ENEE2301

SINUSOIDAL STEADY-STATE POWER CALCULATIONS

CH 10

ENEE2301 - Network Analysis 1Steady-State Sinusoidal Power Analysis

Sinusoidal Steady-State Power Calculations

- 10.1 Instantaneous power
- 10.2 Average power & reactive power
- 10.3 The rms value and power calculations
- 10.4 Complex power
- 10.5 Power calculations
- 10.6 Maximum power transfer

Overview

- Nearly all electric energy is supplied in the form of sinusoidal voltages and currents (i.e. AC, alternating currents), because
 - 1. Generators generate AC naturally.
 - 2. Transformers must operate with AC.
 - 3. Transmission relies on AC.
 - 4. It is expensive to transform from DC to AC.

Instantaneous Power:
$$P(t)$$
 $S(t) = Vm Cos(\omega t + \Theta r)$
 $S(t) = Im Cos(\omega t + \Phi i)$
 $S(t) = Vm Tm Cos(\omega t + \Phi i)$

$$\begin{aligned}
& \int (t) &= \text{Vm Im } \cos \left(\omega t + \Theta_{v} \right) \cos \left(\omega t + \Phi_{i} \right) \\
& \cos \alpha \cos \beta = \frac{1}{2} \left[\cos \left(\alpha - \beta \right) + \cos \left(\alpha + \beta \right) \right] \\
& \therefore \int (t) &= \text{Vm Im } \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\frac{2w\epsilon_{+} \Theta_{v+} \Phi_{i}}{\Theta_{v}} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& = \frac{1}{2} \left[\cos \left(\Theta_{v} - \Phi_{i} \right) + \cos \left(\Theta_{v} - \Phi_{i} \right) \right] \\
& =$$

Example:

$$v(t) = 4 \cos(\omega t + 60^{\circ})$$
 V
 $Z(j\omega) = 2 \angle 30^{\circ}$ Ω

Find p(t)

$$I = \frac{V}{Z} = \frac{4 \angle 60^{\circ}}{2 \angle 30^{\circ}} = 2 \angle 30^{\circ} \quad A$$

$$\therefore i(t) = 4 \cos(\omega t + 30^{\circ}) \quad A$$

$$p(t) = v(t) i(t)$$
= $4 \cos(30^\circ) + 4 \cos(2\omega t + 90^\circ)$
= $3.46 + 4 \cos(2\omega t + 90^\circ)$

Average Power: Real Power

$$P_{av} = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{2} V_m I_m \cos(\theta_v - \phi_i)$$
$$\theta_z = \theta_v - \phi_i$$
$$P_{av} = \frac{1}{2} V_m I_m \cos(\theta_z)$$

1) For Resistor:

$$\theta_v - \emptyset_i = 0 \ \to \ \theta_z = 0$$

$$\therefore P_{av} = \frac{1}{2} V_m I_m = \frac{Vm^2}{2R} = \frac{Im^2 R}{2}$$

Always positive for a resistor since they dissipate energy

17

ENEE2301 - Network Analysis 1

Steady-State Sinusoidal Power Analysis

2) For Inductor: current and voltage are out of phase by 90 degrees (current lags voltage)

$$\theta_v - \emptyset_i = 90^\circ$$

$$\therefore P_{av} = 0$$

3) For Capacitor:

$$\theta_v - \emptyset_i = -90^\circ$$

$$\therefore P_{av} = 0$$

: Reactive impedances (L and C)absorb NO average power

Example:

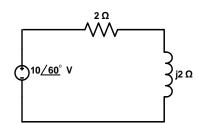
Find the average power absorbed by each element.

$$I = \frac{10 \angle 60^{\circ}}{2 + j2} = 3.53 \angle 15^{\circ} A$$

$$P_{av} = \frac{1}{2} V_m I_m \cos(\theta_v - \emptyset_i)$$

$$P_{av,j2}=0$$

$$P_{av,2} = \frac{I_m^2 R}{2} = \frac{3.53^2 * 2}{2} = 12.5 W$$



19

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

To calculate the average power supplied by the source.

$$P_{av,vs} = \frac{V_m I_m}{2} \cos(\theta_v - \emptyset_i)$$

$$I_m = 3.53$$

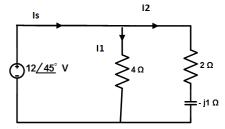
$$V_m = 10 V$$

$$\theta_v = 60^\circ$$
 ; $\emptyset_i = 15^\circ$

$$I = \frac{10 \angle 60^{\circ}}{2 + j2} = 3.53 \angle 15^{\circ} A$$

$$P_{av,vs} = \frac{10*3.53}{2} \cos(60^{\circ} - 15^{\circ})$$
$$= 12.5 W$$

Example:



$$I_1 = \frac{12 \angle 45^{\circ}}{4} = 3 \angle 45^{\circ} A$$

$$I_2 = \frac{12 \angle 45^\circ}{2-j} = 5.36 \angle 71.57^\circ A$$

$$I_s = I_1 + I_2 = 8.15 \angle 62.1^{\circ} A$$

absorbed by each resistor. Determine the total average power supplied by the source.

