Started on	Thursday, 7 December 2023, 11:30 AM
State	Finished
Completed on	Thursday, 7 December 2023, 11:58 AM
Time taken	28 mins 30 secs
Grade	12.00 out of 12.00 (100 %)

Correct

Mark 2.00 out of 2.00

Determine whether the given differential equation is separable.

$$(xy^2 + 9y^2) dy - 2xdx = 0$$

- Yes; because $\frac{dy}{dx} = g(x)p(y)$ where $g(x) = \frac{1}{x+9}$ and $p(y) = \frac{2x}{y^2}$.
- Tes; because $\frac{dy}{dx} = g(x)p(y)$ where $g(x) = \frac{2x}{x+9}$ and $p(y) = \frac{1}{y^2}$.
- Yes; because $\frac{dy}{dx} = g(x)p(y)$ where $g(x) = \frac{x}{x+9}$ and $p(y) = \frac{1}{y^2}$.
- od. No

The correct answer is: Yes; because $\frac{dy}{dx} = g(x)p(y)$ where $g(x) = \frac{2x}{x+9}$ and $p(y) = \frac{1}{y^2}$.

Correct

Mark 2.00 out of 2.00

Identify which are solutions of the differential equation $t^2y'' + ty' + y = 0$.

- $y_1(t) = \ln t$, $y_2(t) = t \ln t$
- \circ b. $y_1(t) = \sin t$, $y_2(t) = \cos t$
- c. $y_1(t) = \sin(\ln t), \quad y_2(t) = \cos(\ln t)$
- od. $y_1(t) = e^{\sin t}, \ y_2(t) = e^{\cos t}$

The correct answer is: $y_1(t) = \sin(\ln t)$, $y_2(t) = \cos(\ln t)$

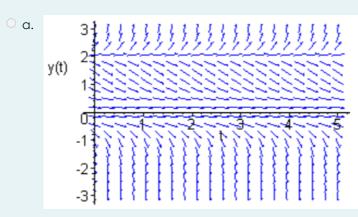
Question 3

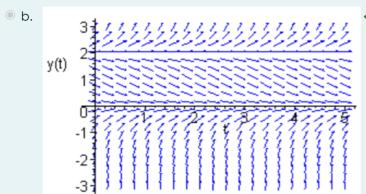
Correct

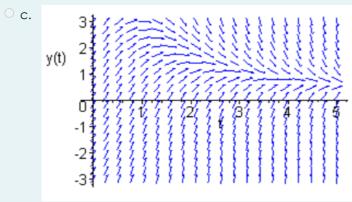
Mark 2.00 out of 2.00

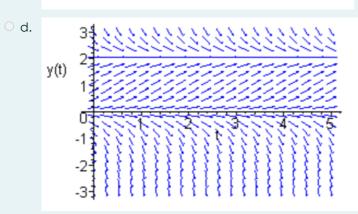
Solve the initial value problem y' = 2y + 3, y(0) = 2.

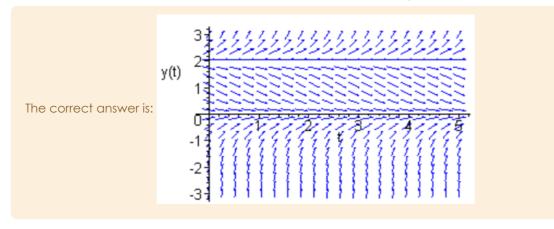
- $y(t) = -\frac{1}{2} + \frac{5}{2} e^{3t}$
- b. $y(t) = -\frac{3}{2} + \frac{7}{2} e^{2t}$
- oc. $y(t) = -\frac{2}{3} + \frac{8}{3} e^{2t}$
- od. $y(t) = 1 + e^{2t}$


The correct answer is: $y(t) = -\frac{3}{2} + \frac{7}{2} e^{2t}$


Correct


Mark 2.00 out of 2.00


Which of the direction field plots below represents that of the differential equation


$$\frac{dy}{dt} = y(y-2)$$

Correct

Mark 2.00 out of 2.00

Given the partial differential equation $4u_{xx} = u_t$. Which of the following is a solution to it?

- ^o a. $u(x,t) = 7e^{-4\alpha^2t} \sin \alpha x 5e^{-4\alpha^2t} \cos \alpha x$, all α
- $u(x,t) = 5\sin 4x \cosh t 2\cos 4x \sinh t$
- ° c. $u(x,t) = e^{-4\alpha t} \sin \alpha x + 3e^{-4\alpha t} \cos \alpha x$, $\alpha > 1$
- od. $u(x,t) = 2\cos t \sin \alpha x 3\sin t \cos \alpha x$, $\alpha > 0$

The correct answer is: $u(x,t) = 7e^{-4\alpha^2t} \sin \alpha x - 5e^{-4\alpha^2t} \cos \alpha x$, all α

Correct

Mark 2.00 out of 2.00

Show for which values of r is the function e^{rt} a solution of y'' + 5y' + 4y = 0.

- $^{\circ}$ a. $r_1 = 4$, $r_2 = 5$
- $r_1 = 4, r_2 = 1$
- $^{\circ}$ c. $r_1 = -4$, $r_2 = -1$
- Od. There are no such values.

The correct answer is: $r_1 = -4$, $r_2 = -1$