
1

20
24

Mohammed Khalil

Digital Systems
Section 2

Verilog (Combinational)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

2

ENCS
2340

20
24

Mohammed Khalil

Programming: Bridging Software and Hardware

֍ In the world of programming, tasks can be executed in two ways:

ↇ Serial Programming: Operations are executed one after another, step-by-step, in
a sequential order. This is common in software programming, where the focus
is on algorithms and data manipulation (e.g., Python, C++).

ↇ Parallel Programming: Multiple operations happen simultaneously. This is
essential in hardware programming, where circuits can handle multiple tasks at
the same time (e.g., multiple logic gates working concurrently).

 Hardware programming languages like Verilog and VHDL help describe how digital circuits perform
these parallel operations efficiently. This shift from sequential software logic to parallel hardware logic is key
to understanding HDLs.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

3

ENCS
2340

20
24

Mohammed Khalil

Hardware Programming

֍ What is Hardware Programming?
ↇ Describes the behavior and structure of digital circuits.

֍ Key Languages:
ↇ VHDL: Strongly typed, verbose, suited for large, complex systems.
ↇ Verilog: Compact syntax, simpler, often used in commercial applications.

֍ Difference from Software Programming:
ↇ HDLs describe hardware behavior, not algorithms.
ↇ Parallel operations are at the core, unlike the sequential nature of traditional

software.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

4

ENCS
2340

20
24

Mohammed Khalil

Introduction to Verilog

֍ What is Verilog?
ↇ A hardware description language used to model digital circuits.
ↇ Popular in both academia and industry for designing FPGAs and ASICs.

֍ Why Use Verilog?
ↇ Compact and easy to learn.
ↇ Allows testing and simulating circuit designs before physical implementation.

֍ Key Concepts Covered:
ↇ Modules, gates, and behavioral/structural modeling.

Verilog ≡ Verifying Logic

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

5

ENCS
2340

20
24

Mohammed Khalil

Logic Simulation

֍ A technique used to verify the behavior and functionality of digital circuits before physical
implementation.

֍ Purpose:
ↇ Identifies errors early in the design process.
ↇ Ensures the circuit works as expected under different input conditions.

֍ Applications in Hardware Design:
ↇ Used extensively with Verilog and VHDL models.
ↇ Simulates gate-level designs, timing constraints, and functional behavior.
ↇ Timing Diagrams: Visual representation of the state of a digital signal over time, illustrating how

signals interact within the circuit.
ↇ Test Bench: A simulation environment where input signals are applied to the design under test

(DUT) to verify its operation.

֍ Tools:
ↇ ModelSim, Cadence, Quartus II

֍ Key Benefit:
ↇ Saves time and cost by avoiding rework during fabrication

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

6

ENCS
2340

20
24

Mohammed Khalil

Logic Synthesis

֍ Overview:
ↇ Logic synthesis is similar to translating a program.
ↇ The output of logic synthesis is a digital circuit.

֍ Key Concepts:
ↇ A digital circuit modeled in Verilog can be translated into a list of components and their interconnections,
 known as a netlist.
ↇ Synthesis can be used to fabricate an integrated circuit.
ↇ Synthesis can also target a Field Programmable Gate Array (FPGA).

֍ FPGA Configuration:
ↇ An FPGA chip can be configured to implement a digital circuit.
ↇ The digital circuit can be modified by reconfiguring the FPGA.

