# Digital Systems Section 2

Chapter (3)

STUDENTS-HUB.com

- ⊖ A Boolean **Function** is **uniquely** represented by a **truth table**
- ⊖ Boolean Function <u>can be implemented</u> (NOT Uniquely) by a Boolean Equation and the corresponding logic diagram
- ⊖ Simplest Functions use the <u>smallest number</u> of the <u>smallest gates</u> and therefore give <u>Requires: Minimization</u> the <u>most economical</u> and <u>efficient</u> circuit implementations
- ⊖ Boolean **Function** can be **simplified** by <u>algebraic methods</u> learned earlier
  - This process is not always straight-forward and may not result in the simplest form of an expression
- ⊖ A **formal** approach for simplification is needed (systematic procedure) The Map Method



Uploaded By: 1230358@student.birzeit

20 24

- ⊖ A Straight-forward/Simpler method to achieve minimization systemically
  Contract of a Truth Table
- ⊖ A K-map is a **diagram** made up of **squares** representing **minterms** 
  - ↔ K-map for **n** variables is a collection of  $2^n$  squares/cells [**n** variables  $\rightarrow 2^n$  minterms]
  - O Each Square/Cell → Minterm
  - Squares arranged such that physically adjacent cells differ in the value of only one literal
- ⊖ Different **patterns** in this diagram can be detected to simplify expressions
  - Adjacent minterms can be combined to form simpler terms
- ⊖ The **simplified** expression will always be in <u>sum-of-products</u> or <u>product-of-sums</u> form
- ⊖ K-Map produces a circuit diagram with **minimum** number of **gates**
- K-Map produces circuits with gates having **minimum** number of **inputs**
- ⊖ The simplest expression is **not unique** two or more optimal expressions may exist

3STUDENTS-HUB.com









- ⊖ Boolean functions having **two** variables x and y
- $\Theta$  There are **2**<sup>2</sup> = **4** minterms for two variables xy, x'y, xy', x'y'
- $\Theta$  A K-map for **two** variables will have **four squares**  $\rightarrow$  Each cell will represent a minterm



Each **cell** represents the **minterm** of the corresponding **row** in the truth table

4STUDENTS-HUB.com

20 24





<sup>5</sup>STUDENTS-HUB.com

- ⊖ Boolean functions having **three** variables x,y and z
- $\Theta$  There are  $2^3 = 8$  minterms for three variables

x'y'z', x'y'z, x'yz, x'yz', xy'z', xy'z, xyz, xyz'

 $\Theta$  A K-map for **three** variables will have **eight squares**  $\rightarrow$  Each cell will represent a minterm



Be Careful: The order is **not** sequential  $m_3$  before  $m_2$  $m_7$  before  $m_6$  ENCS 2340

Each **cell** represents the **minterm** of the corresponding **row** in the truth table Uploaded By: 1230358@student\_birzeit\_edu

6STUDENTS-HUB.com

### Four-Variable K-Maps

- Boolean functions having **Four** variables w,x,y and z Θ
- There are  $2^4 = 16$  minterms for Four variables Θ
- Θ A K-map for **Four** variables will have **sixteen squares**  $\rightarrow$ Each cell will represent a minterm

**Be Careful:** The order is **not** sequential m<sub>3</sub> before m<sub>2</sub> m<sub>7</sub> before m<sub>6</sub>  $m_{12} - m_{15}$  before  $m_8 - m_{11}$ 

Each **cell** represents the **minterm** of the corresponding **row** in the truth table



ENCS 2340

 $m_0$  $m_1$ m3 00 | w'x'y'z' | w'x'y'z |w'x'yzw'x'yz' $m_{4}$ ms m7  $m_6$ 01 w'xy'z'w'xy'zw'xyzw'xyz' x  $m_{13}$  $m_{15}$ m12 m14 11 wxy'z' wxy'zwxyz. wxyz' W  $m_{10}$ mg mo  $m_{11}$ 10 wx'y'z'wx'y'zwx'yzwx'yz' Z

01

11

Uploaded By: 1230358@student\_birzeit\_e

wx

00

7STUDENTS-HUB.com

- ⊖ **Construct** the corresponding map (based on number of variables)
- ⊖ Enter function output (1's) values on the map (from Truth Table or Canonical Form) to the corresponding cell/square

