
Uploaded By: anonymousSTUDENTS-HUB.com

Head First: Android
Development

Dawn Griffiths

David Griffiths

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Uploaded By: anonymousSTUDENTS-HUB.com

To our friends and family. Thank you so much for all your love and support.

Uploaded By: anonymousSTUDENTS-HUB.com

Special Upgrade Offer
If you purchased this ebook directly from oreilly.com, you have the following benefits:

DRM-free ebooks — use your ebooks across devices without restrictions or limitations
Multiple formats — use on your laptop, tablet, or phone
Lifetime access, with free updates
Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all
these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

Uploaded By: anonymousSTUDENTS-HUB.com

http://oreilly.com

Authors of Head First Android Development

Dawn Griffiths started life as a mathematician at a top UK university, where she was awarded a first-
class honors degree in mathematics. She went on to pursue a career in software development and has 20
years experience working in the IT industry.

Before writing Head First Android Development, Dawn wrote three other Head First books (Head First
Statistics, Head First 2D Geometry and Head First C) and has also worked on a host of other books
in the series.

When Dawn’s not working on Head First books, you’ll find her honing her Tai Chi skills, reading, running,
making bobbin lace, or cooking. She particularly enjoys spending time with her wonderful husband,
David.

David Griffiths began programming at age 12, when he saw a documentary on the work of Seymour
Papert. At age 15, he wrote an implementation of Papert’s computer language LOGO. After studying
pure mathematics at university, he began writing code for computers and magazine articles for humans.
He’s worked as an agile coach, a developer, and a garage attendant, but not in that order. He can write
code in over 10 languages and prose in just one, and when not writing, coding, or coaching, he spends

Uploaded By: anonymousSTUDENTS-HUB.com

much of his spare time traveling with his lovely wife — and coauthor — Dawn.

Before writing Head First Android Development, David wrote three other Head First books: Head
First Rails, Head First Programming and Head First C.

You can follow us on Twitter at https://twitter.com/HeadFirstDroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://twitter.com/HeadFirstDroid

How to Use This Book: Intro

NOTE

In this section, we answer the burning question: “So why DID they put that in a book on Android?”

Uploaded By: anonymousSTUDENTS-HUB.com

Who is this book for?
If you can answer “yes” to all of these:

1. Do you already know how to program in Java?
2. Do you want to master Android app development, create the next big thing in software, make a

small fortune, and retire to your own private island?

NOTE

OK, maybe that one’s a little far-fetched. But, you gotta start somewhere, right?

3. Do you prefer actually doing things and applying the stuff you learn over listening to someone in a
lecture rattle on for hours on end?

this book is for you.

Who should probably back away from this book?
If you can answer “yes” to any of these:

1. Are you looking for a quick introduction or reference book to developing Android apps?
2. Would you rather have your toenails pulled out by 15 screaming monkeys than learn something

new? Do you believe an Android book should cover everything, especially all the obscure stuff
you’ll never use, and if it bores the reader to tears in the process, then so much the better?

this book is not for you.

NOTE

[Note from Marketing: this book is for anyone with a credit card... we’ll accept PayPal, too.]

We know what you’re thinking
“How can this be a serious book on developing Android apps?”

Uploaded By: anonymousSTUDENTS-HUB.com

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what your brain is thinking
Your brain craves novelty. It’s always searching, scanning, waiting for something unusual. It was built that
way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it can
to stop them from interfering with the brain’s real job — recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a day hike and a tiger jumps in
front of you — what happens inside your head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!

But imagine you’re at home or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting
ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten
days at the most.

Uploaded By: anonymousSTUDENTS-HUB.com

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this obviously
unimportant content doesn’t clutter up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should never have posted those party photos
on your Facebook page. And there’s no simple way to tell your brain, “Hey brain, thank you very much,
but no matter how dull this book is, and how little I’m registering on the emotional Richter scale right now,
I really do want you to keep this stuff around.”

Uploaded By: anonymousSTUDENTS-HUB.com

WE THINK OF A “HEAD FIRST” READER AS A LEARNER.

So what does it take to learn something? First, you have to get it, then make sure you don’t forget
it. It’s not about pushing facts into your head. Based on the latest research in cognitive science,
neurobiology, and educational psychology, learning takes a lot more than text on a page. We know
what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much more effective
(up to 89% improvement in recall and transfer studies). It also makes things more understandable. Put the
words within or near the graphics they relate to, rather than on the bottom or on another page, and
learners will be up to twice as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40% better on
post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather
than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself too
seriously. Which would you pay more attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons, nothing
much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems,
draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-
provoking questions, and activities that involve both sides of the brain and multiple senses.

Get — and keep — the reader’s attention. We’ve all had the “I really want to learn this, but I can’t stay
awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting,
strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your
brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent on its
emotional content. You remember what you care about. You remember when you feel something. No, we’re
not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise, curiosity,
fun, “what the...?”, and the feeling of “I rule!” that comes when you solve a puzzle, learn something
everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from
Engineering doesn’t.

Metacognition: thinking about thinking
If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you
pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were
expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to develop Android apps.
And you probably don’t want to spend a lot of time. If you want to use what you read in this book, you
need to remember what you read. And for that, you’ve got to understand it. To get the most from this
book, or any book or learning experience, take responsibility for your brain. Your brain on this content.

Uploaded By: anonymousSTUDENTS-HUB.com

The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to your
well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain doing its
best to keep the new content from sticking.

So just how DO you get your brain to treat programming like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition.
You obviously know that you are able to learn and remember even the dullest of topics if you keep
pounding the same thing into your brain. With enough repetition, your brain says, “This doesn’t feel
important to him, but he keeps looking at the same thing over and over and over, so I suppose it must
be.”

The faster way is to do anything that increases brain activity, especially different types of brain
activity. The things on the previous page are a big part of the solution, and they’re all things that have been
proven to help your brain work in your favor. For example, studies show that putting words within the
pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text)
causes your brain to try to makes sense of how the words and picture relate, and this causes more
neurons to fire. More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they’re in
a conversation, since they’re expected to follow along and hold up their end. The amazing thing is, your
brain doesn’t necessarily care that the “conversation” is between you and a book! On the other hand, if
the writing style is formal and dry, your brain perceives it the same way you experience being lectured to
while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning...

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s concerned, a
picture really is worth a thousand words. And when text and pictures work together, we embedded the
text in the pictures because your brain works more effectively when the text is within the thing it refers to,
as opposed to in a caption or buried in the body text somewhere.

We used redundancy, saying the same thing in different ways and with different media types, and
multiple senses, to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty, and we used
pictures and ideas with at least some emotional content, because your brain is tuned to pay attention to
the biochemistry of emotions. That which causes you to feel something is more likely to be remembered,
even if that feeling is nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more attention when it
believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your brain
does this even when you’re reading.

We included activities, because your brain is tuned to learn and remember more when you do things than
when you read about things. And we made the exercises challenging-yetdoable, because that’s what most
people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while someone
else wants to understand the big picture first, and someone else just wants to see an example. But
regardless of your own learning preference, everyone benefits from seeing the same content represented
in multiple ways.

We include content for both sides of your brain, because the more of your brain you engage, the more
likely you are to learn and remember, and the longer you can stay focused. Since working one side of the
brain often means giving the other side a chance to rest, you can be more productive at learning for a
longer period of time.

And we included stories and exercises that present more than one point of view, because your brain is
tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, with exercises, and by asking questions that don’t always have a straight
answer, because your brain is tuned to learn and remember when it has to work at something. Think
about it — you can’t get your body in shape just by watching people at the gym. But we did our best to
make sure that when you’re working hard, it’s on the right things. That you’re not spending one extra
dendrite processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your brain
pays more attention to people than it does to things.

Here’s what YOU can do to bend your brain into submission

Uploaded By: anonymousSTUDENTS-HUB.com

NOTE

Cut this out and stick it on your refrigerator.

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure
out what works for you and what doesn’t. Try new things.

1. Slow down. The more you understand, the less you have to memorize.
Don’t just read. Stop and think. When the book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking the question. The more deeply you force your brain
to think, the better chance you have of learning and remembering.

2. Do the exercises. Write your own notes.
We put them in, but if we did them for you, that would be like having someone else do your
workouts for you. And don’t just look at the exercises. Use a pencil. There’s plenty of evidence
that physical activity while learning can increase the learning.

3. Read There are No Dumb Questions.
That means all of them. They’re not optional sidebars, they’re part of the core content! Don’t
skip them.

4. Make this the last thing you read before bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more processing. If you put in something new
during that processing time, some of what you just learned will be lost.

5. Talk about it. Out loud.
Speaking activates a different part of the brain. If you’re trying to understand something, or
increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were
there when you were reading about it.

6. Drink water. Lots of it.
Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel
thirsty) decreases cognitive function.

7. Listen to your brain.
Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and you might even hurt the process.

8. Feel something.
Your brain needs to know that this matters. Get involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is still better than feeling nothing at all.

9. Write a lot of code!

Uploaded By: anonymousSTUDENTS-HUB.com

There’s only one way to learn to develop Android apps: write a lot of code. And that’s what
you’re going to do throughout this book. Coding is a skill, and the only way to get good at it is to
practice. We’re going to give you a lot of practice: every chapter has exercises that pose a
problem for you to solve. Don’t just skip over them — a lot of the learning happens when you
solve the exercises. We included a solution to each exercise — don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on something small.) But try to solve the
problem before you look at the solution. And definitely get it working before you move on to the
next part of the book.

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything that might get
in the way of learning whatever it is we’re working on at that point in the book. And the first time through,
you need to begin at the beginning, because the book makes assumptions about what you’ve already seen
and learned.

We assume you’re new to Android, but not to Java.

We’re going to be building Android apps using a combination of Java and XML. We assume that you’re
familiar with the Java prorgamming language. If you’ve never done any Java programming at all, then you
might want to read Head First Java before you start on this one.

We start off by building an app in the very first chapter.

