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Gate-Level Minimization

Θ A Boolean Function is uniquely represented by a truth table

Θ Boolean Function can be implemented (NOT Uniquely) by a Boolean Equation and 
the corresponding logic diagram

Θ Simplest Functions use the smallest number of the smallest gates and therefore give 
the most economical and efficient circuit implementations

Θ Boolean Function can be simplified by algebraic methods learned earlier
 This process is not always straight-forward and may not result in the simplest 

form of an expression

Θ A formal approach for simplification is needed (systematic procedure)

Requires: Minimization

The Map Method
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The Map Method – Karnaugh Map

Θ A Straight-forward/Simpler method to achieve minimization systemically   
 Graphical representation of a Truth Table

K-Map

Θ A K-map is a diagram made up of squares representing minterms
 K-map for n variables is a collection of 2n squares/cells [n variables → 2n minterms]
 Each Square/Cell → Minterm

 Squares arranged such that physically adjacent cells differ in the value of only one literal 

Θ Different patterns in this diagram can be detected to simplify expressions
Θ Adjacent minterms can be combined to form simpler terms

Θ The simplified expression will always be in sum-of-products or product-of-sums form

Θ K-Map produces a circuit diagram with minimum 
number of gates

Θ K-Map produces circuits with gates having minimum 
number of inputs

Θ The simplest expression is not unique –               
two or more optimal expressions may exist

x

z

y01 → 11 y=1

x=1

z=1
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Two-Variable K-Maps

Θ Boolean functions having two variables x and y

Θ There are 22 = 4 minterms for two variables

Θ A K-map for two variables will have four squares → Each cell will represent a minterm

Each cell represents the minterm 
of the corresponding row in the truth table
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Two-Variable K-Maps

Example:
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Three-Variable K-Maps

Θ Boolean functions having three variables x,y and z

Θ There are 23 = 8 minterms for three variables

Θ A K-map for three variables will have eight squares → Each cell will represent a minterm

Be Careful:
The order is not sequential
m3 before m2

m7 before m6

Each cell represents the minterm 
of the corresponding row in the truth table
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Four-Variable K-Maps

Θ Boolean functions having Four variables w,x,y and z 

Θ There are 24 = 16 minterms for Four variables

Θ A K-map for Four variables will have sixteen squares → 

Each cell will represent a minterm

Be Careful:
The order is not sequential
m3 before m2

m7 before m6

m12 – m15 before m8 – m11

Each cell represents the minterm 
of the corresponding row in the truth table
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K-Mapping Procedure

Θ Construct the corresponding map (based on number of variables)
Θ Enter function output (1’s) values on the map (from Truth Table or Canonical 

Form) to the corresponding cell/square 

Map the following Function on a K-map

1) Three variables → 23 = 8-cell K-map

2) Place a 1 on the K-map in the cell having the same minterm index/value

Be Careful:
The order is not sequential
m3 before m2

m7 before m6

Canonical Form

Primed → 0 
Unprimed → 1
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K-Mapping Procedure

Example:

1 1

1 1

1 1

1 1
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K-Mapping Procedure

Map the following Function on a K-map

Be Careful:
The order is not sequential
11 before 10

Convert to Canonical Form

Primed → 0 
Unprimed → 1

Expand each term to represent F3 as a sum-of-minterms (SOM) form

Canonical Form
011 001 010 110 111 101 100
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K-Mapping Procedure

Map the following Function on a K-map

Be Careful:
The order is not sequential
11 before 10 (in Rows & Columns)

Canonical Form

Primed → 0 
Unprimed → 1

0110

1) Four variables → 24 = 16-cell K-map

2) Place a 1 on the K-map in the cell having the same minterm index/value

1110 1100 1111
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Cell Adjacency

Θ Single variable changes in adjacent cells 
Θ Cells that differ by only one variable are called adjacent cells
Θ Example: 

 011 is adjacent to 010
 011 is not adjacent to 101

Θ Wrap-around adjacency: 
 Cells in the left-most column are adjacent to the cells in the right-most column (100 & 110)

What is the sum of minterms in two adjacent squares?