֍ Automation in Design:
ↇ Logic simulation and synthesis are automated processes.
ↇ This is accomplished using special software known as Electronic Design Automation (EDA) tools.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

7

ENCS
2340

20
24

Mohammed Khalil

Verilog Digital Circuits

֍ A digital circuit is described in Verilog as a set of modules

֍ A module is the design entity in Verilog

֍ A module is declared using the module keyword

֍ A module is terminated using the endmodule keyword

֍ Each module has a name and a list of input and output ports

֍ The module is described by a group of statements

֍ Statements can describe the module's structure or behavior

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

8

ENCS
2340

20
24

Mohammed Khalil

Verilog Digital Circuits

֍ The input keyword defines the input ports: A, B, C

֍ The output keyword defines the output ports: x, y

֍ The wire keyword defines an internal connection: w

֍ The structure of simple_circuit is defined by three gates: and, not, or

֍ Each gate has an optional name, followed by the gate output then inputs

module simple_circuit(input A, B, C, output x, y);

 wire w;

 and g1(w, A, B);

 not g2(y, C);

 or g3(x, w, y);

endmodule

A

B

C

w

x

y

g1

g2

g3

Example:

Order is NOT important

Optional

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

9

ENCS
2340

20
24

Mohammed Khalil

Verilog Syntax

֍ Keywords: have special meaning in Verilog

 Many keywords: module, input, output, wire, and, or, etc.

 Keywords can NOT be used as identifiers

֍ Identifiers: are user-defined names for modules, ports, etc.

 Verilog is case-sensitive: A and a are different names

֍ Comments: can be specified in two ways (similar to C)

 Single-line comments begin with // and terminate at end of line

 Multi-line comments are enclosed between /* and */

֍ White space: space, tab, newline can be used freely in Verilog

֍ Operators: operate on variables (similar to C: ~ & | ^ + - etc.)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

10

ENCS
2340

20
24

Mohammed Khalil

Verilog Syntax

֍ Basic gates: and, nand, or, nor, xor, xnor, not, buf

֍ Verilog define these gates as keywords

֍ Each gate has an optional name

֍ Each gate has an output (listed first) and one or more inputs

֍ The not and buf gates can have only one input (Unary)

Examples:

and g1(x,a,b); // 2-input and gate named g1

or g2(y,a,b,c); // 3-input or gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

11

ENCS
2340

20
24

Mohammed Khalil

Half Adder Modeling

module Half_Adder(x, y, C, S);

 input x, y;

 output S, C;

 and (C, x, y);

 xor (S, x, y);

endmodule

Alternative way to
define Input/Output

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

12

ENCS
2340

20
24

Mohammed Khalil

Full Adder Modeling

module Full_Adder(input x, y, z, output C, S);

 wire w1, w2, w3;

 and (w1, x, y);

 xor (w2, x, y);

 and (w3, w2, z);

 xor (S, w2, z);

 or (C, w1, w3);

endmodule

x y z

SC

w1

w2
w3

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

13

ENCS
2340

20
24

Mohammed Khalil

Gate Delay

module Half_Adder(input a, b, output cout, sum);

 and #2 (cout, a, b); // gate delay = 2ns

 xor #3 (sum, a, b); // gate delay = 3ns

endmodule

֍ When simulating Verilog modules, it is sometime necessary to specify the delay of gates using

the # symbol

֍ The timescale directive specifies the time unit and precision

֍ timescale is also used as a simulator option

֍ timescale 1ns/100ps

Time unit = 1ns = 10-9 sec

Precision = 100ps = 0.1ns

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

14

ENCS
2340

20
24

Mohammed Khalil

Gate Delay

module Full_Adder(input x, y, z, output C, S);

 wire w1, w2, w3;

 and #2 (w1, x, y);

 xor #3 (w2, x, y);

 and #2 (w3, w2, z);

 xor #3 (S, w2, z);

 or #2 (C, w1, w3);

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

15

ENCS
2340

20
24

Mohammed Khalil

Continuous Assignment

֍ The assign statement defines continuous assignment

֍ Syntax: assign name = expression;

֍ Assigns expression value to name (output port or wire)

Examples:

assign x = a&b | c&~d; // x = ab + cd'

assign y = (a|b) & ~c; // y = (a+b)c'

assign z = ~(a|b|c); // z = (a+b+c)'

assign sum = (a^b) ^ c; // sum = (a b) c

 Verilog uses the bit operators: ~ (not), & (and), | (or), ^ (xor)

