Chapter 11. Parametric Equations and Polar Coordinates.  
11.1 Parametrization of Plane Curves.  
We may describe the movement of a particle  
in the xy plane of position to by  

$$(x(t), y(t)) = (f(t), g(t))$$
  
Notice that the position of the particle at time to  
in (not) a function.  
Def: If x and y are given as functions  
 $x = f(t)$ ,  $y = g(t)$   
over an Interval I of tovalues, then the set  
of points  $(x, y) = (f(t), g(t))$  defined by these  
stoppptshologioon is a parametric curve. Uploaded BY: Rawan AlFares  
. The equations are parametric equations of the  
Curve.  
. The variable to is called the parameter of the Curve.  
(143)

.

• I is called the parameter Interval. • If I = [a, b] is a closed interval, the point (f(a), g(a)) in the initial point of the curve and the point (f(b), g(b)) is the terminal point.

. We say that we parametrized the curve, if we find x = f(t), y = g(t) and Tthat is, we find a parametrization of the Curve. Example: Given the parametric equations  $\mathcal{X} = \mathcal{E}^2$ ,  $\mathcal{Y} = \mathcal{E} + \mathcal{I}$ ,  $-\infty \mathcal{L} + \mathcal{I}$ . 1) Find the Cartesian (algebraic) equation by STUDENTS-HUB.coffing the paremeter t. Uploaded By: Rawan Uploaded By: Rawan AlFares 2) Identify the particle's path by Sketching the equations.

3). Find the direction of motion.

(144)

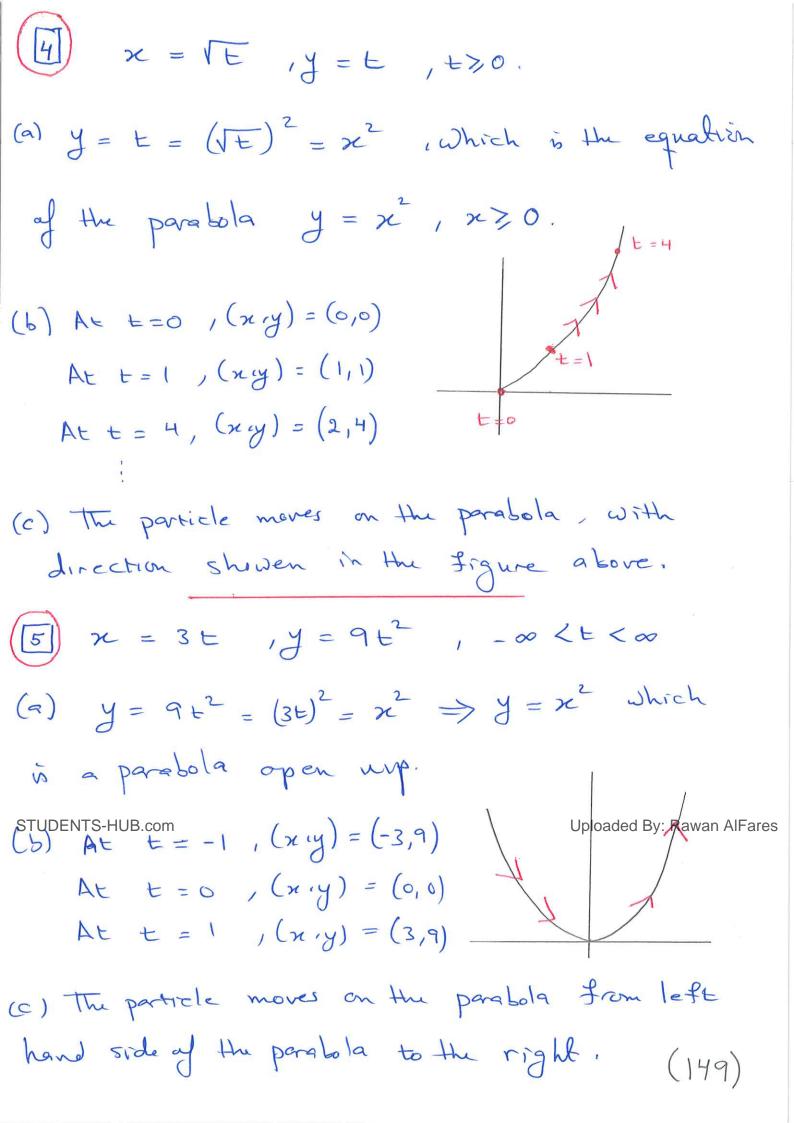
Sol: 1) Cartesian quedion:  