Sum of two minterms in adjacent squares can be simplified to a single product 
term consisting of only two literals. The dissimilar variable will go away.
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K-Map Simplification 

Θ Once a SOM expression has been mapped on the K-map,                           
there are three steps in obtaining a simplified form 

1) Group 1’s
2) Determine the product term for each group
3) Sum the resulting terms

Θ Group 1’s with the following goal in mind: Maximize the size of the groups and minimize the number of groups

Θ Group 1’s according to the following rules:

✓ Group size must be powers of 2 (1, 2, 4, 8, or 16,.. Cells)

✓ Each cell in a group must be adjacent to one or more cells in that same group.                                           

(Not all cells in a group have to be adjacent to each other)

✓ Always include the largest possible number of 1’s in a group

✓ Each 1 on the map must be included in at least one group

✓ The 1’s already in a group can be included in another group as long as the overlapping groups include             

non-common 1’s
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K-Map Simplification - Groups of 1’s 

Example:

Map Group

3-Variables
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K-Map Simplification - Groups of 1’s 

Example:
Map

Group

2 - Choices

✓ Maximize 
     Group Size
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K-Map Simplification - Groups of 1’s 

Example:

✓ Maximize 
     Group Size

 NOT 

Optimal

2 - Choices
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K-Map Simplification - Groups of 1’s 

Example:

✓ Maximize 
     Group Size

 NOT 

Optimal
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K-Map Simplification - Groups of 1’s 

Example:

✓ Optimal/No Duplication Unnecessary/Duplications
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K-Map Simplification - Groups of 1’s 

Example:

 Groups of (2 Minterms) → Not Maximized Size ✓ Maximize Group Size
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K-Map Simplification 

Examples:

z)y,F(x, =

y

11

x

z

1 1

1

z

z

x' y+

x'y

z'xy'
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K-Map Simplification 

Examples:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Z

XZ

WY

ZX

1 1

1 1

1 1 1 1

11

WX
1

Y

W
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K-Map Simplification 

No. of literals in an expression = Total No. of variables - log2 (No. of cells in group) 

3-Variables

No. Cells Literals

1 3

2 2

4 1

8 Zero

4-Variables

No. Cells Literals

1 4

2 3

4 2

8 1

16 Zero

F=1

x

xyz

xy

e.g.

F=1

xy

wxyz

xyz

e.g.

x

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



23

ENCS
2340

20
24

Mohammed Khalil

K-Map Simplification 

More Examples:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

WYZ

ZX

1 1 1

1

WXY

1

1
WXY1
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K-Map Simplification 

More Examples:

W

X

y' xz'

w'z'
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K-Map Minimization - Recap 

Θ In choosing adjacent squares in a map, we must ensure that:

ↇ All minterms of the function are covered when we combine squares

ↇ The number of terms in the expression is minimized

ↇ No redundant terms

Θ  Sometimes there might be two or more expressions that satisfy the simplification criteria
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K-Map Minimization - Implicants 

Θ The procedure for combining squares in the map may be made more systematic if 
we understand the meaning of the following terms.

ↇ Implicant: is a product term of a function obtained by valid grouping of adjacent squares 

(minterms or 1’s)

ↇ Prime Implicant (PI): is a product term obtained by combining the maximum possible 

number of adjacent squares

ↇ Examples:

✓ 1 that is not adjacent to any other 1’s.

✓ Two adjacent 1’s that are not in a group of four adjacent 1’s.

✓ Four adjacent 1’s that are not in a group of eight adjacent 1’s

ↇ Essential Prime Implicant (EPI): If a minterm is covered by only one prime implicant, 

that prime implicant is said to be essential prime implicant

The simplified expression is obtained from the logical sum of all the essential prime 
implicants, plus other prime implicants that may be needed to cover any remaining 
minterms not covered by the essential prime implicants. 

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



27

ENCS
2340

20
24

Mohammed Khalil

K-Map Minimization - Implicants 

Example:

1 1

1 1

1 1

B

D

A

1 1

1 1

1

C

The Minterm is only covered by this PI.

