I = I_{con} + mh$
 $= \frac{1}{12} m l^2 + m(\frac{l^2}{2})$
 $= \frac{1}{3} m l^2$
 $w_p = \sqrt{\frac{39}{L}} = 5.42 \text{ red/s}$
 ϵ Find V_p at the end of the rod?
 $V = r w$
 $V_p = 1 \times 5.42 = 5.42 \text{ m/s}$



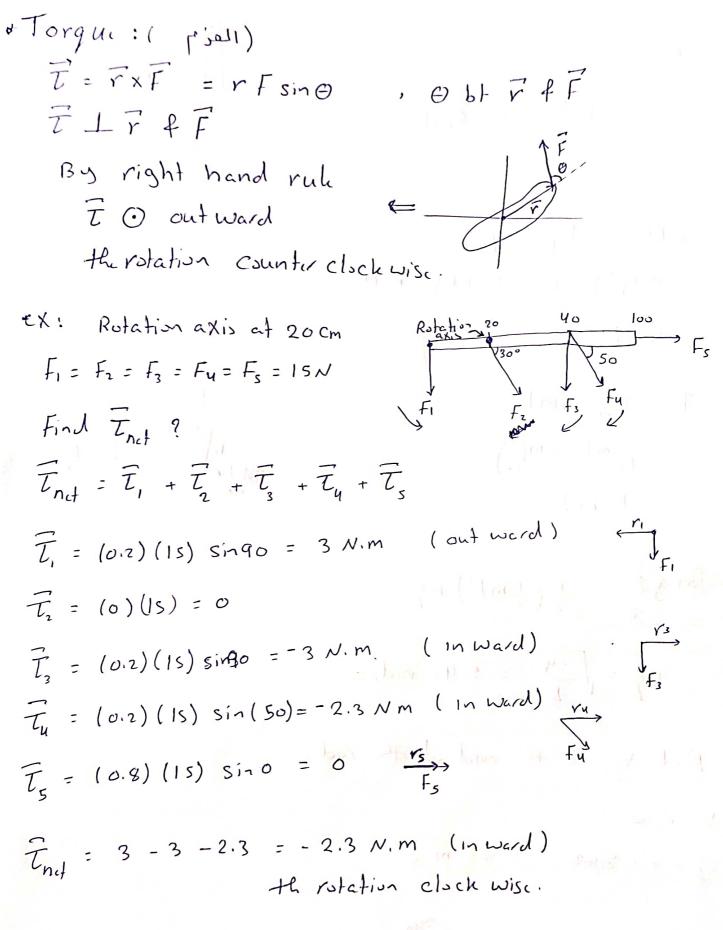


$$V = r W$$

 $V_{f} = 1 \times 5.42 = 5.42 m/s$

+
$$f_{ind} V_{com(p)} = r_{com} w$$

= $\frac{1}{2} w = \frac{1}{2} (5.42) = 2.7 m/s$



* Mewton's second law in rotation:

$$\frac{\overline{F}_{n,1}}{Innex} = m\overline{a} \implies \overline{T}_{n,1} = I\overline{\alpha}$$
innex mation
$$\text{Sample Problem Joolos:}$$
M = 2.5 kg, R = 20 cm (disk)
$$m = 1.2 \text{ kg}$$
Find a_m ? $\Sigma \overline{F} = m\overline{a}$

$$T - mg = m(-a) = 0$$

$$\text{for the disk: } \overline{T}_{n,1} = I\overline{\alpha}$$

$$\overline{T} = \overline{r} \times \overline{F}$$

$$\overline{T} = RT \sin 9a = -RT (inward)$$

$$I_{disk} = \frac{1}{2}MR^{1}$$

$$\Rightarrow \overline{T} = (\frac{1}{2}MR^{1})(-\alpha), \quad \text{, The rotation clock wise (a)}$$

$$= -RT = T - \frac{1}{2}MR^{2}\alpha$$

$$T = \frac{1}{2}MR\alpha, \quad \text{, but } a_{t} = R\alpha$$

$$\overline{T} = \frac{1}{2}M\alpha = -\overline{\alpha}$$
Stude \overline{Q} in $\overline{Q} \Rightarrow \frac{1}{2}M\alpha - mg = -m\alpha$
Students-Hub.com
$$\text{Uploaded By: Ayham Nobani$$