Believe it or not, even if you’ve never developed for Android before, you can jump right in and start
building apps. You’ll also learn your way around Android Studio, the official IDE for Android
development.

The examples are designed for learning.

As you work through the book, you’ll build a number of different apps. Some of these are very small so
you can focus on a specific part of Android. Other apps are larger so you can see how different
components fit togeher. We won’t complete every part of every app, but feel free to experiment finish
them off yourself. It’s all part of the learning experience. The source code for all the apps here:
https://tinyurl.com/HeadFirstAndroid.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some of them
are to help with memory, some are for understanding, and some will help you apply what you’ve learned.
Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want you to
finish the book remembering what you’ve learned. Most reference books don’t have retention and recall
as a goal, but this book is about learning, so you’ll see some of the same concepts come up more than
once.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience of the Brain
Power activities is for you to decide if and when your answers are right. In some of the Brain Power
exercises, you will find hints to point you in the right direction.

The technical review team

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

Technical reviewers:

Edward Yue Shung Wong has been hooked on coding since he wrote his first line of Haskell in 2006.
Currently he works on event driven trade processing in the heart of the City of London. He enjoys sharing
his passion for development with the London Java Community and Software Craftsmanship Community.
Away from the keyboard, find Edward in his element on a football pitch or gaming on YouTube
(@arkangelofkaos).

Tony Williams is a Java and Android developer.

Acknowledgments
Our editor:

Many thanks to our editor Meghan Blanchette for picking up the Head First reins. Her feedback and
insight has been invaluable. We’ve appreciated all the times she told us our words had all the right letters,
but not necessarily in the right order.

Thanks also to Bert Bates for teaching us to throw away the old rulebook and for letting us into his
brain. This book has been so much better because of Bert’s reactions and feedback.

The O’Reilly team:

A big thank you goes to Mike Hendrickson for having confidence in us and asking us to write the book

Uploaded By: anonymousSTUDENTS-HUB.com

in the first place; Courtney Nash for all her help in the early stages of the book; and the early release
team for making early versions of the book available for download. Finally, thanks go to Melanie
Yarbrough, Jasmine Kwityn and the rest of the production team for expertly steering the book through
the production process and for working so hard behind the scenes.

Family, friends, and colleagues:

Writing a Head First book is a rollercoaster of a ride, and this one’s been no exception. This book might
not have seen the light of day if it hadn’t been for the kindness and support of our family and friends.
Special thanks go to Andy P, Steve, Colin, Jacqui, Angela, Paul B, Mum, Dad, Carl, Rob and
Lorraine.

The without-whom list:

Our technical review team did a great job of keeping us straight and making sure what we covered was
spot on. We’re also grateful to all the people who gave us feedback on early releases of the book. We
think the book’s much, much better as a result.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this extraordinary series of books.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in technology and business.
Technology professionals, software developers, web designers, and business and creative professionals
use Safari Books Online as their primary resource for research, problem solving, learning, and
certification training.

Safari Books Online offers a range of product mixes and pricing programs for organizations, government
agencies, and individuals. Subscribers have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology,
and dozens more. For more information about Safari Books Online, please visit us online.

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.safaribooksonline.com

Chapter 1. Getting Started: Diving In

Android has taken the world by storm.

Everybody wants a smartphone or tablet, and Android devices are hugely popular. In this book, we’ll
teach you how to develop your own apps, and we’ll start by getting you to build a basic app and run it
on an Android Virtual Device. Along the way, you’ll meet some of the basic components of all Android
apps, such as activities and layouts. All you need is a little Java know-how...

Welcome to Androidville
Android is the world’s most popular mobile platform. At the last count, there were over one billion active
Android devices worldwide, and that number is growing rapidly.

Android is a comprehensive open source platform based on Linux and championed by Google. It’s a
powerful development framework that includes everything you need to build great apps using a mix of
Java and XML. What’s more, it enables you to deploy those apps to a wide variety of devices —
phones, tablets and more.

So what makes up a typical Android app?

We’re going to build our Android apps using a mixture of Java and XML. We’ll explain things
along the way, but you’ll need to have a fair understanding of Java to get the most out of this
book.

Layouts define what each screen looks like

Uploaded By: anonymousSTUDENTS-HUB.com

A typical Android app is comprised of one or more screens. You define what each screen looks like using
a layout to define its appearance. Layouts are usually defined using XML, and can include GUI
components such as buttons, text fields, and labels.

Java code defines what the app should do
Layouts only define the appearance of the app. You define what the app does by writing Java code. A
special Java class called an activity decides which layout to use and tells the app how to respond to the
user. As an example, if a layout includes a button, you need to write Java code in the activity to define
what the button should do when you press it.

Sometimes extra resources are needed too
In addition to Java code and layouts, Android apps often need extra resources such as image files and
application data. You can add any extra files you need to the app.

Android apps are really just a bunch of files in particular directories. When you build your app, all of
these files get bundled together, giving you an app you can run on your device.

Uploaded By: anonymousSTUDENTS-HUB.com

The Android platform dissected
The Android platform is made up of a number of different components. It includes core applications such
as Contacts, a set of APIs to help you control what your app looks and how it behaves, and a whole load
of supporting files and libraries. Here’s a quick look at how they all fit together:

RELAX

Don’t worry if this seems like a lot to take in.

At this stage, we’re just giving you an overview of what’s included in the Android platform. We’ll explain
the different components in more detail as and when we need to.

The great news is that all of the powerful Android libraries are exposed through the APIs in the
application framework, and it’s these APIs that you use to create great Android apps. All you need to
begin is some Java knowledge and a great idea for an app.

Here’s what we’re going to do
So let’s dive in and create a basic Android app. There are just a few things we need to do:

1. Set up a development environment.
We need to install Android Studio, which includes all the tools you need to develop your Android
apps.

2. Build a basic app.
We’ll build a simple app using Android Studio that will display some sample text on the screen.

3. Run the app in the Android emulator.
We’ll use the built-in emulator to see the app up and running.

Uploaded By: anonymousSTUDENTS-HUB.com

4. Change the app.
Finally, we’ll make a few tweaks to the app we created in step 2, and run it again.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: Are all Android apps developed in Java?

A: A: You can develop Android apps in other languages too, but the truth is most developers use Java.

Q: Q: How much Java do I need to know for Android app development?

A: A: You really need experience of Java SE. If you’re feeling rusty, we suggest getting a copy of Head First Java by Kathy Sierra and Bert
Bates.

Q: Q: Do I need to know about Swing and AWT?

A: A: Android doesn’t use Swing or AWT, so don’t worry if you don’t have Java desktop GUI experience.

Your development environment

Java is the most popular language used to develop Android applications. Android devices don’t run
.class and .jar files. Instead, to improve speed and battery performance, Android devices use their own
optimized formats for compiled code. That means that you can’t use an ordinary Java development
environment — you also need special tools to convert your compiled code into an Android format, to
deploy them to an Android device and to let you debug the app once it’s running.

All of these come as part of the Android SDK. Let’s take a look at what’s included.

The Android SDK
The Android Software Development Kit contains the libraries and tools you need to develop Android
apps:

Android Studio is a special version of IntelliJ IDEA
IntelliJ IDEA is one of the most popular IDEs for Java development. Android Studio is a version of IDEA
that includes a version of the Android SDK and extra GUI tools to help you with your app development.

In addition to providing you with an editor and access to the tools and libraries in the Android SDK,

Uploaded By: anonymousSTUDENTS-HUB.com

Android Studio gives you templates you can use to help you create new apps and classes, and it makes it
easy to do things such as package your apps and run them.

Install Java

Android Studio is a Java development environment, so you need to make sure the right version of Java is
installed on your machine.

First, check the Android Studio system requirements to see which versions of the Java Development Kit
(JDK) and Java Runtime Edition (JRE) you need. You can see the system requirements here:

http://developer.android.com/sdk/index.html#Requirements

NOTE

Oracle and Google sometimes change their URLs. If these URLs don’t work, do a search.

When you know which versions of the JDK and JRE you need, you can get them from here and install
them:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Then install Android Studio
Once you have Java up and running, you can download Android Studio from here:

https://developer.android.com/sdk/installing/index.html?pkg=studio

NOTE

If this URL has changed, search for Android Studio in developer.android.com.

This page also includes installation instructions. Follow the instructions to install Android Studio on your
computer. Once you’ve installed Android Studio, open it and follow the instructions to add the latest
SDK tools and support libraries.

NOTE

We’re not including installation instructions in this book as they can get out of date pretty quickly.
Follow the online instructions and you’ll be fine.

When you’re done, you should see the Android Studio welcome screen. You’re ready to build your first
Android app.

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/sdk/index.html#Requirements
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.android.com/sdk/installing/index.html?pkg=studio

THERE ARE NO DUMB QUESTIONS

Q: Q: You say we’re going to use Android Studio to build the Android apps. Do I have to?

A: A: Strictly speaking, you don’t have to use Android Studio to build Android apps. All you need is a tool that will let you write and
compile Java code, plus a few other specialist tools to convert the compiled code into a form that Android devices can run.

Q: Q: So I can use my own IDE?

A: A: Android Studio is the official Android IDE, but Eclipse is also popular. You can see further details here:
https://developer.android.com/tools/sdk/eclipse-adt.html.

Q: Q: Can I write Android apps without using an IDE?

A: A: It’s possible, but it’s more work. Most Android apps are now created using a build tool called gradle. Gradle projects can be created and
built using a text editor and a command line.

Q: Q: A build tool? So is gradle like ANT?

A: A: Similar, but gradle is much more powerful than ANT. Gradle can compile and deploy code, just like ANT, but it also uses Maven to
download any third-party libraries your code needs. Gradle also uses Groovy as a scripting language, which means you can easily create
quite complex builds with gradle.

Q: Q: Most apps are built using gradle? I thought you said a lot of developers use Android Studio?

A: A: Android Studio provides a graphical interface to gradle, and also to other tools for creating layouts, reading logs and debugging.

