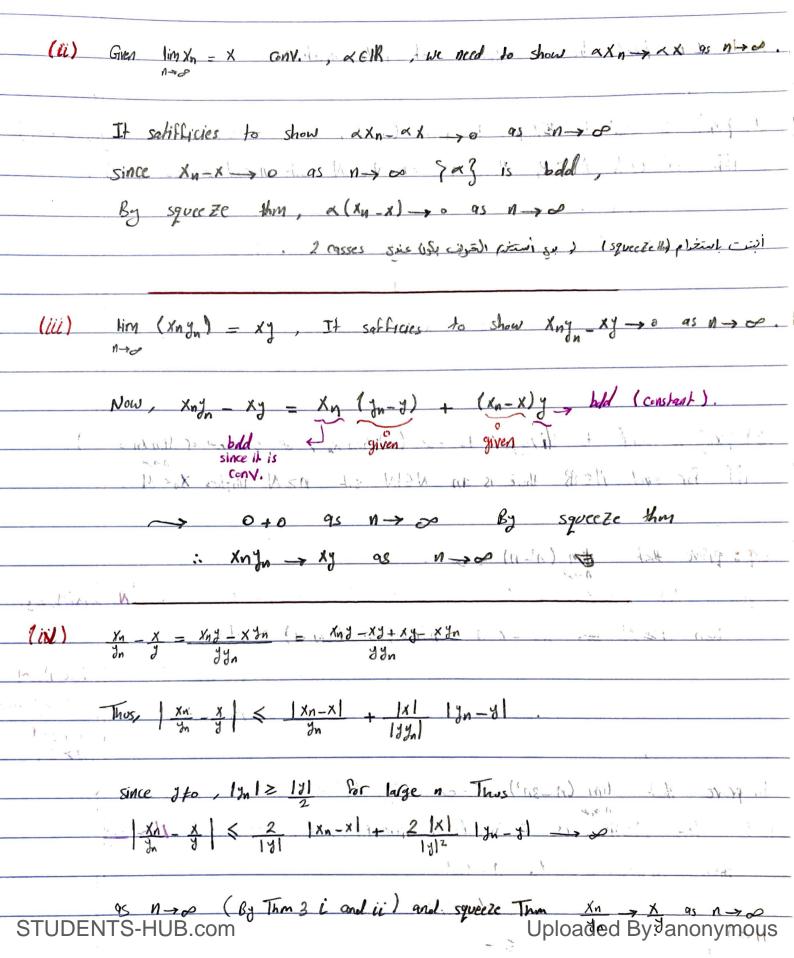
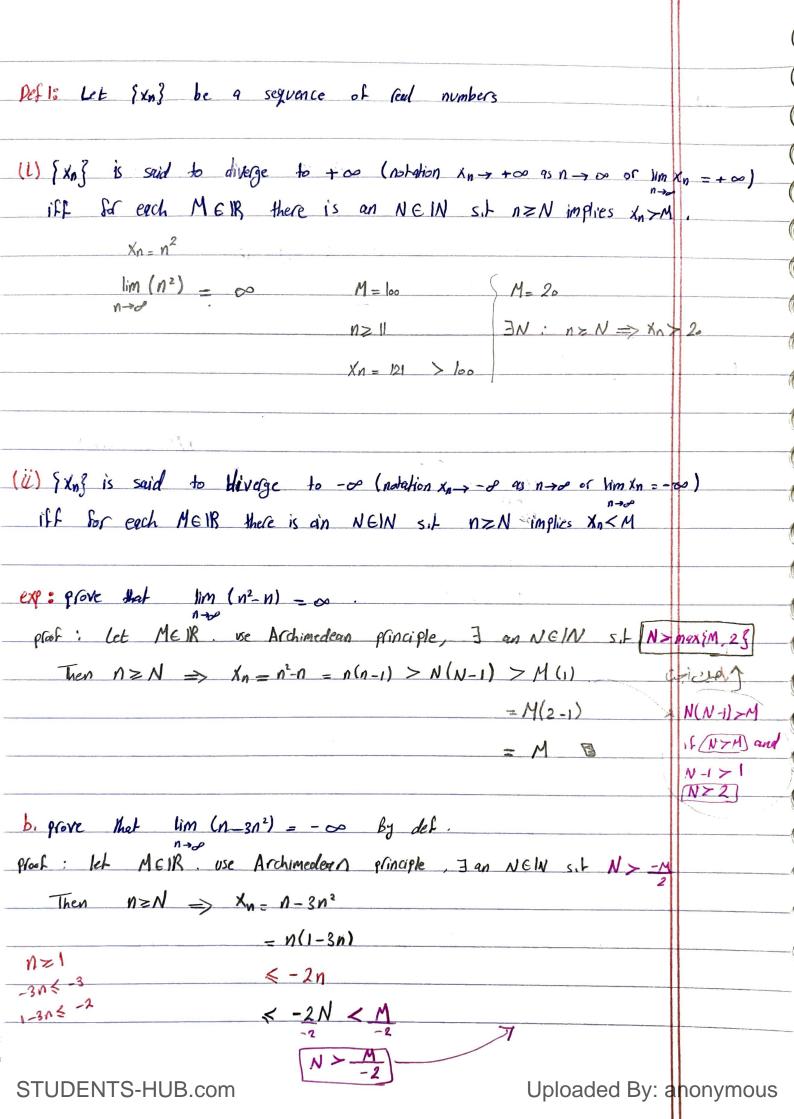
2,2:	limits	Theorem

