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Linear Time invariant system in Laplace and time domains:

Poles and Zeros of LTI Systems:

Given the transfer function of a proper system i(primitive rational function):
S+ Bm—1sM 14+ +BsT+

T(s) = ﬁc:;s"+§;n_1ls"‘1+---+a’61’21+a€0

System Zeros:

A system zero is defined as the value s, at which |T(s,)| = 0.

A system zero can be a zero at finite or infinite.

A proper system has n — m zeros at infinite, that is those that satisfy the relation lim |T(s)| = 0.

S— 00

withm < n

System Poles:

A system pole is defined as the value s, at whichlim |T(s)| = oo.
S—>Sp

A system pole can be a pole at finite or infinite.
An improper system (improper: m = n) has m — n poles at infinite, that is those that satisfy the relation lim |T(s)| = oo

S—00
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Effect of poles on system response:

The poles number and locations (system transfer

function roots ) determine the shape and the time

performance of the transient response:

* Left-side poles generate a response that vanishes for
t — oo, whereas right-side poles transient diverges

e Real-axe poles do not produce oscillation in the time
response.

* Imaginary axe poles produce an undamped
oscillation response.

 Complex poles produce oscillation in the response.

STUDENTS-HUB.com

4 Poles Step response
Jo c(t)
s-plane
n
0 = O
£, t
Undamped
Jj@ s-plane c(t)
X Jo, 1= 82
0<{<1 -
74’@;!
. f t
X o, \[1- &2 Underdamped
Jjo (1)
s-plane
=1 X -0
—gwn
t
Critically damped
___Je e(®)
_ga)fi'-i-wﬂ gz_ 1
\‘ s-plane
¢>1 X—% -0
—Cw,~w, V gz -1 !

Overdamped

Uploaded By: 1201458 @student.birzeit.edu



Transient time performance depends on the relative distance
between the imaginary axe and the pole location. That is the
magnitude of the real part of the pole. Higher distance —

Higher performance and faster transient. The time constant
1

Re(sp)

Oscillation frequency depends on the relative distance
between the real axe and the pole location. That is the
magnitude of the imaginary part of the pole. Higher distance
— Higher oscillation frequency and smaller period with higher
density of oscillation cycles.

Poles that are located on the same line have different time
performance and oscillation frequency but equal damping
ratio and relative overshoot value.

of a pole Sp is defined as T, = —
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position to cancel the effects of each other. Cancellation can be
employed in controller design to cancel undesired effects or to
reduce the order of the system(if it is a design degree of
freedom)
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Effect of Zeros: (s + a)C(s) = sC(s) + aC(s)

The zeros affect the response amplitude.

The effects of the zeros are more evident when they are more proximal to the dominant poles (zeros with smaller real part
has a higher time constant and has a more evident effect on the system response).

The zeros affect the response phase.

A real zero (or the real part of a complex zero) introduces a derivative and proportional effect in the response without zero.
For more distal zeros (from the imaginary axe) the proportional effect is higher than the derivative effect (fast zero effect).
For the nearer zeros, the derivative effect is higher than the proportional one.

Slower zeros cause higher signal overshoot because of the added positive value of the derivative.

A left-side complex zero has a positive phase and thus an anticipation effect.

A right-side complex zero has a negative phase and thus introduces a delay effect.

A right-side zero with a smaller derivative effect than the proportional part may cause initial phase inversion.
Asymptotically stable systems with only left-side zeros are said to be minimum-phase systems
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Performance parameters:

Performance parameters are used to set, evaluate, and compare the behavior of

stable dynamic systems.

Time performance parameters: Lo

* Rising time t,;5: the time necessary for the response to rise from 10% to 90%
its final value.

* Delay-time t;: the time necessary for the response to reach 50% of its final v
* Steady-state time (Settling time) tq.¢: at p% error: the time necessary for the
response to reach and stay in £0.0p around its final value. .

* Peaktime t,y,: the time of the local maximum and minimum values of the T _ _ .

response. - |
* Overshoot time t,,: the time of the maximum deviation of the response from its

final value.
Value Performance parameters:

* Qvershoot (OV): the maximum deviation between the response and its final steady state value.
OV (toy) = Ymax(tov) — Yfinar- This parameter depends on the input value.

c(t)

Y

vy

0‘9801111;1[

0.9¢fina1

* Relative Overshoot (OV;.): the ratio of the overshoot and the response final value. That is OV,

t — .
— Ymax(tov)~Vinal independent of the input value but requires the knowledge of the final value.

