Digital Systems Section 2

Chapter (1)

STUDENTS-HUB.com

STUDENTS-HUB.com Uploaded By: 1230358@stude<mark>nt.birzeit.ce/</mark>Wil

Analog vs. Digital

❑ World around us is predominantly **Analog Analog** = Continuous

Change smoothly and gradually over **time.** Assume a continuous (infinite) range of **amplitudes.**

- Earth's movement

2STUDENTS-HUB.com

- Speech signal - Body temperature

Digital over Analog

- ✓ **Easier to Design:** Digital circuits are simpler because they handle a **limited set** of values (e.g. binary), making design more straightforward compared to analog systems.
- ✓ **Error Tolerance:** Digital circuits are more resilient to noise and drift, leading to **lower** error rates and higher reliability.
- ✓ **Commercial Advantage:** In VLSI (Very Large Scale Integration), digital circuits are more **cost-effective** and widely available.
- ✓ **Digital Superiority:** Storing, encrypting, compressing, and communicating data is far **more efficient** with digital systems.

"But the natural world is analog… So, we need to convert!"

"ADC and DAC: Bridging the gap between continuous analog signals and discrete digital data."

❑ Analog-to-Digital Converters (ADC): Used to transform raw analog signals into digital form for processing.

❑ Digital-to-Analog Converters (DAC):

Used to regenerate analog signals from digital data.

4STUDENTS-HUB.com

Convert Analog Signals to Digital Samples

1. Sampling in Time:

Impossible to manage infinite signal values on the **time** axis, so we ignore the signal between samples.

2. Quantization in Amplitude:

Impossible to handle infinite **amplitude** values, so we approximate the sample to the nearest value from a finite set of levels.

5STUDENTS-HUB.com

Abstract Representations

- Arithmetic Values: **0, 1**
- Logic Levels: **True, False**
- States: **ON, OFF**

Physical Representations

- In an IC (e.g. in a microprocessor): **Voltage**
- In a Dynamic memory (DRAM): **Electric Charge**
- On a Hard Disk: **Magnetization Direction**
- On a CD: **Surface pits for laser interference**

Number Systems

7STUDENTS-HUB.com

4692

8STUDENTS-HUB.com

4692.89

9STUDENTS-HUB.com

$$
4692.89 = 4000 + 600 + 90 + 2 + 0.8 + 0.09
$$

= 4 × 1000 + 6 × 100 + 9 × 10 + 2 × 1 + 8 × 0.1 + 9 × 0.01
=
$$
\underbrace{4}_{a_3} × 10^3 + \underbrace{6}_{a_2} × 10^2 + \underbrace{9}_{a_1} × 10^1 + \underbrace{2}_{a_0} × 10^0 + \underbrace{8}_{a_{-1}} × 10^{-1} + \underbrace{9}_{a_{-2}} × 10^{-2}
$$

=
$$
a_3 × r^3 + a_2 × r^2 + a_1 × r^1 + a_0 × r^0 + a_{-1} × r^{-1} + a_{-2} × r^{-2}
$$

where a_n 's are the coefficients of units, tens, hundreds, thousands, etc.

$$
a_3 = 4, a_2 = 6, a_1 = 9, a_0 = 2, a_{-1} = 8, a_{-2} = 9,
$$
 and
 $r = 10$

In general, a number can be written as:

$$
\cdots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \cdots
$$

\bullet r is called the radix or base

- \bullet a_n 's are called the coefficients
- \bullet a_n 's range from 0 to $r-1$

- How do we count in a decimal number system? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- What comes after 9? We have run out of numbers...
- Remember units, tens, hundreds, thousands, etc.?
	- i. We write **1** at the position of **tens** and a **0** at the position of **units** i.e., **10** and then we continue by increasing the **units** position one-by-one until we reach **19**
	- ii. Once at **19** we change the number at **tens** position and then start changing the number at **units** position
	- iii. When we reach at **99**, we have to put a **1** at **hundreds** position and then continue in the manner described above and **the counting goes on**...