**Map** the following Function on a K-map

$$F_1(A, B, C) = A'B'C + A'BC' + ABC' + ABC$$

1) <u>Three</u> variables  $\rightarrow 2^3 = 8$ -cell K-map

2) Place a **1** on the K-map in the cell having the **same** minterm index/value

A'B'C = 001, A'BC' = 010, ABC' = 110, ABC = 111

Primed  $\rightarrow 0$ Unprimed  $\rightarrow 1$ 

**Canonical Form** 



**Be Careful:** The order is **not** sequential  $m_3$  before  $m_2$  $m_7$  before  $m_6$ 



20 24

| F: | =∑ <b>(</b>      | 0,1,6      | 5,7)                |                |
|----|------------------|------------|---------------------|----------------|
|    | /                |            |                     |                |
| x  | yz 00            | <b>0</b> 1 | 11                  | 10             |
| 0  | 1 m <sub>0</sub> | 1<br>1     | m <sub>3</sub>      | m <sub>2</sub> |
| 1  | m4               | m5         | m <sub>7</sub><br>1 | m <sub>6</sub> |







9STUDENTS-HUB.com







**Map** the following Function on a K-map

 $F_2(A, B, C, D) = A'BCD' + ABCD' + ABC'D' + ABCD$  Canonical Form

1) <u>Four</u> variables  $\rightarrow 2^4 = 16$ -cell K-map 2) Place a **1** on the K-map in the cell having the **same** minterm index/value



- ⊖ **Single** variable changes in **adjacent** cells
- ⊖ Cells that differ by only **one** variable are called **adjacent** cells
- ⊖ Example:
  - 011 is adjacent to 010
  - 011 is not adjacent to 101
- ⊖ Wrap-around adjacency:
  - Cells in the left-most column are **adjacent** to the cells in the right-most column (100 & 110)

What is the **sum** of minterms in two adjacent squares?

$$m_{0} + m_{4} = x'y'z' + xy'z'$$
  
=  $(x' + x)y'z' = y'z'$   
 $m_{7} + m_{6} = xyz + xyz'$   
=  $xy(z + z') = xy$   
 $m_{0} + m_{2} = x'y'z' + x'yz'$   
=  $x'z'(y' + y) = x'z'$ 

| $\sum yz$              |                       |                       | у              |                       |  |
|------------------------|-----------------------|-----------------------|----------------|-----------------------|--|
| x                      | 00                    | 01                    | 11             | 10                    |  |
| 0                      | x'y'z'                | x'y'z                 | $m_3$<br>x'yz  | $\frac{m_2}{x'yz'}$   |  |
| ſ                      | <i>m</i> <sub>4</sub> | <i>m</i> <sub>5</sub> | m <sub>7</sub> | <i>m</i> <sub>6</sub> |  |
| $x \left\{ 1 \right\}$ | xy'z'                 | xy'z                  | xyz            | xyz'                  |  |
| z                      |                       |                       |                |                       |  |

**Sum** of two minterms in **adjacent** squares can be simplified to a **single product** term consisting of only **two literals**. The **dissimilar** variable will go away.

12STUDENTS-HUB.com

- Once a SOM expression has been **mapped** on the K-map, there are three steps in obtaining a simplified form
  - **1) Group** 1's
  - 2) Determine the product term for each group
  - 3) **Sum** the resulting terms
- ⊖ Group 1's with the following goal in mind: **Maximize** the size of the groups and **minimize** the **number** of groups
- ⊖ Group 1's according to the following rules:
  - ✓ Group **size** must be powers of **2** (1, 2, 4, 8, or 16,.. Cells)
  - Each cell in a group <u>must</u> be **adjacent** to <u>one or more</u> cells in that same group.
    - (Not all cells in a group have to be adjacent to each other)
  - Always include the largest possible number of 1's in a group
  - Each 1 on the map <u>must</u> be included in at least one group
  - The 1's already in a group <u>can</u> be included in another group as long as the **overlapping** groups include non-common 1's