 Operator precedence: (parentheses), ~ , & , | , ^

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

16

ENCS
2340

20
24

Mohammed Khalil

Continuous Assignment with Delay

֍ Syntax: assign #delay name = expression;

Example:

module Full_Adder (input x, y, z, output C, S);

 assign #6 S = (x^y)^z; // delay = 6

 assign #7 C = x&y | (x^y)&z; // delay = 7

endmodule

 The order of the assign statements does NOT matter

 They are sensitive to inputs (x, y, z) that appear in the expressions

 Any change in value of the input ports (x, y, z) will re-evaluate the
outputs S and C of the assign statements

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

17

ENCS
2340

20
24

Mohammed Khalil

Verilog Data Types

֍ Verilog has two major data types

1) Net data types: are connections between parts of a design

2) Variable data types: can store data values

֍ The wire is a net data type

ↇ A wire cannot store a value

ↇ Its value is determined by its driver, such as a gate, a module output, or continuous assignment

֍ The reg is a variable data type

ↇ Can store a value from one assignment to the next

ↇ Used only in procedural blocks, such as the initial block

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

18

ENCS
2340

20
24

Mohammed Khalil

The initial Statement

֍ The initial statement is a procedural block of statements

֍ The body of the initial statement surrounded by begin-end is sequential

֍ Procedural assignments are used inside the initial block

֍ Procedural assignment statements are executed in sequence

֍ Syntax: #delay variable = expression;

֍ Procedural assignment statements can be delayed

֍ The optional #delay indicates that the variable (of reg type) should be

updated after the time delay

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

19

ENCS
2340

20
24

Mohammed Khalil

Test Bench

֍ In order to simulate a circuit, it is necessary to apply inputs to the circuit for the simulator to

generate an output response

֍ A test bench is written to verify the correctness of a design

֍ A test bench is written as a Verilog module with no ports

֍ It instantiates the module that should be tested

֍ It provides inputs to the module that should be tested

֍ Test benches can be complex and lengthy, depending on the complexity of the design

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

20

ENCS
2340

20
24

Mohammed Khalil

Test Bench

Example:

module Test_Full_Adder; // No need for Ports

 reg x, y, z; // reg (variable) inputs

 wire S, C; // wire (net) outputs

// Instantiate the module to be tested

 Full_Adder FA (x, y, z, C, S);

 initial begin // initial block

 x=0; y=0; z=0; // at t=0 time units

 #20 x=1; y=1; // at t=20 time units

 #20 x=0; y=0; z=1; // at t=40 time units

 #20 x=1; z=0; // at t=60 time units

 #20 $finish; // at t=80 finish simulation

 end // end of initial block

endmodule

Change the Inputs
&

Monitor the Effect on Outputs

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

21

ENCS
2340

20
24

Mohammed Khalil

Test Bench

Simulator Run:

 Examine the waveforms to verify the correctness of your design

 At t = 0 ns, the values of cout and sum are unknown (shown in red)

 The cout and sum signals are delayed by 7ns and 6ns, respectively

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

22

ENCS
2340

20
24

Mohammed Khalil

Modular Design: 4-bit Adder

֍ Uses identical copies of a full adder to build a large adder

֍ Simple to implement: the cell (iterative block) is a full adder

֍ Carry-out of cell i becomes carry-in to cell (i +1)

֍ Can be extended to add any number of bits

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

23

ENCS
2340

20
24

Mohammed Khalil

Module Instantiation

֍ Module declarations are like templates

֍ Module instantiation is like creating an object

֍ Modules are instantiated inside other modules at different levels

֍ The top-level module does NOT require instantiation

֍ Module instantiation defines the structure of a digital design

֍ It produces module instances at different levels

֍ The ports of a module instance must match those declared

֍ The matching of the ports can be done by name or by position

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

24

ENCS
2340

20
24

Mohammed Khalil

4-bit Adder using Module Instantiation

module Adder4 (input a0, a1, a2, a3, b0, b1, b2, b3, c0, output s0, s1, s2, s3, c4);

 wire c1, c2, c3; // Internal wires for the carries

 // Instantiate Four Full Adders: FA0, FA1, FA2, FA3

 // The ports are matched by position

 Full_Adder FA0 (a0, b0, c0, c1, s0);

