Digital Systems Section 2

Chapter (1)

STUDENTS-HUB.com

Analog vs. Digital

World around us is predominantly Analog Analog = <u>Continuous</u>

Change smoothly and gradually over **time**. Assume a <u>continuous</u> (infinite) range of **amplitudes**.

- Earth's movement

2STUDENTS-HUB.com

- Speech signal

- Body temperature

Binary is a special case of Digital
 Digital = Discrete
 Takes only a limited (finite) set of "Discrete" values.
 Changes abruptly in time by "Jumping" between levels.
 Position of a switch - The Alphabet - DNA sequence

Digital over Analog

- Easier to Design: Digital circuits are simpler because they handle a limited set of values (e.g. binary), making design more straightforward compared to analog systems.
- Error Tolerance: Digital circuits are more resilient to noise and drift, leading to lower error rates and higher reliability.
- Commercial Advantage: In VLSI (Very Large Scale Integration), digital circuits are more cost-effective and widely available.
- Digital Superiority: Storing, encrypting, compressing, and communicating data is far more efficient with digital systems.

"But the natural world is analog... So, we need to convert!"

"ADC and DAC: Bridging the gap between continuous analog signals and discrete digital data."

Analog-to-Digital Converters (ADC): Used to transform raw analog signals into digital form for processing.

Digital-to-Analog Converters (DAC):

Used to regenerate analog signals from digital data.

4STUDENTS-HUB.com

Convert Analog Signals to Digital Samples

1. Sampling in Time:

Impossible to manage infinite signal values on the **time** axis, so we ignore the signal between samples.

2. Quantization in Amplitude:

Impossible to handle infinite **amplitude** values, so we approximate the sample to the nearest value from a finite set of levels.

5STUDENTS-HUB.com

Abstract Representations

- Arithmetic Values: 0, 1
- Logic Levels: **True, False**
- States: **ON**, **OFF**

Physical Representations

- In an IC (e.g. in a microprocessor): Voltage
- In a Dynamic memory (DRAM): Electric Charge
- On a Hard Disk: Magnetization Direction
- On a CD: Surface pits for laser interference

Number Systems

7STUDENTS-HUB.com

8STUDENTS-HUB.com

4692.89

9STUDENTS-HUB.com

$$4692.89 = 4000 + 600 + 90 + 2 + 0.8 + 0.09$$

= 4 × 1000 + 6 × 100 + 9 × 10 + 2 × 1 + 8 × 0.1 + 9 × 0.01
= $\underbrace{4}_{a_3} \times 10^3 + \underbrace{6}_{a_2} \times 10^2 + \underbrace{9}_{a_1} \times 10^1 + \underbrace{2}_{a_0} \times 10^0 + \underbrace{8}_{a_{-1}} \times 10^{-1} + \underbrace{9}_{a_{-2}} \times 10^{-2}$
= $a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2}$

where a_n 's are the coefficients of units, tens, hundreds, thousands, etc.

$$a_3 = 4, a_2 = 6, a_1 = 9, a_0 = 2, a_{-1} = 8, a_{-2} = 9,$$
 and $r = 10$

In general, a number can be written as:

$$\cdots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \cdots$$

r is called the radix or base

- a_n 's are called the coefficients
- a_n 's range from 0 to r-1

In decimal number system, r = 10 and a_n 's range from 0 to 9 10STUDENTS-HUB.com Uploaded By: 1230358@student.birzeit.e

- How do we count in a decimal number system?
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- What comes after 9?We have run out of numbers...
- Remember units, tens, hundreds, thousands, etc.?
 - i. We write **1** at the position of **tens** and a **0** at the position of **units** i.e., **10** and then we continue by increasing the **units** position one-by-one until we reach **19**
 - ii. Once at **19** we change the number at **tens** position and then start changing the number at **units** position
 - iii. When we reach at **99**, we have to put a **1** at **hundreds** position and then continue in the manner described above and **the counting goes on**...

11STUDENTS-HUB.com

- Θ If the radix (r = 8) \rightarrow we get the **Octal number system**
- O Since r = 8, the coefficients a_n's will range from 0 to (8-1) → 0 to 7
 ◇ 470, 7501, 2636, 777 (Valid)
 ◇ 870, 7901, 2838, 779 (Invalid)
- O We can count in Octal number system just like we do in decimal number system:
 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, · · · , 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, · · · , 100, 101, 102, 103, 104, 105, 106, 107, 110, · · ·

O If we have an octal number, is it possible to find its equivalent decimal number?
 ○ Example: Let's say we have an octal number 107, we may represent it as:

$$a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0$$

 $1 \times 8^2 + 0 \times 8^1 + 7 \times 8^0 = 71$

♀ 107 (octal) = 71 (decimal)

- Θ To avoid confusion, we use the radix/base along with the numbers \rightarrow (107)₈ = (71)₁₀
- ⊖ What about (1000)₈ and (999)₈? (1000)₈ = (512)₈, (999) is an **Invalid** Octal Number.