11STUDENTS-HUB.com

- If the radix $(r = 8) \rightarrow$ we get the **Octal number system**
- Θ Since r = 8, the coefficients *aⁿ 's* will range from 0 to (8-1) → **0 to 7** 470, 7501, 2636, 777 (**Valid**) 870, 7901, 2838, 779 (**Invalid**)
- We can count in Octal number system just like we do in decimal number system: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, · · · , 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, · · ·, 100, 101, 102, 103, 104,105, 106, 107, 110, · · ·

Θ If we have an octal number, is it possible to find its equivalent decimal number? **Example**: Let's say we have an octal number **107**, we may represent it as:

$$
a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0
$$

$$
1 \times 8^2 + 0 \times 8^1 + 7 \times 8^0 = 71
$$

 \odot 107 (octal) = 71 (decimal)

- Θ To avoid confusion, we use the radix/base along with the numbers → **(107)8 = (71)10**
- **Θ** What about (1000)₈ and (999)₈? (1000)₈ = (512)₈, (999) is an **Invalid** Octal Number.

 \cdots

Θ Decimal equivalent of Octal numbers with radix points will have a general form:

$$
\longrightarrow \cdots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \cdots
$$

\n
$$
\longrightarrow \cdots + a_3 \times 8^3 + a_2 \times 8^2 + a_1 \times 8^1 + a_0 \times 8^0 + a_{-1} \times 8^{-1} + a_{-2} \times 8^{-2} + \cdots
$$

\n
$$
\longrightarrow \cdots + a_2 \times 512 + a_2 \times 64 + a_1 \times 8 + a_0 \times 1 + a_{-1} \times 0.125 + a_{-2} \times 0.015625 +
$$

$$
(107.73)_{8}=(????)_{10}
$$

16STUDENTS-HUB.com

Θ If the radix (r = **2**) → we have the **binary number system**

Θ Since r = 2, the coefficients *aⁿ 's* will be either 0 or (2-1) → **0 or 1**. **0 , 1 :** called **bi**nary digi**ts** or **bits** 101, 1111, 1010, 110 (**Valid**) 201, 1311, 1212, 115 (**Invalid**)

Decimal equivalent of a binary number will have a general form \rightarrow

$$
\cdots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0
$$

\n
$$
\cdots + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0
$$

\n
$$
\cdots + a_3 \times 8 + a_2 \times 4 + a_1 \times 2 + a_0 \times 1
$$

Θ Since *aⁿ 's* could be either 0 or 1, the decimal equivalent of a binary number is simply a **sum** of **powers of 2.**

Powers of Two $2ⁿ$ $2ⁿ$ $2ⁿ$ m m m 256 16 65,536 $\bf{0}$ 8 512 17 131,072 $\mathbf{1}$ 9 $\overline{4}$ $\overline{2}$ 10 $1,024(1K)$ 18 262,144 3 8 11 2.048 19 524,288 $\overline{4}$ 16 12 $4,096(4K)$ $1,048,576(1M)$ 20 5 32 13 8.192 2,097,152 21 6 64 14 16.384 22 4,194,304 7 128 15 32,768 23 8,388,608

Θ Let's see some **Examples:**

 \longrightarrow What is the decimal equivalent of binary number 11?

$$
(11)2 = 1 × 21 + 1 × 20
$$

= 1 × 2 + 1 × 1
= 2 + 1

$$
(11)2 = (3)10
$$

What is the decimal equivalent of $(101)_2$?

$$
(101)2 = 1 × 22 + 0 × 21 + 1 × 20
$$

= 1 × 4 + 0 × 1 + 1 × 1
= 4 + 1

$$
(101)2 = (5)10
$$

17STUDENTS-HUB.com

18STUDENTS-HUB.com

Θ **More Examples:**

 \implies What is the decimal equivalent of binary number 1011?

$$
(1011)2 = 1 \times 23 + 0 \times 22 + 1 \times 21 + 1 \times 20
$$

= 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1
= 8 + 2 + 1

$$
(1011)2 = (11)10
$$

$$
\Rightarrow
$$
 What is the decimal equivalent of
$$
(101101)2?\n
$$
\begin{array}{c|c}\n543210 \\
32841 \\
1 \\
= 32+8+4+1 \\
= 45\n\end{array}
$$
$$