Determine the average power

1)
$$P_{4\Omega} = \frac{I_{1m}^2 * 4}{2} = 18 W$$

2)
$$P_{2\Omega} = \frac{I_{2m}^2 * 2}{2} = 24.7 W$$

21

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

∴ Total Average power absorbed = 46.7 W

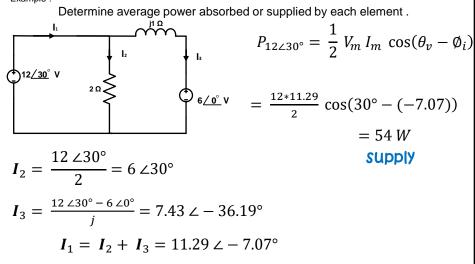
$$P_{Vs} = \frac{V_m I_m}{2} \cos(\theta_v - \emptyset_i)$$

$$P_{Vs} = \frac{12 * 8.16}{2} \cos(45 - 62.1)$$

$$P_{Vs} = 46.7 W$$

$$P_{Vs} = P_{4\Omega} + P_{2\Omega} + P_{-j}$$

Example:



 $P_{2\Omega} = \frac{I_{2m}^2.2}{2} = 36 W$

23

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

$$P_{6 \angle 0^{\circ}} = \frac{1}{2} V_m I_m \cos(\theta_v - \emptyset_i)$$

$$= \frac{6*7.43}{2} \cos(0^{\circ} - (-36.19^{\circ}))$$

$$= 18 W \qquad \text{absorbed}$$

Maximum Average Power Transfer

$$Z_{TH} = R_{TH} + jX_{TH}$$

$$Z_L = R_L + jX_L$$

$$P_L = \frac{I_{Lm}^2 R_L}{2}$$

$$I = \frac{V_{TH}}{Z_{TH} + Z_L}$$

$$I = \frac{V_{TH}}{(R_{TH} + R_I) + i(X_{TH} + X_I)}$$

$$P_L = \frac{I_{Lm}^2 R_L}{2}$$

$$P_{L} = \frac{1}{2} \frac{V_{TH}^{2} \cdot R_{L}}{(R_{TH} + R_{L})^{2} + j(X_{TH} + X_{L})^{2}}$$

$$\frac{\partial P_{L}}{\partial R_{L}} = 0 \qquad ; \qquad \frac{\partial P_{L}}{\partial X_{L}} = 0$$

$$\frac{\partial P_{L}}{\partial X_{L}} = \frac{-2 V_{TH}^{2} \cdot R_{L} (X_{TH} + X_{L})}{2[(R_{TH} + R_{L})^{2} + j(X_{TH} + X_{L})^{2}]^{2}}$$
For
$$\frac{\partial P_{L}}{\partial X_{L}} = 0 \qquad \to \qquad X_{L} = -X_{TH}$$

$$\frac{\partial P_{L}}{\partial R_{L}} = \frac{V_{TH}^{2} \left[(R_{L} + R_{TH})^{2} + (X_{TH} + X_{L})^{2} - 2R_{L} (R_{L} + R_{TH}) \right]}{2[(R_{TH} + R_{L})^{2} + j(X_{TH} + X_{L})^{2}]^{2}}$$
For
$$\frac{\partial P_{L}}{\partial R_{L}} = 0 \qquad \to \qquad R_{L} = \sqrt{R_{TH}^{2} + (X_{TH} + X_{L})^{2}}$$

$$X_{L} = -X_{TH}$$

$$\therefore R_{L} = R_{TH}$$

$$\therefore \ Z_L = Z_{TH}^*$$

$$P_{L;max} = \frac{1}{8} \frac{V_{TH}^2}{R_L}$$

∴ For maximum average power transfer

$$\therefore Z_L = Z_{TH}^*$$

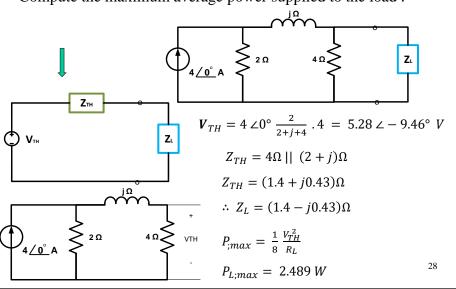
$$P_{L;max} = \frac{1}{8} \frac{V_{TH}^2}{R_L}$$