$$\alpha = \frac{2m}{M + 2m} g = \frac{2(1.2)}{2.5 + 2(1.2)} (9.8)$$

$$\alpha = 4.8 m/s^{2}$$

(2) Find
$$T$$
?
 $T = \frac{1}{2} M \alpha = \frac{1}{2} (2.5) (4.8)$
 $= 6 N$

(a) Find
$$\alpha$$
?
 $a = R\alpha$ $\Rightarrow \alpha = \frac{\alpha}{R} = \frac{4.8}{0.2} = 24 rad/s^{2}$

$$\begin{array}{rcl} \begin{array}{l} p_{12}bl_{1}m \leq 1\\ m_{1} = 460q = 0.46 kq\\ m_{2} = 500q = 0.5 kq\\ R = 5 cm = 5 \times 10^{2} m\\ when released from rest m_{2} falls \\ Ts cm in \leq 5 \leq c.\\ a) Find a of the blocks?\\ using the eq. of mation (D = V.t + 1/2 at2)\\ D = -75 cm = 0 + \frac{1}{2}a(5)^{2}\\ -0.75 = \frac{25}{2}a \implies a = 0.06 m/s^{2}\\ b) T_{2}? T_{2} - m_{2} = m_{2}(-a) \qquad [\leq F = ma]\\ T_{2} = mq - ma = 0.5(q.8 - 0.06)\\ \end{array}$$
STUDENTS-HUB.com

c)
$$T_1 ?? \equiv F = ma$$

 $T_1 = m_1 (q + a) = 0.46 (q.8 + 0.06)$
 $= 4.54 M$
d) α of H pully?
 $q_t = R\alpha$, $\boxed{a_t = a}$ line accluration.
 $\alpha = \frac{\alpha}{R} = \frac{0.06}{5 \times 15^2} = 1.2 \text{ red/s}^2$
e) Find I of Ha pully?
 $\vec{T}_{nt} = I\vec{\alpha}$
But $\vec{T}_{nt} = \vec{T}_1 + \vec{T}_2$
 $= R \times \vec{T}_1 + R \times \vec{T}_2$
 $= R (T_1 - T_2)$
 $= -1.65 \times 15^2 N.M$ (inword)

$$T_{n,t} = IX$$

-1.65 x1⁻² = I (- $\frac{1.2}{6.000}$)
 $I = 0.0138 \text{ kg.m}^2$

- X: Clock wisc.

STUDENTS-HUB.com

* Work of the rotational motion:

$$W = \int_{0}^{\theta_{1}} t \, d\theta \quad , \text{ for variable targue}$$
For coall targue:

$$W = \int_{0}^{\theta_{1}} t \, d\theta \quad , \text{ for variable targue}$$

$$W = \int_{0}^{\theta_{1}} t \, d\theta = \int_{0}^{\theta_{2}} t \, \theta = \int_{0}^{\theta_{1}} t \, \theta = \int_{0}^{\theta_{2}} t \, \theta = \int_{0}^$$

$$K = \frac{R}{I} (0.5t + 0.3t')$$

$$X(3s(c)) = \frac{10 \times 10^{-1}}{10^{-1}} (0.5(3) + 0.3(3)')$$

$$= 4.2 \times 10^{-1} \frac{10}{100} \frac{10}{100} \frac{1}{100}$$

b)
$$W(3 \operatorname{sic})$$

 $X = \frac{dw}{dt} = \frac{R}{T} (\operatorname{o.st} + \operatorname{o.3t}^2)$
 $\frac{dw}{dt} = 100 (\operatorname{o.st} + \operatorname{o.3t}^2)$
 dt
 $\int dw = \int 50 t + 30 t^2 dt$
 $w = 25 t^2 + 10 t^3 + C$
 $L \operatorname{pull}_{2} \operatorname{starts} from \operatorname{rest} w(s) = 0 \Rightarrow C = 0$
 $w(3 \operatorname{sic}) = 25 (3)^2 + 15 (3)^3$
 $= 4.95 \times 1^3 \operatorname{rest}_{2} S$

Uploaded By: Ayham Nobani

STUDENTS-HUB.com