Password security

Dr.Patrick A.H. Bours

STUDENTS-HUB.com

Uploaded By: mohammad.nail.zaben@gmail.com

Password: Kinds of passwords

- Password
 - A string of characters: A,B,C,...d,e,f,...1,2,3...!,",@,...
- PIN-code
 - A string of numbers
- Pass phrase
 - A sentence
- Associative and cognitive passwords
 - Answers to the questions
 - Associative, cue words
 - Black: white, strawberry: blueberry, dad: mum, day: night etc.
 - Cognitive
 - What is your second name? How many cats do you have?
 - Which chocolate you like best?
- Pass face, pass image

Password: Password space - S

- S is the total set of all passwords
 - Size of S is denoted by s
 - 4-digit PIN codes: s = |S| = 10⁴
 - 6 character passwords:
 - s = 26⁶
 - s = 52⁶
 - s = 62⁶
 - s = 94⁶

Password: The art of counting

- Number of possibilities with one dice: 6
- Number of possibilities with two dices:
 - Unordered: 21
 - Ordered: 36
- Number of 5 letter combinations: 26⁵
- Including capitals: 52⁵
- Including numbers: 62⁵
- All keyboard symbols: 94⁵

- We will count the number of 6 character passwords
 - All is possible: letters, capitals, numbers and special characters
 - If no restriction, then we have 94⁶ possible passwords
- On the next slides we will introduce specific restrictions

- At least 1 number?
 - Total number of 6 character passwords: 94⁶
 - Number of 6 character passwords <u>without</u> numbers: 84⁶
 - Answer: 94⁶ 84⁶ = 338.571.749.440
- Trick: All those that are wrong

Have 6 different characters?

- First character: 94 possibilities
- Second character: (94-1) possibilities
- Third character: (94-2) possibilities
- Answer: 94*93...*89 = 586.236.072.240 =
- Trick: Count every time what is still possible

- At least 1 capital <u>and</u> 1 number?
 - No restrictions: 94⁶
 - No capitals: 68⁶
 - No numbers: 84⁶
 - No capitals and no numbers: 58⁶
 - Answer: $94^{6}-68^{6}-84^{6}+58^{6} = 277.772.959.360 = 2^{38,02}$
- Trick: All wrong ones + those subtracted twice!

Exactly 1 number?

- Choose position where the number will be:
 6 possibilities
- Number on that position: 10 possibilities
- All other 5 positions: (94-10) possibilities
- Answer: (6*10) * 84⁵ = 250.927.165.440 Trick: Place number first.

Exactly 1 number and exactly 1 capital?

- Choose position for the number: 6 possibilities
- Number on that position: 10 possibilities
- Choose position for the capital: (6-1) possibilities
- Capital on that position: 26 possibilities
- All other 4 positions: (94-10-26) possibilities
- Answer: (6*10) * (5*26) * 58⁴ = 88.268.668.800
- Trick: Place number and capital first

Exactly 2 numbers?

Choose 2 positions for the numbers:

6*5/2 = 15 possibilities

- Numbers on those position: 10 possibilities
- All other 4 positions: (94-10) possibilities
- Answer: 15*10² * 84⁴ = 74.680.704.000 =

- Choose 2 positions for the numbers gives 15 possibilities. Why?
- "Choose m out of n":
 - n! / (m! * (n-m)!)
 - k! = 1*2*...*(k-1)*k
- "Choose 2 out of 6": 6!/(2!*4!) = 15

Uploaded By: mohammad.nail.zaben@gmail.com

Password: Probabilities

- What is the probability that a random password of 6 characters has no number in it?
 - Answer: $84^6 / 94^6 = (84/94)^6 = 0,509$
 - So approximately have of the 6 character passwords does not have a number in it!
- In general is the probability equal to the size of set of correct answers divided by the total number of answers.

Password: Statistics - Introduction

- Let x = (x₁,x₂,...,x_n) and y = (y₁,y₂,...,y_n) be two equally long sequence of numbers.
- Let p_i be the probability that occasion x_i occurs.
- $p_1 + p_2 + \dots + p_n = 1$

Password: Statistics - Mean μ

The mean of **x** is the *weighted average* of the values of **x**. The weights are the probabilities.

Also called "Expected value"

•
$$E(\mathbf{x}) = \mu_{\mathbf{x}}$$

The mean μ_x of x is defined as:

 $\mu_{\mathbf{x}} = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$

Password: Statistics - Mean μ - example

Values of a dice: $\mathbf{x} = (1, 2, 3, 4, 5, 6)$

True dice: p = (1/6,1/6,1/6,1/6,1/6,1/6)

•
$$\mu_{\mathbf{x}} = (1+2+3+4+5+6)/6 = 3.5$$

Uploaded By: mohammad.nail.zaben@gmail.com

STUDENTS-HUB.com

Password: Statistics - Variance σ²

- The variance is a measure of how much the members of x are scattered around their mean.
- The variance σ_x^2 of **x** is defined as: $\sigma_x^2 = V(\mathbf{x}) = E(\mathbf{x} - \mu_{\mathbf{x}})^2 =$ $= E(\mathbf{x}^2) - 2 \mu_{\mathbf{x}} E(\mathbf{x}) + (\mu_{\mathbf{x}})^2 =$ $= E(\mathbf{x}^2) - (\mu_{\mathbf{x}})^2$

STUDENTS-H

Password: Statistics - Covariance σ_{xy}

We use covariance to measure similarity between x and y.