Build a basic app
Now that you’ve set up your development environment, you’re ready to create your first Android app.
Here’s what the app will look like:

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/tools/sdk/eclipse-adt.html

Let’s build the basic app

Whenever you create a new app, you need to create a new project for it. Make sure you have Android
Studio open, and follow along with us.

1. Create a new project
The Android Studio welcome screen gives you a number of options for what you want to do. We want to
create a new project, so click on the option for “Start a new Android Studio project”.

Uploaded By: anonymousSTUDENTS-HUB.com

2. Configure the project

You now need to configure the app by saying what you want to call it, what company domain to use, and
where you would like to store the files.

Android Studio uses the company domain and application name to form the name of the package that will
be used for your app. As an example, if you give your app a name of “My First App” and use a company
domain of “hfad.com”, Android Studio will derive a package name of com.hfad.myfirstapp. The
package name is really important in Android, as it’s used by Android devices to uniquely identify your
app.

Enter an application name of “My First App”, a company name of “hfad.com”, and accept the default
project location. Then click on the Next button.

Uploaded By: anonymousSTUDENTS-HUB.com

WATCH IT!

The package name must stay the same for the lifetime of your app.

It’s a unique identifier for your app and used to manage multiple versions of the same app.

3. Specify the API level

You now need to indicate which API level of Android your app will use. API levels increase with every
new version of Android. Unless you only want your app to run on the very newest devices, you probably
want to specify one of the older APIs.

Here, we’re choosing API level 15, which means it will be able to run on most devices. Also, we’re only
going to create a version of our app to run on phones and tablets, so we’ll leave the other options
unchecked.

NOTE

You’ll see more about the different API levels on the next page.

When you’ve done this, click on the Next button.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

ANDROID VERSIONS UP CLOSE

You’ve probably heard a lot of things about Android that sound tasty. Things like Ice Cream Sandwich, Jelly
Bean, KitKat, and Lollipop. So what’s with all the confectionary?

Android versions have a version number and a codename. The version number gives the precise version of
Android (e.g., 5.0), while the codename is a slightly more generic “friendly” name that may cover several
versions of Android (e.g., Lollipop). The API level refers to the version of the APIs used by applications. As
an example, the equivalent API level for Android version 5.0 is 21.

When you develop Android apps, you really need to consider which versions of Android you want your app
to be compatible with. If you specify that your app is only compatible with the very latest version of the
SDK, you might find that it can’t be run on many devices in the first instance. You can find out the
percentage of devices running particular versions here:
https://developer.android.com/about/dashboards/index.html.

Activities and layouts from 50,000 feet

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/about/dashboards/index.html

The next thing you’ll be prompted to do is add an activity to your project. Every Android app is a
collection of screens, and each screen is comprised of an activity and a layout.

An activity is a single, defined thing that your user can do. You might have an activity to compose an
email, take a photo, or find a contact. Activities are usually associated with one screen, and they’re
written in Java.

A layout describes the appearance of the screen. Layouts are written as XML files and they tell
Android how the different screen elements are arranged.

Let’s look in more detail at how activities and layouts work together to create a user interface:

Layouts define how the user interface is presented.
Activities define actions.

1. The device launches your app and creates an activity object.
2. The activity object specifies a layout.
3. The activity tells Android to display the layout on screen.
4. The user interacts with the layout that’s displayed on the device.
5. The activity responds to these interactions by running application code.
6. The activity updates the display...
7. ...which the user sees on the device.

Now that you know a bit more about what activities and layouts are, let’s go through the last couple of
steps in the wizard and get it to create a basic activity and layout.

Building a basic app (continued)

Uploaded By: anonymousSTUDENTS-HUB.com

4. Create an activity

The next screen gives you a series of templates you can use to create an activity and layout. You need to
choose one. We’re going to create an app with a basic activity and layout, so choose the Blank Activity
option and click the Next button.

Building a basic app (continued)
5. Configure the activity

Uploaded By: anonymousSTUDENTS-HUB.com

You will now be asked what you want to call the screen’s activity and layout. You will also need to say
what the title of the screen will be, and specify a menu resource name. Enter an activity name of
“MainActivity”, and a layout name of “activity_main”. The activity is a Java class, and the layout is an
XML file, so the names we’ve given here will create a Java class file called MainActivity.java and an
XML file called activity_main.xml.

When you click on the Finish button, Android Studio will build your app.

You’ve just created your first Android app

Uploaded By: anonymousSTUDENTS-HUB.com

So what just happened?

The Android Studio wizard created a project for your app, configured to your specifications.
You defined which versions of Android the app should be compatible with, and the wizard created all
of the files and folders needed for a basic valid app.
It created a basic activity and layout with template code.
The template code includes layout XML and activity Java code, with sample “Hello world!” text in
the layout. You can change this code.

When you finish creating your project by going through the wizard, Android Studio automatically displays
the project for you.

Here’s what our project looks like (don’t worry if it looks complicated right now, we’ll break it down
over the next few pages):

Android Studio creates a complete folder structure for you

Uploaded By: anonymousSTUDENTS-HUB.com

An Android app is really just a bunch of valid files in a particular folder structure, and Android Studio sets
all of this up for you when you create a new app. The easiest way of looking at this folder structure is with
the explorer in the leftmost column of Android Studio.

The explorer contains all of the projects that you currently have open. To expand or collapse folders, just
click on the arrows to the left of the folder icons.

The folder structure includes different types of files
If you browse through the folder structure, you’ll see that the wizard has created various types of files and
folders for you:

Uploaded By: anonymousSTUDENTS-HUB.com

Java and XML source files
These are the activity and layout files the wizard created for you.
Android-generated Java files
There are some extra Java files you don’t need to touch which Android Studio generates for you
automatically.
Resource files
These include default image files for icons, styles your app might use, and any common String values

Uploaded By: anonymousSTUDENTS-HUB.com

your app might want to look up.
Android libraries
In the wizard, you specified the minimum SDK version you want your app to be compatible with.
Android Studio makes sure it includes the relevant Android libraries for this version.
Configuration files
The configuration files tell Android what’s actually in the app and how it should run.

Let’s take a closer look at some of the key files and folders in Androidville.

Useful files in your project

Android Studio projects use the gradle build system to compile and deploy your apps. Gradle projects
have a standard layout. Here are some of the key files and folders you’ll be working with:

Uploaded By: anonymousSTUDENTS-HUB.com

Edit code with the Android Studio editors

You view and edit files using the Android Studio editors. Double-click on the file you want to work with,
and the file contents will appear in the middle of the Android Studio window.

The code editor
Most files get displayed in the code editor. The code editor is just like a text editor, but with extra features
such as color coding and code checking.

Uploaded By: anonymousSTUDENTS-HUB.com

The design editor
If you’re editing a layout, you have an extra option. Rather than edit the XML, you can use the design
editor. The design editor allows you to drag GUI components onto your layout, and arrange them how
you want. The code editor and design editor give different views of the same file, so you can switch back
and forth between the two.

Uploaded By: anonymousSTUDENTS-HUB.com

WHAT’S MY PURPOSE?

Here’s the code from a layout file Android Studio generated for us. We know you’ve not seen layout code
before, but just see if you can match each of the descriptions at the bottom of the page to the correct lines
of code. We’ve done one to get you started.

Uploaded By: anonymousSTUDENTS-HUB.com

WHAT’S MY PURPOSE?: SOLUTION

Here’s the code from a layout file Android Studio generated for us. We know you’ve not seen layout code
before, but just see if you can match each of the descriptions at the bottom of the page to the correct lines
of code. We’ve done one to get you started.

Uploaded By: anonymousSTUDENTS-HUB.com

WHAT’S MY PURPOSE

Now let’s see if you can do the same thing for some activity code. This is example code, and not the code
that Android Studio will have generated for you. Match the descriptions below to the correct lines of
code.

MainActivity.java

package com.hfad.myfirstapp;

import android.os.Bundle;
import android.app.Activity;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

This is the package name. Implement the onCreate() method from the Activity class. This method is called
when the activity is first created.

These are Android classes used
in MainActivity.

Specifies which layout to use. MainActivity extends the Android class android.app.Activity.

Uploaded By: anonymousSTUDENTS-HUB.com

WHAT’S MY PURPOSE: SOLUTION

Now let’s see if you can do the same thing for some activity code. This is example code, and not the code
that Android Studio will have generated for you. Match the descriptions below to the correct lines of
code.

Run the app in the Android emulator

So far you’ve seen what your Android app looks like in Android Studio and got a feel for how it hangs
together. But what you really want to do is see it running, right?

You have a couple of options when it comes to running your apps. The first option is to run them on a
physical device. But what if you don’t have one to hand, or you want to see how it looks on a type of
device you don’t have?

An alternative option is to use the Android emulator that’s built into the Android SDK. The emulator

Uploaded By: anonymousSTUDENTS-HUB.com

enables you to set up one or more Android virtual devices (AVDs) and then run your app in the
emulator as though it’s running on a physical device.

The Android emulator allows you to run your app on an Android virtual device (AVD). The AVD
behaves just like a physical Android device. You can set up numerous AVDs, each emulating a
different type of device.

So what does the emulator look like?
Here’s an AVD running in the Android emulator. It looks just like a phone running on your computer.

The emulator is an application that re-creates the exact hardware environment of an Android device: from
its CPU and memory, through to the sound chips and the video display. The emulator is built on an
existing emulator called QEMU, which is similar to other virtual machine applications you may have used,
like VirtualBox or VMWare.

The exact appearance and behavior of the AVD depends on how you’ve set up the AVD in the first
place. The AVD here is set up to mimic a Nexus 4, so it will look and behave just like a Nexus 4 on your
computer.

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s set up an AVD so that you can see your app running in the emulator.

Creating an Android Virtual Device

There are a few steps you need to go through in order to set up an AVD within Android Studio. We’ll set
up a Nexus 4 AVD running API level 21 so that you can see how your app looks and behaves running on
this type of device. The steps are pretty much identical no matter what type of device you want to set up.