• Decimal equivalent of Octal numbers with radix points will have a general form:

$$\longrightarrow + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \cdots$$
$$\longrightarrow + a_3 \times 8^3 + a_2 \times 8^2 + a_1 \times 8^1 + a_0 \times 8^0 + a_{-1} \times 8^{-1} + a_{-2} \times 8^{-2} + \cdots$$
$$\longrightarrow + a_2 \times 512 + a_2 \times 64 + a_1 \times 8 + a_0 \times 1 + a_{-1} \times 0.125 + a_{-2} \times 0.015625 + a_{-2} \times 0.01$$

$$(107.73)_8 = (????)_{10}$$

$$(107.73)_8 = (????)_{10}$$

 Θ If the radix (r = 2) \rightarrow we have the **binary number system**

⊖ Since r = 2, the coefficients a_n's will be either 0 or (2-1) → 0 or 1.
○ 0, 1 : called binary digits or bits
○ 101, 1111, 1010, 110 (Valid)
○ 201, 1311, 1212, 115 (Invalid)

Powers of Two

 ⊖ Decimal equivalent of a binary number will have a general form →

$$\dots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0$$

$$\dots + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0$$

$$\dots + a_3 \times 8 + a_2 \times 4 + a_1 \times 2 + a_0 \times 1$$

⊖ Since *a_n*'s could be either 0 or 1, the decimal equivalent of a binary number is simply a sum of powers of 2.

2ⁿ **2**" **2**ⁿ n n n 256 65,536 16 0 8 512 131.072 1 9 17 2 4 101,024 (1K) 18 262,144 3 8 11 2.048 19 524,288 4 12 1,048,576 (1M) 16 4,096 (4K) 20 5 32 13 8.192 21 2.097.152 6 64 14 16,384 22 4,194,304 7 128 15 32,768 23 8,388,608

Uploaded By: 1230358@student.bitzeiteeklui

16STUDENTS-HUB.com

⊖ Let's see some **Examples:**

→ What is the decimal equivalent of binary number 11?

$$(11)_2 = 1 \times 2^1 + 1 \times 2^0$$

= 1 × 2 + 1 × 1
= 2 + 1
(11)_2 = (3)_{10}

 \longrightarrow What is the decimal equivalent of $(101)_2$?

$$(101)_{2} = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$
$$= 1 \times 4 + 0 \times 1 + 1 \times 1$$
$$= 4 + 1$$
$$(101)_{2} = (5)_{10}$$

17STUDENTS-HUB.com

18STUDENTS-HUB.com

O More Examples:

→ What is the decimal equivalent of binary number 1011?

$$(1011)_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

= 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1
= 8 + 2 + 1
(1011)_{2} = (11)_{10}
What is the decimal equivalent of $(101101)_{2}$?
 $32 = 8 = 4 = 1$
= $32+8+4+1$
= 45

Always use the simpler method

- ⊖ What if we have a binary number with radix point such as: (1011.11)₂
- ⊖ Remember, the general form of decimal equivalent of a binary number can be written as:

$$\longrightarrow \cdots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \cdots$$
$$\longrightarrow \cdots + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0 + a_{-1} \times 2^{-1} + a_{-2} \times 2^{-2} + \cdots$$

⊖ Therefore,

$$(1011.11)_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 + 1 \times 0.5 + 1 \times 0.25$$
$$= 8 + 2 + 1 + 0.5 + 0.25$$
$$= (11.75)_{10}$$

198 TUDENTS-HUB.com

⊖ So far, we have seen three different number systems:

😳 Binary:	r = 2	with binary digits (bits) 0, 1
🗘 Octal:	r = 8	with octal digits 0, 1, 2, 3, 4, 5, 6, 7
Decimal:	r = 10	with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- ⊖ We can have more number systems. In fact, we can have **infinite** number of number systems as there are infinite possibilities for **r**.
- Θ There is another system that is commonly used: $\mathbf{r} = \mathbf{16}$

ENC5 2340

 Θ If the radix (r = 16) \rightarrow we have the **Hexadecimal number system**

- Since r = 16, it requires 16 coefficients (digits):
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9... now what?
 It seems we are short of numbers!!! what should we do now?
 We will use A B C D E E as the remaining 6 digits
 - So We will use **A**, **B**, **C**, **D**, **E**, **F** as the remaining **6** digits
- Counting in hexadecimal number system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 Some Examples: 1E43, 1018, 2AB5D, FCF, 0044, 5A4B3CDEF

What is the decimal equivalent of $(A30C)_{16}$?

$$(A30C)_{16} = (???)_{10}$$

$$(A30C)_{16} = A \times 16^{3} + 3 \times 16^{2} + 0 \times 16^{1} + C \times 16^{0}$$