1 1

1 1

1 1

B

D

A

1 1

1 1

1

C
Essential PI’s Non Essential PI’s

B’D'

BD

AB’ AD

B’C

CD
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K-Map Minimization - Implicants 

Example Continue:

The simplified expression is obtained from the logical sum of the two essential prime 
implicants and any two prime implicants that cover the remaining minterms (m3, m9, m11)
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K-Map Minimization - Implicants 

Extra Example :

1

1

1

1 1

1

1

B

D

A

C

1

1

1

1

1

1 1

1

1

B

D

A

C

1

1

Essential PIs
PI’s with minimum 

overlap

Essential

Avoid Unnecessary overlap amongst additional selected PI’s
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K-Map Minimization - Don’t-Care Conditions 

Θ Functions that have unspecified outputs for some input combinations are called incompletely 
specified functions

ↇ Such situation arises in which some input variable combinations are not allowed OR might 
never occur

ↇ For example, in BCD there are six invalid combinations. 

Θ Since these unspecified/unallowed terms will never occur, they can be treated as don’t-care 
terms with respect to their effect on the outputs

Θ For these “don’t-care” terms either a 1 or a 0 may be assigned to the output
ↇ it really does not matter since they will never occur

Θ For the “don’t-care” input combinations, an X is placed in the corresponding square (minterm)

Θ When grouping 1’s, the X’s can be treated as 1’s to form larger groups → simpler expression
ↇ To get the simplified expression, we must include all 1’s in the map, but we may or may not 

include any of the X’s
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K-Map Minimization - Don’t-Care Conditions 

Example:
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K-Map Minimization - Don’t-Care Conditions 

Example: BCD Code : > 6 → F=1 

F = A + BCD
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K-Map Minimization - Don’t-Care Conditions 

Extra Example:

OR

EPI

F = yz + w’x’
F = yz + w’z
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K-Map Minimization - Don’t-Care Conditions 

Extra Example:

Selected PIs with 

minimum overlap

1

1

x

x

x x

x

1

B

D

A

C

1

1

Essential PI

This x is taken as 0

All others taken as 1 

Non-Selected PI 

(Already Covers By 

others)

F = A’B + B’C + AB’D
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K-Map Minimization – Product of Sums (POS)

Θ So far, We have been combining minterms (‘1’ squares), to get F as a Sum of Products 
(SOP) out of the K-Map simplification process

Θ If we combine the remaining minterms (‘0’ squares), we get the compliment of F => (F’)
ↇ Using DeMorgan’ s Theorem we can get F as a Product-of-Sums (POS) by 

complementing F’ => (F’)’ = F

Product of Sums (POS) Procedure
1) Combine the 0’s into groups
2) Form a sum-of-products (SOP) expression from these groups of 0’s → F’

3) Take its complement using DeMorgan’s theorem to get F as product-of-sum

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



36

ENCS
2340

20
24

Mohammed Khalil

K-Map Minimization – Product of Sums (POS)

Example:
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K-Map Minimization – Product of Sums (POS)

Extra Example:

DeMorgan’s
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K-Map Minimization – Product of Sums (POS)

Extra Example:

DeMorgan’s

      ,13,14,15)(3,9,11,12  D)C,B,F(A, m += (1,4,6) d

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

XZ1

1 1

1 111

WX

X

X X

0 0

0 0

0 0

Taken 0

Taken 0
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K-Map Minimization – Product of Sums (POS)

What if the function was given as product of maxterms?

1) Complement F → F’ in Sum-of Product From (SOP)

2) Mark F’ minterms’ squares with 0’s and the remaining squares with 1’s.
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K-Map Minimization – 5 Variables

The map of five variables → two four variable maps.

A’

F(A,B,C,D,E)
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K-Map Minimization – 5 Variables

Example:

5-Variables

No. Cells Literals

1 5

2 4

4 3

8 2

16 1

32 Zero F=1

ABCDE

e.g.

BCDE

CDE

DE

E
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K-Map Minimization – 5 Variables

Example:
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NAND & NOR IMPLEMENTATION

Θ Digital circuits are frequently constructed with NAND or NOR gates rather than with 
AND or OR gates. 

