
COMP338: ARTIFICIAL

INTELLIGENCE
Solving Problems by Searching –

Informed Search

Dr. Radi Jarrar

1

Uploaded By: anonymousSTUDENTS-HUB.com

Informed Search

• Use domain knowledge!

• Are we getting close to the goal?

• Use a heuristic function that estimates how close a

state is to the goal

• A heuristic does NOT have to be perfect!

2

Uploaded By: anonymousSTUDENTS-HUB.com

Informed Search

• Informed Search strategies use problem-
specific knowledge (beyond the definition of
the problem itself)

•They can find solutions more efficiently than
an uninformed strategy

•Best-First Search is a general approach that
is considered in Informed Search

3

Uploaded By: anonymousSTUDENTS-HUB.com

Informed Search

• It is an instance of the general tree-search or
graph-search (Please check the book!)
algorithms in which a node is selected for
expansion based on an evalution function
f(n)

•The evaluation function is construed as a
cost estimate, so the node with the lowest
evaluation is expanded first

4

Uploaded By: anonymousSTUDENTS-HUB.com

Informed Search

•Best-first graph search implementation is
identical to that for uniform-cost search,
except for the use of f instead of g to order
the priority queue

•Most best-first algorithms include as a
component of f a heuristic function,
denoted h(n):

h(n) = estimated cost of the cheapest path from
the state at node n to a goal state

5

Uploaded By: anonymousSTUDENTS-HUB.com

Informed Search

• h(n) depends on the state at node n

• In Romania’s example, the cost of the cheapest
path can be represented as a straight line to
Bucharest

• Heuristic functions are the most common form in
which additional knowledge of the problem is
imparted to the search algorithm

• For now, consider them to be arbitrary,
nonnegative, problem-specific functions, with one
constraint: if n is a goal node, then h(n)=0

6

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

•Expands the node that is closest to the goal
(with the aim to lead to the solution more
quickly)

• It evaluates nodes by using the heuristic
function: f(n)=h(n) only (meaning it
disregards the actual edge weights in a
weighted graph)

7

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

•Consider the route-finding problems in
Romania. We use the straight line distance
heuristic, which we will call hSLD. If the goal is
Bucharest, we need to know the straight-line
distances to Bucharest (from other cities)

8

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search
• Evaluation function h(n) (i.e., heuristic)

• h(n) estimates the cost from n to the closest goal

• Example: hSLD(n) = straight-line distance from

n to Sault Ste Marie

• Greedy search expands the node that appears to

be closest to goal

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Algorithm
• Initialise a tree with the root is source node
• If open list = empty, then return fail. Else, add

the current node to the closed list
• Expand the node with the lowest h(x) from the

open list for exploration
• If the child node is the target, then return

success. Else, examine the new node (either has
not been open or closed list), and then add it to
the open list for exploration

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search- Algorithm

Uploaded By: anonymousSTUDENTS-HUB.com

Examples using the map
Start: Saint Louis

Goal: Sault Ste Marie

Greedy search

Uploaded By: anonymousSTUDENTS-HUB.com

The initial state:

Greedy best-first search - Example

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy best-first search - Example
After expanding St Louis:

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy best-first search - Example
After expanding Chicago:

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy best-first search - Example
After expanding Duluth:

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Consider the following graph, we want to get
from P to S

• We only care about the
heuristic value not the actual
path to the next node

18

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Expand node P

• Note that the least cost is at C

19

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Expand node P

• Note that the least cost is at C

20

Closed list

P

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Expand node C

• Note that the least cost is at U

21

Closed list

P

C

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Expand node U

• Note that the least cost is at S

22

Closed list

P

C

U

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Expand node U

• Note that the least cost is at S (Goal)

• The total goal to the S evaluates to 11
(P -> C -> U -> S)

23

Closed list

P

C

U

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search - Example

• Consider the actual path P->R->E->S
• What is cost?

• Greedy Best-First Search ignored
this path because it depends
solely on the heuristic value

24

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

25

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

• It is not optimal, however: the path via Sibiu
and Fagaras to Bucharest is 32 kilometers
longer than the path through Rimnicu Vilcea
and Pitesti

•This shows why the algorithm is called
“greedy”—at each step it tries to get as close
to the goal as it can

26

Uploaded By: anonymousSTUDENTS-HUB.com

27

Uploaded By: anonymousSTUDENTS-HUB.com

28

Uploaded By: anonymousSTUDENTS-HUB.com

29

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

•Complete?