= $A \times 4096 + 3 \times 256 + 0 \times 16 + C \times 1$
= $10 \times 4096 + 3 \times 256 + 0 \times 16 + 12 \times 1$
= 41740
 $(A30C)_{16} = (41740)_{10}$

Summary of Number Systems

20 24

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

23STUDENTS-HUB.com

System	General	Decimal	Binary	Octal	Hexadecimal
Radix (Base)	r	10	2	8	16
Digit Values	0, 1,, (r – 1)	0, 1,, 9	0, 1	0,, 7	0,, 15
5	r ⁵	100,000	32	32,768	1,048,576
4	r ⁴	10,000	16	4,096	65,536
3	r ³	1,000	8	512	4,096
2	r ²	100	4	64	256
1	r ¹	10	2	8	16
0	r ⁰	1	1	1	1
-1	r ⁻¹	0.1	0.5	0.125	0.0625
-2	r ⁻²	0.01	0.25		
-3	r ⁻³	0.001	0.125		
-4	r ⁻⁴	0.0001	0.0625		
-5	r ⁻⁵	0.00001	0.03125	8-5	16 ⁻⁵

The three bases are Power of 2

Uploaded By: 1230358@student.bitzeiteckluii

24STUDENTS-HUB.com

For any number system with radix **r**

 \ominus The number of possible digits equals **r**.

7

e.g. r=7

Number A of a integral digite and a fractional

The general form is:

$$ASD \rightarrow \underbrace{a_{n-1}a_{n-2}...a_{2}a_{1}a_{0}}_{\text{integral}} \bullet \underbrace{a_{-1}a_{-2}...a_{-m}}_{\text{fractional}} \leftarrow LSD \qquad \text{MSD} \rightarrow \text{Most Significant Digit}_{\text{LSD}} \rightarrow \text{Least Significant Digit}_{\text{LSD}}$$

The smallest digit is **0** and the largest possible digit has a value of (r-1) 0,1,.,.,5,6

- Θ The **Largest** value that can be expressed in **n** integral digits is (**r**ⁿ 1) e.g. n=3, 7³-1 = (666)₇
- Θ The Largest value that can be expressed in **m** fractional digits is $(1 r^{-m})$ e.g. m=3, $(1-7^{-3}) = (0.666)_7$
- Θ The Largest value that can be expressed in **n** integral digits and **m** fractional digits is (**rⁿ r^{-m}**) (666.666)₇

Total number of values representable in **n** digits is r^n 7³ : 000 \rightarrow 666

255TUDENTS-HUB.com

$(12x4)_r = (52)_r$

26STUDENTS-HUB.com

Number-Base Conversion

27STUDENTS-HUB.com

General Case:

20 24

> Bases are not powers of a common number. Go through **decimal** as an <u>intermediate</u> step e.g. $(231)_5 \rightarrow (??)_8$: $(231)_5 \rightarrow (??)_{10} \rightarrow (??)_8$

Special Case: Bases are powers of a common number (e.g. 2) Use the **common number** (here is the Binary) as an <u>intermediate</u> step e.g. $(635)_8 \rightarrow (??)_{16}$: $(635)_8 \rightarrow (??)_2 \rightarrow (??)_{16}$

28STUDENTS-HUB.com

Octal, Hexadecimal, & Binary

ENCS 2340

Remember: $8 = 2^3 \rightarrow Base 8$ (OCTAL System)

 $16 = 2^4 \rightarrow Base 16$ (HEXADECIMAL System)

This means:

29STUDENTS-HUB.com

In OCT: each 3 binary bits can be represented with a single octal digit
 In HEX: each 4 binary bits can be represented with a single hexadecimal digit

 Octal
 0
 1
 2
 3
 4
 5
 6
 7

 Binary
 000
 001
 010
 011
 100
 101
 110
 111

 $(b_n...b_5b_4b_3b_2b_1b_0 \bullet b_{-1}b_{-2}b_{-3}b_{-4}...)_2 \Rightarrow (?)_8$

Starting from the radix point and in both directions, group every 3 Binary Bits.

Replace the 3-Bit groups with equivalent Octal digits.

$$(b_n \dots \dots b_4 b_3 \underbrace{b_2 b_1 b_0}_{3-\text{Bit}} \bullet \underbrace{b_{-1} b_{-2} b_{-3}}_{3-\text{Bit}} \underbrace{b_{-4} \dots}_{3-\text{Bit}})_2$$

Hexadecimal	0	1	2	3	4	5	6	7
Binary	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal	8	9	Α	В	C	D	E	F
Binary	1000	1001	1010	1011	1100	1101	1110	1111

 $(b_n...b_5b_4b_3b_2b_1b_0 \bullet b_{-1}b_{-2}b_{-3}b_{-4}...)_2 \Rightarrow (?)_{16}$

Starting from the radix point and in both directions, group every 4 Binary Bits.