Always use the simpler method

- Θ What if we have a binary number with radix point such as: **(1011.11)²**
- Θ Remember, the general form of decimal equivalent of a binary number can be written as:

$$
\longrightarrow \cdots + a_3 \times r^3 + a_2 \times r^2 + a_1 \times r^1 + a_0 \times r^0 + a_{-1} \times r^{-1} + a_{-2} \times r^{-2} + \cdots
$$

$$
\longrightarrow \cdots + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0 + a_{-1} \times 2^{-1} + a_{-2} \times 2^{-2} + \cdots
$$

Θ Therefore,

$$
(1011.11)2 = 1 \times 23 + 0 \times 22 + 1 \times 21 + 1 \times 20 + 1 \times 2-1 + 1 \times 2-2
$$

= 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 + 1 \times 0.5 + 1 \times 0.25
= 8 + 2 + 1 + 0.5 + 0.25
= (11.75)₁₀

19STUDENTS-HUB.com

Θ So far, we have seen three different number systems:

- Θ We can have more number systems. In fact, we can have **infinite** number of number systems as there are infinite possibilities for **r**.
- Θ There is another system that is commonly used: **r = 16**

FNCS 2340

If the radix $(r = 16) \rightarrow$ we have the **Hexadecimal number system**

- Since $r = 16$, it requires **16** coefficients (digits): **◯ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9... now what?** It seems we are short of numbers!!! what should we do now? We will use **A, B, C, D, E, F** as the remaining **6** digits
- Counting in hexadecimal number system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Some Examples: 1E43, 1018, 2AB5D, FCF, 0044, 5A4B3CDEF

What is the decimal equivalent of $(A30C)_{16}$?

$$
(A30C)_{16} = (????)_{10}
$$

$$
(A30C)_{16} = A \times 16^3 + 3 \times 16^2 + 0 \times 16^1 + C \times 16^0
$$

= $A \times 4096 + 3 \times 256 + 0 \times 16 + C \times 1$
= $10 \times 4096 + 3 \times 256 + 0 \times 16 + 12 \times 1$
= 41740

$$
(A30C)_{16} = (41740)_{10}
$$

Summary of Number Systems

20 24

23STUDENTS-HUB.com

STUDENTS-HUB.com Uploaded By: 1230358@stude<mark>nt.birzeit.ce/</mark>Wil

The three bases are Power of 2

Mohammed Khalil STUDENTS-HUB.com Uploaded By: 1230358@student.birzeit.edu

24STUDENTS-HUB.com

For any number system with radix **r**

The number of possible digits equals **r**.

7

e.g. r=7

Number A of n integral digits and m fractional

The general form is:

Number A of n integral digits and m fractional
\nMSD
$$
\rightarrow \underbrace{\overbrace{a_{n-1}a_{n-2}...a_{2}a_{1}a_{0}}^{Number A of n integral} \cdot a_{-1}a_{-2}...a_{-m}}^{a_{n-1}a_{n-2}...a_{2}a_{1}a_{0}}}_{\text{integral}} \leftarrow \text{LSD} \rightarrow \text{Least Significant Digit}
$$
\n
$$
a_{n-1} \cdot r^{n-1} + ... + a_{1} \cdot r^{1} + a_{0} \cdot r^{0} + a_{-1} \cdot r^{-1} + ... + a_{-m} \cdot r^{-m}
$$

The smallest digit is **0** and the largest possible digit has a value of (r-1) $0,1,...,.5,6$

- Θ The **Largest** value that can be expressed in **n** integral digits is **(r ⁿ − 1)** e.g. n=3, $7^3-1 = (666)_{7}$
- **Θ** The Largest value that can be expressed in **m** fractional digits is $(1 − r^{-m})$ $e.g. m=3$, $(1-7⁻³) = (0.666)_{7}$
- Θ The **Largest** value that can be expressed in **n** integral digits and **m** fractional digits is **(r ⁿ − r [−]^m)** (666.666)⁷

Θ **Total** number of values representable in **n** digits is **r n** $17^3:000 \to 666$

25 TUDENTS-HUB.com

$(12x4)$ ^r (52)

$$
r = {}^+1
$$
 Mark

26STUDENTS-HUB.com

Number-Base Conversion

27STUDENTS-HUB.com

General Case:

20 24

> Bases are not powers of a common number. Go through **decimal** as an intermediate step e.g. $(231)_5 \rightarrow (??)_8$: $(231)_5 \rightarrow (??)_10 \rightarrow (??)_8$

Special Case: Bases are powers of a common number (e.g. **2**) Use the **common number** (here is the **Binary**) as an intermediate step e.g. $(635)_8 \rightarrow (??)_{16}$: $(635)_8 \rightarrow (??)_2 \rightarrow (??)_{16}$

28STUDENTS-HUB.com

Octal, Hexadecimal, & Binary

FNCS 2340

Remember:

 $8 = 2^3 \rightarrow$ Base 8 (OCTAL System) $16 = 2$

 $16 = 2^4 \rightarrow$ Base 16 (HEXADECIMAL System)

This means:

2STUDENTS-HUB.com

 In OCT: each **3 binary** bits can be represented with a **single octal** digit In HEX: each **4 binary** bits can be represented with a **single hexadecimal** digit

> Octal $\overline{2}$ Ω 3 4 5 6 Binary 000 001 010 011 100 101 110 111

 $(b_n...b_5b_4b_3b_2b_1b_0 \bullet b_{-1}b_{-2}b_{-3}b_{-4}...)_2 \Rightarrow$ (?)₈

Starting from the radix point and in both directions, group every 3 Binary Bits.

Replace the 3-Bit groups with equivalent Octal digits.

$$
(b_n \dots b_4 b_3 b_2 b_1 b_0 \bullet b_{-1} b_{-2} b_{-3} b_{-4} \dots)_2
$$

3-Bit 3-Bit 3-Bit 3-Bit 3-Bit

 $(b_n...b_5b_4b_3b_2b_1b_0 \bullet b_{-1}b_{-2}b_{-3}b_{-4}...)_2 \Rightarrow$ (?)₁₆

Starting from the radix point and in both directions, group every 4 Binary Bits.

Replace the 4-Bit groups with equivalent Hexadecimal digits.

$$
(b_n \dots b_5 b_4 B_3 b_2 b_1 b_0 \bullet b_{-1} b_{-2} b_{-3} B_{-4} b_{-5} b_{-6} \dots)_2
$$

4-Bit 4-Bit 4-Bit 4-Bit

Conversion From Base r To Decimal:

Expanding the number in a **power series** and adding all the terms as shown previously.

$$
(1011.11)2 = 1 \times 23 + 0 \times 22 + 1 \times 21 + 1 \times 20 + 1 \times 2-1 + 1 \times 2-2
$$

= 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 + 1 \times 0.5 + 1 \times 0.25
= 8 + 2 + 1 + 0.5 + 0.25
= (11.75)₁₀

Conversion From Decimal To Base r:

- The number is separated into **integer** part and a **fraction**.
- The **integer** is successively **divided** by the **new base**, keeping track of the **remainder**, until the **quotient is zero**.
- The **fraction** is **multiplied** by the **new base**, keeping track of the **generated integer** part, until the required **accuracy** is reached.
- **Join** the **two** parts with the target radix **point**

31STUDENTS-HUB.com

Θ **Conversion From Decimal to Binary:**

- Divide the decimal number by **2**. Note down the **quotient** and the **remainder**.
- **C** The remainder will be either 0 or 1. Label it as a_0 .
- If the quotient **is not 0**, divide it by 2 and note down the quotient and remainder.
- \bullet The remainder will be either 0 or 1. Label it as a_1 .
- **Repeat** the same process until the **quotient becomes 0**.

ENCS 2340

More Examples:

20 24

33STUDENTS-HUB.com

Θ The conversion is just like the one we discussed on the Binary case. Θ The only difference is that we now divide by **8** instead of 2.