30

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

•Complete?

• No – can get stuck in loops, e.g., Iasi -> Neamt -
> Iasi -> Neamt -> …

•Optimal?

31

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

•Complete?

• No – can get stuck in loops, e.g., Iasi -> Neamt -
> Iasi -> Neamt -> …

•Optimal?

• No (not guaranteed to find lowest cost solution).

•Time?

32

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

•Complete?

• No – can get stuck in loops, e.g., Iasi -> Neamt -
> Iasi -> Neamt -> …

•Optimal?

• No (not guaranteed to find lowest cost solution).

•Time?

• O(bm), (in worst case). A good heuristic function
can enhance the performance (m is max depth of
search space).

•Space?

33

Uploaded By: anonymousSTUDENTS-HUB.com

Greedy Best-First Search

• Complete?
• No – can get stuck in loops, e.g., Iasi -> Neamt -> Iasi -

> Neamt -> …

• Optimal?

• No (not guaranteed to find lowest cost solution).

• Time?
• O(bm), (in worst case). A good heuristic function can

enhance the performance (m is max depth of search
space).

• Space?

• O(b m) keeps all nodes in memory.

34

Uploaded By: anonymousSTUDENTS-HUB.com

A* ALGORITHM

37

Uploaded By: anonymousSTUDENTS-HUB.com

A* search

• A variant of Best-First Search

• It evaluates nodes by combining g(n), the cost to
reach the node, and h(n), the cost to get from the
node to the goal:

f(n) = g(n) + h(n)

• Can be seen also as a variant of Dijkstra’s
algorithm, but it differs in the evaluation
evaluation function that is used to determine
which node to explore next.

38

Uploaded By: anonymousSTUDENTS-HUB.com

A* search

f(n) = g(n) + h(n)

• f(n) = estimated cost of the cheapest solution through
n

• g(n) = cost to reach node n from the start state

• h(n) = cost to reach from node n to goal node
(heuristic)

• At each point during the search, only those node
that have the lowest value of f(n) are expanded

• The algorithm terminates when the goal node is
found

39

Uploaded By: anonymousSTUDENTS-HUB.com

A* search

• A reasonable way to find the cheapest solution
is to try first the node with the lowest value
of g(n) + h(n)

•A* search is identical to the Uniform-Cost-
Search (except A∗ uses g + h instead of g.)

• It is both complete and optimal

40

Uploaded By: anonymousSTUDENTS-HUB.com

A* search - Algorithm

• Given a weighted graph, you need an open list (using
priority queue) to store the next node to explore and a
closed list to store the nodes that have been already visited.

• To find the lowest cost path, construct a search tree as
follows:
• Initialize a tree with the root node being the start node S.

• Remove the top node from the open list for exploration.

• Add the current node to the closed list.

• Add all nodes that have an incoming edge from the current node as
child nodes in the tree.

• Update the lowest cost to reach the child node.

• Compute the evaluation function for every child node and add them to
the open list.

41

Uploaded By: anonymousSTUDENTS-HUB.com

Optimality Conditions

• The heuristic function h(x) should be admissible
heuristic: meaning it should never overestimate the
cost of reaching a goal.

• Overestimation is the case in which we depend on
h(n) alone. We might get to the shortest path but it
might, on the other hand, cause the path to go
longer than the optimal path.

42

Uploaded By: anonymousSTUDENTS-HUB.com

Optimality Conditions

•Admissible heuristics are optimistic as they
think the cost of solving the problem is less
than it actually is

•The straight-line distance hSLD is an example
of admissible heuristics

•The Straight-line distance, on the route to
Bucharest, is admissible because the shortest
path between any two points is a straight
line, so the straight line cannot be an
overestimate

44

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

45

E.g., hSLD(In(Arad))=366
Straight-Line Distances

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

46

- The values shown here are the g(n) the step cost and h(n) which are the Hsld
Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

47

- The values shown here are the g(n) the step cost and h(n) which are the Hsld
Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

48

- The values shown here are the g(n) the step cost and h(n) which are the Hsld
Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• `

49

Notice in particular that Bucharest first appears on the frontier
at step (e), but it is not selected for expansion because its f-cost (450) is
higher than that of Pitesti (417). Another way to say this is that there
might be a solution through Pitesti whose cost is as low as 417, so the
algorithm will not settle for a solution that costs 450.