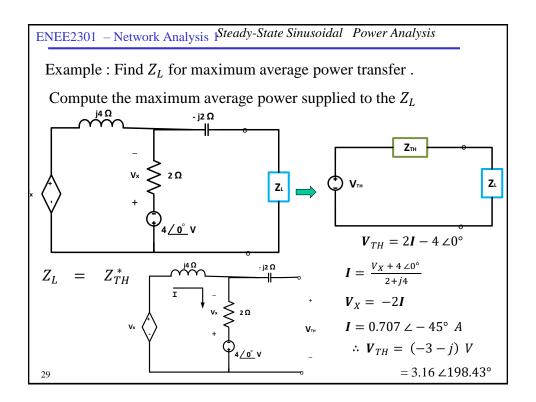
27

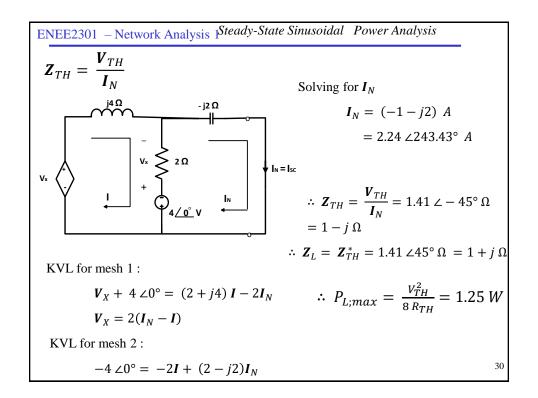
ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

Example : Find Z_L for maximum average power transfer .

Compute the maximum average power supplied to the load .

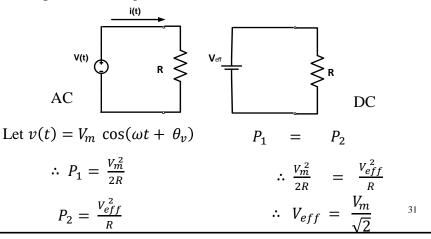






Effective or RMS Value

The effective value of a periodic voltage (current) is the dc voltage (current) that delivers the same average power to a resistor as the periodic voltage (current).



ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

RMS: Root Mean Square

Let $v(t) = V_m \cos(\omega t + \theta_v)$

$$V_{RMS} = \sqrt{\frac{1}{T} \int_0^T V_m^2 \cos^2(\omega t + \theta_v) dt}$$

$$V_{RMS} = V_m \sqrt{\frac{1}{T} \int_0^T \cos^2(\omega t + \theta_v) dt}$$

$$V_{RMS} = V_m \sqrt{\frac{1}{T} \int_0^T \frac{1}{2} (1 + \cos 2(\omega t + \theta_v)) dt}$$

$$V_{RMS} = \frac{V_m}{\sqrt{2}}$$

$$P_{av} = \frac{1}{2} V_m I_m \cos(\theta_v - \emptyset_i)$$

$$P_{av} = V_{rms} I_{rms} \cos(\theta_v - \emptyset_i)$$

For a Resistor

$$P_{av} = V_{rms} I_{rms} \cos(\theta_v - \phi_i)$$

$$V_{rms} = R I_{rms}$$
 ; $\theta_{\nu} - \emptyset_i = 0$

$$\therefore P_{av} = \frac{V_{rms}^2}{R}$$

$$\therefore P_{av} = I_{rms}^2 R$$

34

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

Apparent Power and Power factor

$$P_{av} = V_{rms} I_{rms} \cos(\theta_v - \phi_i)$$

$$P_{apparent} = V_{rms} I_{rms} = P_a$$

Papparent measured in VA

 $PF \equiv Power Factor$

$$PF = \cos(\theta_v - \emptyset_i)$$

$$\therefore P_{av} = P_a . PF$$

1) For Resistor

$$\theta_v - \emptyset_i = 0^{\circ}$$

$$\therefore PF = 1$$

2) For Inductor

$$\theta_v - \emptyset_i = +90^{\circ}$$

$$\therefore PF = 0$$

3) For Capacitor

$$\theta_v - \emptyset_i = -90^{\circ}$$

$$\therefore PF = 0$$

4) For Inductive load

$$90^{\circ} > \theta_v - \emptyset_i > 0^{\circ}$$

 $\therefore 1 > PF > 0$ lagging power factor

36

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

5) For Capacitive load

$$0^{\circ} > \theta_v - \emptyset_i > -90^{\circ}$$

$$\therefore 1 > PF > 0$$

leading power factor

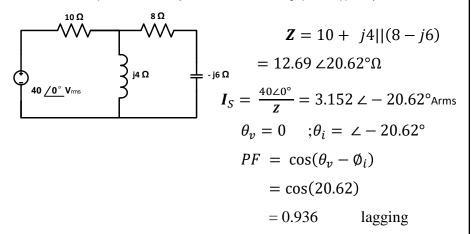
$$PF = \cos(\theta_v - \emptyset_i)$$

$$cos(\alpha) = cos(-\alpha)$$

Power factor is either leading or lagging referring to the phase of current with respect to the voltage.