 Full_Adder FA1 (a1, b1, c1, c2, s1);

 Full_Adder FA2 (a2, b2, c2, c3, s2);

 Full_Adder FA3 (a3, b3, c3, c4, s3);

 // Can also match the ports by name

 // Full Adder FA0 (.a(a0), .b(b0), .c(c0), .cout(c1), .sum(s0));

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

25

ENCS
2340

20
24

Mohammed Khalil

Test Bench for the 4-bit Adder

module Adder4_TestBench; // No Ports

 reg a0, a1, a2, a3; // variable inputs

 reg b0, b1, b2, b3, cin; // variable inputs

 wire s0, s1, s2, s3, cout; // net outputs

 // Instantiate the module to be tested

 Adder4 Add4 (a0,a1,a2,a3, b0,b1,b2,b3, cin, s0,s1,s2,s3, cout);

 initial begin // initial block

 a0=0;a1=0;a2=0;a3=0; // at t=0

 b0=0;b1=0;b2=0;b3=0;cin=0; // at t=0

 #100 a1=1;a3=1;b2=1;b3=1; // at t=100

 #100 a0=1;a1=0;b1=1;b2=0; // at t=200

 #100 a2=1;a3=0;cin=1; // at t=300

 #100 $finish; // at t=400 finish simulation

 end // end of initial block

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

26

ENCS
2340

20
24

Mohammed Khalil

Four-Valued Logic

֍ Verilog Value Set consists of four basic values:

a) 0 – represents a logic zero, or false condition

b) 1 – represents a logic one, or true condition

c) X – represents an unknown logic value

d) Z – represents a high-impedance value

֍ x or X represents an unknown or uninitialized value

֍ z or Z represents the output of a disabled tri-state buffer

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

27

ENCS
2340

20
24

Mohammed Khalil

Data Types (Revision)

֍ Recall: Verilog has two major data types:

⦿ Net data types: are connections between parts of a design

⦿ Variable data types: can store data values

֍ The wire is a net data type (physical connection)

⦿ A wire can NOT store the value of a procedural assignment

⦿ However, a wire can be driven by continuous assignment

֍ The reg is a variable data type

⦿ Can store the value of a procedural assignment

⦿ However, can NOT be driven by continuous assignment

֍ Other variable types: integer, time, real, and realtime

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

28

ENCS
2340

20
24

Mohammed Khalil

Modeling Circuits in Verilog

֍ Four levels of modeling circuits in Verilog

1) Gate-Level Modeling

⦿ Lowest-level modeling using Verilog primitive gates

2) Structural Modeling using module instantiation

⦿ Describes the structure of a circuit with modules at different levels

3) Dataflow Modeling using concurrent assign statements

⦿ Describes the flow of data between input and output

4) Behavioral Modeling using procedural blocks and statements

⦿ Describes what the circuit does at a higher level of abstraction

֍ Can also mix different models in the same design

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

29

ENCS
2340

20
24

Mohammed Khalil

Dataflow and Behavioral Modeling

֍ Dataflow Modeling using Continuous Assignment

⦿ Used mostly for describing Boolean equations and combinational logic

⦿ Verilog provides a rich set of operators

⦿ Can describe: adders, comparators, multiplexers, etc.