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• `

50

Notice in particular that Bucharest first appears on the frontier
at step (e), but it is not selected for expansion because its f-cost (450) is
higher than that of Pitesti (417). Another way to say this is that there
might be a solution through Pitesti whose cost is as low as 417, so the
algorithm will not settle for a solution that costs 450.

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

51

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• Consider the following graph, we want to get from S to G

52

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• Consider the following graph, we want to get from S to G

• A has the least cost

53

Closed list

S

Node Cost

A 12

B 16

C 16

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• Consider the following graph, we want to get from S to G

• D has the least cost

54

Closed list

S

A

Node Cost

D 14

C 16

B 16

B 18 Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• Consider the following graph, we want to get from S to G

• Explore F

55

Closed list

S

A

D

Node Cost

F 13

C 16

B 16

B 18

H 32

I 33 Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• Consider the following graph, we want to get from S to G

• G has been found but there are nodes
with less cost to be explored before so explore B

56

Closed list

S

A

D

F

Node Cost

B 16

C 16

B 18

G 23

H 32

I 33 Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search

• Consider the following graph, we want to get from S to G

• Now Explore C

57

Closed list

S

A

D

F

B

Node Cost

C 16

B 18

G 23

H 32

I 33

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search
• Consider the following graph, we want to get from S to G

• The next node in the open list is B (again). Since B has already been
explored, meaning a shortest path to B has been found. So it is not
explored again and the algorithm continues to the next candidate

58

Closed list

S

A

D

F

B

C

Node Cost

B 18

G 23

H 32

I 33

E 36

Uploaded By: anonymousSTUDENTS-HUB.com

Example – A* Search
• Consider the following graph, we want to get from S to G

• The next node in the open list is G meaning the shortest path to
G has been found

59

Closed list

S

A

D

F

B

C

G

Node Cost

H 32

I 33

E 36

Uploaded By: anonymousSTUDENTS-HUB.com

A* Search - Properties

• Complete: Yes

• Optimal: Yes

• A* is optimal if heuristic h(n) is admissible (tree
version)

• Time complexity: exponential O(bd)

• Space complexity: A* search keeps all nodes in
memory. A* has the worst case of O(bd)
• This is because A* must keep track of the nodes evaluated so far as

well the discovered nodes to be evaluated

63

Uploaded By: anonymousSTUDENTS-HUB.com

Optimality of A* Search

• The first goal node selected for expansion must be
an optimal solution because f is the true cost for
goal nodes (which have h=0) and all later goal
nodes will be at least as expensive

• The fact that f-costs are nondecreasing along any
path also means that we can draw contours in the
state space, just like the contours in a topographic
map

67

Uploaded By: anonymousSTUDENTS-HUB.com

A* Search - optimality

• A* will find the optimal solution

• The first solution found is the optimal

• A* is optimally efficient

• No other algorithm is guaranteed to expand fewer nodes
than A*

• A* is not always “the best” algorithm

• Optimality refers to the expansion of nodes, other criteria
might be more relevant such as memory consumption

• It generates and keeps all nodes in memory

• Improved in variations of A*

72

Uploaded By: anonymousSTUDENTS-HUB.com

A* Search - Algorithm

74

Uploaded By: anonymousSTUDENTS-HUB.com

Review - Best-first search

• Driven by the evaluation function f (n) to guide the
search.

• incorporates a heuristic function h(n) in f (n)

• heuristic function measures a potential of a state
(node) to reach a goal

• Special cases (differ in the design of evaluation
function): – Greedy search

• f (n) = h(n)
f (n) = g (n) + h(n)

• – A* algorithm
+ iterative deepening version of A* : IDA*

75

Uploaded By: anonymousSTUDENTS-HUB.com

Review - Best-first search

• The problem with the greedy search is that it can keep
expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses
only past exploration information (path cost), no additional
information is utilized

• A* search
f (n) = g (n) + h(n)