Open the Android Virtual Device Manager
The AVD Manager allows you to set up new AVDs, and view and edit ones you’ve already created.
Open it by selecting Android on the Tools menu and choosing AVD Manager.

If you have no AVDs set up already, you’ll be presented with a screen prompting you to create one. Click
on the “Create a virtual device” button.

Select the hardware
On the next screen, you’ll be prompted to choose a device definition. This is the type of device your AVD
will emulate. You can choose a variety of phone, tablet, wear, or TV devices.

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to see what our app looks like running on a Nexus 4 phone. Choose Phone from the
Category menu and Nexus 4 from the list. Then click the Next button.

Select a system image
Next, you need to select a system image. The system image gives you an installed version of the Android
operating system. You can choose the version of Android you want to be on your AVD, and what type of
CPU (ARM or x86).

You need to choose a system image for an API level that’s compatible with the app you’re building. As an
example, if you want your app to work on a minimum of API level 15, choose a system image for at
least API level 15. We’re going to use a system image for API level 21. Choose the option for Lollipop
21 armeabi-v7a with a target of Android 5.0.1. Then click on the Next button.

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll continue setting up the AVD on the next page.

Verify the AVD configuration
On the next screen, you’ll be asked to verify the AVD configuration. This screen summarizes the options
you chose over the last few screens, and gives you the option of changing them. Accept the options, and
click on the Finish button.

Uploaded By: anonymousSTUDENTS-HUB.com

The AVD Manager will create the AVD for you, and when it’s done, display it in the AVD Manager list of
devices. You may now close the AVD Manager.

Run the app in the emulator

Now that you’ve set up your AVD, let’s run the app on it. To do this, choose the “Run ‘app’” command
from the Run menu. When you’re asked to choose a device, make sure the “Launch emulator” option is
selected, along with the Nexus 4 AVD you just created. Then click on the OK button.

While we wait patiently for the AVD to appear, let’s take a look at what happens when you choose Run.

Compile, package, deploy and run
Choosing the Run option doesn’t just run your app. It also deals with all the preliminary tasks that are
needed for the app to run:

An APK file is an Android application package. It’s basically a JAR or ZIP file for Android
applications.

Uploaded By: anonymousSTUDENTS-HUB.com

1. The Java source files get compiled to bytecode.
2. An Android application package, or APK file, gets created.

The APK file includes the compiled Java files, along with any libraries and resources needed by
your app.

3. Assuming there’s not one already running, the emulator gets launched with the AVD.
4. Once the emulator has been launched and the AVD is active, the APK file is uploaded to

the AVD and installed.
5. The AVD starts the main activity associated with the app.

Your app gets displayed on the AVD screen, and it’s all ready for you to test out.

You can watch progress in the console

It can sometimes take quite a while for the emulator to launch with your AVD — often several minutes.
The great news is that you can see what’s happening using the Android Studio console. The console gives
you a blow-by-blow account of what the gradle build system is doing, and if it encounters any errors,
you’ll see them highlighted in the text.

NOTE

We suggest finding something else to do while waiting for the emulator to start. Like quilting, or cooking a
small meal.

Uploaded By: anonymousSTUDENTS-HUB.com

You can find the console at the bottom of the Android Studio screen:

Here’s the output from our console window when we ran our app:

Test drive

So let’s look at what actually happens on screen when you run your app.

First, the emulator fires up in a separate window. The emulator takes a while to load the AVD, but then
after a bit you see the locked screen of the AVD.

Uploaded By: anonymousSTUDENTS-HUB.com

When you unlock the AVD screen by swiping the padlock icon upward, you see the app you just
created. The application name appears at the top of the screen, and the default sample text “Hello
world!” is displayed in the screen.

What just happened?

Let’s break down what happens when you run the app:

1. Android Studio launches the emulator, loads the AVD, and installs the app.

Uploaded By: anonymousSTUDENTS-HUB.com

2. When the app gets launched, an activity object is created from MainActivity.java.
3. The activity specifies that it uses the layout activity_main.xml.
4. The activity tells Android to display the layout on the screen. The text “Hello world!” gets

displayed.

THERE ARE NO DUMB QUESTIONS

Q: Q: You mentioned that when you create an APK file, the Java source code gets compiled into bytecode and added to the APK.
Presumably you mean it gets compiled into Java bytecode, right?

A: A: It does, but that’s not the end of the story. Things work a little differently on Android.
The big difference with Android is that your code doesn’t actually run inside an ordinary Java VM. It runs on the Android runtime (ART)
instead, and on older devices it runs in a predecessor to ART called Dalvik. This means that you write your Java source code, compile it
into .class files using the Java compiler, and then the .class files get stitched into a single file in DEX format, which is smaller, more
efficient bytecode. ART then runs the DEX code. You can see more details about this in Appendix A.

Q: Q: That sounds complicated. Why not just use the normal Java VM?

A: A: ART can convert the DEX bytecode into native code that can run directly on the CPU of the Android device. This makes the app run a
lot faster, and use a lot less battery power.

Q: Q: Is a Java virtual machine really that much overhead?

A: A: Yes. Because on Android, each app runs inside its own process. If it used ordinary JVMs, it would need a lot more memory.

Q: Q: Do I need to create a new AVD every time I create a new app?

A: A: No, once you’ve created the AVD you can use it for any of your apps. You may find it useful to create multiple AVDs in order to test
your apps in different situations. As an example, you might want to create a tablet AVD so you can see how your app looks and behaves on
larger devices.

Refining the app

Over the past few pages, you’ve built a basic Android app and seen it running in the emulator. Next,
we’re going to refine the app you’ve built.

At the moment, the app displays the sample text “Hello world!” that the wizard put in for us as a
placeholder. You’re going to change that text to say something else instead. So what do we need to
change in order to achieve that? To answer that, let’s take a step back and look at how the app is

Uploaded By: anonymousSTUDENTS-HUB.com

currently built.

The app has one activity and one layout
When we built the app, we told Android Studio how to configure it, and the wizard did the rest. The
wizard created a basic activity for us, and also a default layout.

The activity controls what the app does
Android Studio created an activity for us called MainActivity.java. The activity specifies what the app
does and how it should respond to the user.

The layout controls the app appearance
MainActivity.java specifies that it uses the layout Android Studio created for us called
activity_main.xml. The layout specifies what the app looks like.

Uploaded By: anonymousSTUDENTS-HUB.com

We want to change the appearance of the app by changing the text that’s displayed. This means that we
need to deal with the Android component that controls what the app looks like. We need to take a closer
look at the layout.

What’s in the layout?

We need to change the sample “Hello world!” text that Android Studio created for us, so let’s start with
the layout file activity_main.xml. If it isn’t already open in an editor, open it now by finding the file in the
app/src/main/res/layout folder in the explorer and double-clicking on it.

The design editor
There are two ways of viewing and editing layout files in Android Studio: through the design editor and
through the code editor.

When you choose the design option, you can see that the sample text “Hello world!” appears in the layout
as you might expect. But what’s in the underlying XML?

Let’s see by switching to the code editor.

The code editor

Uploaded By: anonymousSTUDENTS-HUB.com

When you choose the code editor option, the content of activity_main.xml is displayed. Let’s take a
closer look at.

activity_main.xml has two elements

Here’s the code from activity_main.xml that Android Studio generated for us.

The code contains two elements.

The first element is the <RelativeLayout> element. This element tells Android to display items on the
layout in relative positions. You can use <RelativeLayout>, for instance, to center items in the
middle of the layout, align them to the bottom of the screen on your Android device, or position them
relative to other items.

Uploaded By: anonymousSTUDENTS-HUB.com

WATCH IT!

Android Studio sometimes displays the values of references in place of actual code.

As an example, it may display "Hello world!" instead of the real code "@string/hello_world".
Any such substitutions should be highlighted in the code editor, and clicking on them or hovering over them
with your mouse will reveal the true code.

The second element is the <TextView> element. This element is used to display text to the user. It’s
nested within the <RelativeLayout>, and in our case it’s being used to display the sample text “Hello
world!”.

The key part of the code within the <TextView> element is the first line. What do you notice?

The layout file contains a reference to a string, not the string itself
The key part of the <TextView> element is the first line:

android:text="@string/hello_world" />

android:text means that this is the text property of the <TextView> element, so it specifies
which text should be displayed in the layout. But why does it say "@string/hello world" rather
than “Hello world!”? What does this actually mean?

Let’s start with the first part, @string. This is just a way of telling Android to look up a text value from
a string resource file. In our case, Android Studio created a string resource file for us called strings.xml,
located in the app/src/main/res/values folder.

Put string values in strings.xml rather than hardcoding them. strings. xml is a resource file used
to hold name/value pairs of strings. Layouts and activities can look up string values using their
name.

The second part, hello_world, tells Android to look up the value of a resource with the name
hello_world. So @string/hello_world means “look up the string resource with the name
hello_world, and use the associated text value.”

There’s one key reason: localization

Say you’ve created an app and it’s a big hit on your local Google Play Store. But you don’t want to limit
yourself to just one country or language — you want to make it available internationally and for different

Uploaded By: anonymousSTUDENTS-HUB.com

languages.

Separating out text values into strings.xml makes dealing with issues like this much easier. Rather than
having to change hardcoded text values in a whole host of different activity and layout files, you can
simply replace the strings.xml file with an internationalized version.

Using strings.xml as a central resource for text values also makes it easier to make global changes to text
across your whole application. If your boss needs you to change the wording in an app because the
company’s changed its name, only strings.xml needs to be changed.

Let’s look in the strings.xml file

Android Studio created a string resource file for us called strings.xml, so let’s see if it contains a
hello_world resource. Use the explorer to find it in the app/src/main/res/values folder, and open it
by double-clicking on it.

Here’s what our code in the strings.xml file looks like:

Uploaded By: anonymousSTUDENTS-HUB.com

As you can see, there’s a line of code that looks just like what we are looking for. It describes a string
resource with a name of hello_world, and a value of “Hello world!”:

<string name="hello_world">Hello world!</string>

Update strings.xml to change the text
So let’s change the sample text in the app. If you’ve not already done so, find the file strings.xml in the
Android Studio explorer, and double-click on it to open it.