$$x = t^{2} = (y-1)^{2} \Rightarrow x = (y-1)^{2}$$
Notrice Hud sometimes its difficult or even impossible  
to eliminate the parameter t.  
2)  $t = x + (x,y)$   
 $-3 + (y-2) + (y-2)$   
 $-2 + (y-1) + (y-2)$   
 $-1 + (y-1) + (y-2)$   
 $-1 + (y-1) + (y-2) + (y-2)$ 

(145)

Example: The following paremetric equations  
describle the position 
$$p(x_{iy})$$
 of a particle moving  
in the  $x_{iy}$ -plane.  
(a) Identify the path traced by the particle.  
(b) Graph the paremetric curve.  
(c) Describe the direction of the motion.  
(d)  $x^2 + y^2 = \cos^2 t + \sin^2 t = 1$ , which is  
Circle centered of the origin with Radius L.  
(b) At  $t = 0$ ,  $(x_{iy}) = (\cos 0, \sin 0) = (1, 0)$   
("Interal poind").  
STUDENTS:HUB.com  
At  $t = \frac{1}{2}$ ,  $(x_{iy}) = (0, -1)$   
At  $t = 2\pi$ ,  $(x_{iy}) = (1, 0)$   
("terminal poind").  
(146)

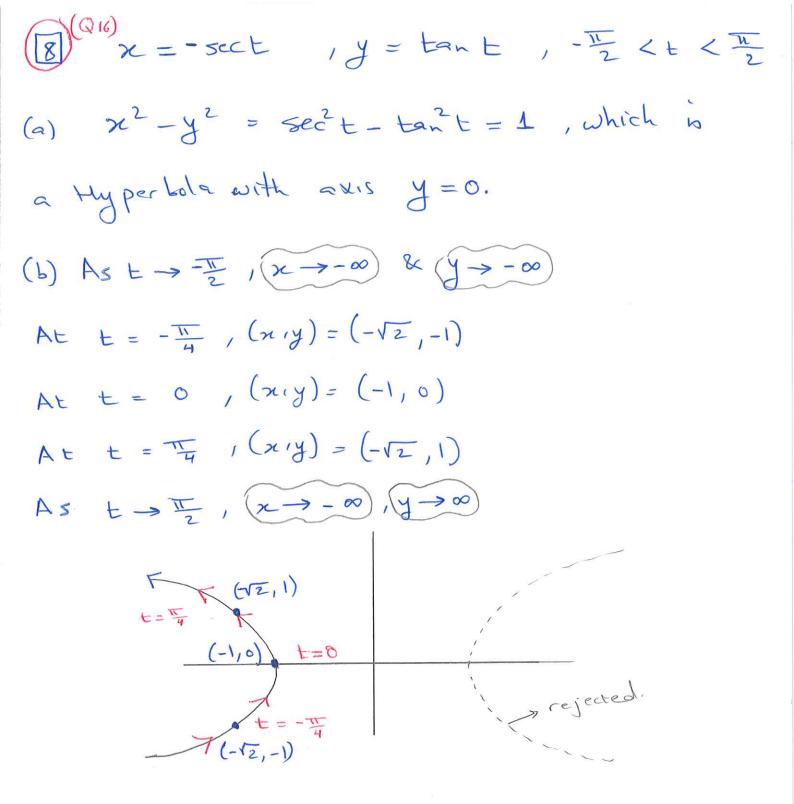
| Remark (): in [], if the interval of t is                                                      |
|------------------------------------------------------------------------------------------------|
| OSEST, then the graph of the path of                                                           |
| the particle is the upper half of the Circle.                                                  |
| $3 \qquad \chi = 4 \text{ sint }, y = 5 \text{ Gst }, 0 \leq t \leq 2\pi.$                     |
| (a) $\frac{\chi}{4} = siht$ , $\frac{y}{5} = cost$                                             |
| $\Rightarrow \left(\frac{2\xi}{4}\right)^2 + \left(\frac{3}{5}\right)^2 = 5ih^2 t + cost = 1.$ |
| which is $\frac{\chi^2}{16} + \frac{y^2}{25} = 1$ , equation of an                             |
| ellipse center (0,0) with major axis $x=0$<br>(y-axis)                                         |
| (b) At $t = 0$ , $(x,y) = (0,5)$ (0,5)                                                         |
| At $t = T_{2} (ny) = (4,0)$ 1                                                                  |
| At $t = \pi$ , $(x,y) = (0,-5)$ (0,-4) (4,0)                                                   |
| STUDENTS-HUB com, $(x,y) = (0,-4)$<br>$t = 3\frac{\pi}{2}$<br>Uploaded By: Rawan AlFares       |
| $A = t = 2\pi$ , $(n_{1}y) = (0,5)$<br>(0,-5)                                                  |
| (c) The particle Moves once on the ellipse                                                     |
| $\frac{\chi^2}{16} + \frac{y^2}{25} = 1$ clock wise, and the arrows                            |
| show the Direction as t increased. (148)                                                       |