ENCS 2340











A

0

 $\mathbf{1}$ 













17STUDENTS-HUB.com







18STUDENTS-HUB.com





198 TUDENTS-HUB.com

20 24





$$F(x, y, z) = z + x'y$$



Uploaded By: 1230358@student.birzeit\_eduil

20STUDENTS-HUB.com





### No. of **literals** in an expression = Total No. of variables - $\log_2$ (No. of cells in group)

| 3-Va      |          |     |      |
|-----------|----------|-----|------|
| No. Cells | Literals |     | e.g. |
| 1         | 3        |     | xyz  |
| 2         | 2        |     | ху   |
| 4         | 1        |     | х    |
| 8         | Zero     | F=1 |      |

| 4-Va      |          |     |      |
|-----------|----------|-----|------|
| No. Cells | Literals |     | e.g. |
| 1         | 4        |     | wxyz |
| 2         | 3        |     | xyz  |
| 4         | 2        |     | ху   |
| 8         | 1        |     | Х    |
| 16        | Zero     | F=1 |      |

K-Map Simplification

20 24



# More Examples: $F(W, X, Y, Z) = \Sigma_m(3, 4, 5, 7, 13, 14, 15)$



# $F(W, X, Y, Z) = ZX + \overline{W}YZ + WXY + \overline{W}X\overline{Y}$

23STUDENTS-HUB.com



### **More Examples:**

24STUDENTS-HUB.com



F = A'B + B'C



F = y' + w'z' + xz'



- ⊖ In choosing **adjacent** squares in a map, we must **ensure** that:
  - All minterms of the function are covered when we combine squares
  - The number of **terms** in the expression is **minimized**
  - No redundant terms
- ⊖ Sometimes there might be **two or more expressions** that **satisfy** the simplification criteria



- K-Map Minimization Implicants
- ⊖ The procedure for **combining** squares in the map may be made more **systematic** if we understand the meaning of the following terms.
  - **Implicant**: is a product term of a function obtained by valid grouping of adjacent squares D (minterms or 1's)
  - **Prime Implicant (PI):** is a product term obtained by combining the **maximum possible** D number of adjacent squares
    - **Examples:** D
      - $\checkmark$  **1** that is not adjacent to any other 1's.
      - **Two** adjacent 1's that are not in a group of four adjacent 1's.
      - **Four** adjacent 1's that are not in a group of eight adjacent 1's
  - **Essential Prime Implicant (EPI):** If a **minterm** is **covered** by **only one** prime implicant,

that prime implicant is said to be **essential prime implicant** 

The **simplified** expression is obtained from the **logical sum** of **all the essential prime** implicants, plus other prime implicants that may be needed to cover any remaining minterms **not covered** by the essential prime implicants.

26STUDENTS-HUB.com

# ENCS 2340

#### **Example:**



The Minterm is **only** covered by this **PI**.

Essential prime implicants BD and B'D'27STUDENTS-HUB.com



Prime implicants *CD*, *B'C*, *AD*, and *AB'* Uploaded By: 1230358@student\_birzeit\_cfluit **Example** Continue:

Essential prime implicants BD and B'D'

Prime implicants CD, B'C, AD, and AB'

The **simplified** expression is obtained from the **logical sum** of the **two essential** prime implicants and **any** two prime implicants that **cover** the remaining minterms (m3, m9, m11)

$$F = BD + B'D' + CD + AD$$
  
=  $BD + B'D' + CD + AB'$   
=  $BD + B'D' + B'C + AD$   
=  $BD + B'D' + B'C + AB'$ 

28STUDENTS-HUB.com







Avoid Unnecessary overlap amongst additional selected PI's

29STUDENTS-HUB.com



- Functions that have unspecified outputs for some input combinations are called incompletely specified functions
  - Such situation arises in which some input variable combinations are not allowed OR might never occur
  - For example, in **BCD** there are six **invalid combinations**.
- ⊖ Since these unspecified/unallowed terms will never occur, they can be treated as don't-care terms with respect to their effect on the outputs
- ⊖ For these "don't-care" terms either a 1 or a 0 may be assigned to the output
  ▶ it really does not matter since they will never occur
- For the "**don't-care**" input combinations, an X is placed in the corresponding square (minterm)
- O When grouping 1's, the X's can be treated as 1's to form larger groups → simpler expression
  D To get the simplified expression, we must include all 1's in the map, but we may or may not include any of the X's