Example:

Calculate the power factor seen by the source and the average power supplied by the source .



The average power supplied by the source is equal to the average power absorbed by the circuit .

39

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

$$P_{av} = V_{rms} I_{rms} \cos(\theta_v - \phi_i)$$

$$V_{rms} = 40 \ V_{rms}$$

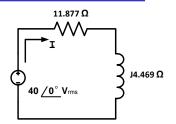
 $I_{rms} = 3.15 \ A_{rms}$
 $\theta_v = 0^\circ$
 $\theta_i = -20.62^\circ$

$$P_{av} = 40 * 3.152 \cos(0 - (-20.62^{\circ}))$$

$$= 118 W$$

$$Z = 12.69 \angle 20.62^{\circ} \Omega$$

= $11.877 + j4.469 \Omega$
 $P_{av} = I_{rms}^{2} R$
= $3.152^{2} * 11.877$
= $118 W$



Also
$$P_{av} = P_{av;10\Omega} + P_{av;8\Omega} + P_{av;-j6} + P_{av;j4}$$

= $P_{av;10\Omega} + P_{av;8\Omega}$

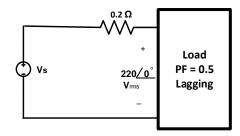
41

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

Example:

An industrial load consumes 11 kW at 0.5 PF lagging from a 220 V_{rms} line . The transmission line resistance from the power company to the plant is 0.2Ω .

- 1) Determine the average power that must be supplied by the power company .
- 2) Repeat (1) if the power factor is changed to unity.



$$P_{av;Load} = V_{rms}.I_{rms}.PF$$

$$\therefore I_{rms} = \frac{P_{av;Load}}{V_{rms}.PF}$$

$$= \frac{11kW}{220*0.5} = 100 A_{rms}$$

$$P_{loss} = I_{rms}^2 * 0.2 = 2 kW$$

$$\downarrow V_{s}$$

$$\downarrow V_{s}$$

$$\downarrow V_{rms}$$

$$\downarrow V_{$$

$$P_{av;sup} = P_{av;Load} + P_{av;loss}$$
$$= 13 kW$$

43

Plant

PF = 1

220<u>/0</u>°

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

$$P_{av;Load} = V_{rms}.I_{rms}.PF$$

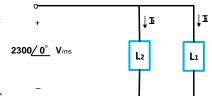
$$\therefore I_{rms} = \frac{P_{av;Load}}{V_{rms}.PF} = 50 A_{rms}$$

$$P_{loss} = I_{rms}^2.R = 50 * 0.2 = 0.5 \, kW$$

$$\therefore P_{av;sup} = 0.5 kW + 11 kW$$
$$= 11.5 kW$$

Example:

Find the power factor of the two loads.



Load 1:10 kW; 0.9 lagging PF

Load 2: 5kW; 0.95 leading PF

$$I_1 = \frac{10,000}{2300*0.9} \angle - \cos^{-1} 0.9$$
$$= 4.83 \angle - 25.84^{\circ} A_{rms}$$

$$I_2 = \frac{5000}{2300*0.95} \angle + \cos^{-1} 0.95$$

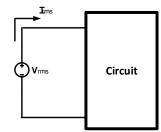
= 2.288 \(\neq 18.195^\circ A_{rms}\)

$$I_s = I_1 + I_2 = 6.78 \angle -12^{\circ} A_{rms}$$

$$PF = \cos(\theta_v - \phi_i) = \cos(0^{\circ} - (-12^{\circ})) = 0.978$$
 lagging

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

Complex Power



$$V_{rms} = V_{rms} \angle \theta_v$$

$$I_{rms} = I_{rms} \angle \emptyset_i$$

$$S \equiv Complex Power$$

$$S = V_{rms} . I_{rms}^*$$

$$= V_{rms} . I_{rms} \angle (\theta_v - \emptyset_i)$$

$$S = V_{rms} . I_{rms} \cos(\theta_v - \emptyset_i) + j V_{rms} . I_{rms} \sin(\theta_v - \emptyset_i)$$

$$S = P_{av} + j Q$$

$$P_{av} \equiv Average Power in Watt$$
 $\therefore P_{av} = \Re \{S\}$

$$P_{av} = \Re \{S\}$$

$$Q \equiv Reactive Power in VAR$$

$$Q = \Im \{S\}$$

■ The complex power S (volt-amps, VA) is:

$$S = P + jQ$$

|S|: apparent power (VA)