(a) 
$$y = \sqrt{1-x^2}$$
  $\Leftrightarrow x^2 + y^2 = 1$ , which is the  
equation of a Circle canbred at the origin with  
radius = 1  
(b) At  $t = -1$ ,  $(x,y) = (-1,0)$   
At  $t = 0$ ,  $(x,y) = (0,1)$   
At  $t = 1$ ,  $(x,y) = (0,1)$   
(c) The particle moves on the upper half of the Circle  
in clock wire direction.  
Remark: Any curve can be represeded by many  
different set of parametric equations (Remark (H)+ [6])  
(F)  $x = t + \frac{1}{t}$ ,  $y = t - \frac{1}{t}$ ,  $t \ge 0$   
(subentistikusycom  $(x-y)(x+y) = ((t+t)-(t-t))(blooded by Flawow & Digges $x^2 - y^2 = (\frac{2}{t})(2t) = 4$   $\Leftrightarrow x^2 - y^2 = 4$ .  
 $\Leftrightarrow \frac{x^2}{2^2} - \frac{y^2}{2^2} = 1$ , which is a Hyperbola with  
center (0,0), dispance between the vertices is  $t$   
and distance between the Faci is  $t$ , with axis  $y = 0$ .$ 

(L) At 
$$t=0.5$$
,  $(x,y) = (2.5, -1.5)$ .  
At  $t=1$ ,  $(x,y) = (2,0)$ .  
At  $t=2$ ,  $(x,y) = (2.5, 1.5)$ .  
Since  $t>0$   
 $\Rightarrow (x>0)$   
 $t=1$  (2.0)  
 $t=1$  (2.0)  
 $t=2$   
 $t=2$  (2.0)  
 $t$ 

(151)