Replace the 4-Bit groups with equivalent Hexadecimal digits.

$$(b_n \dots \underbrace{\dots b_5 b_4}_{4-\text{Bit}} \underbrace{B_3 b_2 b_1 b_0}_{4-\text{Bit}} \bullet \underbrace{b_{-1} b_{-2} b_{-3} B_{-4}}_{4-\text{Bit}} \underbrace{b_{-5} b_{-6} \dots}_{4-\text{Bit}})_2$$

Conversion From Base r To Decimal:

Expanding the number in a **power series** and adding all the terms as shown previously.

$$(1011.11)_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

= 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1 + 1 × 0.5 + 1 × 0.25
= 8 + 2 + 1 + 0.5 + 0.25
= (11.75)_{10}

O Conversion From Decimal To Base r:

- ♦ The number is separated into **integer** part and a **fraction**.
- The integer is successively divided by the new base, keeping track of the remainder, until the <u>quotient is zero</u>.
- The fraction is multiplied by the new base, keeping track of the generated integer part, until the required <u>accuracy</u> is reached.
- **Join** the **two** parts with the target radix **point**

³¹STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eeluii

ENCS 2340

O Conversion From Decimal to Binary:

- O ivide the decimal number by **2**. Note down the **quotient** and the **remainder**.
- \bigcirc The remainder will be either 0 or 1. Label it as a_0 .
- If the quotient **is not 0**, divide it by 2 and note down the quotient and remainder.
- C The remainder will be either 0 or 1. Label it as **a**₁.
- **Repeat** the same process until the **quotient becomes 0**.

Divide by	Quotient	Remainder	Coefficient
2	39		
2	19	1	$a_0 = 1$
2	9	1	$a_1 = 1$
2	4	1	$ / a_2 = 1$
2	2	0	$a_3 = 0$
2	1	0	$a_4 = 0$
2	0	1	$a_5 = 1$
	(39) ₁₀ →	(100111) ₂	

$(39)_{10} \rightarrow (????)_2$

328TUDENTS-HUB.com

ENCS 2340

More Examples:

20 24

$(53)_{10} \Rightarrow (?$	') ₂	
$\div Radix$	Quotient	Rem.
53 ÷ 2	26	1
26 ÷ 2	13	0
$13 \div 2$	6	1
6 ÷ 2	3	0
3 ÷ 2	1	1
$1 \div 2$	END←0	1
$(53)_{10} \Rightarrow (1$.10101) ₂	

$(51)_{10} \Rightarrow (?)_2$
$51 \bullet \leftarrow Radix point $
$25 1 \leftarrow LSB$
12 1
6 0
3 0
1 1
$0 1 \leftarrow MSB$
$(51)_{10} \Rightarrow (110011.)_2$

33STUDENTS-HUB.com

⊖ The conversion is just like the one we discussed on the Binary case.
⊖ The only difference is that we now divide by 8 instead of 2.

	$(33)_{10}$	/ (::::)8	
Divide by	Quotient	Remainder	Coefficient
8	39		
8	4	7	$a_0 = 7$
8	0	4	$a_1 = 4$
	(30)	\rightarrow (47)	

 $(39)_{12} \rightarrow (2222)_{12}$

 $(39)_{10} \rightarrow (47)_8$

Example:

$$\begin{array}{c} (755)_{10} \Rightarrow (?)_8 \\ 755 & \\ 94 & 3 \\ 11 & 6 \\ 1 & 3 \\ 0 & 1 \\ (755)_{10} \Rightarrow (1363.)_8 \end{array}$$

Uploaded By: 1230358@student.birzeit.edulil

20 24

⊖ The conversion is just like the one we discussed on the Binary case.
⊖ The only difference is that we now divide by **r** instead of 2.

	$(1/30)_{10}$	7 (::::) ₁₆	
Divide by	Quotient	Remainder	Coefficient
16	1738		
16	108	10	$a_0 = A$
16	6	12	$a_1 = C$
16	0	6	$a_2 = 6$
	(1720)	\rightarrow (6CA)	

 $(1738)_{10} \rightarrow (????)_{16}$

 $(1738)_{10} \rightarrow (6CA)_{16}$

Example (r = 12):

$$\begin{array}{c|c} & (1606)_{10} \Rightarrow (?)_{12} \\ & 1606 \\ & 133 \\ 10 = A \\ & 11 \\ & 1 \\ & 0 \\ 11 = B \\ & (1606)_{10} \Rightarrow (B1A.)_{12} \end{array}$$

Fractions Conversion

20 24

- ENCS 2340
- Repeatedly multiply by the target base r and save the integer part of the result (always < r) until you get 0 fraction or enough digits
- ⊖ The digits for the **new base** are those integers with the **first** being the **MSD**

Multiply By	Fraction	Result	Integer Part
2	0.6875	1.375	1
2	0.375	0.75	0
2	0.75	1.5	1
2	0.5	1.0	1