Θ NAND and NOR gates are easier to fabricate with electronic components and are 
the basic gates used in all Integrated Circuit (IC) digital logic families.

Θ NAND and NOR gates are universal gates
ↇ Any digital system can be implemented with them 

Θ To implement a function with NAND it need to be in Sum-of Products (SOP) form
Θ To implement a function with NOR it need to be in Product-of Sums (POS) form

Rules have been developed to convert any logic circuit to its equivalent form in just 
NAND gates or NOR gates
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NAND IMPLEMENTATION

NAND Graphic Symbols

Θ Both Symbols are same because of DeMorgan’s theorem
Θ Circuits could be drawn using any of these symbols
Θ When a circuit uses both symbols it is said to follow mixed notation
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NAND IMPLEMENTATION

All gates can be represented using Only NAND gates → NAND is functionally complete 

Logic Operations with NAND gates

Θ A set of gates is functionally complete if any Boolean expression can be realized with this set of gates
Θ AND, OR, and inverter is functionally complete
Θ Any set of gates which can implement AND, OR and inverter is also functionally complete 
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NAND IMPLEMENTATION – 2-Level

Example: Implement 𝐹 = 𝐴𝐵 + 𝐶𝐷 , using NAND gates

Inverts on same line cancel each others

Use the AND-Invert Form
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NAND IMPLEMENTATION – 2-Level

Θ Two-level Implementation using NAND Gates
1) Simplify the function and express it in sum-of-products form.

2) Draw a NAND gate for each product term of the expression that has at least two 
literals. The inputs to each NAND gate are the literals of the term. This procedure 
produces a group of first-level gates.

3) Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second 
level, with inputs coming from outputs of first-level gates.

4) A term with a single literal requires an inverter in the first level.  However, if the single 
literal is complemented, it can be  connected directly to an input of the second level 
NAND gate.
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NAND IMPLEMENTATION – 2-Level

Example:

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



49

ENCS
2340

20
24

Mohammed Khalil

NAND IMPLEMENTATION – 2-Level

Example:

Find SOP

Draw Logic Gates

Convert to NANDs

When Converting to NAND, Don’t forget to 
complement the direct inputs (Single Literals)
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NAND IMPLEMENTATION – Multilevel

Θ The general procedure for converting a multilevel AND–OR diagram into an all-NAND 
diagram using mixed notation is as follows:

1) Convert all AND gates to NAND gates with AND-invert graphic symbols.

2) Convert all OR gates to NAND gates with invert-OR graphic symbols.

3) Check all the bubbles in the diagram. For every bubble that is not compensated by another 
small circle (bubble) along the same line, insert an inverter (a one-input NAND gate) or 
complement the input literal.
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NAND IMPLEMENTATION – Multilevel

Example:
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NOR IMPLEMENTATION

The NOR operation is the dual of the NAND operation. Therefore, all procedures and rules for NOR 
logic are the duals of the corresponding procedures and rules developed for NAND logic

NOR Graphic Symbols

Θ Both Symbols are same because of DeMorgan’s theorem
Θ Circuits could be drawn using any of these symbols
Θ When a circuit uses both symbols it is said to follow mixed notation
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NOR IMPLEMENTATION

All gates can be represented using Only NOR gates → NOR is functionally complete 

Logic Operations with NOR gates
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NOR IMPLEMENTATION – 2-Level

Example:

Inverts on same line cancel each others Use the OR-Invert Form

When Converting to NOR, Don’t forget to 
complement the direct inputs (Single Literals)

Simplify the function and express it 
in product-of-soms form
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NOR IMPLEMENTATION – 2-Level

Extra Example:
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AND-OR to NAND Conversion

Level 1 Level 2 Level 3 Level 4
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AND-OR to NOR Conversion

Level 1 Level 2 Level 3 Level 4
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Other Two-Level Implementations

Θ SOP and POS are basic forms of expressing functions

Θ These functions can be implemented in different ways

Θ So far, we have seen multiple ways of implementing the SOP and POS expressions
✓ SOP can be represented as two-level AND-OR logic
✓ SOP can be represented as two-level NAND-NAND logic
✓ POS can be represented as two-level OR-AND logic
✓ POS can be represented as two-level NOR-NOR logic

How many two-level logics may be formed using the four types of gates 
(AND, OR, NAND, NOR)?