ENCS 2340

<sup>3</sup>CTUDENTS-HUB.com













32STUDENTS-HUB.com



# **Extra Example:** Simplify the function $F(w, x, y, z) = \Sigma(1,3,7,11,15)$ , which has the don't care conditions $d(w, x, y, z) = \Sigma(0,2,5)$



33STUDENTS-HUB.com

20 24

#### **Extra Example:**





34STUDENTS-HUB.com



⊖ So far, We have been combining minterms (`1' squares), to get F as a Sum of Products (SOP) out of the K-Map simplification process

O If we combine the remaining minterms ('0' squares), we get the compliment of F => (F')
 ▶ Using DeMorgan' s Theorem we can get F as a Product-of-Sums (POS) by complementing F' => (F')' = F

### Product of Sums (POS) Procedure

- 1) Combine the 0's into groups
- 2) Form a sum-of-products (SOP) expression from these groups of 0's  $\rightarrow$  **F**'
- 3) Take its **complement** using DeMorgan's theorem to get **F** as **product-of-sum**



The following groups of 0's are formed:

- Red group: A'B'
- Blue group: ABC'
- Green group: B'C

The expression of F' = A'B' + ABC' + B'C

Use DeMorgan's theorem to find its complement in order to write an expression of  ${\cal F}$ 

 $F = (A + B)(A' + B' + C)(B_{\text{B}} = G'_{\text{B}})$  By: 1230358 @student.birzeit.ee



36STUDENTS-HUB.com








K-Map Minimization – Product of Sums (POS)

**Extra Example:**  $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$ 



$$F = (AB + CD + BD')' = (A' + B')(C' + D')(B' + D)$$

37STUDENTS-HUB.com

20 24

Uploaded By: 1230358@student\_birzeit\_eduil

ENCS 2340



## **Extra Example:** $F(A,B,C,D) = \Sigma_m(3,9,11,12,13,14,15) + \Sigma d(1,4,6)$





38STUDENTS-HUB.com

20 24

Uploaded By: 1230358@student.birzeit.eduil



# What if the function was **given** as **product of maxterms**?

- **1) Complement**  $F \rightarrow F'$  in **Sum-of Product** From (SOP)
- 2) Mark **F' minterms**' squares with **0's** and the **remaining** squares with **1's**.





## The map of **five** variables $\rightarrow$ two **four** variable maps.



## **F(A,B,C,D,E)**



## Example: $F(A, B, C, D, E) = \sum (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$



**5-Variables** No. Cells Literals e.g. 5 ABCDE 1 2 **BCDE** 4 CDE 3 4 8 2 DE 16 Е F=1 32 Zero

41STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduil

**Example:** 

ENCS 2340



42STUDENTS-HUB.com

Uploaded By: 1230358@student\_birzeit\_eduil



- ⊖ Digital circuits are frequently constructed with NAND or NOR gates rather than with AND or OR gates.
- O NAND and NOR gates are easier to fabricate with electronic components and are the basic gates used in all Integrated Circuit (IC) digital logic families.
- NAND and NOR gates are universal gates
   Any digital system can be implemented with them
- To implement a function with NAND it need to be in Sum-of Products (SOP) form
  To implement a function with NOR it need to be in Product-of Sums (POS) form

Rules have been developed to **convert** any logic circuit to its **equivalent** form in just **NAND gates or NOR gates** 



Uploaded By: 1230358@student.birzeit.eduil

ENCS 2340



### **NAND Graphic Symbols**



- ⊖ **Both** Symbols are **same** because of DeMorgan's theorem
- ⊖ Circuits could be **drawn** using **any** of these symbols
- When a circuit uses **both** symbols it is said to follow **mixed notation**

44STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil



- A set of gates is functionally complete if any Boolean expression can be realized with this set of gates
   AND, OR, and inverter is functionally complete
- Any set of gates which can implement AND, OR and inverter is also functionally complete

All gates can be **represented** using Only **NAND** gates → NAND is **functionally complete** 