Q: reactive power (volt-amp-reactive, VAR)

P: average power (watts, W)

47

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

1) For pure resistance:

$$\theta_{v} - \emptyset_{i} = 0$$

$$\therefore Q_R = 0$$

2)For pure inductance:

$$\theta_v - \emptyset_i = +90^{\circ}$$

$$\therefore Q_L = V_{rms} I_{rms}$$

$$V_{rms} = \omega L I_{rms}$$

$$\therefore Q_L = \omega L I_{rms}^2 = \frac{V_{rms}^2}{\omega L}$$

3) For pure Capacitance:

$$\theta_v - \emptyset_i = -90^{\circ}$$

$$\therefore Q_c = -V_{rms} I_{rms}$$

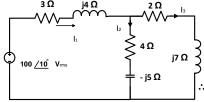
$$I_{rms} = \omega c V_{rms}$$

$$\therefore Q_c = -\frac{I_{rms}^2}{\omega c}$$
$$= -\omega c V_{rms}^2$$

49

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

What are the VARs consumed by the circuit



:
$$I_1 = \frac{100 \,\angle 10^{\circ}}{11.3 \,\angle 23.7^{\circ}} = 8.83 \,\angle - 13.7^{\circ} \,A_{rms}$$

$$Q = 100 * 8.84 \sin(10^{\circ} - (-13.7^{\circ}))$$

$$Q = V_{rms} . I_{rms} \sin(\theta_v - \emptyset_i)$$
 = 355 VARs

$$I_2 = 10.2 A_{rms}$$

$$I_3 = 8.95 \ A_{rms}$$

$$I_1 = \frac{v_s}{z}$$

$$Z = (2+j7)||(4-j5) + 3+j4$$

$$= 10.35 + j4.55 = 11.3 \angle 23.7^{\circ} \Omega$$

ENEE2301 – Network Analysis Steady-State Sinusoidal Power Analysis $P_{av} = V_{rms} . I_{rms} \cos(\theta_v - \phi_i)$

$$P_{av} = V_{rms} \cdot I_{rms} \cos(\theta_v - \phi_i)$$

$$Q = V_{rms} . I_{rms} \sin(\theta_v - \phi_i)$$

$$Q = V_{rms} \cdot I_{rms} \sin(\theta_v - \emptyset_i)$$

$$\frac{Q}{P_{av}} = \tan(\theta_v - \emptyset_i)$$

$$Q = P_{av} \tan(\theta_v - \emptyset_i)$$

$$Q = P_{av} \tan[\cos^{-1}(PF)]$$

$$S = P_{av} + j Q$$

$$= \sqrt{P_{av}^2 + Q^2} \angle \tan^{-1} \frac{Q}{P_{av}}$$

$$\therefore P_a = |\mathbf{S}| = \sqrt{P_{av}^2 + Q^2}$$
 apparent power

$$\theta_v - \theta_i = \tan^{-1} \frac{Q}{P_{av}}$$

51

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

$$\theta_v - \emptyset_i = \tan^{-1} \frac{Q}{P_{av}}$$

To increase PF, we need to decrease Q.

: For inductive circuit we add a capacitor in parallel to increase the power factor.

Total Power (average, Reactive and complex)

$$P_{avT} = P_{av1} + P_{av2} + P_{av3} + \dots + P_{avn}$$

$$Q_T = Q_1 + Q_2 + Q_3 + \dots + Q_n$$

$$S_T = P_{avT} + j Q_T$$

= $S_1 + S_2 + S_3 + \dots + S_n$

53

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

Conservation of AC Power

The complex, real and reactive power of the source equal the respective sum of the complex, real and reactive power of the individual loads.

$$S_{source} = V_{rms} . I_{rms}^*$$

$$= V_{rms} \cdot (I1rms + I2rms)^*$$

$$= V_{rms} \cdot I1^*_{rms} + V_{rms} \cdot I2^*_{rms}$$

$$= S_1 + S_2$$

 $= S_1 + S_2$ The same results can be obtained for a series connection.

Find the power factor of the two loads

Load 1: 10 kW; 0.9 lagging PF

Load 2:5 kW; 0.95 leading PF

$$S_1 = P_{av \, 1} + j \, Q_1$$

$$Q_1 = P_{av \ 1} \ \tan[\cos^{-1}(PF_1)]$$

= 4843 VARs

$$\therefore S_1 = 10000 + j 4843 VA$$

$$S_2 = P_{av2} + j Q_2$$

$$Q_2 = -P_{av 2} \tan[\cos^{-1}(PF_2)]$$

$$= -1643 \ VARs$$

$$= -1643 \ VARs$$
 $\therefore S_2 = 5000 - j \ 1643 \ VA$

2300/0°Vrms

55

ENEE2301 - Network Analysis Steady-State Sinusoidal Power Analysis

$$\boldsymbol{S}_T = \boldsymbol{S}_1 + \boldsymbol{S}_2$$

$$= 15000 + j 3200$$

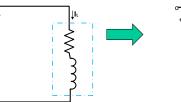
$$= 15337.5 \angle 12.02^{\circ} VA$$

$$PF = \cos 12.02^{\circ}$$

$$= 0.978$$
 lagging

Power Factor Correction

Power Factor correction is the process of increasing the power factor without altering the voltage or current to the original load.