 $(0.6875)_{10} = (??)_2$

- In the above example the fractional part reached 0 exactly as a result of the repeated multiplications
 → exact conversion was achieved: Machine Number
- C In general it may take **many digits** in the target system to get this or it may **never** happen! Example: Convert 0.65_{10} to ()₂ → $(0.65)_{10} = (0.10100110011.0)_2$ The fractional part **repeating** every 4 steps, → 1001 repeats forever! → 0.101001

Solution: Specify **required #** of digits to the **right** of radix point and **chop** or **round** to this number of bits

36STUDENTS-HUB.com

More Examples:

 $(0.357)_{10} \Rightarrow (?)_{12}$ $(0.731)_{10} \Rightarrow (?)_2$ $(0.731)_{10} \Rightarrow (?)_8$ r point $\rightarrow \bullet$ r point $\rightarrow \bullet$ r point \rightarrow • $0.731 \times 2 = 1.462$ $0.731 \times 8 = 5.848$ $0.357 \times 12 = 4.284$ $0.462 \times 2 = 0.924$ $0.848 \times 8 = 6.784$ $0.284 \times 12 = 3.408$ $0.924 \times 2 = 1.848$ $0.784 \times 8 = 6.272$ $0.408 \times 12 = 4.896$ $0.848 \times 2 = 1.696$ $0.272 \times 8 = 2.176$ $0.896 \times 12 = 10.752 \rightarrow A$ $0.696 \times 2 = 1.392$ $0.176 \times 8 = 1.408$ $(0.357)_{10} \Rightarrow (0.434A)_{12}$ $(0.731)_{10} \Rightarrow (0.56621)_8$ $(0.731)_{10} \Rightarrow (0.10111)_2$ **Chop @ 4 Digits** Chop @ 5 Digits

37STUDENTS-HUB.com

Convert $(153.513)_{10}$ to Base **8**, **rounding** the resulting fraction to **3** octal digits

Integer Part: 153

20 24

Divide By	Quotient	Remainder
8	153	
8	19	1
8	2	3
8	0	2

 $(231)_8$

Fraction Part: 0.513

Multiply By	Fraction	Result	Integer Part
8	0.513	4.104	4
8	0.104	0.832	0
8	0.832	6.656	6
8	0.656	5.248	5

(0.4065)₈

 $(0.513)_{10} = (0.4065)_8 \rightarrow (0.407)_8$ after rounding, since 5>4, we **add 1 to fraction**

$(153.513)_{10} = (231.407)_8$

Conversion Summary

20 24

398 TUDENTS-HUB.com

40STUDENTS-HUB.com

- ⊖ The rules used in decimal arithmetic operations are applied in any other number system.
 - Digit **carry** to the higher order position in **addition**.
 - O igit **borrow** from higher order position in **subtraction**.

41STUDENTS-HUB.com

20 24

- ⊖ **Complements** are used to simplify **subtraction** operation in digital computers
- ⊖ Simplification of operation has multiple advantages:
 - ♦ It results in simpler circuits (convenience in designing process)
 - It results in low cost (simpler circuit means fewer and simpler hardware components)
- ⊖ For each base (r), there are two complements:
 1) Diminished Radix: (r-1)'s Complement
 2) Radix: (r's) Complement

	Binary	Decimal	Octal
t	1′s	9′s	7′s
	2′s	10′s	8′s

 Θ For a number **N** that is represented by **n** digits in radix **r**:

- Θ (r-1)'s complement of N is [(rⁿ 1) N]
- Θ r's complement of N is $[r^n N] \rightarrow (r-1)$'s complement +1

n=3							
Binary Decimal Octal							
(r-1)'s	7 - N	999 - N	511 - N				
r's	8 - N	1000 - N	512 - N				

20 24

43STUDENTS-HUB.com

⊖ 1's complement of the decimal number $N = (2^n - 1) - N$

Subtract each digit from 1

Two Possibilities:

- 1) If the bit is 0 then its 1's complement is 1 0 = 1
- 2) If the bit is 1 then its 1's complement is 1 1 = 0

Simply Flip each bit

 Θ **2's** complement of the decimal number **N** = (2ⁿ - **N**)

1's complement + 1

Quick Method: To find the 2's complement of a decimal number

- Leave all least-significant 0's and the first 1 <u>unchanged</u> (Rightmost Zeros)
- 2) **Flip** all the **remaining** bits

The complement of the complement restores the number to its original value **N = Complement(Complement(N))**

44STUDENTS-HUB.com

Example:

Consider a binary number:1011001The 1's complement is:0100110The 2's complement is:0110111

Consider a binary number: 00100100 The 1's complement is: 11011011 The 2's complement is A) (11011011) + 1 = (11011100) B) 00100100 $\Rightarrow 11011100$ Flip Same

45STUDENTS-HUB.com

- ⊖ Assume, we need to subtract Y from X → (X Y)
 There are 2 Cases: 1) X ≥ Y
 2) X < Y
 - We can Use 1's or 2's to perform the subtraction