45STUDENTS-HUB.com

Logic Operations with NAND gates aded By: 1230358@student.birzeit.eduil

ENCS 2340

46STUDENTS-HUB.com

20 24



### **Example:** Implement F = AB + CD, using NAND gates



#### **Inverts** on **same** line **cancel** each others





**Use the AND-Invert Form** 

Uploaded By: 1230358@student.birzeit.edulil

- **⊖ Two-level** Implementation using NAND Gates
  - 1) **Simplify** the function and express it in **sum-of-products** form.
  - Draw a NAND gate for each product term of the expression that has at least two literals. The inputs to each NAND gate are the literals of the term. This procedure produces a group of <u>first-level gates</u>.
  - 3) Draw a **single gate** using the AND-invert or the invert-OR graphic symbol in the **second** level, with **inputs** coming from outputs of **first-level gates**.
  - 4) A term with a single literal requires an inverter in the first level. However, if the single literal is complemented, it can be connected directly to an input of the second level NAND gate.





**Example:** Implement F(x, y, z) = (1, 2, 3, 4, 5, 7) with NAND gates



#### NAND IMPLEMENTATION – 2-Level





- ⊖ The general procedure for converting a **multilevel** AND–OR diagram into an all-NAND diagram using mixed notation is as follows:
  - 1) **Convert** all AND gates to NAND gates with AND-invert graphic symbols.
  - 2) **Convert** all OR gates to NAND gates with **invert-OR** graphic symbols.
  - 3) Check all the bubbles in the diagram. For every <u>bubble</u> that is <u>not compensated</u> by another small circle (bubble) along the same line, insert an inverter (a one-input NAND gate) or complement the input literal.

ENCS 2340







The **NOR** operation is the **dual** of the **NAND** operation. Therefore, all procedures and rules for NOR logic are the **duals** of the corresponding procedures and rules developed for NAND logic

## **NOR Graphic Symbols**



- ⊖ **Both** Symbols are **same** because of DeMorgan's theorem
- ⊖ Circuits could be **drawn** using **any** of these symbols
- ⊖ When a circuit uses **both** symbols it is said to follow **mixed notation**



Uploaded By: 1230358@student.birzeit.edulil



All gates can be **represented** using Only **NOR** gates → NOR is **functionally complete** 



Logic Operations with NOR gates

53STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduli



**Simplify** the function and express it in **product-of-soms** form

**Use the OR-Invert Form** 







When Converting to NOR, Don't forget to **complement** the **direct** inputs (Single Literals)

54STUDENTS-HUB.com

Uploaded By: 1230358@student\_birzeit\_eduil



## **Extra Example:** A F = (AB' + A'B)(C + D')B'A BF D'(a) AND-OR gates A BF A B'D'

55 TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit\_eduil

#### AND-OR to NAND Conversion





20 24

AND-OR to NOR Conversion





- ⊖ SOP and POS are **basic** forms of expressing functions
- ⊖ These functions can be implemented in **different** ways
- ⊖ So far, we have seen **multiple** ways of implementing the SOP and POS expressions
  - ✓ SOP can be represented as two-level **AND-OR** logic
  - ✓ SOP can be represented as two-level **NAND-NAND** logic
  - POS can be represented as two-level OR-AND logic
  - ✓ POS can be represented as two-level NOR-NOR logic

How many two-level logics may be formed using the four types of gates (AND, OR, NAND, NOR)?

 $2^4 \rightarrow 16$  Ways



Uploaded By: 1230358@student.birzeit.eduil

ENCS 2340





<sup>5</sup>∞STUDENTS-HUB.com

Uploaded By: 1230358@student\_birzeit\_eduli

ENCS 2340





60STUDENTS-HUB.com



Uploaded By: 1230358@student.birzeit.eduli





61STUDENTS-HUB.com



Uploaded By: 1230358@student.birzeit.eduli





Uploaded By: 1230358@student.birzeit.edulil

625 TUDENTS-HUB.com

20 24

63STUDENTS-HUB.com







Uploaded By: 1230358@student.birzeit.eduil



OR-ANDAND-ORNOR-NORNAND-NANDNAND-ANDNOR-ORAND-NOROR-NAND

- ⊖ The **first** gate listed in each of the forms constitutes a **first level** implementation.
- ⊖ The **second** gate listed is a single gate placed in the **second level**.
- ⊖ Note that any **two forms** listed in the same line are **duals** of each other.
- ⊖ The green four forms have been investigated **previously**.
- ⊖ The red four forms are investigated **next**.





