Birzeit University Mathematics Department

HW

Math 234

2017/2018

Name	Number	Section
(Q1) [60 points] Fill the blanks with true (T)	or false (F).	
(1) If E an elementary matrix of type II, then it is both nonsingular and symmetric.		
(2) If A and B are $n \times n$ symmetric matrices, then the matrix $AB + BA$ is also symmetric.		
(3) If A is an $n \times n$ singular matrix, then the system $Ax = b$ has infinitely many solutions.		
] (4) If E is an elementary matrix of type III, then $E^{-1} = E$.		
] (5) If A and B are symmetric matrices,	then AB is also symmetric.	
] (6) If $A^2 = I$, then $A^{-1} = A$.		
] (7) The product of two elementary matr	rices is an elementary matrix.	
] (8) Any $m \times n$ linear system $Ax = 0$ has	s a nontrivial solution if $m > r$	п.
] (9) If A is a nonsingular matrix, then A	T is nonsingular.	
] (10) The sum of two triangular matrices	s is a triangular matrix.	
] (11) If E is an elementary matrix, then	E^T is also elementary of the s	ame type.
] (12) If A is a singular matrix, then the s	system $Ax = 0$ has infinite nur	nber of solutions.
] (13) If A is a singular matrix and U is t	he $RREF$ of A , then U must	have al least one zero row.
] (14) Any invertible matrix is a product	of elementary matrices.	
] (15) If A is symmetric and nonsingular,	then A^{-1} is symmetric.	
] (16) All 5×5 nonsingular matrices are a	row equivalent.	
] (17) If A is a square matrix and the system A	tem $Ax = 0$ has a nontrivial so	blution, then A is nonsingular.
] (18) If A is an $n \times n$ nonsingular matrix	x, then A^3 is nonsingular.	
] (19) If A is a nonsingular matrix and α	a nonzero scalar, then $(\alpha A)^{-1}$	$= \alpha A^{-1}.$
] (20) If A and B are $n \times n$ diagonal mat	rices, then $AB = BA$.	
] (21) If A is a 3×3 matrix with $a_1 = a_2$	$= a_3$, then $Ax = 0$ has infinite	ly many solutions.
] (22) If A and B are nonsingular $n \times n$ in	natrices, then $A + B$ is also no	onsingular.
] (23) If A is both symmetric and skew-sy	metric, then A is a zero mat	trix.
] (24) If the system $Ax = b$ is consistent,	then b is a linear combination	of the columns of A .
] (25) A square matrix A is nonsingular if	ff its RREF is the identity mat	brix.
] (26) If b can be written as a linear combin Ax = b has infinitely many solutions	nation of the columns of a sing .	ular matrix A , then the system

-] (27) If A, B, C are $n \times n$ nonsingular matrices, then $A^2 B^2 = (A B)(A + B)$.
-] (28) If b is any column of the matrix A, then the system Ax = b is consistent.
-] (29) The sum of a symmetric and skew-symmetric matrices is skew-symmetric.

STUDENTS-HUB.com

Uploaded By: anonymous

- [] (30) Let A be nonsingular. If A is skew-symmetric, then A^{-1} is skew-symmetric.
 -] (31) Let A be nonsingular. If A is upper triangular, then A^{-1} is upper triangular.
 -] (32) Let A be nonsingular. If A is diagonal, then A^{-1} is diagonal.
- [33] If A is a 3×3 matrix and $(2, 3, -1)^T$ is a solution to Ax = 0, then $(-6, -9, 3)^T$ is also a solution.
-] (34) If the square system Ax = b has more than one solution, then A is singular.
-] (35) If A is a 4×4 nonsingular matrix, then AA^T is both symmetric and nonsingular.
-] (36) If A is a 4×4 matrix and Ax = 0 has only the zero solution, then A is row equivalent to I.
-] (37) If A is a nonsingular matrix, then $(A^T)^T = (A^{-1})^{-1}$.
- [(38) Every linear system with eight unknowns in three equations is consistent.
- (39) If the augmented matrix of a 3×2 system is row equivalent to I, then this system is inconsistent.
- [] (40) The identity matrix is row equivalent to any elementary matrix of the same size.