

## Phys111 Report

#### Experiment #9: RC Circuit

| Name:    | Bayan Saleem Alkamel | ID #: | 1231030 |
|----------|----------------------|-------|---------|
| Partner: |                      | ID #: |         |
| Section: | 12                   |       |         |
| Date:    |                      |       |         |

### (1) Abstract:

#### $\circ$ Aim of the experiment:

To find the value of an unknown capacitor through resistor of known value and through charging and discharging the capacitor.

#### • The main results are:

•  $\tau = 44 \pm 3 sec$ 

### (2)Data:

| Charging |         |        |         | Discharging |         |        |         |
|----------|---------|--------|---------|-------------|---------|--------|---------|
| Time     | Vc      | Time   | Vc      | Time        | Vc      | Time   | Vc      |
| (sec.)   | (volts) | (sec.) | (volts) | (sec.)      | (volts) | (sec.) | (volts) |
| 0        | 0.000   | 70     | 3.978   | 0           | 4.918   | 70     | 1.060   |
| 5        | 0.567   | 80     | 4.165   | 5           | 4.377   | 80     | 0.843   |
| 10       | 1.112   | 90     | 4.314   | 10          | 3.944   | 90     | 0.685   |
| 15       | 1.505   | 100    | 4.433   | 15          | 3.456   | 100    | 0.557   |
| 20       | 1.919   | 110    | 4.528   | 20          | 3.147   | 110    | 0.455   |
| 25       | 2.279   | 120    | 4.605   | 25          | 2.787   | 120    | 0.373   |
| 30       | 2.544   | 130    | 4.666   | 30          | 2.520   | 130    | 0.306   |
| 35       | 2.824   | 140    | 4.716   | 35          | 2.234   | 140    | 0.252   |
| 40       | 3.032   | 150    | 4.755   | 40          | 2.022   | 150    | 0.209   |
| 45       | 3.252   | 160    | 4.790   | 45          | 1.796   | 160    | 0.170   |
| 50       | 3.416   | 170    | 4.816   | 50          | 1.595   | 170    | 0.142   |
| 55       | 3.589   | 180    | 4.837   | 55          | 1.416   | 180    | 0.119   |
| 60       | 3.713   | 190    | 4.854   | 60          | 1.286   | 190    | 0.100   |
| 65       | 3.857   | 200    | 4.868   | 65          | 1.168   | 200    | 0.084   |

 $R = (0.091 \pm 0.05) \times 10^{6} \Omega$ 

 $C_{manufacture} = \frac{47 \mu F}{2}$ 

## (3)Calculations:

Charging/Discharging graph

$$\tau_{c} = 44 \ sec$$
  $\tau_{D} = 39 \ sec$ 

Semi-log graph

Slope = -0.0205 sec $\tau_S = -\frac{1}{Slope} = -\frac{1}{-0.0205} = 48.78 \text{ sec} \approx 49 \text{ sec}$ 

$$\bar{\tau} = \frac{\tau_D + \tau_C + \tau_S}{3} = \frac{44 + 39 + 49}{3} = 44 \text{ sec}$$

$$C = \frac{\tau}{R} = \frac{44}{91 \times 10^4} = 48.35164835 \times 10^{-6}$$

$$C = 48.35164835 \,\mu F$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

$$\Delta \bar{\tau} = \sigma m (\tau_D + \tau_C + \tau_S) = 2.886751346 \approx 3$$

(4)Results:

•  $\tau = 44 \pm 3 \, sec$ •  $C = (48 \pm 5) \mu F$  (5)Conclusions:

# Discrepancy test $\rightarrow$ | True value - Exp.value | $\leq 2 \triangle C$ $\rightarrow$ | 47-48 | $\leq 2 \times 5 \rightarrow 1 \leq 10 \rightarrow so$ , the result is <u>accepted</u>.

The result is accepted, the value I measured is very close to the true value. The actual value of C. manufacture= $47\mu$ F, which is very close to the experimental result of  $48\mu$ F, Its due to many possible reasons:

- The way that the measurements was took is accurate
- I focused on taking measurements perfectly.

There are many mistakes that I could have made if I had not measured properly

During the process of charging and discharging a capacitor and reading the value using a voltmeter, some possible errors may occur:

- Charge leakage: If there is a leak in the capacitor, the charge may lose some of it unexpectedly.
- Loss of capacitance: Capacitors may lose their capacitance over time or as a result of repeated charging and discharging operations.
- Inaccurate reading: The reading on the voltmeter may be inaccurate due to external influences or a malfunction in the device.
- Resistance change: Thermal effects or electrical current may cause a change in the value of the resistance.
- Temperature effect: Temperature can affect the performance of the capacitor and its reading.

There are some random errors, such as the error rate of the multimeter and the oscilloscope. There is also an error in the resistance and capacitor in the video. When I took the values, there was a slight difference in the time the video was recorded and the time the experiment was applied.

֎To ensure the accuracy of the measurements, it is preferable to follow the correct procedures and check the devices to make sure there are no technical problems.