24 → 16 Ways
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Other Two-Level Implementations

How many two-level logics may be formed using the four types of gates 
(AND, OR, NAND, NOR)?

24 → 16 Ways

AND-AND
AND-NAND
OR-OR
OR-NOR
NAND-OR
NAND-NOR
NOR-AND
NOR-NAND

AND-OR
OR-AND
NAND-NAND
NOR-NOR
NAND-AND
AND-NOR
OR-NAND
NOR-OR

8 
NonDegenerate

8
Degenerate

Already Covered

Covered Next

degenerate to a single 
operation → Straightforward
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Other Two-Level Implementations - Degenerate
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Other Two-Level Implementations - Degenerate
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Other Two-Level Implementations - Degenerate

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



63

ENCS
2340

20
24

Mohammed Khalil

Other Two-Level Implementations - Degenerate
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Other Two-Level Implementations - NonDegenerate

AND-OR
NAND-NAND
NOR-OR
OR-NAND

OR-AND
NOR-NOR
NAND-AND
AND-NOR

Θ The first gate listed in each of the forms constitutes a first level implementation. 
Θ The second gate listed is a single gate placed in the second level. 
Θ Note that any two forms listed in the same line are duals of each other. 
Θ The green four forms have been investigated previously. 
Θ The red four forms are investigated next.
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Other Two-Level Implementations - NonDegenerate

Θ The two forms NAND-AND and AND-NOR are equivalent forms and can be treated together 
Θ Both perform the AND-OR-INVERT function
Θ The AND–OR–INVERT implementation is similar to AND-OR (SOP), except for the inversion

AND-OR-INVERT Implementation 
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Other Two-Level Implementations - NonDegenerate

Θ The two forms OR–NAND and NOR–OR are equivalent forms and can be treated together 
Θ Both perform the OR–AND–INVERT function
Θ The OR–AND–INVERT implementation is similar to OR-AND (POS), except for the inversion

OR–AND–INVERT Implementation 
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Other Two-Level Implementations – NonDegenerate Procedure

Θ The following table summarizes the procedures for implementing a Boolean function in any one 
of the four 2-level forms: NAND-AND, AND-NOR, OR-NAND and NOR-OR

Θ Because of the INVERT part in each case, it is convenient if we find the simplification of F’

Θ When F’ is implemented as an AND-OR or an OR-AND form, we can easily get F by simply 
adding an INVERT at the end. This will give us the circuit in one of the above-mentioned forms
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Other Two-Level Implementations – NonDegenerate Procedure

Implementation With AND-NOR and NAND-AND

1) Find the simplified form of F’

✓ Form a K-map and group 0’s → SOP form of F’

2) Implement F’ in a two-level AND-OR form
3) By adding a NOT gate at the output, we get F 

✓ The resulting form is AND-OR-INVERT form which can be easily converted to get AND-NOR 
and NAND-AND forms

F’

Remember: We always get a 
SOP from the K-map Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com
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Other Two-Level Implementations – NonDegenerate Procedure

Implementation With OR-NAND and NOR-OR

1) Find the simplified form of F
✓ Form a K-map and group 1’s → SOP form of F → find F’ by taking the complement of F 

2) Implement F’ in a two-level OR-AND form
3) By adding a NOT gate at the output, we get F 

✓ The resulting form is OR-AND-INVERT form which can be easily converted to get OR-NAND 
and NOR-OR forms

F’
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Other Two-Level Implementations – NonDegenerate Summary

Form
SOP from K-map? 
DeMorgan Invert?

Gate Type Procedure

AND-OR (AO)
F
No

AND-OR = NAND-NAND 
(SOP)

Circle 1's in the K-Map 
and minimize

AND-OR-INVERT (AOI)
F’
No

AND-NOR =NAND-AND 
(SOP Invert)

Circle 0's in the K-Map 
and minimize

OR-AND (OA)
F’
Yes

OR-AND =NOR-NOR 
(POS)

Circle 0's in the K-Map 
and minimize SOP. 
Use DeMorgan's to 
transform to POS

OR-AND-INVERT (OAI)
F
Yes

OR-NAND = NOR-OR 
(POS Invert)

Circle 1's in the K-Map 
and minimize SOP. 
Use DeMorgan's to 
transform to POS.