⦿ Synthesis tool can map a dataflow model into a target technology

֍ Behavioral Modeling using Procedural Blocks and Statements

⦿ Describes what the circuit does at a functional and algorithmic level

⦿ Encourages designers to rapidly create a prototype

⦿ Can be verified easily with a simulator

⦿ Some procedural statements are synthesizable (Others are NOT)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

30

ENCS
2340

20
24

Mohammed Khalil

Continuous Assignment

֍ The assign statement defines continuous assignment

⦿ Syntax: assign [#delay] net_name = expression;

⦿ Assigns expression value to net_name (wire or output port)

⦿ The optional #delay specifies the delay of the assignment

֍ Continuous assignment statements are concurrent

֍ Can appear in any order inside a module

֍ Continuous assignment can model combinational circuits

֍ Describes the flow of data between input and output

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

31

ENCS
2340

20
24

Mohammed Khalil

Verilog Operators

Bitwise Operators

~a Bitwise NOT

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

a ~^ b Bitwise XNOR

a ^~ b Same as ~^

Arithmetic Operators

a + b ADD

a – b Subtract

-a Negate

a * b Multiply

a / b Divide

a % b Remainder

Shift Operators

a << n Shift Left

a >> n Shift Right

Reduction Operators

&a AND all bits

|a OR all bits

^a XOR all bits

~&a NAND all bits

~|a NOR all bits

~^a XNOR all bits

Relational Operators

a == b Equality

a != b Inequality

a < b Less than

a > b Greater than

a <= b Less or equal

a >= b Greater or equal

Reduction operators produce a 1-bit result

Relational operators produce a 1-bit result

{a, b} concatenates the bits of a and b

Miscellaneous Operators

sel?a:b Conditional

{a, b} Concatenate

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

32

ENCS
2340

20
24

Mohammed Khalil

Bit Vectors

֍ A Bit Vector is multi-bit declaration that uses a single name

֍ A Bit Vector is specified as a Range [msb:lsb]

⦿msb → most-significant bit , lsb → least-significant bit

֍ Bit select: W[1] is bit 1 of W

֍ Part select: A[11:8] is a 4-bit select of A with range [11:8]

֍ The part select range must be consistent with vector declaration

Example:

input [15:0] A; // A is a 16-bit input vector

output [0:15] B; // Bit 0 is most-significant bit

wire [3:0] W; // Bit 3 is most-significant bit

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

33

ENCS
2340

20
24

Mohammed Khalil

Reduction Operators

module Reduce

 (input [3:0] A, B, output X, Y, Z);

 // A, B are input vectors, X, Y, Z are 1-bit outputs

 // X = A[3] | A[2] | A[1] | A[0];

 assign X = |A;

 // Y = B[3] & B[2] & B[1] & B[0];

 assign Y = &B;

 // Z = X & (B[3] ^ B[2] ^ B[1] ^ B[0]);

 assign Z = X & (^B);

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

34

ENCS
2340

20
24

Mohammed Khalil

Concatenation Operator { }

module Concatenate

 (input [7:0] A, B, output [7:0] X, Y, Z);

 // A, B are input vectors, X, Y, Z are output vectors

 // X = A is right-shifted 3 bits using { } operator

 assign X = {3'b000, A[7:3]};

 // Y = A is right-rotated 3 bits using { } operator

 assign Y = {A[2:0], A[7:3]};

 // Z = selecting and concatenating bits of A and B

 assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

35

ENCS
2340

20
24

Mohammed Khalil

Integer Literals (Constant Values)

֍ Syntax: [size]['base] value

⦿ size (optional) is the number of bits in the value

⦿ 'base can be: 'b(binary), 'o(octal), 'd(decimal), or 'h(hex)

⦿ value can be in binary, octal, decimal, or hexadecimal

⦿ If the 'base is NOT specified then the default is decimal value

֍ Examples:

☞ 8'b1011_1101 (8-bit binary), 'hA3F0 (16-bit hexadecimal)

☞ 16'o56377 (16-bit octal), 32'd999 (32-bit decimal)

֍ The underscore _ can be used to enhance readability of value

֍ When size is fewer bits than value, upper bits are truncated

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

36

ENCS
2340

20
24

Mohammed Khalil

16-bit Binary Adder

c0Full
Adder

a0 b0

s0

c1Full
Adder

a1 b1

s1

c2. . .
cn-1Full

Adder

an-1 bn-1

sn-1

cn

// Input ports: 16-bit a and b, 1-bit cin (carry input)