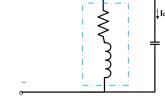


$$PF = \cos(\theta_v - \emptyset_i)$$

For R:

$$PF = 1 ; Q_R = 0$$

∴ To improve the power factor we must decrease the Reactive Power.



 \therefore For inductive circuit, we add a capacitor in parallel to the load .

$$Q_c = Q_{Final} - Q_{init}$$

$$c = -\frac{Q_c}{\omega V_{rms}^2}$$

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

Example: A certain industrial plant consumes 1 MW at 0.7 lagging power factor and a 2300 V_{rms} .

What is the minimum capacitor required to improve the power factor to 0.9 lagging. $(\omega = 377 \ rad/s)$

$$Q_{ini} = P_{av} \cdot \tan[\cos^{-1}(PF_1)]$$
$$= 1MW \cdot \tan[\cos^{-1}(0.7)]$$
$$= 1.02 \quad MVARs$$

$$Q_{Fin} = P_{av} \tan[\cos^{-1}(PF_2)]$$

= $P_{av} \tan[\cos^{-1}(0.9)]$
= 0.484 MVARs

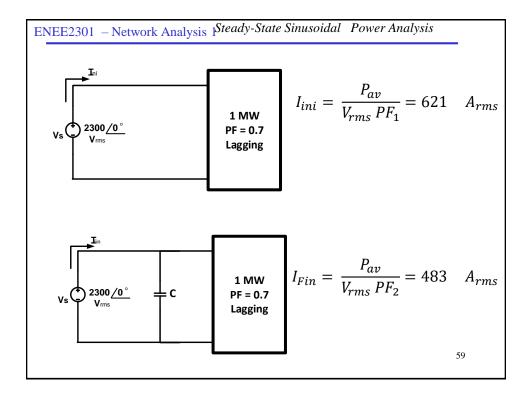
$$Q_c = Q_{Final} - Q_{init}$$

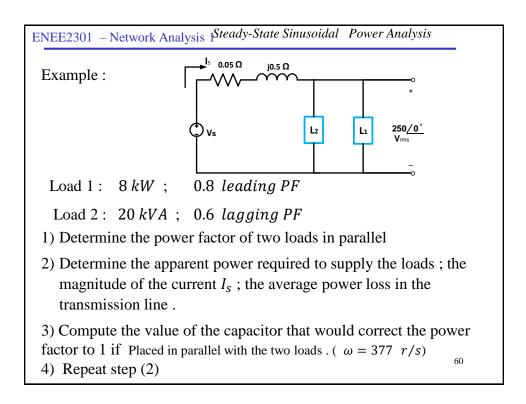
$$= -0.536 \quad MVARs$$

$$Q_c = -\frac{V_{rms}^2}{X_c}$$

$$= -\omega c V_{rms}^2$$

$$\therefore C = \frac{Q_c}{V_{rms}^2} = 269 \quad \mu F$$





Load
$$1:8 \, kW$$
; 0.8 leading PF

Load
$$2:20 \, kVA$$
; $0.6 \, lagging \, PF$

$$P_{av 1} = 8000 W$$

$$\therefore Q_1 = -P_{av 1} \tan[\cos^{-1}(PF_1)] = -6000 \ VAR$$

$$P_{a 2} = 20,000 VA$$
 $PF_2 = 0.6 lagging$

$$P_{av 2} = P_{a 2} * PF_2 = 12000 W$$

$$\therefore Q_2 = P_{av2} \tan[\cos^{-1}(PF_2)] = +16000 VAR$$

$$\therefore S_2 = P_{av2} + j Q_2$$

$$= 12000 + j 16000 VA$$

61

ENEE2301 - Network Analysis 1

$$\boldsymbol{S}_{LT} = \boldsymbol{S}_1 + \boldsymbol{S}_2$$

$$= 20,000 + j 10,000$$

$$= 22360 \angle 26.565^{\circ} VA$$

:
$$PF = \cos(26.565^{\circ}) = .8544$$
 lagging

$$S_{LT} = V_{rms} I_s^*$$

$$\therefore I_s^* = \frac{s_{LT}}{v_{rms}} = \frac{22360}{250} \ \angle 26.565^{\circ}$$