Here’s the code from the file. You need to look for the string with the name “hello_world”, and change its
corresponding text value from “Hello world!” to “Sup doge”:

Once you’ve updated the file, go to the File menu and choose the Save All option to save your change.

Uploaded By: anonymousSTUDENTS-HUB.com

STRING RESOURCE FILES UP CLOSE

strings.xml is the default resource file used to hold name/value pairs of strings so that they can be referenced
throughout your app. It has the following format:

There are two things that allow Android to recognize strings.xml as being a string resource file:

The file is held in the folder app/src/main/res/values.
XML files held in this folder contain simple values, such as strings and colors.
The file has a <resources> element, which contains one or more <string> elements.
The format of the file itself indicates that it’s a resource file containing Strings. The <resources>
element tells Android that the file contains resources, and the <string> element identifies each String
resource.

This means that you don’t need to call your String resource file strings.xml; if you want, you can call it
something else, or split your Strings into multiple files.

Each name/value pair takes the form

<string name="string_name">string_value</string>

where string_name is the identifier of the string, and string_value is the String value itself.

A layout can retrieve the value of the String using

Take the app for a test drive

Once you’ve edited the file, try running your app in the emulator again by choosing the “Run ‘app’”
command from the Run menu. You should see that your app now says “Sup doge” instead of “Hello
world!”.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I absolutely have to put my text values in a string resource file such as strings.xml?

A: A: It’s not mandatory, but Android gives you warning messages if you hardcode text values. It might seem like a lot of effort at first, but it
makes things like localization much easier. It’s also easier to use String resources to start off with, rather than patching them in afterward.

Q: Q: How does separating out the String values help with localization?

A: A: Suppose you want your application to be in English by default, but in French if the device language is set to French. Rather than
hardcode different languages into your app, you can have one String resource file for English text, and another resource file for French text.

Q: Q: How does the app know which to use?

A: A: Put your default English strings resource file in the app/src/main/res/values folder as normal, and your French resource file in a new
folder called app/src/main/res/values-fr. If the device is set to French, it will use the strings in the app/src/main/res/values-fr folder. If the
device is set to any other language, it will use the strings in app/src/main/res/values.

Q: Q: The layout code Android Studio generated for me looks a little different than the book’s examples. Should I be concerned?

A: A: Android Studio may give you slightly different XML depending on which version you’re using. You don’t need to worry about this,
because from now on you’ll be learning how to roll your own layout code anyway, so you’ll replace a lot of what Android Studio gives
you.

Your Android Toolbox
You’ve got Chapter 1 under your belt and now you’ve added Android basic concepts to your
toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

Versions of Android have a version number, API level, and code name.
Android Studio is a special version of IntelliJ IDEA that interfaces with the Android Software
Development Kit (SDK) and the gradle build system.
A typical Android app is comprised of activities, layouts, and resource files.
Layouts describe what your app looks like. They’re held in the app/src/main/res/layout folder.
Activities describe what you app does, and how it interacts with the user. The activities you write are
held in the app/src/main/java folder.
strings.xml contains string name/value pairs. It’s used to separate out text values from the layouts and
activities, and supports localization.
AndroidManifest.xml contains information about the app itself. It lives in the app/src/main folder.
An AVD is an Android Virtual Device. It runs in the Android emulator and mimics a physical Android
device.
An APK is an Android application package. It’s like a JAR file for Android apps, and contains your app
bytecode, libraries, and resources. You install an app on a device by installing the APK.
Android apps run in separate processes using the Android runtime (ART).
RelativeLayout is used to place GUI components in relative positions in a layout.
The TextView element is used for displaying text.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 2. Building Interactive Apps: Apps
That Do Something

Most apps need to respond to the user in some way.

In this chapter, you’ll see how you can make your apps a bit more interactive. You’ll see how you can
get your app to do something in response to the user, and how to get your activity and layout talking
to each other like best buddies. Along the way, we’ll take you a bit deeper into how Android actually
works by introducing you to R, the hidden gem that glues everything together.

You’re going to build a Beer Adviser app
In the Chapter 1, you saw how to create a basic app using the Android Studio New Project wizard, and
how to change the text displayed in the layout. But when you create an Android app, you’re usually going
to want the app to do something.

In this chapter, we’re going to show you how to create an app that the user can interact with: we’ll be
creating a Beer Adviser app. In the app, users can select the types of beer they enjoy, click a button, and
get back a list of tasty beers to try out.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s how the app will be structured:

1. The layout specifies what the app will look like.
It includes three GUI components:

A drop-down list of values called a spinner, which allows the user to choose which type of
beer they want.
A button that when pressed will return a selection of beer types.
A text field that displays the types of beer.

2. The file strings.xml includes any string resources needed by the layout — for example,
the label of the button specified in the layout.

3. The activity specifies how the app should interact with the user.
It takes the type of beer the user chooses, and uses this to display a list of beers the user might be
interested in. It achieves this with the help of a custom Java class.

4. The custom Java class contains the application logic for the app.
It includes a method that takes a type of beer as a parameter, and returns a list of beers of this
type. The activity calls the method, passes it the type of beer, and uses the response.

Here’s what you need to do
So let’s get to work and build the Beer Adviser app. There are a few steps you need to go through (we’ll
tackle these throughout the rest of the chapter):

1. Create a project.
You’re creating a brand-new app, so you’ll need to create a new project. Just like before, you’ll
need to create a basic layout and activity.

2. Update the layout.
Once you have a basic app set up, you need to amend the layout so that it includes all the GUI
components your app needs.

3. Wire the layout to the activity.
The layout only creates the visuals. To add smarts to your app, you need to wire the layout to the

Uploaded By: anonymousSTUDENTS-HUB.com

Java code in your activity.

4. Write the application logic.
You’ll add a Java custom class to the app, and use it to make sure users get the right beer based
on their selection.

Create the project

Let’s begin by creating the new app (the steps are similar to those we used in the previous chapter):

Open Android Studio and choose “Start a new Android Studio project” from the welcome screen.
This starts the wizard you saw in Chapter 1.
When prompted, enter an application name of “Beer Adviser”, making your package name
com.hfad.beeradviser.
We want the app to work on most phones and tablets, so choose a minimum SDK of API 15, and
make sure the option for “Phone and Tablet” is ticked. This means that any phone or tablet that runs
the app must have API 15 installed on it as a minimum. Most Android devices meet this criteria.
Choose a blank activity for your default activity. Call the activity “FindBeerActivity” and the
accompanying layout “activity_find_beer”. Accept the default values for Title and Menu Resource
Name, as we won’t be using these.

Uploaded By: anonymousSTUDENTS-HUB.com

We’ve created a default activity and layout
When you click on the Finish button, Android Studio creates a new project containing an activity called
FindBeerActivity.java and a layout called activity_find_beer.xml. Let’s start by changing the layout file.
To do this, go to the app/src/main/res/layout folder, and open the file activity_find_beer.xml.

Just like before, the wizard has created a default layout for us with a “Hello world!” <TextView>
element on the page like this:

Uploaded By: anonymousSTUDENTS-HUB.com

Adding components with the design editor

There are two ways of adding GUI components to the layout: via XML or using the design editor. Let’s
start by adding a button via the design editor.

To the left of the design editor, there’s a palette that contains GUI components you can drag to your
layout. If you look in the Widgets area, you’ll see that there’s a Button component. Click on it, and drag it
into the design editor.

Uploaded By: anonymousSTUDENTS-HUB.com

Changes in the design editor are reflected in the XML
Dragging GUI components to the layout like this is a convenient way of updating it. If you switch to the
code editor, you’ll see that adding the button via the design editor has added some lines of code to the
file:

activity_find_beer.xml has a new button
The editor added a new <Button> element to activity_find_beer.xml:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New Button"
 android:id="@+id/button"
 android:layout_below="@+id/textView"
 android:layout_alignLeft="@+id/textView" />

A button in Androidville is a push-button that the user can press to trigger an action. It includes properties
controlling its position, size, appearance, %and what methods it should call in the activity. These
properties aren’t unique to buttons — other GUI components including text views have them too.

Buttons and text views are subclasses of the same Android View class
There’s a very good reason why buttons and text views have properties in common — they both inherit

Uploaded By: anonymousSTUDENTS-HUB.com

from the same Android View class. You’ll find out more about this later in the book, but for now, here
are some of the more common properties.

android:id
This gives the component an identifying name. The ID property enables you to control what components
do via activity code, and also allows you to control where components are placed in the layout:

android:id="@+id/button"

android:text
This tells Android what text the component should display. In the case of <Button>, it’s the text that
appears on the button:

android:text="New Button"

android:layout_width, android:layout_height
These properties specify the basic width and height of the component. "wrap_content" means it
should be just big enough for the content:

android:layout_width="wrap_content"
android:layout_height="wrap_content"

A closer look at the layout code

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s take a closer look at the layout code, and break it down so that you can see what it’s actually doing
(don’t worry if your code looks a little different, just follow along with us):

The RelativeLayout element
The first element in the layout code is <RelativeLayout>. The <RelativeLayout> element tells
Android that the different GUI components in the layout should be displayed relative to each other. As
an example, you can use it to say that you want one component to appear to the left of another one, or
that you want them to be aligned or lined up in some way.

NOTE

There are other ways of laying out your GUI components too. You’ll find out more about these later on.

In this example, the button appears directly underneath the text view, so the button is displayed relative to
the text view.

The TextView element
The first element inside the <RelativeLayout> is the <TextView>:

...
 <TextView
 android:text="@string/hello_world"

Uploaded By: anonymousSTUDENTS-HUB.com

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/textView" />
...

Using a relative layout means that GUI components will be positioned relative to each other.

No properties have been set to specify where the text view should appear in the layout, so by default
Android displays it in the upper-left corner of the screen. Notice that the text view has been given an ID
of textView. You’ll see why this is needed when we look at the next element.

