
Chapter 16: Transaction Management

• Looking at the execution of user programs on the database

• Interleaving transactions are the foundation
• Concurrent execution

• Interleaving must be done with care

•Should be equivalent to some serial

order of transaction execution

(Concurrency control)

1
Uploaded By: anonymousSTUDENTS-HUB.com

Transactions

•A single execution of a user program on the
database.

•A single transaction might require many queries,
each reading and/or writing information to the
database.

•A transaction is an isolated sequence of operations
that can either all be saved to the database or all
cancelled and ignored .

2
Uploaded By: anonymousSTUDENTS-HUB.com

Main Properties of Transactions

•To resolve issues relating to
concurrency, crash recovery,
reliability, and consistency,

• A transaction in a database
management system must
maintain 4 properties:

3
Uploaded By: anonymousSTUDENTS-HUB.com

[1] Atomic
•A transaction is an atomic unit of processing

•Either all operations of a transaction are executed or none of them
are. (All or nothing)

•Either all actions are carried out or none.
• Incomplete transactions are aborted (rolled back)

•The user should not worry about the effect of incomplete
transactions.

[1] DBMS abort the transaction

[2] System may crash

[3] Transaction may encounter

a problem by itself

•Example ATM Machine:

4
Uploaded By: anonymousSTUDENTS-HUB.com

[2] Consistency

•Every transaction running by itself must preserve the consistency of
the database.

•A requested action must be reflected correctly and accurately on the
database.

• In other words, a transaction must leave the database in consistent
state.

•This is the responsibility of database developers.

5
Uploaded By: anonymousSTUDENTS-HUB.com

Example (Consistency)

•Transaction to transfer $50 from account A to account B

•Consistency requirement:
• The sum of A and B is unchanged by the execution of the transaction

6
Uploaded By: anonymousSTUDENTS-HUB.com

[3] Isolation

•Even though transactions maybe interleaved, the net effect is
identical to executing all transactions one after another in some
serial order
• Transactions are isolated or protected from the effects of concurrently

scheduling other transactions.
• Every transaction is an independent entity.
• One transaction should not affect any other transaction running at the same

time.

•Example: T1 and T2 may be interleaved, but the net
effect should be same as running T1 and then running
T2.

7
Uploaded By: anonymousSTUDENTS-HUB.com

[4] Durability

•Once the DBMS informs the user that the transaction has
been successfully completed:
•Its effects should persist.
•Even if the system crashes before changes are reflected to
disk
•How?!

•A separate log is maintained for every action in the database.
•The log entry is written to stable storage before any action is

taken.
•This is the work of the Recovery Manager module.

8
Uploaded By: anonymousSTUDENTS-HUB.com

Transactions and Schedules

•A transaction is seen by DBMS as a series of
actions…..read and write

•RT(O) : transaction reading an object from DB

•WT(O) : transaction writing an object to DB

•Abort T : action of a transaction aborting

•Commit T : action of transaction committing

9
Uploaded By: anonymousSTUDENTS-HUB.com

Transactions and Schedules (2)

•A schedule: is a chronological ordering of actions
(read/write/abort/commit) from a set of
transactions.
• The order in which two actions of a transaction T

appears in a schedule must be the same as the order as
they would appear in T.

• Realistically: A schedule is an actual execution sequence!

•A complete schedule must include all actions of all
transactions appearing in it

• Serial schedule is the one that transactions in it are
not interleaved

10
Uploaded By: anonymousSTUDENTS-HUB.com

Concurrent Execution Of Transactions

•The DBMS interleaves the actions of different transactions to improve
performance

•Must ensure Transaction Isolation
• not all interleaves should be allowed

•Concurrency necessary for:
•Overlapping I/O and CPU operations reduces amount of time disks and

processors are idle. This increases system throughput
• Throughput: Average number of transactions completed in a unit time.

• Interleaved execution of a short transaction with a long transaction
allows the short transaction to complete quickly.
• In serial execution of transactions, a short transaction might get stuck behind

a long transaction leading to unacceptable delays in response time.
• Response time: Average time take to complete a transaction.

11
Uploaded By: anonymousSTUDENTS-HUB.com

Serializability

•A serializable schedule: over a set of a committed
transactions is a schedule that is guaranteed to be
identical to that of some complete serial schedule.

12
Uploaded By: anonymousSTUDENTS-HUB.com

Serializability (2)

13
Uploaded By: anonymousSTUDENTS-HUB.com

Serializability (3)

•DBMS might sometimes execute transactions in a
way that is not equivalent to any serial execution;
•i.e., using a schedule that is not serializable.