$$= 89.44 \angle 26.565^{\circ} \quad A_{rms}$$

Since
$$S_{LT} = 22360 \angle 26.565^{\circ}$$
 VA

$$P_a = |S_{LT}| = 22360$$
 VA

$$P_{av \, loss} = |I_s|^2 \cdot (0.05) = 400 \quad W$$

3) since
$$S_{LT} = 20\ 000 + j\ 10\ 000$$

$$\therefore Q_{ini} = 10\ 000 \qquad VAR$$

$$Q_{Fin}=0$$

$$\therefore Q_c = Q_{Fin} - Q_{ini} = -10000 \quad VAR$$

$$\therefore C = -\frac{Q_c}{\omega V_{rms}^2}$$

63

ENEE2301 - Network Analysis 1

4) since
$$Q_{Fin} = 0$$

$$\therefore \mathbf{S}_F = P_a = 20\ 000 \qquad VA$$

$$\therefore P_a = P_{av} = 20\ 000 \qquad VA$$

$$I_S^* = \frac{20\,000\,\angle\,0^\circ}{250\,\angle\,0^\circ} = 80\,\angle\,0^\circ \quad A$$

$$\therefore I_s = 80 \angle 0^{\circ} \quad A$$

$$P_{av \ loss} = |I_s|^2 . (0.05)$$

= 320 W

Power Measurement

Wattmeter is the instrument for measuring the average power Two coils are used, the high impedance voltage coil and the low impedance current coil.

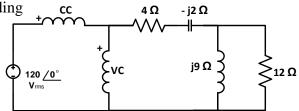
$$P = V_{rms} I_{rms} \cos(\theta_v - \theta_i)$$

65

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

Example:

Find the Wattmeter reading



$$Z = 4 - j2 + (j9||12)$$

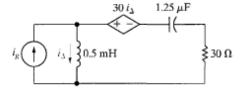
$$= 9.13 \angle 24.32^{\circ} \quad \Omega$$

$$I = \frac{120 \angle 0^{\circ}}{9.13 \angle 24.32^{\circ}} \quad 13.14 \angle - 24.32^{\circ} \quad A_{rms}$$

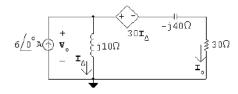
$$P = (120)(13.14) \cos(0 + 24.32)$$

$$= 1436.9 \quad W$$
₆₆

10.6 Find the average power dissipated in the 30 Ω resistor in the circuit seen in Fig. P10.6 if $i_g = 6\cos 20{,}000t$ A.



Answer

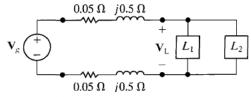


$$P_{30\Omega} = \frac{1}{2} |\mathbf{I}_o|^2 30 = 600 \,\mathrm{W}$$

67

ENEE2301 - Network Analysis | Steady-State Sinusoidal Power Analysis

10.21 The two loads shown in Fig. P10.21 can be described as follows: Load 1 absorbs an average power of 60 kW and delivers 70 kVAR magnetizing reactive power; load 2 has an impedance of 24 + j7.



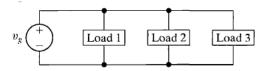
The voltage at the terminals of the loads is $2500\sqrt{2}\cos 120\pi t$ V.

Answer

- a) Find the rms value of the source voltage.
- b) By how many microseconds is the load voltage out of phase with the source voltage?
- c) Does the load voltage lead or lag the source voltage?
- a)Vg= $_{2514.86}$ /2.735° Vrms
- b) $t = 126.62 \,\mu\text{s}$

c) $V_L \text{ lags } V_g \text{ by } 2.735^{\circ} \text{ or } 126.62 \,\mu\text{s}$

- 10.26 The three loads in the circuit in Fig. P10.26 can be described as follows: Load 1 is a 240 Ω resistor in series with an inductive reactance of 70 Ω ; load 2 is a capacitive reactance of 120 Ω in series with a 160 Ω resistor; and load 3 is a 30 Ω resistor in series with a capacitive reactance of 40 Ω . The frequency of the voltage source is 60 Hz.
 - a) Give the power factor of each load.
 - b) Give the power factor of the composite load seen by the voltage source.



69

Answer

a)

$$Z_1 = 240 + j70 = 250/16.26^{\circ} \Omega$$

pf =
$$\cos(16.26^{\circ}) = 0.96$$
 lagging

$$Z_2 = 160 - j120 = 200/-36.87^{\circ} \Omega$$

pf =
$$\cos(-36.87^{\circ}) = 0.8$$
 leading

$$Z_3 = 30 - j40 = 50/-53.13^{\circ} \Omega$$

pf =
$$\cos(-53.13^{\circ}) = 0.6$$
 leading

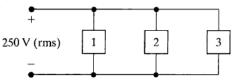
b)

$$Z = \frac{1}{Y} = 37.44 /\!\!\!/ - 42.03^{\circ} \Omega$$

pf =
$$\cos(-42.03^{\circ}) = 0.74$$
 leading

- 10.27 Three loads are connected in parallel across a 250 V (rms) line, as shown in Fig. P10.27. Load 1 absorbs 16 kW and 18 kVAR. Load 2 absorbs 10 kVA at 0.6 pf lead. Load 3 absorbs 8 kW at unity power factor.
 - a) Find the impedance that is equivalent to the three parallel loads.
 - Find the power factor of the equivalent load as seen from the line's input terminals.