 $(30) \rightarrow (2222)$

 $(35)(10)$ $(47)(8)$

Example:

20 24

$$
(755)10 \Rightarrow (?)8
$$
\n
$$
755 \begin{array}{c} \bullet \\ 94 \end{array} \begin{array}{c} 3 \end{array}
$$
\n
$$
11 \begin{array}{c} 11 \end{array} \begin{array}{c} 6 \end{array}
$$
\n
$$
13 \begin{array}{c} 13 \end{array}
$$
\n
$$
0 \begin{array}{c} 1 \end{array}
$$
\n
$$
36 \text{TUDENTS-HUB.com} \end{array}
$$
\n
$$
36 \text{JUDENTS-HUB.com} \end{array}
$$
\n
$$
1363.8
$$

STUDENTS-HUB.com (1999) (1999) Uploaded By: 1230358@student.birzeit.com

Θ The conversion is just like the one we discussed on the Binary case. Θ The only difference is that we now divide by **r** instead of 2.

 (1720) \rightarrow (2222)

(1738)¹⁰ → **(6CA)¹⁶**

Example (r =12):

$$
(1606)10 \Rightarrow (?)12
$$

\n
$$
1606 \n133 \n10=A
$$

\n
$$
11 \n11 \n0 | 11=B
$$

\n
$$
(1606)10 \Rightarrow (B1A.)12
$$

35 TUDENTS-HUB.com

STUDENTS-HUB.com New York (Helmotics Maria Mohammed By: 1230358@student.birzeit.edulii

Fractions Conversion

20 24

- **ENCS** 2340
- Θ Repeatedly **multiply** by the target base **r** and save the **integer** part of the result (always < r) until you get **0** fraction or **enough digits**
- Θ The digits for the **new base** are those integers with the **first** being the **MSD**

 $(0.6875)_{10} = (??)_{2}$

- In the above example the fractional part **reached 0 exactly** as a result of the repeated multiplications → exact conversion was achieved**: Machine Number**
- In general it may take **many digits** in the target system to get this or it may **never** happen! Example: Convert 0.65_{10} to $()_2 \rightarrow (0.65)_{10} = (0.10100110011001 ...)$ The fractional part **repeating** every 4 steps, \rightarrow 1001 repeats forever! \rightarrow 0.101001

Solution: Specify **required #** of digits to the **right** of radix point and **chop** or **round** to this number of bits

36STUDENTS-HUB.com

Mohammed Khalil STUDENTS-HUB.com Uploaded By: 1230358@student.birzeit.edu

(0.6875)¹⁰ = (0.1011)²

37STUDENTS-HUB.com

More Examples:

 $(0.731)_{10} \Rightarrow$ (?)₂ $(0.731)_{10} \Rightarrow$ (?)₈ r point $\rightarrow \bullet$ r point $\rightarrow \bullet$ $0.731 \times 2 = 1.462$ $0.731 \times 8 = 5.848$ $0.462 \times 2 = 0.924$ $0.848 \times 8 = 6.784$ $0.924 \times 2 = 1.848$ $0.784 \times 8 = 6.272$ $0.848 \times 2 = 1.696$ $0.272 \times 8 = 2.176$ $0.696 \times 2 = 1.392$ $0.176 \times 8 = 1.408$ $(0.731)_{10} \Rightarrow (0.56621)_{8}$ $(0.731)_{10} \Rightarrow (0.10111)_2$

 $(0.357)_{10} \Rightarrow$ (?)₁₂ r point $\rightarrow \bullet$ $0.357 \times 12 = 4.284$ $0.284 \times 12 = 3.408$ $0.408 \times 12 = 4896$ $0.896 \times 12 = 10.752 \rightarrow A$ $(0.357)_{10} \Rightarrow (0.434A)_{12}$

Chop @ 5 Digits Chop @ 4 Digits

Convert $(153.513)_{10}$ to Base **8**, **rounding** the resulting fraction to **3 octal** digits

Integer Part: 153

20 24

 $(231)_8$

Fraction Part: 0.513

$(0.4065)_{8}$

 $(0.513)_{10} = (0.4065)_{8} \rightarrow (0.407)_{8}$ after rounding, since 5>4 , we **add 1 to fraction**

$(153.513)_{10} = (231.407)_{8}$

Conversion Summary

20 24

39STUDENTS-HUB.com

40STUDENTS-HUB.com

- The rules used in decimal arithmetic operations are applied in any other number system.
	- Digit **carry** to the higher order position in **addition**.
	- Digit **borrow** from higher order position in **subtraction**.