That: [Squeeze Thereom] sandwich Than	
suffose that Exn3, Eyn3 and Ewn3 are real	sequences
(i) If $x_n \rightarrow q$ and $y_n \rightarrow q$ (the same q) as	
an No EN S. F Xn < Wn < yn for n > No	1. then 4 - 9 05 1-70
Un No EIV S.F ME LONE YOU	
Im (xny) = lim xn, lim xy x bold oxe	, then $x_n \stackrel{y}{\to} 0$ as $n \to \infty$. e^{-n} and $\sin(n)$
= o . balal	
ploof:	e-M (sin(n)) = 0
(i) let 2>0 be given, since Xn and In	conv. to a
By defs, JK1, K2 eW sit	
$1 \ge X_1 - 9 \le - 9 - \le < X_1 < 9$. ٤
17K2 - 17-9/58 - 9-8 < 7n < 9	
1 V V P	
Cet K = max { No, K1, K2} By hypothisis	Lac Hazy
If $n \ge K$ we have $q - \le < x_n \le w_n \le y$	4+2 VIII
1.e 9-8 < W/ 9+8 FOT MZK	
or $ w_{n-q} < \epsilon$, for $n \ge K$	
We calle that wn - 9 as n -> as	
We called man white	

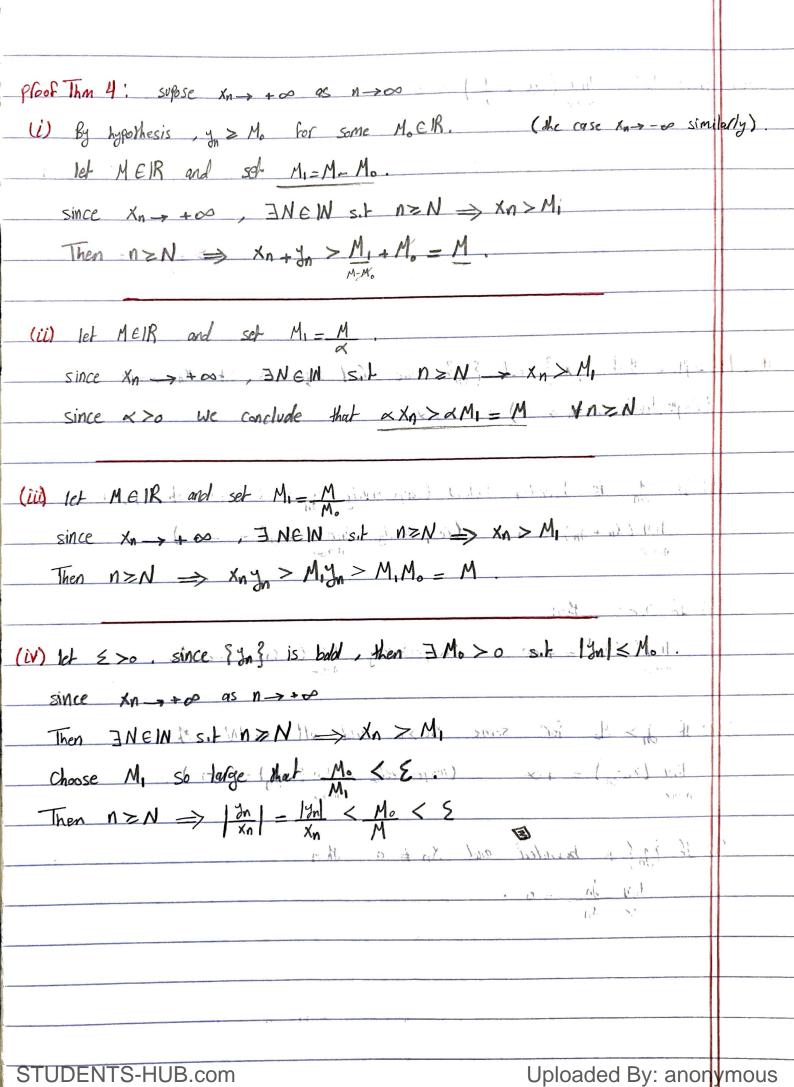
(il) spec that xn ->0 95 n ->0 and fyn 3 is bodd. since {gn} is bold than JM>0 s.t |yn|< M, Yn GW let &>0 . since Xn +00 as n >00 Jakem s.L N=K => |Xn|< & Then A>K => |Xng = 0 = |Xn||y| $x_n y_n \rightarrow 0$ 98 $n \rightarrow \infty$ exp: Find lim cos (13-12+11-13) By sandwich Theorem since | cos x | < 1 , YXCIR Since $\lim_{n\to\infty} \frac{1}{2^n} = \lim_{n\to\infty} \frac{1}{2^n} = 0$ (define do it) Hhen $\lim_{n\to 0} \cos(n^3 - n^2 + n - 13) = 0$ By squeeze thefeam