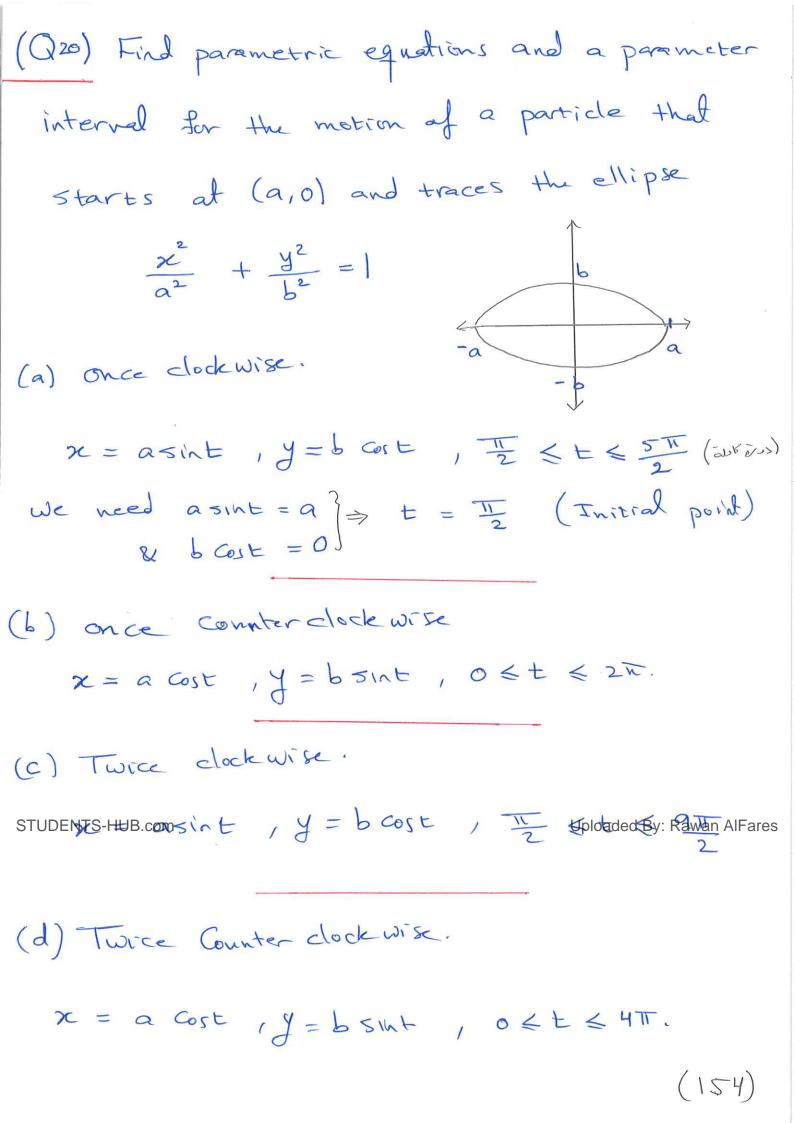


STUDENTS HUB.competite moves on the Left pollpleaded By: Rawan AlFares Hyperbola. The direction is showed in the graph above.

(152)

Parametric Equation of a Line.  
(a) If L is a line passes through the points:  

$$(x_0, y_0)$$
 and  $(x_1, y_1)$  then we can parametrize  
this line as:  
 $x = x_0 + (x_1 - x_0)t$ ,  $-\infty < t < \infty$   
 $y = y_0 + (y_1 - y_0)t$ .  
(b) If L is a line passes through the point  $(x_0, y_0)$   
with slope m, then we can parametrize this line as  
 $x = x_0 + t$ ,  $-\infty < t < \infty$   
 $y = y_0 + mt$ .  
(G22)  
(G22)  
 $(G22)$   
Example: Find two different parametrization for the  
slupeters. Register with endpoints  $(-1,3)$  and  $(3, -2)$ .  
Uploaded By: Rawan AlFares  
0  $x = -1 + (3-1)t = -1 + 4t = 3$ ,  $0 \le t \le 1$   
 $y = 3 + (-2-3)t = 3 - 5t$ .  
 $t = 1 < x = 3$   
 $t = 4 < x = 3$   
 $t =$ 



Cycloids : Example: A wheel of radius a rolls along a horizontal straight fine. Find parametric equations for the path traced by a point P on the wheel's circumference. The path is called a Cycloid sol: Let C be the center (C(at, a)) at (at, a). And the Coordinates of P are:  $x = a \pm + a \cos \theta$ ,  $y = a + a \sin \theta$ Notice that  $t + 0 = \frac{3\pi}{2} \Rightarrow 0 = \frac{3\pi}{2} - t$ . STUDENTS-HUB.com Uploaded By: Rawan AlFares  $\Rightarrow$  Cos  $\Theta = Cos\left(\frac{3\pi}{2}-t\right) = -sint$ .  $\$ \quad \sin \Theta = \sin\left(\frac{3\pi}{2} - t\right) = -\cos t$ Therefore,  $\chi = a(t - sint)$ ,  $\chi = a(1 - cost)$ , (122)