## **AND-OR-INVERT** Implementation



- ⊖ The two forms **NAND-AND** and **AND-NOR** are equivalent forms and can be treated together
- ⊖ Both perform the **AND-OR-INVERT** function
- ⊖ The AND-OR-INVERT implementation is similar to AND-OR (SOP), except for the inversion

$$F = (AB + CD + E)'$$



655TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduil



## **OR-AND-INVERT** Implementation



- ⊖ The two forms **OR**–**NAND** and **NOR**–**OR** are equivalent forms and can be treated together
- ⊖ Both perform the **OR−AND−INVERT** function
- ⊖ The OR-AND-INVERT implementation is similar to OR-AND (POS), except for the inversion

F = [ (A+B) (C+D) E]'



66STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil



O The following table summarizes the procedures for implementing a Boolean function in any one of the four 2-level forms: NAND-AND, AND-NOR, OR-NAND and NOR-OR

| Equ<br>Nondegenera   | uivalent<br>te Implementation | Implements    | Simplify                                                   | To Get |
|----------------------|-------------------------------|---------------|------------------------------------------------------------|--------|
| (a)                  | (b)*                          | Form          | into                                                       | of     |
| AND-NOR              | NAND-AND                      | AND-OR-INVERT | Sum-of-products<br>form by combining<br>0's in the map.    | F      |
| OR-NAND              | NOR-OR                        | OR-AND-INVERT | Product-of-sums<br>form by combining<br>1's in the map and | F      |
| *Form (b) requires a | n inverter for a single liter | al term.      | then complementing.                                        |        |

⊖ Because of the **INVERT** part in each case, it is convenient if we find the **simplification of F**′

⊖ When F' is implemented as an AND-OR or an OR-AND form, we can easily get F by simply adding an INVERT at the end. This will give us the circuit in one of the above-mentioned forms

### 67STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil



Implementation With AND-NOR and NAND-AND 
$$F(x,y,z)=\Sigma(0,6)$$

- 1) Find the **simplified** form of **F**'
  - ✓ Form a K-map and group  $0's \rightarrow$  SOP form of **F**'
- 2) Implement **F**' in a two-level **AND-OR** form
- 3) By adding a **NOT** gate at the output, we get **F** 
  - The resulting form is AND-OR-INVERT form which can be easily converted to get AND-NOR and NAND-AND forms





$$F(x, y, z) = \Sigma(0, 6)$$

- 1) Find the **simplified** form of **F** 
  - ✓ Form a K-map and group  $1's \rightarrow$  SOP form of  $F \rightarrow$  find F' by taking the complement of F
- 2) Implement **F**' in a two-level **OR-AND** form

Implementation With **OR-NAND** and **NOR-OR** 

- 3) By adding a **NOT** gate at the output, we get **F** 
  - The resulting form is OR-AND-INVERT form which can be easily converted to get OR-NAND and NOR-OR forms







| Form                | SOP from K-map?<br>DeMorgan Invert? | Gate Type                                 | Procedure                                                                                            |
|---------------------|-------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|
| AND-OR (AO)         | F<br>No                             | AND-OR = NAND-NAND<br>(SOP)               | Circle <b>1's</b> in the K-Map<br>and minimize                                                       |
| AND-OR-INVERT (AOI) | <b>F'</b><br>No                     | AND-NOR =NAND-AND<br>(SOP <b>Invert</b> ) | Circle <b>0's</b> in the K-Map<br>and minimize                                                       |
| OR-AND (OA)         | <b>F'</b><br>Yes                    | OR-AND =NOR-NOR<br>(POS)                  | Circle <b>0's</b> in the K-Map<br>and minimize SOP.<br>Use <b>DeMorgan's</b> to<br>transform to POS  |
| OR-AND-INVERT (OAI) | F<br>Yes                            | OR-NAND = NOR-OR<br>(POS <b>Invert</b> )  | Circle <b>1's</b> in the K-Map<br>and minimize SOP.<br>Use <b>DeMorgan's</b> to<br>transform to POS. |

76 TUDENTS-HUB.com

Remember: We always get a SOP from the K-map Uploaded By: 1230358@student.birzeit.eduil