STUDENTS-HUB.com

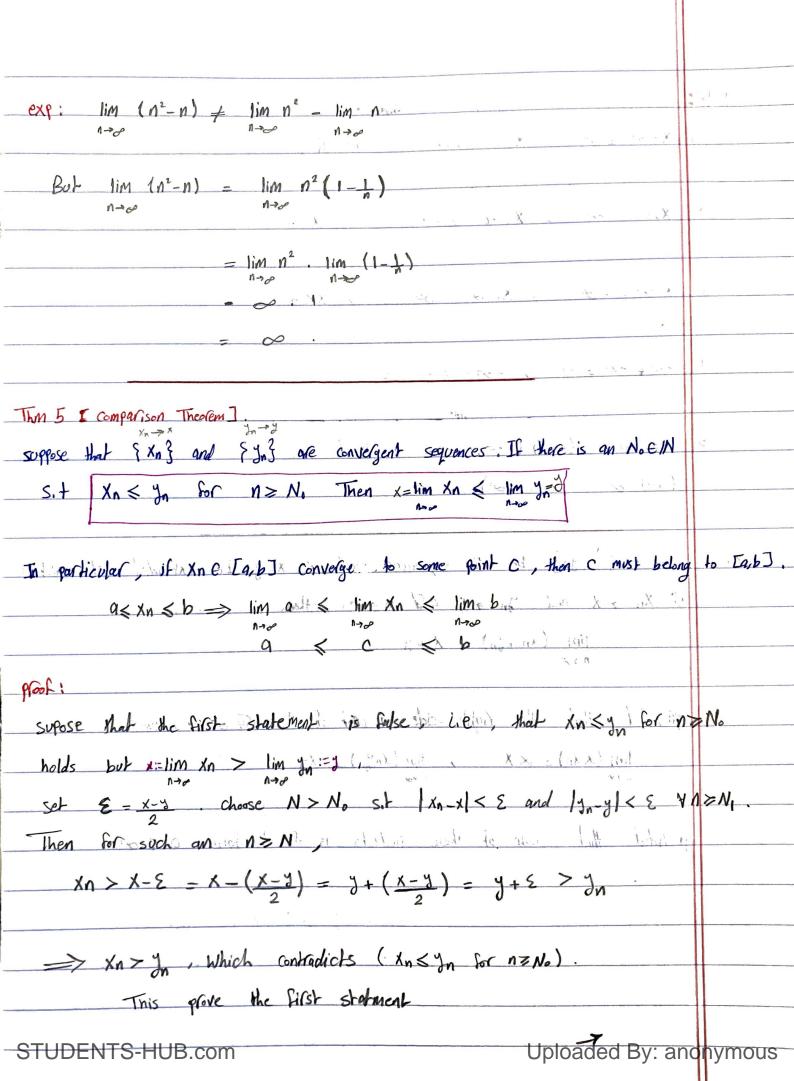

Uploaded By: anonymous


Than 2 & let FC R Short Inc.	- C.V.	let a kil	Add to be for	_
Than 2: let ECR if E has Then there is a sequence	e Xn & E SUPLEMUL	Musespectively, a	espectively of a sequent	e
Jn E E s.t yn > inf	E) as $n \to \mathcal{P}$		h	
Jace: XXXXXXX (XXXXXXXXXXXXXXXXXXXXXXXXXXXX	/ EXEE & B-SI	XXX B AND AS B	B- E R= Sut E	
$\exp: E_{-}(o,1)$ sup $\times n - 1 \in E$ and				
$\frac{y}{y_n} = \frac{n}{n+1} \in E and$				
By the Approximation $\exists X_1 \in E : \beta - 1 < X_1$ $\exists X_2 \in E : \beta - \frac{1}{2} < X_2$	property for su	Prema (3XEE s.t	B-E < X & B , YE >0)) .
$\exists X_2 \in E : \beta - \frac{1}{2} < X_3$ $\exists X_2 \in E : \beta - \frac{1}{3} < X_3$	2 < \$ 1 + 185 AM.	The west	Mining II)	
3 XnEE: B-1	8			à
Then by the squee: I'm xn - \beta = sup n-10	Ze thm (since	lim (B-1) - lim B	= B Then	
	Jn E E SIL	. 7	inf E + 1 E I inf E as n >00	
Then, by the squeeze	thm, limy =	inf E		
		-		

Thrm3: suppose that {xn} and {yn} we real sequences and that x CIR. If {xn} and {yn} we convergent, then	
(1) $\lim_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n$	
(il) $\lim_{n\to\infty} (\alpha \times x_n) = \alpha \lim_{n\to\infty} x_n$	
(iii) lim (xn yn) = (lim xn) (lim yn)	
\Rightarrow If, in addition, $f_n \neq 0$ and $\lim_{n \to \infty} f_n \neq 0$, then	
(iv) lim xn = limn > o xn n-so yn um yn N-so yn	
(In particular, all these limits exist).	
Plat & spee that Xn > X and In > y 95 n > 0	
(i) let $\xi > 0$ be given, since $x_N \to X$, $\exists K \in M \leq 1 + x_N - x < \frac{\xi}{2}$ since $y_N \to y$, $ y_N - y < \frac{\xi}{2}$, $\forall N \geq K$. Thus, $N \geq K$ implies	¥n≥K