// Output ports: 16-bit sum, 1-bit cout (carry output)

module Adder_16 (input [15:0] a, b, input cin, output [15:0] sum, output cout);

 wire [16:0] c; // carry bits

 assign c[0] = cin; // carry input

 assign cout = c[16]; // carry output

 // Instantiate an array of 16 Full Adders

 // Each instance [i] is connected to bit select [i]

 Full_Adder FA [15:0] (a[15:0], b[15:0], c[15:0], c[16:1], sum[15:0]);

endmodule

Array Instantiation of

identical modules

by a single statement

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

37

ENCS
2340

20
24

Mohammed Khalil

16-bit Binary Adder using Continuous Assignment

// Input ports: 16-bit a and b, 1-bit cin (carry input)

// Output ports: 16-bit sum, 1-bit cout (carry output)

module Adder_16 (input [15:0] a, b, input cin, output [15:0] sum, output cout);

 wire [16:0] c; // carry bits

 assign c[0] = cin; // carry input

 assign cout = c[16]; // carry output

 // assignment of 16-bit vectors

 assign sum[15:0] = (a[15:0] ^ b[15:0]) ^ c[15:0];

 assign c[16:1] = (a[15:0] & b[15:0]) | (a[15:0] ^ b[15:0]) & c[15:0];

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

38

ENCS
2340

20
24

Mohammed Khalil

16-bit Binary Adder Using + Operator

module Adder16 (input [15:0] A, B, input cin, output [15:0] Sum, output cout);

 // A and B are 16-bit input vectors

 // Sum is a 16-bit output vector

 // {cout, Sum} is a concatenated 17-bit vector

 // A + B + cin is 16-bit addition + input carry

 // The + operator is translated into an adder

 assign {cout, Sum} = A + B + cin;

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

39

ENCS
2340

20
24

Mohammed Khalil

Modeling a Parametric n-bit Adder

// Parametric n-bit adder, default value for n = 16

module Adder #(parameter n = 16)

 (input [n-1:0] A, B, input cin, output [n-1:0] Sum, output cout);

 // A and B are n-bit input vectors

 // Sum is an n-bit output vector

 // The + operator is translated into an n-bit adder

 // Only one assign statement is used

 assign {cout, Sum} = A + B + cin;

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

40

ENCS
2340

20
24

Mohammed Khalil

Instantiating Adders of Various Sizes

// Instantiate a 16-bit adder (parameter n = 16)

// A1, B1, and Sum1 must be 16-bit vectors

Adder #(16) adder16 (A1, B1, Cin1, Sum1, Cout1);

// Instantiate a 32-bit adder (parameter n = 32)

// A2, B2, and Sum2 must be 32-bit vectors

Adder #(32) adder32 (A2, B2, Cin2, Sum2, Cout2);

// If parameter is not specified, it defaults to 16

Adder adder16 (A1, B1, Cin1, Sum1, Cout1);

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

41

ENCS
2340

20
24

Mohammed Khalil

Modeling a Magnitude Comparator

// n-bit magnitude comparator, No default value for n

module Comparator #(parameter n)

 (input [n-1:0] A, B, output GT, EQ, LT);

 // A and B are n-bit input vectors (unsigned)

 // GT, EQ, and LT are 1-bit outputs

 assign GT = (A > B);

 assign EQ = (A == B);

 assign LT = (A < B);

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

42

ENCS
2340

20
24

Mohammed Khalil

Instantiating Comparators of Various Sizes

// Instantiate a 16-bit comparator (n = 16)

// A1 and B1 must be declared as 16-bit vectors

Comparator #(16) comp16 (A1, B1, GT1, EQ1, LT1);

// Instantiate a 32-bit comparator (n = 32)

// A2 and B2 must be declared as 32-bit vectors

Comparator #(32) comp32 (A2, B2, GT2, EQ2, LT2);

// WRONG Instantiation: Must specify parameter n

Comparator comp32 (A2, B2, GT2, EQ2, LT2);