### Other Two-Level Implementations –Summary



|                     | Level 1    | Level 2 | Equivalent         | Final Form       | Remarks     |
|---------------------|------------|---------|--------------------|------------------|-------------|
|                     | AND        | AND     | AND-AND            | AND              | Degenerate  |
|                     | AND        | OR      | AND-OR             | SOP              |             |
|                     | AND        | NAND    | AND-AND-NOT        | AND-NOT          | Degenerate  |
|                     | AND        | NOR     | AND-OR-NOT         | SOP-INVERT       |             |
|                     | OR         | AND     | OR-AND             | POS              |             |
|                     | OR         | OR      | OR-OR              | OR               | Degenerate  |
|                     | OR         | NAND    | OR-AND-NOT         | POS-INVERT       |             |
|                     | OR         | NOR     | OR-OR-NOT          | OR-NOT           | Degenerate  |
|                     | NAND       | AND     | AND-NOT-NOT-NOR    | SOP-INVERT       |             |
|                     | NAND       | OR      | NOT-OR-OR          | NOT-OR           | Degenerate  |
|                     | NAND       | NAND    | AND-NOT-NOT-OR     | SOP              |             |
|                     | NAND       | NOR     | AND-NOT-NOT-AND    | AND              | Degenerate  |
|                     | NOR        | AND     | NOT-AND-AND        | NOT-AND          | Degenerate  |
|                     | NOR        | OR      | OR-NOT-NOT-AND-NOT | POS-INVERT       |             |
|                     | NOR        | NAND    | OR-NOT-NOT-OR      | OR               | Degenerate  |
| <sup>1</sup> STUDEN | TS-HUB.Com | NOR     | OR-NOT-NOT-AND     | Uploaded By: 123 | 30358@stude |
|                     |            |         |                    |                  |             |



- ⊖ The Exclusive-OR (XOR) function is an important Boolean function used extensively in logic circuits.
- Implemented directly as an electronic circuit (true gate) or implemented by interconnecting other gate types.
- ⊖ The Exclusive-NOR (XNOR) function, also known as equivalence function, is the complement of the XOR function.



Uploaded By: 1230358@student.birzeit.eeluii






73STUDENT Bre Hebblicient only when both X and Y are equal (equivalent). Uploaded By: 1230358@student.birzeit.eduli

20 24



XOR: 
$$x \oplus y = xy' + x'y$$
  
XNOR:  $(x \oplus y)' = xy + x'y'$   
 $x \oplus 0 = x, x \oplus 1 = x'$   
 $x \oplus x = 0, x \oplus x' = 1$   
 $x \oplus y' = x' \oplus y = (x \oplus y)'$   
 $x \oplus y = y \oplus x$  Commutative  
 $(x \oplus y) \oplus z = x \oplus (y \oplus z) = x \oplus y \oplus z$ 

74STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduil

Associative

XOR / XNOR Properties

20 24



75 TUDENTS-HUB.com

 $(A \odot B) \oplus (C \odot D) = A \oplus B \oplus C \oplus D$ 

ENCS 2340



20 24



 Multi-input XOR gates are difficult to fabricate with hardware

 Even a two-input gate is usually constructed with other types of gates



76STUDENTS-HUB.com

XOR is an Odd Function

• The exclusive-OR operation with three or more variables can be expressed as:  $A \oplus B \oplus C$ 

The multiple-variable exclusive-OR operation is defined as an odd function ('1' when odd number of variables are equal to 1)

| A | B | C | $A \oplus B \oplus C$ |                   |
|---|---|---|-----------------------|-------------------|
| 0 | 0 | 0 | 0                     |                   |
| 0 | 0 | 1 | 1                     | Odd number of 1's |
| 0 | 1 | 0 | 1                     | Odd number of 1's |
| 0 | 1 | 1 | 0                     |                   |
| 1 | 0 | 0 | 1                     | Odd number of 1's |
| 1 | 0 | 1 | 0                     |                   |
| 1 | 1 | 0 | 0                     |                   |
| 1 | 1 | 1 | 1                     | Odd number of 1's |