• g(n) - cost of reaching the state

• h(n) - estimate of the cost from the current state to a goal

• f (n) - estimate of the path length

• • Additional A*condition: admissible heuristic h(n) <= h*
(n) for all n

76

Uploaded By: anonymousSTUDENTS-HUB.com

Review - Best-first search

• Optimality of A*

• In general, a heuristic function h(n) :
Can overestimate, be equal or underestimate the
true distance of a node to the goal h*(n)

• Admissible heuristic condition

• – Never overestimate the distance to the goal:
h(n) <= h* (n) for all n

• Example: the straight-line distance in the travel
problem never overestimates the actual distance

77

Uploaded By: anonymousSTUDENTS-HUB.com

IDA*

78

Uploaded By: anonymousSTUDENTS-HUB.com

Memory-Bounded Heuristic Search-IDA*

•Memory requirements of A* search is
reduced by adapting the idea of iterative
deepening to the heuristic research

•This results in iterative-deepening A* (IDA*)

• The main difference between IDA* and standard
iterative deepening is that the cut-off used is the f-
cost (g+h) rather than the depth; at each iteration,
the cut-off value is the smallest f-cost of any node
that exceeded the cut-off on the previous iteration

79

Uploaded By: anonymousSTUDENTS-HUB.com

IDA*

• Solves minimum cost-path problems with heuristics

• Iterative deepening version of A*

• Idea:
• Performs limited-cost depth-first search for the current

evaluation function limit

• Keeps expanding nodes in the depth-first manner up to the
evaluation function limit

• Progressively increases the evaluation function limit
(instead of the depth limit)

80

Uploaded By: anonymousSTUDENTS-HUB.com

IDA*

• IDA* is practical for many problems with
unit step costs and avoids the substantial
overhead associated with keeping a sorted
queue of nodes

• It suffers from the same difficulties with
real valued costs as does the iterative
version of uniform-cost search

84

Uploaded By: anonymousSTUDENTS-HUB.com

IDA* - Algorithm

• In the first iteration, the value “f-cost limit” – cut-off
value f(n0) = g(n0) + h(n0) = h(n0), is determined
where n0 is the start node

• Expand nodes using the DFS and backtrack whenever
f(n) for an expanded node n exceeds the cut-off value

• If this search does not succeed, determine the lowest f-
value among the nodes that were visited but not
expanded

• Use this f-value as the new limit value – cut-off value
and do another depth-first search

• This procedure is repeated until a goal node is found

85

Uploaded By: anonymousSTUDENTS-HUB.com

RECURSIVE-BFS

99

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

• A simple recursive algorithm that attempts to
mimic the operation of standard best-first search,
but using only linear space

• It aims at solving the memory issue inherits with A*
search

• Idea: Similar to iterative deepening search, but the
cutoff is f-cost (g+h) at each iteration, rather than
depth first

100

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

• Recursive-BFS and Simple Memory Bounded
(SMA*) are called memory bounded heuristic
search algorithms

101

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

• Aims to find the best alternative over fringe nodes,
which are not children

• As the recursion is resolved, RBFS replaces the f-
value of each node along the path with a backed-up
value—the best f-value of its children

• In this way, RBFS remembers the f-value of the best
leaf in the forgotten subtree and can therefore
decide whether it’s worth re-expanding the subtree
at some later time

• It stores the best alternative over fringe nodes,
which are not children

102

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

•RBFS changes its mind very often in practice.

•This is because the f=g+h become more
accurate (less optimistic) as we approach the
goal. Hence, higher level nodes have smaller
f-values and will be explored first.

103

Uploaded By: anonymousSTUDENTS-HUB.com

RBFS - Algorithm

function RBFS (problem, node, f-limit) returns a solution or failure and a new f-cost limit

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node) successors ← []

for each action in problem.ACTIONS(node.STATE) do

add CHILD-NODE(problem, node, action) into successors

if successors is empty then

return failure, ∞

for each s in successors do

/* update f with value from previous search, if any */

s.f ← max (s.g + s.h, node.f))

loop do

best ← the lowest f-value in successors

if best.f > f-limit then

return failure, best.f

alternative ← the second lowest f-value among successors result, best.f ← RBFS (problem,

best, min(f-limit,alternative))

if result ̸= failure then

return result

104

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

105

- Shortest path to Bucharest.
- The f-limit value for each recursive call is shown at the top of each node
- Every node is labelled with its f-cost

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

106

- Shortest path to Bucharest.
- The f-limit value for each recursive call is shown at the top of each node
- Every node is labelled with its f-cost

The path via Rimnicu Vilcea is followed until the

current best leaf (Pitesti) has a value that is

worse than the best alternative path (Fagaras).