Remember: We always get a SOP from the K-map
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Other Two-Level Implementations –Summary

Level 1 Level 2 Equivalent Final Form Remarks

AND AND AND-AND AND Degenerate

AND OR AND-OR SOP

AND NAND AND-AND-NOT AND-NOT Degenerate

AND NOR AND-OR-NOT SOP-INVERT

OR AND OR-AND POS

OR OR OR-OR OR Degenerate

OR NAND OR-AND-NOT POS-INVERT

OR NOR OR-OR-NOT OR-NOT Degenerate

NAND AND AND-NOT-NOT-NOR SOP-INVERT

NAND OR NOT-OR-OR NOT-OR Degenerate

NAND NAND AND-NOT-NOT-OR SOP

NAND NOR AND-NOT-NOT-AND AND Degenerate

NOR AND NOT-AND-AND NOT-AND Degenerate

NOR OR OR-NOT-NOT-AND-NOT POS-INVERT

NOR NAND OR-NOT-NOT-OR OR Degenerate

NOR NOR OR-NOT-NOT-AND POSUploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com
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Exclusive Functions 

Θ The Exclusive-OR (XOR) function is an important Boolean function used extensively 
in logic circuits.

Θ Implemented directly as an electronic circuit (true gate) or implemented by 
interconnecting other gate types.

Θ The Exclusive-NOR (XNOR) function, also known as equivalence function, is the 
complement of the XOR function.
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Exclusive Functions 

XOR

XNOR

The result is 1 only when both X and Y are equal (equivalent).

The result is 1 only when X and Y are NOT equal (Not equivalent).

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



74

ENCS
2340

20
24

Mohammed Khalil

XOR / XNOR Identities

Commutative

Associative

Associative
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XOR / XNOR Properties
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Implementation of XOR Gate

Θ Multi-input XOR gates are 
difficult to fabricate with 
hardware

Θ Even a two-input gate is 
usually constructed with 
other types of gates

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com



77

ENCS
2340

20
24

Mohammed Khalil

XOR is an Odd Function

Θ The exclusive-OR operation with three or more variables can be expressed as:

Θ The multiple-variable exclusive-OR 
operation is defined as an odd 
function (‘1’ when odd number 
of variables are equal to 1)
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XNOR is an Even Function

Θ The complement of an odd function is an even function
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K-Maps for XOR and XNOR Operations
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Gate Implementation for 3-Inputs Odd/Even Functions
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Parity Generation/Checking (Application for Odd/Even Functions)

Θ A parity bit is an extra bit included with a binary message to make the number of 1’s either 
odd or even.

Θ Parity bit is used for the purpose of detecting errors during the transmission of binary 
information.

Θ The circuit that generates the parity bit in the transmitter is called a parity generator.

Θ The circuit that checks the parity in the receiver is called a parity checker.

Θ Exclusive-OR/NOR gates (Odd/Even Functions) are useful for generating and checking a parity 
bit
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Parity Generation/Checking (Application for Odd/Even Functions)

Transmitting a 3-bit message with even parity bit. The three bits – x, y, and z 
constitute the message and are the inputs to the circuit. 
The parity bit P is the output. 

Example:

P is Even parity bit → P = 1 if the number of 1’s in the 3-bit message is odd → 

P is an odd function and can be implemented using 3-Inputs XOR

Parity Generator

Parity Generator
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Parity Generation/Checking (Application for Odd/Even Functions)

1) The three bits in the message together with the even parity bit P are transmitted (4 bits)
2) The receiver at the destination checks for an even number of 1’s in the 4-bit message and 

generates an error C equal to 1 if the number of 1’s in the message is odd
3) C (error) can be implemented using XOR

Parity Checker

C = 1 → Error 

Parity Checker
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