Case 1: $X \ge Y$

Using 1's

- 1) Add X and the **1's complement** of Y
- If an end carry occurs, we add 1 to the result to get the final answer

<u>Using 2's</u>

- 1) Add X and the 2's complement of Y
- 2) If an **end carry** occurs, **discard** it to get the final answer

Case 2: X < Y

- ⊖ When $(X < Y) \rightarrow (X Y)$ will be a **negative** number.
- Θ Therefore, the result we will get using the previous method will be the 1's or 2's complement.
- Θ So, to get the final result:
 - 1) Find the complement once again
 - 2) Append a negative sign to it

<u>Using 1's</u>

<u>Using 2's</u>

Consider	X = 10111 and $Y = 11101$									Consider $X = 10111$ and $Y = 11101$
	X	=			1	0	1	1	1	X
	1's complement of Y	=	+		0	0	0	1	0	2's complement of Y
	Sum	=			1	1	0	0	1	Sum
	1's complement of the sum	=			0	0	1	1	0	2's complement of the sum
	X - Y	=		_	0	0	1	1	0	$\overline{X-Y}$

<u>Remember</u>: No end carry is generated \rightarrow The answer is **negative**

47STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduil

0

1

0

_

0

_

_

=

What About Decimal Numbers?

Case 1: X ≥ Y	Case 2: X < Y
Subtract (76425 – 28321) using 9's complements.	Subtract (285.31 – 3459.20) using 9's complements.
The 9's complement of 28321 is 71678.	The 9's complement of of 3459.20 is 6540.79.
76425	285.31 + <u>6540.79</u>
$+ \frac{71678}{1 48103 }$ End carry $\rightarrow 1 48103 $	$\frac{+ 0.040.79}{-0.000}$ No end carry $\rightarrow 6826.10$
	Therefore the difference is negative and is equal to the <u>9's</u> complement of the answer, - $(6826.10)' = -3173.89$
Subtract (76425 – 28321) using 10's complements.	Subtract (28531 – 345920) using 10's complements.
The 10's complement of 28321 is 71679.	The 10's complement of of 345920 is 654080. 28531
76425	+ <u>654080</u>
+ <u>71679</u>	No end carry \rightarrow 682611
1⁄48104	Therefore the difference is negative and is equal to the <u>10's</u> complement of the answer, - $(682611)' = -317389$
TUDENTS-HUB.com	Uploaded By: 1230358@student.birzeit.edu

- O Digital computers store numbers in special digital electronic devices called **Registers**.
- Θ Registers consist of an **n** fixed number of storage elements that is typically a power of **2** (Bits).
- ⊖ An **n-bit** register can store maximum of **2**ⁿ <u>Distinct</u> Values.
- ⊖ Values stored in registers may be either **unsigned** or **signed** numbers.

Byte Word	8 bits 16 bits	Register Sizes
Double Word	32 bits	
Quad Word		64 bits

Unsigned Numbers

- Θ An n-bit register can store any **unsigned** number that has **n-bits** or <u>less</u>.
- Θ When representing an **integer** number, this n-bit register can hold values from **0** up to (2ⁿ-1).
- Θ <u>No</u> **sign** information needs to be represented.

Signed Numbers

- ⊖ An n bits of the register should represent the **magnitude** of the number and its **sign** as well.
- ⊖ Two major techniques are used to represent **signed** numbers:
 - 1) Signed Magnitude Representation.
 - 2) Complement method:
 - ✤ 1's Complement.
 - 2's Complement

505TUDENTS-HUB.com

Examples:

- \checkmark X = 1001 (-1, 4-bit)
- \checkmark X = 0110 (+6, 4-bit)
- \checkmark X = 00001111 (+15, 8-bit)
- \checkmark X = 10000011 (-3, 8-bit)
- ✓ X = 11001111 (-79, 8-bit)
- \checkmark X = 110111 (-23, 6-bit)

⁵¹STUDENTS-HUB.com

- ⊖ Independent representation of the **sign** and **magnitude**.
- ⊖ Leftmost bit is the sign bit: **0** is positive and **1** is negative.
- Θ Using n bits, **largest** represented magnitude = $2^{(n-1)} 1$
- ⊖ Symmetric range of represented values for n-bit register; from -(2⁽ⁿ⁻¹⁾ - 1) to +(2⁽ⁿ⁻¹⁾ - 1).
 ⊖ For 8-bit register (n=8) → -127 to +127

20 24

5-bit signed-magnitude binary numbers

+15	01111
+14	01110
+13	01101
+12	01100
+11	01011
+10	01010
+9	01001
+8	01000
+7	00111
+6	00110
+5	00101
+4	00100
+3	00011
+2	00010
+1	00001
+0	00000