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

107

The recursion unwinds and the best

leaf value of the forgotten subtree

(417) is backed up to Rimnicu Vilcea;

then Fagaras is expanded, revealing a
best value of 450.

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

108

The recursion unwinds and the best value

of the of the forgotten subtree (450) is

backed up to Fagaras; then Rimnicu Vilcea

is expanded. This time, because the best

alternative path through Timisoara costs at

least 447, the expansion continues to

Bucharest.
Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

•RBFS is somewhat more efficient than IDA*

• It still suffers from excessive node
regeneration

•RBFS follows the path via Rimnicu Vilcea,
then “changes its mind” and tries Fagaras,
and then changes its mind back again. These
mind changes occur because every time the
current best path is extended, its f-value is
likely to increase—h is usually less optimistic
for nodes closer to the goal

109

Uploaded By: anonymousSTUDENTS-HUB.com

Recursive-Best First Search (RBFS)

• Each mind change corresponds to an iteration of IDA*

• Complete: Yes, as A* algorithm

• Like A* tree search, RBFS is an optimal algorithm if
the heuristic function h(n) is admissible

• Its space complexity is linear in the depth of the
deepest optimal solution, but its time complexity is
rather difficult to characterize: it depends the
accuracy of the heuristic function and on how
often the best path changes as nodes are
expanded

• Memory O(bd)

110

Uploaded By: anonymousSTUDENTS-HUB.com

SMA*

113

Uploaded By: anonymousSTUDENTS-HUB.com

SMA*

• Stands for Simplified Memory-Bounded A*

• This is like A*, but when memory is full we delete
the worst node (largest f-value).

• Like RBFS, we remember the best descendent in
the branch we delete.

• If there is a tie (equal f-values) we first delete the
oldest node(s) first.

• SMA* finds the optimal reachable solution given
the memory constraint.

• But time can still be exponential.

114

Uploaded By: anonymousSTUDENTS-HUB.com

SMA*

• SMA* proceeds just like A*, expanding the
best leaf until memory is full

•Until here, it cannot add a new node to the
search tree without dropping an old one

• SMA* always drops the worst leaf node—the
one with the highest f-value from the fringe

115

Uploaded By: anonymousSTUDENTS-HUB.com

SMA*

116

Uploaded By: anonymousSTUDENTS-HUB.com

SMA*

• SMA* is complete if there is any reachable
solution—that is, if d, the depth of the
shallowest goal node, is less than the
memory size (expressed in nodes)

• It is optimal if any optimal solution is
reachable; otherwise, it returns the best
reachable solution

118

Uploaded By: anonymousSTUDENTS-HUB.com

SMA*

• SMA* is a fairly robust choice for finding
optimal solutions, particularly when the state
space is a graph, step costs are not uniform,
and node generation is expensive compared
to the overhead of maintaining the frontier
and the explored set

•Often is better than A* and IDA* (trade-off
between time and space requirements)

119

Uploaded By: anonymousSTUDENTS-HUB.com

ADMISSIBLE HEURISTICS

120

Uploaded By: anonymousSTUDENTS-HUB.com

Admissible Heuristic

•The 8-puzzle is one of the earliest heuristic
search problems

•How one you invent a good admissible
heuristic function?

121

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

•The 8-puzzle is one of the earliest heuristic
search problems

•There are 9!/2 = 181,400 reachable states.

• So the search can easily keep all of them in
the memory.

•Consider a 15-puzzle, there are 16!/2 state –
which is over 10 trillion states (expensive on
the memory?)

122

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

• There is a need here for a good admissible heuristic
function.

• h1(n) = number of misplaced tiles

• h2(n) = the sum of the distances of the tiles from
their goal positions
• tiles cannot move diagonally; the distance is the sum of the horizontal

and vertical distances (city-block distance or Manhattan distance)

• h2 is also admissible because all any move can do is move one tile one
step closer to the goal

123

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

• There is a need here for a good admissible heuristic
function.