The Button element
The final element inside the <RelativeLayout> is the <Button>:

...
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New Button"
 android:id="@+id/button"
 android:layout_below="@+id/textView"
 android:layout_alignLeft="@+id/textView" />
...

When we added our button to the layout, we positioned the button so that it was underneath the text
view, and so that the left edge of the button lined up with the left edge of the text view. We positioned the
button relative to the text view, and this is reflected in the XML:

android:layout_below="@+id/textView"
android:layout_alignLeft="@+id/textView"

There are different ways of writing the layout XML in order to produce the same visual effect. As an
example, the XML above specifies that the button is positioned below the text view. An equivalent
statement would be to say that the text view is positioned above the button.

Changes to the XML...

Uploaded By: anonymousSTUDENTS-HUB.com

You’ve seen how changes you make in the design editor are reflected in the layout XML. The opposite
applies too — any changes you make to the layout XML are applied to the design.

Try this now. Replace your activity_find_beer.xml code with the following:

Uploaded By: anonymousSTUDENTS-HUB.com

DO THIS !

Replace the contents of activity_find_beer.xml with the XML shown here.

...are reflected in the design editor

Once you’ve changed the layout XML, switch to the design editor. Instead of a layout containing a text
view with a button underneath it, you should now see a text view displayed below a button.

Above the button we have a spinner. A spinner is the Android term for a drop-down list of values. When
you touch it, it expands to show you the list so that you can pick a single value.

A spinner provides a drop-down list of values. It allows you to choose a single value from a set of
values.
GUI components such as buttons, spinners, and text views have very similar attributes, as they
are all types of View. Behind the scenes, they all inherit from the same Android View class.

Uploaded By: anonymousSTUDENTS-HUB.com

We’ve shown you how to add GUI components to the layout with the aid of the design editor, and also
by adding them through XML. In general, you’re more likely to hack the XML to get the results you want
without using the design editor. This is because editing the XML directly gives you more direct control
over the layout, and means that you’re not dependent on the IDE.

Use string resources rather than hardcoding the text

There’s one more thing we need to change before we try running the app. At the moment, the button and
text view both use hardcoded string values for their text properties. As we mentioned in Chapter 1, it’s a
good idea to change these to use the strings resource file strings.xml instead. While this isn’t strictly
necessary, it’s a good habit to get into. Using the strings resource file for static text makes it easier to
create international versions of your app, and if you need to tweak the wording in your app, you’ll be able
to do it one central place.

Open up the app/src/main/res/values/strings.xml file. When you switch to the XML view, it should look

Uploaded By: anonymousSTUDENTS-HUB.com

something like this:

First, delete the “hello_world” resource, as we’re no longer using it. Then, add a new resource called
“find_beer” with a value of “Find Beer!”. After you’ve done that, add a new resource named “brands”
but don’t enter anything for the value.

Your new code should look like this:

Change the layout to use the string resources
Next, let’s change the button and text view elements in the layout XML to use the two string resources
we’ve just added.

Open up the activity_find_beer.xml file, and make the following changes:

Change the line android:text="Button" to android:text="@string/find_beer".
Change the line android:text="TextView" to android:text="@string/brands".

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s take the app for a test drive

We still have more work to do on the app, but let’s see how it’s looking so far. Save the changes you’ve
made, then choose the “Run ‘app’” command from the Run menu. When prompted, select the option to
launch the emulator.

Wait patiently for the app to load, and eventually it should appear.

Uploaded By: anonymousSTUDENTS-HUB.com

Try touching the spinner. It’s not immediately obvious, but when you touch the spinner, it presents you
with a drop-down list of values — it’s just at this point we haven’t added any values to it.

Here’s what we’ve done so far
Here’s a quick recap of what we’ve done so far:

1. We’ve created a layout that specifies what the app will look like.
It includes a spinner, a button, and a text view.

2. The file strings.xml includes the string resources we need.
We’ve added a label for the button, and an empty string for the brands.

3. The activity specifies how the app should interact with the user.
Android Studio has created a basic activity for us, but we haven’t done anything with it yet.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: The layout looks slightly different when you run it compared with how it looks in the design editor. Why’s that?

A: A: The design editor does its best to show you how the layout will look, but it has a few limitations. Our layout XML specfies that the
spinner should be centered horizontally, for instance, but this may not be obvious from the design editor.
In practice, you’re always best off working directly with the XML. This gives you a more accurate picture of what’s going on, and gives
you a finer degree of control too.

Q: Q: I thought there was a text view too?

A: A: There is, it’s just that at the moment it doesn’t contain any text so you can’t see it. You’ll see it later on in the chapter when we get the
text view to display some text.

Add values to the spinner

At the moment, the layout includes a spinner, but it doesn’t have anything in it. Whenever you use a
spinner, you need to get it to display a list of values so that the user can choose the value they want.

We can give the spinner a list of values in pretty much the same way that we set the text on the button and
the text view: by using a resource. So far, we’ve used strings.xml to specify single String values. All we
need to do is specify an array of String values, and get the spinner to reference it.

Resources are noncode assets, such as images or strings, used by your app.

Adding an array resource is similar to adding a string
As you already know, you can add a string resource to strings.xml using

<string name="string_name">string_value</string>

where string_name is the identifier of the String, and string_value is the String value itself.

To add an array of Strings, you use the following syntax:

where string_array_name is the name of the array, and string_value1, string_value2,
string_value3 are the individual String values that make up the array.

Let’s add a string-array resource to our app. Open up strings.xml, and add the array like this:

Uploaded By: anonymousSTUDENTS-HUB.com

Get the spinner to reference a string-array
A layout can reference a string-array using similar syntax to how it would retrieve the value of a string.
Rather than use

you use the syntax

where array_name is the name of the array.

Let’s use this in the layout. Go to the layout file activity_find_beer.xml and add an entries attribute to
the spinner like this:

Test drive the spinner

So let’s see what impact these changes have had on our app. Save your changes, then run the app. You
should get something like this:

Uploaded By: anonymousSTUDENTS-HUB.com

We need to make the button do something

So far, we’ve added new GUI components to the layout, and populated a spinner with an array of values.
What we need to do next is make the app react to the value we select in the spinner when the button is
clicked. We want our app to behave something like this:

1. The user chooses a type of beer from the spinner.
The user clicks on the button to find matching beers.

2. The layout specifies which method to call in the activity when the button is clicked.
3. The method in the activity retrieves the value of the selected beer in the spinner and

passes it to the getBrands() method in a Java custom class called BeerExpert.
4. BeerExpert’s getBrands() method finds matching brands for the type of beer and returns

them to the activity as an ArrayList of Strings.
5. The activity gets a reference to the layout text view and sets its text value to the list of

matching beers.
This is displayed on the device.

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s start by getting the button to call a method.

Make the button call a method

Whenever you add a button to a layout, it’s likely you’ll want it to do something when the user clicks on
it. To do this, you need to get the button to call a method in your activity.

To get a button to call a method in the activity when it’s clicked, we need to make changes to two files:

We need to change the layout file activity_find_beer.xml.
We’ll specify which method in the activity will get called when the button is clicked.
We need to change the activity file FindBeerActivity.java.
We need to write the method that gets called.

Let’s start with the layout.

Use onClick to say which method the button calls
It only takes one line of XML to tell Android which method a button should call when it’s clicked. All you
need to do is add an android:onClick attribute to the <button> element, and give it the name of
the method you want to call:

Let’s try this now. Go to the layout file activity_find_beer.xml, and add a new line of XML to the
<button> element to say that method onClickFindBeer() should be called when the button is
clicked:

Uploaded By: anonymousSTUDENTS-HUB.com

Once you’ve made these changes, save the file.

Now that the layout knows which method to call in the activity, we need to go and write the method.
Let’s take a look at the activity.

What activity code looks like
When we first created a project for our app, we asked the wizard to create a basic activity for us called
FindBeerActivity. The code for this activity is held in a file called FindBeerActivity.java. Open
this file by going to the app/src/main/java folder and double-clicking on it.

When you open the file, you’ll see that Android Studio has generated a lot of Java code for you. Rather
than taking you through all the code that Android Studio has created for you, we want you to replace it
with the code below. This is because a lot of the activity code that Android Studio has generated is
unnecessary, and we want you to focus on the fundamentals of Android itself rather than the quirks of a
single IDE. So delete the code that’s currently in FindBeerActivity.java, and replace it with the code
shown here:

Uploaded By: anonymousSTUDENTS-HUB.com

The above code is all you need to create a basic activity. As you can see, it’s a class that extends the
android.app.Activity class, and implements an onCreate() method.

All activities have to extend the Activity class. The Activity class contains a bunch of methods
that turn your Java class from a plain old Java class into a full-fledged, card-carrying Android activity.

All activities also need to implement the onCreate() method. The onCreate() method gets called
when the activity object gets created, and it’s used to perform basic setup such as what layout the activity
is associated with. This is done using the setContentView() method. In the example above,
setContentView(R.layout.activity_find_beer) tells Android that this activity uses
activity_find_beer as its layout.

On the previous page, we added an onClick attribute to the button in our layout and gave it a value of
onClickFindBeer. We need to add this method to our activity so it will be called when the button
gets clicked. This will enable the activity to respond when the user touches a button in the user interface.

DO THIS !

Replace the code in your version of FindBeerActivity.java with the code shown on this page.

Add an onClickFindBeer() method to the activity

The onClickFindBeer() method needs to have a particular signature, otherwise it won’t get called
when the button specified in the layout gets clicked. The method needs to take the following form:

If the method doesn’t take this form, the method won’t respond when the user touches the button. This is
because behind the scenes, Android looks for a public method with a void return value, with a method

Uploaded By: anonymousSTUDENTS-HUB.com

name that matches the method specified in the layout XML.

If you want a method to respond to a button click, it must be public, have a void return type, and
take a single View parameter.

The View parameter in the method may seem unusual at first glance, but there’s a good reason for it
being there. The parameter refers to the GUI component that triggers the method (in this case, the
button). As we mentioned earlier, GUI components such as buttons and text views are all types of View.