11.2 Glarlus with Paremetric Girves.  
Tangents and Areas:  
If 
$$x = f(t)$$
 and  $y = g(t)$  are differentiable  
functions of  $t$ , then by Chain Rule we have:  
 $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ .  
If  $\frac{dx}{dt} = 0$ , then  $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$  =  $y'$   
Similarly,  $\frac{d^2y}{dx^2} = \frac{(dy'/dt)}{(dx/dt)}$ .  
Example: Find the tangent to the Curve  
students. AUB.com Sect ,  $y = tan t$ ,  $\frac{T}{2}$  uploaded By: Rawan AlFares  
 $dt = \frac{T}{4}$ .  
Sol: At  $t = \frac{T}{4}$ ,  $(x,y) = (\sqrt{2}, 1)$ .

The slope of the tangent of 
$$t = \frac{TT}{4}$$
 is  

$$m = \frac{dy}{dx} \bigg|_{t=\frac{T}{4}} = \frac{dy}{dx} \bigg|_{dt} \bigg|_{t=\frac{TT}{4}} = \frac{\sec^2 t}{\sec^2 t}$$

$$t = \frac{TT}{4}$$

$$t = \frac{T$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{dy'/dt}{dx/dt} = \frac{6t^{2}-6t+2}{(1-2t)^{2}} \cdot \frac{1}{(1-2t)}$$

$$= \frac{6t^{2}-6t+2}{(1-2t)^{3}},$$
Example: Find the Normal to the Curve:  

$$x = 2t^{2}+3, \quad y = t^{4} \quad \text{al } t = -1$$
So I The slope of the bongent to the Curve of  $t=-1$  is  

$$m_{T} = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{4t^{3}}{4t} = 1.$$
then slope of the normal hime  $= -\frac{1}{m_{T}} = [-1]$ .  
More over, at  $t = -1$ ,  $(x, y) = (5, 1)$   
Uploaded By: Rawan AlFares  
 $y = 1 = -1(x-5)$   
 $\Rightarrow (y = 6-x)$ 
(158)

Example: Find the Slope of the Curve:  

$$x^{3} + 2t^{2} = 9, \quad 2y^{3} - 3t^{2} = 4, \quad at t = 2.$$
Sol: At  $t = 2$ :  

$$x^{3} + 2(2)^{2} = 9 \Rightarrow x^{3} = 1 \Rightarrow |x| = 1$$

$$2y^{3} - 3(2)^{2} = 4 \Rightarrow 2y^{3} = 16 \Rightarrow |y| = 2$$
Now,  $m = \frac{dy/dt}{dx/dt}$ ,  

$$3x^{2} \cdot \frac{dx}{dt} + 4t = 0 \Rightarrow \frac{dx}{dt} = -\frac{4t}{3x^{2}}$$

$$y \quad 6y^{2} - 6t = 0 \Rightarrow \frac{dy}{dt} = \frac{6t}{6y^{2}} = \frac{t}{y^{2}},$$

$$m = \frac{t/y^{2}}{-4t/3x^{2}} = \frac{2/(2)^{2}}{-4t/3x^{2}} = \frac{1}{2} \cdot (-\frac{3}{8})$$
STUDENTS-HUB.com  $t=2$ 

$$uploaded By: Rawan AlFares$$

$$= \begin{bmatrix} -\frac{3}{16} \\ -\frac{3}{16} \end{bmatrix}$$

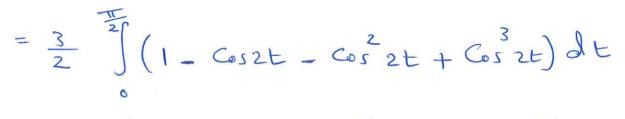
(159)

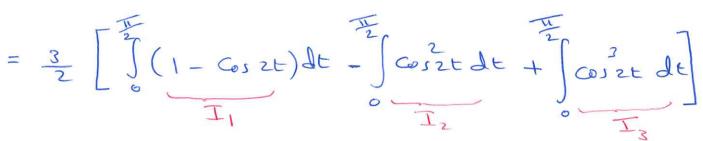
A rea : If 
$$a \le x \le b$$
 &  $y = f(x) \ge 0$   
then  $Area = \int_{a}^{b} f(x) dx$ .  
  