Uploaded By: 1230358@student.bitzeitechui

77STUDENTS-HUB.com

ENCS 2340 20 24

⊖ The complement of an **odd** function is an **even** function

$$(A \oplus B \oplus C)' = \Sigma(0,3,5,6)$$

| A | B | C | $(A \oplus B \oplus C)'$ |                    |
|---|---|---|--------------------------|--------------------|
| 0 | 0 | 0 | 1                        | Even number of 1's |
| 0 | 0 | 1 | 0                        |                    |
| 0 | 1 | 0 | 0                        |                    |
| 0 | 1 | 1 | 1                        | Even number of 1's |
| 1 | 0 | 0 | 0                        |                    |
| 1 | 0 | 1 | 1                        | Even number of 1's |
| 1 | 1 | 0 | 1                        | Even number of 1's |
| 1 | 1 | 1 | 0                        |                    |



## K-Maps for XOR and XNOR Operations

20 24











<sup>8</sup> TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eeluii



- ⊖ A parity bit is an <u>extra</u> bit included with a <u>binary message</u> to make the number of 1's either odd or even.
- Parity bit is used for the purpose of **detecting errors** during the transmission of binary information.
- ⊖ The circuit that **generates** the parity bit in the **transmitter** is called a **parity generator**.
- The circuit that **checks** the parity in the **receiver** is called a **parity checker**.
- ⊖ Exclusive-OR/NOR gates (Odd/Even Functions) are useful for generating and checking a parity bit





81STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil





**Example:** Transmitting a **3-bit** message with **even parity bit**. The three bits – x, y, and z constitute the message and are the inputs to the circuit. The parity bit **P** is the **output**.

**Parity Generator** 

P is **Even parity** bit  $\rightarrow$  P = 1 if the number of 1's in the 3-bit message is **odd**  $\rightarrow$  P is an **odd function** and can be implemented using **3-Inputs XOR** 

$$P = x \oplus y \oplus z$$



**Parity Generator** 

82 TUDENTS-HUB.com

| Three | -Bit Me | Parity Bit |   |  |
|-------|---------|------------|---|--|
| x     | y       | z          | Р |  |
| 0     | 0       | 0          | 0 |  |
| 0     | 0       | 1          | 1 |  |
| 0     | 1       | 0          | 1 |  |
| 0     | 1       | 1          | 0 |  |
| 1     | 0       | 0          | 1 |  |
| 1     | 0       | 1          | 0 |  |
| 1     | 1       | 0          | 0 |  |
| 1     | 1       | 1          | 1 |  |

Uploaded By: 1230358@student.birzeit.eduil



## **Parity Checker**



- 1) The **three bits** in the message <u>together</u> with the **even** parity bit **P** are <u>transmitted</u> (4 bits)
- 2) The **receiver** at the destination <u>checks</u> for an **even** number of 1's in the 4-bit message and
- generates an error C equal to 1 if the number of 1's in the message is odd
- 3) C (error) can be implemented using **XOR**

$$C = x \oplus y \oplus z \oplus P$$



**Parity Checker** 

83STUDENTS-HUB.com

 $\mathbf{C} = 1 \rightarrow \text{Error}$ 

| Four Bits<br>Received |   |   |   | Parity Error<br>Check |
|-----------------------|---|---|---|-----------------------|
| x                     | y | z | Р | с                     |
| 0                     | 0 | 0 | 0 | 0                     |
| 0                     | 0 | 0 | 1 | 1                     |
| 0                     | 0 | 1 | 0 | 1                     |
| 0                     | 0 | 1 | 1 | 0                     |
| 0                     | 1 | 0 | 0 | 1                     |
| 0                     | 1 | 0 | 1 | 0                     |
| 0                     | 1 | 1 | 0 | 0                     |
| 0                     | 1 | 1 | 1 | 1                     |
| 1                     | 0 | 0 | 0 | 1                     |
| 1                     | 0 | 0 | 1 | 0                     |
| 1                     | 0 | 1 | 0 | 0                     |
| 1                     | 0 | 1 | 1 | 1                     |
| 1                     | 1 | 0 | 0 | 0                     |
| 1                     | 1 | 0 | 1 | 1                     |
| 1                     | 1 | 1 | 0 | 1                     |
| 1                     | 1 | 1 | 1 | 0                     |

Uploaded By: 1230358@student.birzeit.edulil