$ (x_n+y_n)-(x+y) = x_n-x+y_n-y $	
we conclude that $x_n + y_n \rightarrow x + y$ as $n \rightarrow \infty$	


STUDENTS-HUB.com

Uploaded By: anonymous



Exp: prove that $\lim_{n\to\infty} \left(\frac{n^{2+2}}{2}\right) = \infty$ groof: let MEIR, By Archimedean glinciple, 3 an NEIN s.t N > 2 M Then $N \ge N \Rightarrow N_1 - \frac{n}{2} + \frac{1}{n} \ge \frac{n}{2} \ge \frac{N}{2} \ge \frac{2M}{2} = M$ Than 4: suffose that {xn} and {yn} are real sequences sit xn > +0 (lespectively, xn > - > as n > 0 (i) If you is bounded below (surpectively, you is bounded above), then lim (xn+yn) = +00 (respectively, lim (xn+yn) = -00). (ii) If ox o , then lim (XXn) = +00 (respectively, lim (XXn) = -00). (iii) If I > Ho for some Mo>o and all nEIN, then lim (xnyn) = +00 (respectively, lim (xnyn) = -00) (iv) If {y} k bounded and Xn to then lim in -o.

RMK: 1. X+∞ = ∞ , X-∞ = -∞ , YXEK. 2. $X \cdot \emptyset = \emptyset$, $X \cdot -\emptyset = -\emptyset$, $X \cdot \emptyset$. 3. X. = - 0 , X. - 0 = 0 , X<0. 5. ∞ . $\infty = (-\infty) \cdot (-\infty) = \infty$ And (-0). 0 = 0. (+0) = 10 college: let [xn], [yn] be led sequences and x, x, y be extended lead numbers If Xn -> X and In -> y as n -> o, then lim (xn+yn) = x+y ... gravided that the right side is not of the form of - and lim (Xxn) = XX, lim (xnyn) = Xy provided that none of these products is of the form 0. 7 0. lim (n. 1) + lim n . lim 1 . But lim (n. 1) = lim (1) = 1

cont of: To prove second statment, we conclude 9 ≤ Xn ≤ b then by first statement lim a & lim In & lim b This implies 95C5b B شلنا الماواه RMK: Xn < yn, NZNo DoesNot imply that lim Xn < lim yn counter eap: 1 < 1 But lim 1 / lim 1