Example: Find the area enclosed by the astroid  
 $x = Cost$ ,  $y = sin^{3}t$ ,  $o \le t \le 2\pi$ .  
Sol: By symmetry, the enclosed  
area is 4 times the area  
 $beneath$  the Crive in the First  
quadrant when  $0 \le t \le \frac{\pi}{2}$ .  
 $A = 4 \int_{a}^{b} y dx$   
when  $x = 0 \Rightarrow 0 = Cost \Rightarrow t = \frac{\pi}{2}$   
stubetors: HUBSCONF  $1 \Rightarrow 1 = cort = 3 t = 0$   
 $x = area = 1$ ,  $y = sin^{3}t = 0$   
 $area = 1$ ,  $y = sin^{3}t = 0$   
 $area = 1$ ,  $y = sin^{3}t = 0$   
 $area = 1$ ,  $y = sin^{3}t = 0$   
 $area = 1$ ,  $b = 1$ ,  $cost = 1$ ,

-

$$= 12 \int_{0}^{\frac{1}{2}} \left(\frac{1-\cos 2t}{2}\right) \left(\frac{1+\cos 2t}{2}\right) dt$$

$$= \frac{3}{2} \int (1 - 2\cos 2t + \cos^2 2t) (1 + \cos 2t) dt.$$





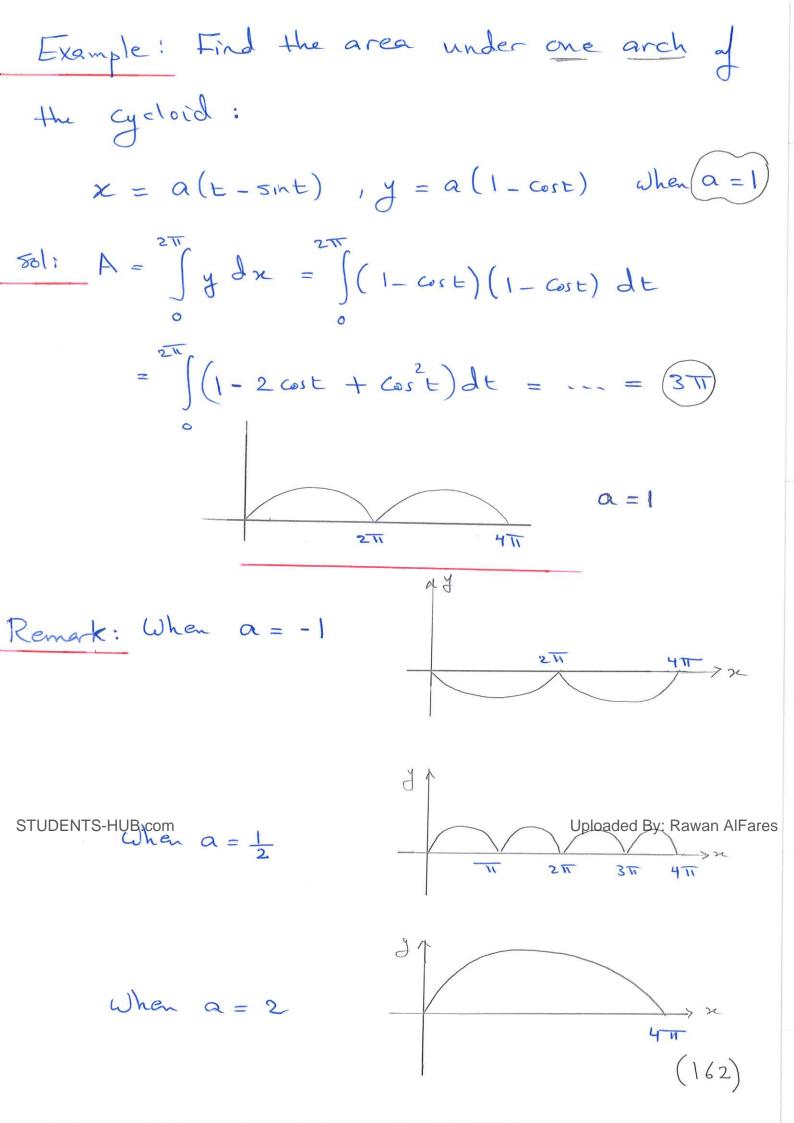


$$I_{2} = \int_{0}^{T} \cos^{2} 2t dt = \int_{0}^{T} \left(\frac{1+\cos 4t}{2}\right) dt = \frac{1}{2} \left[t + \frac{\sin 4t}{4}\right]^{T}$$