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

43

ENCS
2340

20
24

Mohammed Khalil

Conditional Operator

֍ Syntax:

֍ Boolean_expr ? True_expression : False_expression

֍ If Boolean_expr is true then select True_expression

֍ Else select False_Expression

֍ Conditional operators can be nested

Example:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

44

ENCS
2340

20
24

Mohammed Khalil

Modeling 2x1 Multiplexer

// Parametric 2x1 Mux, default value for n = 1

module Mux2 #(parameter n = 1)

 (input [n-1:0] A, B, input sel, output [n-1:0] Z);

 // A and B are n-bit input vectors

 // Z is the n-bit output vector

 // if (sel==0) Z = A; else Z = B;

 // Conditional operator used for selection

 assign Z = (sel == 0)? A : B;

endmodule

Z
n

sel

0A
n

1B
n

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

45

ENCS
2340

20
24

Mohammed Khalil

Modeling 4x1 Multiplexer

// Parametric 2x1 Mux, default value for n = 1

module Mux4 #(parameter n = 1)

 (input [n-1:0] A,B,C, D, input [1:0] sel, output [n-1:0] Z);

 // sel is a 2-bit vector

 // Nested conditional operators

 assign Z = (sel[1] == 0) ?

 ((sel[0] == 0) ? A : B) :

 ((sel[0] == 0) ? C : D);

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

46

ENCS
2340

20
24

Mohammed Khalil

Behavioral Modeling

֍ Uses procedural blocks and procedural statements

֍ There are two types of procedural blocks in Verilog

⦿ The initial block

✪ Executes the enclosed statement(s) one time only

⦿ The always block

✪ Executes the enclosed statement(s) repeatedly until simulation terminates

֍ The body of the initial and always blocks is procedural

֍ Can enclose one or more procedural statements

֍ Procedural statements are surrounded by begin … end

֍ Multiple procedural blocks can appear in any order inside a module and run in parallel

inside the simulator

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

47

ENCS
2340

20
24

Mohammed Khalil

Behavioral Modeling - Example

module behave;
reg clk; // 1-bit variable
reg [15:0] A;
 // 16-bit variable
initial begin // executed once
 clk = 0; // initialize clk
 A = 16'h1234; // initialize A
 #200 $finish
end

always begin // executed always
 #10 clk = ~clk; // invert clk every 10 ns
end

always begin // executed always
 #20 A = A + 1; // increment A every 20 ns
end

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

48

ENCS
2340

20
24

Mohammed Khalil

Always Block with Sensitivity List

֍ Syntax:

always @(sensitivity list) begin

 procedural statements

end

֍ An always block can have a sensitivity list

֍ Sensitivity list is a list of signals: @(signal1, signal2, …)

֍ The sensitivity list triggers the execution of the always block, when there is a change

of value in any listed signal. Otherwise, the always block does nothing until another

change occurs on a signal in the sensitivity list

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

49

ENCS
2340

20
24

Mohammed Khalil

Sensitivity List for Combinational Logic

֍ For combinational logic, the sensitivity list must include:

⦿ ALL the signals that are read inside the always block

֍ Combinational logic can also use: @(*) or @*

@(*) is automatically sensitive to all the signals that are read inside the always block

A, B, and sel are read

inside the always block

Example: A, B, and sel must be in the sensitivity list below:

always @(A, B, sel) begin

 if (sel == 0) Z = A;

 else Z = B;

end

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

50

ENCS
2340

20
24

Mohammed Khalil

If Statement

֍ The if statement is procedural

⦿ Can only be used inside a procedural block

֍ Syntax:

if (expression) statement

[else statement]

֍ The else part is optional

֍ A statement can be simple or compound

֍ A compound statement is surrounded by begin ... end

֍ if statements can be nested

⦿ Can be nested under if or under else part

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

51

ENCS
2340

20
24

Mohammed Khalil

Modeling 2x1 Multiplexer Using If Statement

// Behavioral Modeling of a Parametric 2x1 Mux

module Mux2 #(parameter n = 1)