So let’s update our activity code. Add the onClickFindBeer() method below to your activity code:

onClickFindBeer() needs to do something

Now that we’ve created the onClickFindBeer() method in our activity, the next thing we need to
do is get the method to do something when it runs. We need to get our app to display a selection of
different beers that match the beer type the user has selected.

In order to achieve this, we first need to get a reference to both the spinner and text view GUI
components in the layout. This will allow us to retrieve the value of the chosen beer type from the spinner,
and display text in the text view.

Use findViewById() to get a reference to a view
We can get a handle for our two GUI components using a method called findViewById(). The
findViewById() method takes the ID of the GUI component as a parameter, and returns a View
object. You then cast the return value to the correct type of GUI component (for example, a TextView
or a Button).

Here’s how you’d use findViewById() to get a reference to the text view with an ID of brands:

Uploaded By: anonymousSTUDENTS-HUB.com

Take a closer look at how we specified the ID of the text view. Rather than pass in the name of the text
view, we passed in an ID of the form R.id.brands. So what does this mean? What’s R?

R.java is a special Java file that gets generated by the Android tools whenever you create or build your
app. It lives within the app/build/generated/source/r/debug folder in your project in a package with the
same name as the package of your app. Android uses R to keep track of the resources used within the
app, and among other things it enables you to get references to GUI components from within your activity
code.

R is a special Java class that enables you to retrieve references to resources in your app.

If you open up R.java, you’ll see that it contains a series of inner classes, one for each type of resource.
Each resource of that type is referenced within the inner class. As an example, R includes an inner class
called id, and the inner class includes a static final brands value. The line of code

(TextView) findViewById(R.id.brands);

uses this value to get a reference to the brands text view.

RELAX

R.java gets generated for you.

You don’t change any of the code within R, but it’s useful to know it’s there.

Once you have a View, you can access its methods

The findViewById() method provides you with a Java version of your GUI component. This means
that you can get and set properties in the GUI component using the methods exposed by the Java class.
Let’s take a closer look.

Setting the text in a TextView
As you’ve seen, you can get a reference to a text view in Java using

TextView brands = (TextView) findViewById(R.id.brands);

When this line of code gets called, it creates a TextView object called brands. You are then able to
call methods on this TextView object.

Let’s say you wanted to set the text displayed in the brands text view to “Gottle of geer”. The
TextView class includes a method called setText() that you can use to change the text property.

Uploaded By: anonymousSTUDENTS-HUB.com

You use it like this:

Retrieving the selected value in a spinner
You can get a reference to a spinner in a similar way to how you get a reference to a text view. You use
the findViewById() method as before, only this time you cast the result as a Spinner:

Spinner color = (Spinner) findViewById(R.id.color); color.getSelectedItem()

This gives you a Spinner object whose methods you can now access. As an example, here’s how you
retrieve the currently selected item in the spinner, and convert it to a String:

The code

color.getSelectedItem()

actually returns a generic Java object. This is because spinner values can be something other than Strings,
such as images. In our case, we know the values are Strings, so we can use String.valueOf() to
convert the selected item from an Object to a String.

Update the activity code
You now know enough to write some code in the onClickFindBeer() method. Rather than write all
the code we need in one go, let’s start by reading the selected value from the spinner, and displaying it in
the text view.

Uploaded By: anonymousSTUDENTS-HUB.com

ACTIVITY MAGNETS

Somebody wrote a new onClickFindBeer() method using fridge magnets for us to slot into our activity.
Unfortunately, a freak kitchen whirlwind has dislodged the magnets. Can you piece the code back together
again?

The code needs to retrieve the type of beer selected in the spinner, and then display the type of beer in the
text view.

Uploaded By: anonymousSTUDENTS-HUB.com

ACTIVITY MAGNETS SOLUTION

Somebody wrote a new onClickFindBeer() method using fridge magnets for us to slot into our activity.
Unfortunately, a freak kitchen whirlwind has dislodged the magnets. Can you piece the code back together
again?

The code needs to retrieve the type of beer selected in the spinner, and then display the type of beer in the
text view.

The first version of the activity

Our cunning plan is to build the activity in stages, and test it as we go along. In the end, the activity will
take the selected value from the spinner, call a method in a custom Java class, and then display matching
types of beer. For this first version, our goal is just to make sure that we correctly retrieve the selected
item from the spinner.

Here is our activity code, including the method you pieced together on the previous page. Apply these

Uploaded By: anonymousSTUDENTS-HUB.com

changes to FindBeerActivity.java, then save them:

What the code does

Before we take the app for a test drive, let’s look at what the code actually does.

1. The user chooses a type of beer from the spinner and clicks on the Find Beer button.
This calls the public void onClickFindBeer(View) method in the activity.
The layout specifies which method in the activity should be called when the button is clicked via
the android:onClick property of the button.

Uploaded By: anonymousSTUDENTS-HUB.com

2. The activity gets references to the TextView and Spinner GUI components using calls to
the findViewById() method.

3. The activity retrieves the currently selected value of the spinner, and converts it to a
String.

4. The activity then sets the text property of the TextView to reflect the currently selected
item in the spinner.

Test drive the changes
Make the changes to the activity file, save it, and then run your app. This time when we click on the Find
Beer button, it displays the value of the selected item in the spinner.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: I added a string to my strings.xml file but I can’t see it in R.java. Why isn’t it there?

A: A: Android Studio, generates R.java when you save any changes you’ve made. If you’ve added a resource but can’t see it in R.java, check
that your changes have been saved.
R.java also gets updated when the app gets built. The app builds when you run the app, so running the app will also update R.java.

Q: Q: The values in the spinner look like they’re static as they’re set to the values in the string-array. Can I change these values
programmatically?

A: A: You can, but it’s more complicated than just using static values. We’ll show you later in the book how you can have complete control
over the values displayed in components such as spinners.

Q: Q: What type of object is returned by getSelectedItem()?

A: A: It’s declared as type Object. Because we used a string-array for the values, the actual value returned in this case is a String.

Q: Q: In this case? Isn’t it always?

A: A: You can do more complicated things with spinners than just display text. As an example, the spinner might display an icon next to each
value. As getSelectedItem() returns an Object, it gives you a bit more flexibility.

Q: Q: Does the name of onClickFindBeer matter?

A: A: All that matters is that the name of the method in the activity code matches the name used in the button’s onClick attribute in the
layout.

Q: Q: Why did we replace the activity code that Android Studio created for us?

A: A: IDEs such as Android Studio include lots of time-saving functions and utilities that can save you a lot of time. They generate a lot of
code for you, and sometimes this can be useful. When you’re learning a new language or development area such as Android, we think it’s
best to learn about the fundamentals of the language rather than what the IDE generates for you. This way you’ll develop a greater
understanding of it, which you’ll then be able to use no matter which IDE you use.

Building the custom Java class
As we said at the beginning of the chapter, the Beer Adviser app decides which beers to recommend with
the help of a custom Java class. The custom Java class is written in plain old Java, with no knowledge of
the fact it’s being used by an Android app.

Custom Java class spec
The custom Java class should meet the following requirements:

The package name should be com.hfad.beeradviser.
The class should be called BeerExpert.
It should expose one method, getBrands(), that takes a preferred beer color (as a String), and
return a List<String> of recommended beers.

Uploaded By: anonymousSTUDENTS-HUB.com

Build and test the Java class
Java classes can be extremely complicated and involve calls to complex application logic. You can either
build and test your own version of the class, or use our sophisticated version of the class shown here:

Uploaded By: anonymousSTUDENTS-HUB.com

DO THIS !

Add the BeerExpert class to your project. Highlight the com.hfad.beeradviser package in the
app/src/main/java folder, and go to File→New...→Java Class. A new class will be created in the
package.

Enhance the activity to call the custom Java class so that we can get
REAL advice

In version two of the activity we need to enhance the onClickFindBeer() method to call the
BeerExpert class for beer recommendations. The code changes needed are plain old Java. You can
try to write the code and run the app on your own, or you can turn the page and follow along.

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL

Enhance the activity so that it calls the BeerExpert getBrands() method and displays the results in the
text view.

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL SOLUTION

Enhance the activity so that it calls the BeerExpert getBrands() method and displays the results in the
text view.

Activity code version 2

Here’s our full version of the activity code. Apply the changes to your version of FindBeerActivity.java,
make sure you’ve added the BeerExpert class to your project, and save your changes:

Uploaded By: anonymousSTUDENTS-HUB.com

What happens when you run the code
1. When the user clicks on the Find Beer button, the onClickFindBeer() method in the

activity gets called.
The method creates a reference to the spinner and text view, and gets the currently selected value
from the spinner.

2. The onClickFindBeer() calls the getBrands() method in the BeerExpert class, passing in

Uploaded By: anonymousSTUDENTS-HUB.com

the type of beer selected in the spinner.
The getBrands() method returns a list of brands.

3. The onClickFindBeer() method formats the list of brands and uses it to set the text
property in the text view.

Test drive your app

Once you’ve made the changes to your app, go ahead and run it. Try selecting different types of beer and
clicking on the Find Beer button.

Uploaded By: anonymousSTUDENTS-HUB.com

When you choose different types of beer and click on the Find Beer button, the app uses the
BeerExpert class to provide you with a selection of suitable beers.

Your Android Toolbox
You’ve got Chapter 2 under your belt and now you’ve added building interactive Android apps
to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

The Button element is used to add a button.
The Spinner element is used to add a spinner. A spinner is a drop-down list of values.
All GUI components are types of view. They inherit from the Android View class.
Add an array of string values using:

<string-array name="array">
 <item>string1</item>
 ...
</string-array>

Reference a string-array in the layout using:

"@array/array_name"

Make a button call a method when clicked by adding the following to the layout:

android:onClick="clickMethod"

There needs to be a corresponding method in the activity:

public void clickMethod(View view){
}

R.java is generated for you. It enables you to get references for layouts, GUI components, Strings, and
other resources in your Java code.
Use findViewById() to get a reference to a view.
Use setText() to set the text in a view.
Use getSelectedItem() to get the selected item in a spinner.
Add a custom class to an Android project by going to File menu→New...→Java Class.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3. Multiple Activities and Intents:
State Your Intent

Most apps need more than one activity.