41STUDENTS-HUB.com

- Θ **Complements** are used to simplify **subtraction** operation in digital computers
- Θ Simplification of operation has multiple advantages:
	- It results in simpler circuits (convenience in designing process)
	- It results in low cost (simpler circuit means fewer and simpler hardware components)
- Θ For each base (r), there are **two** complements: **1) Diminished** Radix**: (r-1)'s** Complement **2) Radix**: **(r's)** Complement

- Θ (r-1)'s complement of N is [**(rⁿ - 1) – N]**
- Θ r's complement of N is $[r^n N] \rightarrow (r-1)$'s complement $+1$

43 TUDENTS-HUB.com

 Θ **1's** complement of the decimal number $N = (2^n - 1) - N$

Subtract each digit from 1

Two Possibilities:

20 24

- 1) If the bit is 0 then its 1's complement is $1 0 = 1$
- 2) If the bit is 1 then its 1's complement is $1 1 = 0$

Simply Flip each bit

2's complement of the decimal number $N = (2^n - N)$

1's complement + 1

Quick Method: To find the 2's complement of a decimal number

- 1) Leave all **least-significant 0's** and the **first 1 unchanged** (Rightmost Zeros)
- **Flip** all the **remaining** bits

The complement of the complement restores the number to its original value **N = Complement(Complement(N))**

Example:

45 TUDENTS-HUB.com

Consider a binary number: 1011001 The 1's complement is: 0100110 The 2's complement is: 0110111

Consider a binary number: 00100100 The 1's complement is: 11011011 The 2's complement is A) $(11011011) + 1 = (11011100)$ B) 0 0 1 0 0 1 0 0 \Rightarrow 1 1 0 1 1 1 0 0 Flip Same

- Θ Assume, we need to subtract Y from $X \to (X Y)$ \bigodot There are 2 Cases: 1) $X \ge Y$ 2) $X < Y$
	- We can Use 1's or 2's to perform the subtraction

Case 1: $X \geq Y$

Using 1's

- 1) Add X and the **1's complement** of Y
- 2) If an **end carry** occurs, we **add 1** to the result to get the final answer

Using 2's

- 1) Add X and the **2's complement** of Y
- 2) If an **end carry** occurs, **discard** it to get the final answer

Case 2: X < Y

- Θ When (X < Y) → (X − Y) will be a **negative** number.
- Θ Therefore, the result we will get using the previous method will be the 1's or 2's complement.
- Θ So, to get the final result:
	- 1) Find the complement once again
	- 2) Append a negative sign to it

Using 1's

Using 2's

Remember: No end carry is generated → The answer is **negative**

4/STUDENTS-HUB.com

What About Decimal Numbers? Case 1: X > Y **Case 2:** X < Y Subtract (76425 - 28321) using 9's complements. Subtract $(285.31 - 3459.20)$ using 9's complements. The 9's complement of 28321 is 71678. The 9's complement of of 3459.20 is 6540.79. 285.31 76425 $+6540.79$ $+ 71678$ No end carry \rightarrow 6826.10 1|48103 End carry \rightarrow Therefore the difference is negative and is equal to the 9's complement of the answer, - $(6826.10)' = -3173.89$ 48104 Subtract $(28531 - 345920)$ using 10's complements. Subtract $(76425 - 28321)$ using 10's complements. The 10's complement of of 345920 is 654080. The 10's complement of 28321 is 71679. 28531 76425 $+654080$ No end carry \rightarrow 682611 $+71679$ Therefore the difference is negative and is equal to the 10's 148104 complement of the answer, $- (682611)' = - 317389$ 48STUDENTS-HUB.com Mohammed Khalil STUDENTS-HUB.com Uploaded By: 1230358@student.birzeit.edu

- Θ Digital computers store numbers in special digital electronic devices called **Registers**.
- Θ Registers consist of an **n** fixed number of storage elements that is typically a power of **2** (Bits).
- Θ An **n-bit** register can store maximum of **2ⁿ** Distinct Values.
- Θ Values stored in registers may be either **unsigned** or **signed** numbers.

ENCS 2340

Unsigned Numbers

- Θ An n-bit register can store any **unsigned** number that has **n-bits** or less.
- Θ When representing an **integer** number, this n-bit register can hold values from **0** up to **(2ⁿ−1).**
- Θ No **sign** information needs to be represented.