 (input [n-1:0] A, B, input sel, output reg [n-1:0] Z);

 // Output Z must be of type reg

 // Sensitivity list = @(A, B, sel)

 always @(A, B, sel) begin

 if (sel == 0) Z = A;

 else Z = B;

 end

endmodule

Z
n

sel

0A
n

1B
n

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

52

ENCS
2340

20
24

Mohammed Khalil

Modeling 3x8 Decoder Using If Statement

module Decoder3x8 (input [2:0] A, output reg [7:0] D);

 // Sensitivity list = @(A)

always @(A) begin

 if (A == 0) D = 8'b00000001;

 else if (A == 1) D = 8'b00000010;

 else if (A == 2) D = 8'b00000100;

 else if (A == 3) D = 8'b00001000;

 else if (A == 4) D = 8'b00010000;

 else if (A == 5) D = 8'b00100000;

 else if (A == 6) D = 8'b01000000;

 else D = 8'b10000000;

 end

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

53

ENCS
2340

20
24

Mohammed Khalil

Modeling 4x2 Priority Encoder Using If Statement

module Priority_Encoder4x2 (input [3:0] D, output reg V, output reg [1:0] A);

 // sensitivity list = @(D)

 always @(D) begin

 if (D[3]) {V, A} = 3'b111;

 else if (D[2]) {V, A} = 3'b110;

 else if (D[1]) {V, A} = 3'b101;

 else if (D[0]) {V, A} = 3'b100;

 else {V, A} = 3'b000;

 end

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

54

ENCS
2340

20
24

Mohammed Khalil

Case Statement

֍ The case statement is procedural (used inside always block)

֍ Syntax:

case (expression)

 case_item1: statement

 case_item2: statement

 . . .

 default: statement

endcase

֍ The default case is optional

֍ A statement can be simple or compound

֍ A compound statement is surrounded by begin ... end

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

55

ENCS
2340

20
24

Mohammed Khalil

Modeling 4x1 Multiplexer Using Case Statement

module Mux4 #(parameter n = 1)

 (input [n-1:0] A, B, C, D, input [1:0] sel, output reg [n-1:0] Z);

 // @(*) is @(A, B, C, D, sel)

 always @(*) begin

 case (sel)

 2'b00: Z = A;

 2'b01: Z = B;

 2'b10: Z = C;

 default: Z = D;

 endcase

 end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

56

ENCS
2340

20
24

Mohammed Khalil

Modeling a Multifunction ALU

// Behavioral Modeling of an ALU

module ALU #(parameter n = 16)

 (input [n-1:0] A, B, input [1:0] F,

 output reg [n-1:0] Z, output reg Cout);

// @(*) is @(A, B, F)

 always @(*) begin

 case (F)

 2'b00: {Cout,Z} = A+B;

 2'b01: {Cout,Z} = A-B;

 2'b10: {Cout,Z} = A&B;

 default: {Cout,Z} = A|B;

 endcase

 end

endmodule

ALUF [1:0]
2

n

A [n-1:0]
n

B [n-1:0]

Z [n-1:0]

n
Cout

ALU Symbol

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

57

ENCS
2340

20
24

Mohammed Khalil

Modeling a BCD to 7-Segment Decoder ALU

module BCD_to_7Seg_Decoder (input [3:0] BCD, output reg [6:0] Seg)

always @(BCD) begin
 case (BCD)
 0: Seg = 7'b1111110; 1: Seg = 7'b0110000;
 2: Seg = 7'b1101101; 3: Seg = 7'b1111001;
 4: Seg = 7'b0110011; 5: Seg = 7'b1011011;
 6: Seg = 7'b1011111; 7: Seg = 7'b1110000;
 8: Seg = 7'b1111111; 9: Seg = 7'b1111011;
 default: Seg = 7'b0000000;
 endcase
 end

endmodule

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