58 TUDENTS-HUB.com

nd 2's complement can also be used to esent signed numbers	Decimal	Signed Magnitude	Signed 2's Complement	Signed 1's Complement
the second se	Decimal + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 - 0 - 1 - 2 - 3 - 4 - 5 - 6	Magnitude 0111 0110 0101 0100 0011 0010 0011 0000 1000 1001 1001 1011 1100 1101 1101 1110	Complement 0111 0110 0101 0100 0011 0010 0011 0000 — 1111 1110 1101 1100 1011 1010	Complement 0111 0110 0101 0100 0011 0010 0011 0000 1111 1110 1101 1001 1011 1010 1001
	- 7 - 8	1111 —	1001 1000	1000

⊖ 1's an repres

Since Θ comp repres

⊖ 2's Co **⊘**Only **⊘**Asy valu Fror For

Uploaded By: 1230358@student.birzeit.e

53STUDENTS-HUB.com

20 24

Examples:

ENCS	1
2340	In the lite

Binary	Unsigned	Signed- magnitude	1's complement signed	2's complement signed
10111000	184	-56	-71	-72
01101001	105	+105	+105	+105
10000111	135	-7	-120	-121
11000111	199	-71	-56	-57

54STUDENTS-HUB.com

Sign Extension

⊖ Before we can add / subtract two **signed** numbers, they must have the **same** number of bits

⊖ Also we may need to move a **signed** number from a small register to a larger register

- 5	in 4 bits	in 8 bits	
Signed-Magnitude	1101	10000101	(sign-magnitude)
Signed 1's Complement	1010	11111010	(sign extension)
Signed 2's Complement	1011	11111011	(sign extension)

Examples:

 $(10110011)_2$ is in 2's complement, put it in a 16 bits. $(10110011)_2 = -77 \Rightarrow (11111111 \ \underline{1}0110011)_2 = -77$

 $(01100010)_2$ is in 2's complement, but it in a 16 bits. $(01100010)_2 = +98 \Rightarrow (0000000 \ 01100010)_2 = +98$

555TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.edulil

ENCS 2340

- ⊖ In signed magnitude representation:
 - 1) If the <u>signs</u> are the **same**, add the magnitudes and give the sum the same sign.
 - 2) If **different** <u>signs</u>, <u>subtract</u> and give the result the sign of the big number.

⊖ In complement representation:

- 1) Add the two numbers including the sign bit.
- 2) Any carry out from the sign bit is **ignored**.
- 3) No comparison or subtraction is needed.

Examples:

Add (-6) + (+13) using signed 2's complement form with 8 bits. Repeat for (+6) + (-13).

56STUDENTS-HUB.com

Examples:

Add (-6) + (+13) using signed 2's complement form with 8 bits. Repeat for (+6) + (-13).

20 24

- Carry is important when adding/subtracting unsigned integers to indicates that the unsigned sum is out of range. (SUM < 0 or SUM > maximum unsigned n-bit value).
- Overflow is important when adding/subtracting signed integers to indicates that the signed sum is out of range.
- Overflow occurs when:
 - 1) Adding two **positive** numbers and the sum is **negative**.
 - 2) Adding two **negative** numbers and the sum is **positive**.
- **•** We can have carry without overflow and vice-versa

Θ

- Digital systems and circuits can only store one of **two** states,"0" and "1".
- One bit can represent two elements only!
- ⊖ With **n** bits, we can produce **2**ⁿ different combinations.
- ⊖ To represent **m** elements, we need **n** bits, where $2^n \ge m$.
- Θ n = **Ceiling**(log₂m)
- To code the decimal digits [0-9], we need at least **four** bits [$log_2 10 = 3.322$]
- ⊖ We call this binary-coded decimal (**BCD**)

• **BCD** is a way to express each **decimal** digit with a binary code

⊖ It is very easy to convert between **decimal** and **BCD**

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- Four bits can be used to represent 16 numbers
- In BCD we utilize only **10**. The remaining **6** code combinations are not used **invalid codes**
- ⊙ The invalid codes are: 1010, 1011, 1100, 1101, 1110, 1111

605 TUDENTS-HUB.com

How to Express a Decimal Number in BCD??

Simply replace each decimal digit with the appropriate 4-bit code

How to Determine a Decimal Number From a BCD??

Start from the right-most bit and break the code into group of four bits
 Write the decimal digit represented by each 4-bits group

61STUDENTS-HUB.com

- The addition of two BCD digits with a possible carry from the previous less significant pair of digits results in a sum in the range (**0 to 19**). There is a difference in the representation of the sum in binary and in BCD code.
- ⊖ If $0 \le Sum \le 9 \Rightarrow$ sum in BCD = sum in binary. (Done)
- If 10 ≤ Sum ≤ 19 then, sum in BCD consists of 8 bits which is <u>not equal</u> to the sum in binary. Corrected by adding 0110 to the binary sum.