• h1(n) = number of misplaced tiles

• h2(n) = the sum of the distances of the tiles from
their goal positions
• tiles cannot move diagonally; the distance is the sum of the horizontal

and vertical distances (city-block distance or Manhattan distance)

• h2 is also admissible because all any move can do is move one tile one
step closer to the goal

• h1(S) = ?

• h2(S) = ?

124

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

• There is a need here for a good admissible heuristic
function.

• h1(n) = number of misplaced tiles

• h2(n) = the sum of the distances of the tiles from
their goal positions
• tiles cannot move diagonally; the distance is the sum of the horizontal

and vertical distances (city-block distance or Manhattan distance)

• h2 is also admissible because all any
move can do is move one tile one
step closer to the goal

• h1(S) = 8

• h2(S) = 3+1+2+2+2+3+3+2 = 18

125

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

• h2 is also admissible because all any move can do is move
one tile one step closer to the goal

• Tiles 1 to 8 in the start state give a Manhattan distance of h2

= 3+1 + 2 + 2+ 2 + 3+ 3 + 2 = 18

• Neither of these overestimates the true solution cost, which
is 26

129

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

• One way to characterise the quality of a heuristic is
the effective branching factor b*

• If the total number of nodes generated by A* for a
particular problem is N and the cdepth is d, then b*
is the branching factor that a uniform tree of depth
d would have to have in order to contain N + 1
nodes

• Thus, N + 1 = 1+b*+ (b*)2 + … + (b*) d

• For example, if A* finds a solution at depth 5 using
52 nodes, then the effective branching factor is 1.92

130

Uploaded By: anonymousSTUDENTS-HUB.com

Heuristic Functions

• Experimental measurements of b* on a small set of
problems can provide a good guide to the heuristic’s overall
usefulness

• A well designed heuristic would have a value of b* close to 1,
allowing fairly large problems to be solved at reasonable
computational cost

• The performance of heuristic search algorithms depends on
the quality of the heuristic function. One can sometimes
construct good heuristics by relaxing the problem definition,
by storing precomputed solution costs for subproblems in a
pattern database, or by learning from experience with the
problem class

131

Uploaded By: anonymousSTUDENTS-HUB.com

Summary

• The evaluation function for a node n is: f(n) = g(n) + h(n)

• If only g(n) is used, we get uniform-cost search

• If only h(n) is used, we get greedy best-first search

• If both g(n) and h(n) are used we get best-first search

• If both g(n) and h(n) are used with an admissible heuristic

we get A∗ search

• A consistent heuristic is admissible but not necessarily vice

versa

132

Uploaded By: anonymousSTUDENTS-HUB.com

Summary

• Admissibility (always finding the shortest solution) is
sufficient to guarantee solution optimality for tree
search

• Consistency (narrowing options and selecting the
best one) is required to guarantee solution optimality
for graph search

• Heuristic search usually brings drastic improvement
over uninformed search

133

Uploaded By: anonymousSTUDENTS-HUB.com

References
• S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2003, Second

Edition

• Lecture notes: Mustafa Jarrar’s COMP338 – Artificial Intelligence
http://www.jarrar.info/courses/AI/Jarrar.LectureNotes.Ch3.InformedSearch.pdf

• Moonis Ali: Lecture Notes on Artificial Intelligence
http://cs.txstate.edu/~ma04/files/CS5346/SMA%20search.pdf

• Max Welling: Lecture Notes on Artificial Intelligence
https://www.ics.uci.edu/~welling/teaching/ICS175winter12/A-starSearch.pdf

• Kathleen McKeown: Lecture Notes on Artificial Intelligence
http://www.cs.columbia.edu/~kathy/cs4701/documents/InformedSearch-AR-print.ppt

• Franz Kurfess: Lecture Notes on Artificial Intelligence
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-
Search.ppt

• Nulifer Ondor: Lecture notes on Artificial Intelligence https://pages.mtu.edu/~nilufer/

• Milos Hauskrecht: Lecture notes on Artificial Intelligence https://people.cs.pitt.edu/~milos/

134

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.jarrar.info/courses/AI/Jarrar.LectureNotes.Ch3.InformedSearch.pdf
https://pages.mtu.edu/~nilufer/
https://people.cs.pitt.edu/~milos/