STUDENTS-HUB.com  

$$T_3 = \int cos^3 2t dt = \int cos^2 2t cos 2t dt = \int (1 - sin^2 2t) cos 2t dt$$
  
 $= \int ((1 - u^2)) du = 0$ 

$$: A = \frac{3}{2} \left[ I_1 - I_2 + I_3 \right] = \frac{3}{2} \left[ I_2 - I_4 + 0 \right] = \frac{3II}{8} (161)$$



Example: (022) Find the Area enclosed by the y-axis  
and the Curve 
$$x = t - t^2$$
,  $y = 1 + e^{-t}$ ,  $0 \le t \le 1$   
 $\exists 0 = \int_{0}^{1} x \, dy = \int_{0}^{1} (t - t^2) (-e^{-t}) \, dt = -\int_{0}^{1} (t - t) e^{-t} \, dt = -\int_{0}^{1} (t - t) e^{-$ 

Remark : The length of a Curve 
$$y = f(x)$$
  
is a special Case of equation  $f(x,x)$ . Given a  
Continuously differentiable function  $y = f(x)$ ,  $a \le x \le b$ ,  
we can assign  $x = t$  as a parameter. The graph  
of the function  $f$  is then the Curve C defined  
parametrically  $by$ :  
 $x = t$ ,  $y = f(t)$ ,  $a \le t \le b$   
 $\Rightarrow \frac{dx}{dt} = 1$  &  $\frac{dy}{dt} = f'(t)$   
Therefore,  $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 1 + \left(\frac{f(t)}{t}\right)^2$ .  $x = t$   
 $\Rightarrow \int (1 + (f'(x))^2 dx)$   
Uploaded By: Rawan AlFares

-

(164)

Example: Find the length of the Circle of radius  

$$r = r \operatorname{Cost}, \quad y = r \operatorname{Sine}, \quad 0 \leq t \leq 2\pi.$$

$$solid \quad L = \int_{0}^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \quad dt$$

$$= \int_{0}^{2\pi} \sqrt{\left(-r \operatorname{Sint}\right)^{2} + \left(r \operatorname{Cost}\right)^{2}} \quad dt$$

$$= \int_{0}^{2\pi} \sqrt{\left(-r \operatorname{Sint}\right)^{2} + \left(r \operatorname{Cost}\right)^{2}} \quad dt$$

$$= \int_{0}^{2\pi} \sqrt{r^{2}} \quad dt = r \int_{0}^{2\pi} 1 dt = \left[2\pi r\right]$$
Example: Find the length of the astroid  

$$x = \operatorname{Cost}, \quad y = \operatorname{Sin}^{3}t, \quad 0 \leq t \leq 2\pi$$
sol: 
$$\frac{dx}{dt} = \left(3 \operatorname{Cost}\right)\left(-\operatorname{Sint}\right) = -3 \operatorname{Sint} \operatorname{Cost}^{2}t.$$
StUDENTS-HORTON  

$$Uploaded By: \operatorname{Rawan AlFares}$$

$$= \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = 9 \operatorname{Sin}^{2}t \operatorname{Cost}^{4}t + 9 \operatorname{Sin}^{4}t \operatorname{Cos}^{2}t t$$

$$= 9 \operatorname{Sin}^{2}t \operatorname{Cost}^{2}t. \quad (165)$$

:. 
$$L = 4\frac{1}{2}\int \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$
  

$$= 4\frac{1}{2}\int \sqrt{9}G_0^2 t \sin^2 t dt$$

$$= 4\frac{1}{2}\int 3 \sin t \operatorname{cort} dt \qquad >0 (First quadrant).$$