Figure P10.27



Answer

a)
$$Z = \frac{250}{120 - j40} = 1.875 + j0.625 \Omega = 1.98/18.43^{\circ} \Omega$$

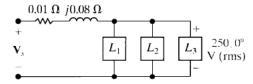
b)
$$pf = cos(18.43^{\circ}) = 0.9487 lagging$$

71

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

- **10.28** The three loads in Problem 10.27 are fed from a line having a series impedance $0.01 + j0.08 \Omega$, as shown in Fig. P10.28.
 - a) Calculate the rms value of the voltage (\mathbf{V}_s) at the sending end of the line.
 - b) Calculate the average and reactive powers associated with the line impedance.
 - c) Calculate the average and reactive powers at the sending end of the line.
 - d) Calculate the efficiency (η) of the line if the efficiency is defined as

$$\eta = (P_{\text{load}}/P_{\text{sending end}}) \times 100.$$



[a] From the solution to Problem 10.26 we have

$$I_L = 120 - j40 \,\text{A} \,(\text{rms})$$

$$V_s = 250/0^{\circ} + (120 - j40)(0.01 + j0.08) = 254.4 + j9.2$$
$$= 254.57/2.07^{\circ} \text{ V (rms)}$$

[b]
$$|\mathbf{I}_L| = \sqrt{16,000}$$

$$P_{\ell} = (16,000)(0.01) = 160 \,\text{W}$$
 $Q_{\ell} = (16,000)(0.08) = 1280 \,\text{VAR}$

[c]
$$P_s = 30,000 + 160 = 30.16 \,\mathrm{kW}$$
 $Q_s = 10,000 + 1280 = 11.28 \,\mathrm{kVAR}$

[d]
$$\eta = \frac{30}{30.16}(100) = 99.47\%$$

73

ENEE2301 - Network Analysis | Steady-State Sinusoidal | Power Analysis

- 10.34 A group of small appliances on a 60 Hz system requires 20 kVA at 0.85 pf lagging when operated at 125 V (rms). The impedance of the feeder supplying the appliances is $0.01 + j0.08 \Omega$. The voltage at the load end of the feeder is 125 V (rms).
 - a) What is the rms magnitude of the voltage at the source end of the feeder?
 - b) What is the average power loss in the feeder?
 - c) What size capacitor (in microfarads) across the load end of the feeder is needed to improve the load power factor to unity?
 - d) After the capacitor is installed, what is the rms magnitude of the voltage at the source end of the feeder if the load voltage is maintained at 125 V (rms)?
 - e) What is the average power loss in the feeder for (d)?

```
[a] S_{L} = 20,000(0.85 + j0.53) = 17,000 + j10,535.65 \text{ VA}

125\mathbf{I}_{L}^{*} = (17,000 + j10,535.65); \mathbf{I}_{L}^{*} = 136 + j84.29 \text{ A}(\text{rms})

\therefore \mathbf{I}_{L} = 136 - j84.29 \text{ A}(\text{rms})

\mathbf{V}_{s} = 125 + (136 - j84.29)(0.01 + j0.08) = 133.10 + j10.04

= 133.48 / 4.31^{\circ} \text{ V}(\text{rms})

|\mathbf{V}_{s}| = 133.48 \text{ V}(\text{rms})

[b] P_{\ell} = |\mathbf{I}_{\ell}|^{2}(0.01) = (160)^{2}(0.01) = 256 \text{ W}

[c] \frac{(125)^{2}}{X_{C}} = -10,535.65; X_{C} = -1.48306 \Omega

-\frac{1}{\omega C} = -1.48306; C = \frac{1}{(1.48306)(120\pi)} = 1788.59 \,\mu\text{F}

[d] \mathbf{I}_{\ell} = 136 + j0 \text{ A}(\text{rms})

\mathbf{V}_{s} = 125 + 136(0.01 + j0.08) = 126.36 + j10.88

= 126.83 / 4.92^{\circ} \text{ V}(\text{rms})

|\mathbf{V}_{s}| = 126.83 \text{ V}(\text{rms})

[e] P_{\ell} = (136)^{2}(0.01) = 184.96 \text{ W}
```