Examples:

	0001	0011		13
+	0010	0110	+	26
	0011	1001		39

$4 \rightarrow$	0100	4 ightarrow	0100
$+\underline{5} \rightarrow$	<u>0101</u>	$+\underline{8} \rightarrow$	<u>1000</u>
$9 \rightarrow$	1001	12 ightarrow	1100
			+0110
			0001 0010

62 TUDENTS-HUB.com

63ST

More Examples:

Solve this in BCD : (+375)+(-240). the 10's complement of (-)240 is (9)760. 11 11 11 1 1 1 375 0011 0111 0101 0 0000 <u>760</u> 0111 0110 0000 +<u>9</u> +1001**1**0 135 1010 1011 1101 0101 0110 0110 0110 \downarrow 10000 0001 0011 0101

	0001	0110			16
+	0001	0101		+	15
					—
	0010	1011	Right group is invalid (>9) , left is valid		31
+	0001	0110	Add 6 to invalid code, add carry to next group		
	0011	0001	Valid BCD number		
ם וי		B com	Uploaded	By: 1	22025
		D.COM	Opidaded	Dy. 1/	20000

20

24

- ⊖ 8421, 2421, and (8,4,-2,-1) are weighted codes
- Excess-3 is an **unweighted code**
- O 2421 and Excess-3 codes exhibit selfcomplementing property
- Self-complementing: 9's complement of a decimal number is obtained directly by flipping the bits of the code of that decimal number
 - Using Excess-3 code the decimal number 428 is represented as: 0111 0101 1011
 - 9's complement of 428 is: 999-428 = 571
 - 9's complement of 428 in encoded form (Excess-3 form) is: 1000 1010 0100 (flip each bit)
 - This corresponds to the 1's complement of a binary number

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
	1011	0110	0001	0010
Unused	1100	0111	0010	0011
bit .	1101	1000	1101	1100
combi- nations	1110	1001	1110	1101
lations	1111	1010	1111	1110

646TUDENTS-HUB.com

65 TUDENTS-HUB.com

ENCS 2340

⊖ **Unweighted** code, Non-numeric code

• Only a single bit changes from one code word to the next in	n sequence
---	------------

⊖ No two codes are identical, Gray codes can have any number of bits

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

66STUDENTS-HUB.com

20 24

⊖ Standard code for alphanumeric characters

∂ 7-bit code (a byte is usually used, additional codes used to represent Greek or italic type fonts)

		<i>b</i> ₇ <i>b</i> ₆ <i>b</i> ₅						
b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	•	р
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2		2	в	R	b	r
0011	ETX	DC3	#	3	С	S	с	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB		7	G	W	g	w
1000	BS	CAN	(8	н	х	h	x
1001	HT	EM)	9	Ι	Y	i	У
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	к	[k	{
1100	FF	FS	,	<	L		1	Í.
1101	CR	GS		=	м]	m)
1110	SO	RS		>	Ν	Λ	n	~
1111	SI	US	1	?	0	-	0	DEL

- ⊖ A parity bit is added to the ASCII codes to **detect** errors
- ⊖ A parity bit is an extra bit to make the total number of 1's either **even** or **odd**
- $\ensuremath{\boxdot}$ The code for A is 1000001 \rightarrow number of 1's is 2

O Insert a parity bit on the left side to make the total number of 1's either even or odd
 ○ The code for A with even parity is 01000001
 ○ The code for A with odd parity is 11000001

Example:

75.8

Considering the number above (including the decimal point) as **four** <u>characters</u>. Represent each character as a **7-bit ASCII** binary codes **+** an additional **odd parity bit** appended as the **MSB** (i.e. to the <u>left</u> of the ASCII code). Express the number as a sequence of 8 hexadecimal digits.

		75.8	
	7-bit ASCII	+ Parity bit	Hex
7	0110111	00110111	37
5	0110101	10110101	B5
•	0101110	10101110	AE
8	0111000	00111000	38

37 B5 AE 38

- ⊖ Binary logic deals with binary quantities which can take one of two values (0 & 1, True & False, ... etc).
- ⊖ A binary number can be represented by a **variable** (x, y, z, A, B, C ... etc).
- ⊖ Binary **variables** take on one of **two** values.
- O Logical **operators** operate on binary values and binary variables
- ⊖ Three basic logical operations; AND (.), OR (+), NOT (`).

AND		OR			NOT		
x	y	$x \cdot y$	x	у	x + y	x	x'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Truth Table

68 TUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduli

20 24

- ⊖ Logic gates are electronic circuits that operate on one or more physical input signals to produce an output signal
- ⊖ These input signals could be current or voltage signals.
 - For example: voltage signals varying from 0 V to 3 V
- ⊖ Digital systems work on two states only.
 - Therefore, we may assign 0 V as a 0 state (OFF) and assign 3 V as a 1 state (ON)
- ⊖ In practice, 0 (OFF) will have a range of 0-1.5 V and 1 (ON) will have a range of 1.5-3 V

71STUDENTS-HUB.com