$$= 4\frac{1}{2}\int \frac{3}{2} \sin 2t dt = 6\left(-\frac{\operatorname{cor} 2t}{2}\right)\int_{0}^{\frac{1}{2}} = 6\frac{1}{2}$$
A reas of Surfaces of Revolution.  
A rea of Surface of Revolution for Parametrized Curver.  
If a smooth Curve  $x = f(t), y = g(t), a \leq t \leq b$ ,  
is traversed exactly once as t increase from  
a to b, then the area of the surfaces generated  
by revolving the Curve about the Coordinate  
Uploaded By: Rawan AlFares  
axes are as follows:

(166)

1. Revolution about the x-axis (y>0):

$$S = \int 2\pi y \sqrt{\left(\frac{dz}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

2. Revolution about the y-axis 
$$(x = \sqrt{2})$$
:  
 $S' = \int 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$ .

Example: Find the area of the surface generated  
by revolving the Circle  

$$\chi = Cost$$
,  $y = 1 + sint$ ,  $0 \le t \le 2\pi$   
about  $\chi - a\chi_{13}$ .  
Soli Notice that the circle has radius 1 & cater (0,1).  
 $z\pi$   
 $stuppents:Huploom T y \sqrt{(\frac{d\chi}{dt})^2 + (\frac{dy}{dt})^2} dt$   
 $= 2\pi \int_{0}^{2\pi} 2\pi (1 + sint) \sqrt{(-sint)^2 + (Cost)^2} dt$   
 $= 2\pi \int_{0}^{2\pi} (1 + sint) dt = \cdots = 4\pi^2$ 

(167)

Example: (Q34) Find the area of the surface  
generaled by revolving the Curve  

$$x = \int n (\operatorname{secl} + \operatorname{tant}) - \operatorname{sint} , \quad y = \operatorname{cost} ,$$
  
 $o \leq t \leq \overline{s}$  about  $x - \operatorname{axis}$ .  
 $check \parallel$   
 $\overline{sel:} \quad \frac{dx}{dt} = \frac{\operatorname{sect} \tan t + \operatorname{sec} t}{\operatorname{sec} t + \operatorname{tan} t} - \operatorname{cost} = \frac{\operatorname{sin}^2 t}{\operatorname{cost}}$   
 $\frac{dy}{dt} = -\operatorname{sin} t$   
 $\frac{dy}{dt} = -\operatorname{sin} t$   
 $\vdots \quad S = 2\pi \int_0^{\infty} \operatorname{cost} \sqrt{\frac{\operatorname{sin}^4 t + \operatorname{sin}^2 t}{\operatorname{cos}^2 t}} \quad dt$   
 $= 2\pi \int_0^{\infty} \operatorname{cost} \sqrt{\frac{\operatorname{sin}^4 t + \operatorname{sin}^2 t}{\operatorname{cos}^2 t}} \quad dt$   
STUDENTSFIUB.COMT  $\int_0^{\infty} \operatorname{cost} \sqrt{\frac{\operatorname{sin}^2 t + \operatorname{sin}^2 t}{\operatorname{cos}^2 t}} \quad dt$   
 $= 2\pi \int_0^{\infty} \operatorname{cost} \sqrt{\frac{\operatorname{sin}^2 t + \operatorname{sin}^2 t}{\operatorname{cos}^2 t}} \quad dt$   
 $= 2\pi \int_0^{\infty} \operatorname{cost} \sqrt{\frac{\operatorname{sin}^2 t + \operatorname{cot}^2 \operatorname{bot}}} \quad dt$   
 $= 2\pi \int_0^{\infty} \operatorname{cost} \sqrt{\frac{\operatorname{sin}^2 t - \operatorname{cost}}{\operatorname{cos}^2 t}} \quad dt$   
 $= 2\pi \int_0^{\infty} \operatorname{cost} \cdot \frac{\operatorname{sin} t}{\operatorname{cost}} \quad dt = -2\pi \operatorname{cost} \int_0^{\infty} = [\pi],$   
 $(168)$ 

J