•How could this happen?!
•First, the DBMS might use a concurrency control method
that ensures the executed schedule, though not itself
serializable, is equivalent to some serializable schedule.
•Second, SQL gives application programmers the ability to
instruct the DBMS to choose non-serializable schedulers.

14
Uploaded By: anonymousSTUDENTS-HUB.com

The root of all problems

•Writing is the main problem

•A conflict occurs
•Two actions from different
transactions
•On the same data object
•At least one of them is a write

•WR
•RW
•WW

15
Uploaded By: anonymousSTUDENTS-HUB.com

Serializability Graph

•A node is drawn for each Transaction

•An arc from Ti to Tj if an action of Ti precedes and CONFLICTS with
one of Tj’s actions

16
Uploaded By: anonymousSTUDENTS-HUB.com

Concurrent Execution Of Transactions

•The DBMS interleaves the actions of different transactions to improve
performance

•Must ensure Transaction Isolation
• not all interleaves should be allowed

•Must ensure schedule remains serializable
• Or the serializability graph contains no cycles!

17
Uploaded By: anonymousSTUDENTS-HUB.com

Reading Uncommitted Data (WR)

18
Uploaded By: anonymousSTUDENTS-HUB.com

Reading Uncommitted Data (2)

•The result of this schedule is different from any
result that we would get by running one of the
two transactions first and then the other.

•The problem can be traced to the fact that the
value of A written by T1 is read by T2 before T1
has completed all its changes.

T1 T2

19
Uploaded By: anonymousSTUDENTS-HUB.com

Unrepeatable Reads (RW)

•where a transaction T reads the same item twice and the
item is changed by another transaction T′ between the two
reads.

•A transaction T2 could change the value of an object A that
has been read by a transaction T1, while T1 is still in
progress.

• If T1 tries to read the value of A again, it will get a different
result, even though it has not modified A in the meantime.

20
Uploaded By: anonymousSTUDENTS-HUB.com

Unrepeatable Reads (RW) (2)

• Suppose A is available number of copies of a
book in a library.

•A transaction that places an order first reads
the A, checks that it is greater than 0 and
decrements it.

•Transaction T1 reads A and finds 1,

•Transaction T2 also reads A, finds 1 and
decrements A to 0

•Transaction T1 reads A and gets a different
value!

T1 T2

21
Uploaded By: anonymousSTUDENTS-HUB.com

Overwriting Uncommitted Data

•A transaction T2 could overwrite the value of an
object A, which has already been modified by a
transaction T1, while T1 is still in progress.

•This is also known as Lost Update Problem Reception 1 Reception 2

R(A)
R(A)

W(A)
W(A)

• Flight example

•Two users
• One Ticket left!

22
Uploaded By: anonymousSTUDENTS-HUB.com

Optional: Unrecoverable schedule

•Committing uncommitted data

•How to make it recoverable?

•Can we avoid cascading aborts?

23
Uploaded By: anonymousSTUDENTS-HUB.com

Lock-Based Concurrency Control

•A DBMS must be able to ensure that:
• only serializable, recoverable schedules are allowed,
• and that no actions of committed transactions are lost while undoing aborted

transactions.

•A DBMS typically uses a locking protocol to achieve this.

• A locking protocol is a set of rules to be followed by each transaction in
order to ensure that even though actions of several transactions might be
interleaved, the net efect is identical to executing all transactions in some
serial order

24
Uploaded By: anonymousSTUDENTS-HUB.com

Strict Two Phase Locking (S2PL)

• It is the most widely used locking protocol.

• It has two rules:

•A)
• If a transaction T wants to read it first requests a shared lock on the object
• If a transaction T wants to modify an object, it first requests a exclusive lock on

the object

•B) All locks held by a transaction are released when the transaction is
completed.

25
Uploaded By: anonymousSTUDENTS-HUB.com

26
Uploaded By: anonymousSTUDENTS-HUB.com

Example S2PL:

27
Uploaded By: anonymousSTUDENTS-HUB.com

Example S2PL (2):

28
Uploaded By: anonymousSTUDENTS-HUB.com

Deadlocks, Thrashing• What is a deadlock?
• How do we detect a deadlock?

• Construct a wait-for graph
• For each Transaction a node is drawn
• An arch from Ti to Tj is drawn if and only if Ti is

waiting for a lock to be released by Tj

29
Uploaded By: anonymousSTUDENTS-HUB.com

Thrashing

• Seen when around 30% of active transactions are blocked

•At this point adding any new transaction actually reduces throughput.

30
Uploaded By: anonymousSTUDENTS-HUB.com