•
$$\sigma_{\mathbf{x}\mathbf{y}} = \mathsf{E}((\mathbf{x} - \mu_{\mathbf{x}}) * (\mathbf{y} - \mu_{\mathbf{y}}))$$

Password: Statistics - Correlation ρ_{xy}

$$\rho_{\mathbf{x}\mathbf{y}} = \sigma_{\mathbf{x}\mathbf{y}} / (\sigma_{\mathbf{x}} * \sigma_{\mathbf{y}})$$

- If ρ_{xy} = 0 then x and y are uncorrelated.
- The larger | ρ_{xy} | is, the more x and y are correlated.
- Sign of p_{xy} tells something about *direction* of correlation

Password: Entropy - h

Entropy h is a measure of the randomness

- Entropy h is the number of bits needed to describe the members of S
- In formula:
 - $h = log_2(s)$
- Assumption: all passwords are equally likely

Password: Examples of entropy

- 4-digit PIN code:
 - s = 10⁴
 - $h = \log_2(10^4) = 13,3$
- 6 character password

• $h = \log_2(94^6) = 39,3$

STUDENTS-HUB.com

Uploaded By: mohammad.nail.zaben@gmail.com

Password: Entropy – more complicated

- Let $S = \{s_1, s_2, ..., s_s\}$
- Let P = {p₁, p₂,..., p_s}, where p_i is the probability someone uses password s_i

Entropy is now defined as: h = -p₁log(p₁) - p₂log(p₂) - ... - p_slog(p_s)

Password: Entropy – more complicated

• If $p_i = 1/s$ for all i then:

So definitions are consistent

STUDENTS-HA

Password: Good Properties

- Hard to guess: do not use names, dates, telephone numbers, etc.
- Easy to remember: no need to write it down or share with other persons
- Private: otherwise no authentication possible
- Secret: owner is the only one who knows it

Password: Attacks

- Dictionary attack
- Not fooled by
 - Capitals
 - Change of letters into numbers
 - Permutations
- What can we do?

Password: To not do list - 1

- PW based on user's account name
- PW which match a word (or reversed word) in a dictionary, regardless if some or all of the letters are capitalized
- PW which match a word in a dictionary with an arbitrary letter turned into a control character

Password: To not do list - 2

- PW which are simple conjugations of a dictionary word (i.e. plurals, adding "ing" or "ed" to end of word, etc.)
- PW which do not use mixed upper and lower case, or mixed letters and numbers, or mixed letters and punctuation

Password: To not do list - 3

STUDENTS

- PW base on user's initials or given name
- PW which match a dictionary word with letters replaced by numbers (eg `3' for `e')
- PW which are patterns from the keyboard (eg. "aaaaa" or "qwerty")
- PW which only consist of numbers

Password: The PROBLEM!

- We have limited memory
 - Can only remember 7±2 totally random symbols
- Even more problems when
 - We have multiple passwords
 - We need to change passwords regularly

Password: What can we do – part 1?

- Pass phrase
 - Yesterday I watched a nice program on television.
 - YIwanpot or Y1wanp0t
- Use events on news or personal events when forced to change regularly

Password: What can we do – part 2?

Encryption

STUDENTS

- Shift every character fixed number of positions
- Shift every character by increasing number of positions

http://geodsoft.com/cgi-bin/pwcheck.pl

Password: Pass faces and images

- It is easier to recognize then to remember.
- Setup:
 - Memorize a set of selected or given pictures
- Authentication:
 - Recognize memorized pictures

Password: Pass faces

Five faces are presented and need to be memorized

Five 4x4 grids are presented each containing 1 memorized image

Password: Pass images

STUDENTS-H

- p (random) images selected and remembered
- n images presented containing m selected images
- Vary value of m during authenticationPresent more challenges

Password: References

- R. Smith, Authentication: From Passwords to Public Keys, Addison-Wesley, 2002.
- J. Yan, A. Blackwell, R. Anderson, and A. Grant, Password Memorability and Security: Empirical Results, IEEE Security & Privacy Magazine, Vol. 2, No. 5, Sept/Oct 2004, pp. 25-31.
- L. O'Gorman, Comparing Passwords, Tokens, and Biometrics for User Authentication, Proceedings of the IEEE, Vol. 91, No. 12, Dec 2003, pp 2019-2040.
- <u>http://www.passfaces.com</u>

STUDENTS-HUB com

<u>http://www.sims.berkeley.edu/~rachna/dejavu/</u>