Yfinal

* Percentage Overshoot (OV,.%): the ratio of the overshoot and the response final value. That is

OVT _ Ymax(ov) =Y final % 100%
Yfinal
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First Order System Step response:

Jja

G(s) ‘ s-plane a
R(s) a | Cs) N C(s) = R(s)G(s) =
— >0 () (5)G(s) s(s + a)

s+ a > X ‘
—a
(@) (»

Time constant and steady-state approximation:

 The time constant is defined as T = -
e Steady-state time: is the time at which the steady state

response is assumed to be reached accepting and tolerating a

defined maximum error value (because operations with the

system can not be done for t = o).

* The most used in Engineering is tsteqqy=4T With approximately

erTOoTsteqay=2%
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Secona-oraer system-performance parameters

The underdamped response will be taken to determine the performance parameters because it has the
maximum number of performance parameters.

Polar and cartesian representation:

a complex pair of system poles can be represented in:

cartesian form:s;, = a * jwg  a:attenuation factor, w,: damped oscillation frequency

Polar form: s = w,e’? ({ = cosO: attenuation ratio, w,:natural oscillation frequency
Jjo
Relations between polar and cartesian representations:
_________ - +jw,V1 - gz=.jm¢!
a = w,cosl = w,{, Wy = Wy SiN0O = wy/1 — {? N s-pane
_1,Pd | 0
Wy = a? + wg?, 0 = —tan~1(—) Lon=o, °
a i
Under damped Step response: o o Y S
2
w K Kis+K I _
C(s) = 3 L 5 :_l_|. 5 2 3 5 1.8 ¢=.1
S(s* +20wns+w;) s 57+ 20was + w; L6 [ 2
. . . . . . 1.4
By computing the parameters using partial fractions and adjusting the L >
. . . . 6
function form to have the Laplace cosine and sine expression: Lof 8 v
0.8 -
(.s+gaJn)+—£,(1;n\/1-gz using the Laplace inverse we obtain: °
C(s)=—- 21 iy 5 02t
s (s+lwn) +02(0=-¢
0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
c(t)=1—e 5ot (cos w1 — -t ¢ = sinw,\/ 1 — C2I)
vi=¢ ¢ =tan'(¢/V1-0).
1
=1————e % cos(wy\/1 — 2t —
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Performance parameters of the second-order system:
The most used performance parameters of the second-order system are the settling time, the overshoot time, and the

overshoot value with all its variants.

Settling time at p% error:
To simplify computation it is assumed that the settling time is reaches at the first peak after the 0.0p, that is we consider

a smaller error that satisfies the requirements. Thus, considering T e~ cos(wny/ 1 — C2t — )
2

i . L —Cwntset —
we have to solve the equation: \/1__(23 0.0p
—In(0.0p/1-_2 : . . 4 4
n0-0pVI=¢7) 2% this result is approximated as tser 204 = =— =41
{wn <7 Qwn| el

=g

Solving for tg. We obtain: tgor =

Peak and overshoot time:
The peak time is periodic and obtained by computing equating the derivative of the step response c(t) to zero.

Since the underdamped response of the second order system is strictly decreasing, the overshoot time is obtained at the
2

first peak value. Considering: ? ®
C(s) = - and the inverse of the derivative  Z[¢(t)] = sC(s) = 2
(5% + 2L wns + @2) [€()] (s) 52+ 28 w,s + (1)3
5 o 5 Wn'\/ 1 - 4'2
LLe()] = & P ey _ Applying Laplace inverse &(f) = —mt el sin e, \/1 — 21
S+ o) +02(1=C°) (s+Clwp) +@2(1-¢7) 1-¢2

Setting the derivative equal to zero yields
nx

l=—
wyy\/ 1 —t=nn « w, V1 — gz

. . T
Thus the overshoot time is: | 7,=—F— =—
Wy l_é’ g
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Cfinal

. . C — C -
Overshoot evaluation: using () =1— e (cosa),,\/l —t+ sin @,/ 1 —g%) and g = —mx Tl o100

¢
Vi @
sin JI) — ] 4 ¢~ Cr/V1=E)

COMPULE oy = ¢(T,) = 1 = ¢~/ VI=E) (cos T+ =
1 —

Applying cfingr = 1 in the percentage overshoot equation we obtain

%08 = e=Cr/V1-C) % 100

Moreover, in the design problem, we can compute the damping ratio necessary to obtain a specific percentage overshoot by:

_ =In(%0S/100)
\/nz + In2(%0S/100)
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Example: Consider the following system and determine the moment of inertia and the damping coefficient to
20% overshoot and a 2% ERROR settling time of 2 seconds for a step torque input.

o K — () 0@)
G(s) = — /7 On=\T &
’ D K - - |
L
D

24+ —5+— D
o 2wy =

4
TSZZZC% - {w, =2

4 J
=2/= =045 — J_
\/; = =0.052

2w,

J
—=0.052
X 0.05
D

S=4

K =5 N-m/rad

D =1.04 N-m-s/rad, and J = 0.26 kg-m?
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