Signed Numbers

- Θ An n bits of the register should represent the **magnitude** of the number and its **sign** as well.
- Θ Two major techniques are used to represent **signed** numbers:
	- Signed Magnitude Representation.
	- 2) Complement method:
		- 1's Complement.
		- 2's Complement

50STUDENTS-HUB.com

Examples:

- $\sqrt{X} = 1001$ (-1, 4-bit)
- $\sqrt{X} = 0110$ (+6, 4-bit)
- $\sqrt{X} = 00001111$ (+15, 8-bit)
- $\sqrt{X} = 10000011$ (-3, 8-bit)
- $\sqrt{X} = 11001111$ (-79, 8-bit)
- $\sqrt{X} = 110111$ (-23, 6-bit)

51STUDENTS-HUB.com

- Θ Independent representation of the **sign** and **magnitude**.
- Θ Leftmost bit is the sign bit: **0** is positive and **1** is negative.
- Θ Using n bits, **largest** represented magnitude = **2(n−1) − 1**
- Θ Symmetric range of represented values for n-bit register; from **−**(2 (n−1) − 1) to +(2 (n−1)− 1). Θ For 8-bit register (n=8) → **-**127 to +127

5-bit signed-magnitude binary numbers

52STUDENTS-HUB.com

 Θ 1's and repre

Θ Since comp repre

 Θ 2's Complement **COne CAS** valu From **−(2ⁿ−1)** to **+(2ⁿ−¹− 1).** For 8-bit register (n=8) → **-**128 to +127

53STUDENTS-HUB.com

20 24

Examples:

54STUDENTS-HUB.com

Sign Extension

ENCS 2340

Before we can add / subtract two **signed** numbers, they must have the **same** number of bits

Θ Also we may need to move a **signed** number from a small register to a larger register

Examples:

 $(10110011)_2$ is in 2's complement, put it in a 16 bits. $(10110011)_2 = -77 \Rightarrow (11111111 10110011)_2 = -77$

 $(01100010)_2$ is in 2's complement, but it in a 16 bits. $(01100010)_2 = +98 \Rightarrow (00000000 01100010)_2 = +98$

55STUDENTS-HUB.com

- Θ In signed magnitude representation:
	- 1) If the signs are the **same**, **add** the magnitudes and give the sum the same sign.
	- 2) If **different** signs, **subtract** and give the result the sign of the big number.

Θ In complement representation:

- 1) Add the two numbers including the sign bit.
- 2) Any carry out from the sign bit is **ignored**.
- 3) No comparison or subtraction is needed.

Examples:

Add $(-6) + (+13)$ using signed 2's complement form with 8 bits. Repeat for $(+6) + (-13)$.

56STUDENTS-HUB.com

Examples:

Add $(-6) + (+13)$ using signed 2's complement form with 8 bits. Repeat for $(+6) + (-13)$.

> Θ **Carry** is important when adding/subtracting **unsigned** integers to indicates that the unsigned sum is **out of range.** (SUM < 0 or SUM > maximum unsigned n-bit value).

ENCS 2340

- Θ **Overflow** is important when adding/subtracting **signed** integers to indicates that the signed sum is **out of range**.
- Overflow occurs when:
	- 1) Adding two **positive** numbers and the sum is **negative**.
	- 2) Adding two **negative** numbers and the sum is **positive**.
- We can have carry without overflow and vice-versa

- Θ Digital systems and circuits can only store one of **two** states,"0" and "1".
- Θ **One** bit can represent **two** elements only!
- Θ With **n** bits, we can produce **2ⁿ** different combinations.
- Θ To represent **m** elements, we need **n** bits, where **2ⁿ≥ m**.
- Θ n = **Ceiling**(log_2m)
- Θ To code the decimal digits $[0-9]$, we need at least **four** bits $[\log_2 10 = 3.322]$
- Θ We call this binary-coded decimal (**BCD**)

Θ **BCD** is a way to express each **decimal** digit with a binary code

Θ It is very easy to convert between **decimal** and **BCD**

- Θ Four bits can be used to represent 16 numbers
- Θ In BCD we utilize only **10**. The remaining **6** code combinations are not used **invalid codes**
- Θ The invalid codes are: 1010, 1011, 1100, 1101, 1110, 1111

6GTUDENTS-HUB.com

How to Express a Decimal Number in BCD??

Simply replace each decimal digit with the appropriate 4-bit code

How to Determine a Decimal Number From a BCD??

1) Start from the right-most bit and break the code into group of four bits 2) Write the decimal digit represented by each 4-bits group

- Θ The addition of two BCD digits with a possible carry from the previous less significant pair of digits results in a sum in the range (**0 to 19**). There is a difference in the representation of the sum in binary and in BCD code.
- Θ If $0 \leq$ **Sum** \leq 9 \rightarrow sum in BCD = sum in binary. (Done)
- Θ If 10 ≤ **Sum** ≤ 19 then, sum in BCD consists of **8 bits** which is not equal to the sum in binary. Corrected by **adding 0110** to the binary sum.

Examples:

62STUDENTS-HUB.com

More Examples:

Solve this in BCD : $(+375)+(-240)$. the 10 's complement of $(-)$ 240 is (9) 760. 11 11 11 1 1 1 375 0011 0111 0101 0 0000 760 0111 0110 0000 $+9$ $+1001$ χ_{0} 135 1010 1011 1101 0101 0110 0110 0110 \downarrow χ 0000 0001 0011 0101

64STUDENTS-HUB.com

- Θ 8421, 2421, and (8,4 , 2 , 1) are **weighted** codes
- Θ Excess -3 is an **unweighted code**
- Θ 2421 and Excess -3 codes exhibit selfcomplementing property
- Θ **Self -complementing:** 9 's complement of a decimal number is obtained directly by **flipping** the bits of the code of that decimal number
- Using Excess -3 code the decimal number **428** is represented as: **0111 0101 1011**
- 9 's complement of 428 is: 999 -428 = **571**
- 9 's complement of 428 in encoded form (Excess -3 form) is: **1000 1010 0100** (flip each bit)
- **This corresponds to the 1's complement of a** binary number

65STUDENTS-HUB.com

Θ **Unweighted** code, Non-numeric code

Θ **No** two codes are **identical**, Gray codes can have any number of bits

66STUDENTS-HUB.com

Θ Standard code for alphanumeric characters

Θ 7-bit code (a byte is usually used, additional codes used to represent Greek or italic type fonts)

- Θ A parity bit is added to the ASCII codes to **detect** errors
- Θ A parity bit is an extra bit to make the total number of 1's either **even** or **odd**
- Θ The code for A is 1000001 \rightarrow number of 1's is 2
- Θ Insert a parity bit on the left side to make the total number of 1's either even or odd The code for A with even parity is 01000001 The code for A with odd parity is 11000001

Example:

75.8

Considering the number above (including the decimal point) as **four** characters. Represent each character as a **7-bit ASCII** binary codes **+** an additional **odd parity bit** appended as the **MSB** (i.e. to the left of the ASCII code). Express the number as a sequence of 8 hexadecimal digits.

37 B5 AE 38

- Θ Binary **logic** deals with binary quantities which can take one of two values (0 & 1, True & False, ... etc).
- Θ A binary number can be represented by a **variable** (x, y, z, A, B, C ... etc).
- Θ Binary **variables** take on one of **two** values.
- Θ Logical **operators** operate on binary values and binary variables
- Θ Three basic logical operations; AND (.), OR (+), NOT (').

Truth Table

6STUDENTS-HUB.com

STUDENTS-HUB.com Uploaded By: 1230358@student.birzeit.cedulil

- Θ Logic gates are electronic circuits that operate on one or more physical input signals to produce an output signal
- Θ These input signals could be current or voltage signals.
	- For example: voltage signals varying from 0 V to 3 V
- Θ Digital systems work on two states only.
	- Therefore, we may assign $0 \vee$ as a $0 \leq 0$ state (OFF) and assign $3 \vee$ as a 1 state (ON)
- Θ In practice, 0 (OFF) will have a range of 0-1.5 V and 1 (ON) will have a range of 1.5-3 V

71STUDENTS-HUB.com