So far we’ve just looked at single-activity apps, which is fine for simple apps. But when things get more
complicated, just having the one activity won’t cut it. We’re going to show you how to build apps with
multiple activities, and how you can get your apps talking to each other using intents. We’ll also look
at how you can use intents to go beyond the boundaries of your app and make activities in other
apps on your device perform actions. Things just got a whole lot more powerful...

Apps can contain more than one activity
Earlier in the book, we said that an activity is a single, defined thing that your user can do, such as
displaying a list of recipes. If your app is simple, this may be all that’s needed.

Uploaded By: anonymousSTUDENTS-HUB.com

A lot of the time, you’ll want users to do more than just one thing — for example, adding recipes as well
as displaying a list of them. If this is the case, you’ll need to use multiple activities: one for displaying the
list of recipes and another for adding a single recipe.

An activity is a single focused thing your user can do. If you chain multiple activities together to
do something more complex, it’s called a task.

The best way of seeing how this works is to see it in action. You’re going to build an app containing two
activities. The first activity will allow you to type a message. When you click on a button in the first
activity, it will launch the second activity and pass it the message. The second activity will then display the
message.

Here are the steps
1. Create a basic app with a single activity and layout.
2. Add a second activity and layout.
3. Get the first activity to call the second activity.
4. Get the first activity to pass data to the second activity.

Here’s the app structure
The app contains two activities and two layouts.

1. When the app gets launched, it starts activity CreateMessageActivity.
This activity uses the layout activity_create_message.xml.

2. The user clicks on a button in CreateMessageActivity.
This launches activity ReceiveMessageActivity, which uses layout
activity_receive_message.xml.

Uploaded By: anonymousSTUDENTS-HUB.com

Create the project

You create a project for the app in exactly the same way you did in previous chapters. Create a new
Android Studio project for an application named “Messenger” with a package name of
com.hfad.messenger. The minimum SDK should be API 15 so that it will work on most devices.
You’ll need a blank activity called “CreateMessageActivity” with a layout called
“activity_create_message” so that your code matches ours.

On the next page, we’ll update the activity’s layout.

Update the layout

Here’s the XML for the activity_create_message.xml file. We removed the <TextView> that Android
Studio created for us, and replaced it with <Button> and <EditText> elements. The <EditText>
element gives you an editable text field you can use to enter data.

Change your activity_create_message.xml file to match the XML here:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

The <EditText> element defines an editable text field for entering text. It inherits from the same
Android View class as the other GUI components we’ve seen so far.

Update strings.xml...

The button we added has a text value of @string/send. This means we need to add a string called
“send” to strings.xml and give it a value. This value is the text we want to appear on the button. Do this
now:

... and add the method to the activity
The line in the <Button> element

android:onClick="onSendMessage"

means that the onSendMessage() method in the activity will fire when the button is clicked. Let’s add
this method to the activity now.

Open up the CreateMessageActivity.java file and replace the code Android Studio created for you with
the following:

Uploaded By: anonymousSTUDENTS-HUB.com

Now that you’ve created the first activity, let’s move on to the second.

Create the second activity and layout

Android Studio has a wizard that lets you add extra activities and layouts to your apps. It’s like a cut-
down version of the wizard you use to create an app, and you use it whenever you want to create a new
activity.

To create the new activity, choose File → New → Activity, and choose the option for Blank Activity.
You will be presented with a new screen where you can choose options for your new activity.

Every time you create a new activity and layout, you need to name them. Give the new activity a name of
“ReceiveMessageActivity” and the layout a name of “activity_receive_message”. Check that the package
name is “com. hfad.messenger”. Accept the rest of the defaults, and when you’re done, click on the
Finish button.

Uploaded By: anonymousSTUDENTS-HUB.com

What just happened?
When you clicked on the Finish button, Android Studio created a shiny new activity file for you, along
with a new layout. If you look in the explorer, you should see that a new file called
ReceiveMessageActivity.java has appeared in the app/src/main/java folder, and a file called
activity_receive_message. xml has appeared under app/src/main/res/layout.

Uploaded By: anonymousSTUDENTS-HUB.com

Each activity uses a different layout. CreateMessageActivity uses the layout
activity_create_message.xml, and ReceiveMessageActivity uses the layout
activity_receive_message.xml.

Uploaded By: anonymousSTUDENTS-HUB.com

Behind the scenes, Android Studio also made a configuration change to the app in a file called
AndroidManifest.xml. Let’s take a closer look.

Welcome to the Android manifest file

Every Android app must include a file called AndroidManifest.xml. You can find it in the app/src/main
folder of your project. The AndroidManifest.xml file contains essential information about your app, such
as what activities it contains, required libraries, and other declarations. Android creates the file for you
when you create the app. If you think back to the settings you chose when you created the project, some
of the file contents should look familiar.

Here’s what our copy of AndroidManifest.xml looks like:

Uploaded By: anonymousSTUDENTS-HUB.com

WATCH IT!

If you develop Android apps without an IDE, you’ll need to create this file manually.

Every activity needs to be declared
All activities need to be declared in AndroidManifest.xml. If an activity isn’t declared in the file, the
system won’t know it exists. And if the system doesn’t know it exists, the activity will never run.

You declare an activity in the manifest by including an <activity> element inside the
<application> element. In fact, every activity in your app needs a corresponding <activity>
element. Here’s the general format:

Uploaded By: anonymousSTUDENTS-HUB.com

The following line is mandatory and is used to specify the class name of the activity::

android:name="activity_class_name"

activity_class_name is the name of the class, prefixed with a “.”. In this case, it’s
.ReceiveMessageActivity. The class name is prefixed with a “.” because Android combines the
class name with the name of the package to derive the fully qualified class name.

This line is optional and is used to specify a user-friendly label for the activity:

android:label="@string/activity_label"

It’s displayed at the top of the screen when the activity runs. If you leave this out, Android will use the
name of the application instead.

The activity declaration may include other properties too, such as security permissions, and whether it can
be used by activities in other apps.

Uploaded By: anonymousSTUDENTS-HUB.com

WATCH IT!

The second activity was automatically declared because we added it using the Android Studio wizard.

If you add extra activities manually, you’ll need to edit AndroidManifest.xml yourself. If you use another
IDE, it may not be added for you.

An intent is a type of message

So far we’ve created an app with two activities in it, and each activity has its own layout. When the app is
launched, our first activity, CreateMessageActivity, will run. What we need to do next is get
CreateMessageActivity to call ReceiveMessageActivity when the user clicks the Send
Message button.

Whenever you want an activity to start a second activity, you use an intent. You can think of an intent as
an “intent to do something”. It’s a type of message that allows you to bind separate objects (such as
activities) together at runtime. If one activity wants to start a second activity, it does it by sending an intent
to Android. Android will start the second activity and pass it the intent.

You start an activity by creating an intent and using it in the startActivity() method.

You can create and send an intent using just a couple of lines of code. You start by creating the intent like
this:

The first parameter tells Android which object the intent is from, and you can use the word this to refer
to the current activity. The second parameter is the class name of the activity that needs to receive the
intent.

Once you’ve created the intent, you pass it to Android like this:

This tells Android to start the activity specified by the intent.

Once Android receives the intent, it checks everything’s OK and tells the activity to start. If it can’t find
the activity, it throws an ActivityNotFoundException.

Uploaded By: anonymousSTUDENTS-HUB.com

Use an intent to start the second activity
Let’s put this into practice and use an intent to call ReceiveMessageActivity. We want to launch
the activity when the user clicks on the Send Message button, so we’ll add the two lines of code to our
onSendMessage() method.

Make the changes highlighted below:

So what happens now when we run the app?

What happens when you run the app

Uploaded By: anonymousSTUDENTS-HUB.com

Before we take the app out for a test drive, let’s go over how the app we’ve developed so far will
function:

1. When the app gets launched, the main activity, CreateMessageActivity starts.
When it starts, the activity specifies that it uses layout activity_create_message.xml. This gets
displayed in a new window.

2. The user clicks on a button.
The onSendMessage() method in CreateMessageActivity responds to the click.

3. The onSendMessage() method tells Android to start activity ReceiveMessageActivity
using an intent.
Android checks that the intent is OK, and then it tells ReceiveMessageActivity to start.

Uploaded By: anonymousSTUDENTS-HUB.com

The story continues...
4. When ReceiveMessageActivity starts, it specifies that it uses layout

activity_receive_message.xml and this gets displayed in a new window.

Test drive the app

Save your changes, and then run the app. CreateMessageActivity starts, and when you click on
the Send Message button, it launches ReceiveMessageActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

Pass text to a second activity

So far we’ve coded CreateMessageActivity to start ReceiveMessageActivity when the
Send Message button is pressed. Next, we’ll get CreateMessageActivity to pass text to
ReceiveMessageActivity so that ReceiveMessageActivity can display it. In order to
accomplish this, we’ll do three things:

1. Tweak the layout activity_receive_message.xml so that we can display the text. At the moment
it’s the default layout the wizard gave us.

2. Update CreateMessageActivity.xml so that it gets the text the user inputs. It then needs to add
the text to the intent before it sends it.

3. Update ReceiveMessageActivity.java so that it displays the text sent in the intent.

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s start with the layout
Here’s the activity_receive_message.xml layout that Android Studio created for us:

EXERCISE

We need to make a couple of changes to the layout. We need to give the <TextView> element an ID of
“message” so that we can reference it in our activity code, and we need to stop the String “Hello world!”
from appearing. How should we change the layout? Have a go before looking at the next page.

Update the text view properties

Uploaded By: anonymousSTUDENTS-HUB.com

We need to update a couple of things in the layout.

First, we need to give the <TextView> element an ID. You have to add an ID to any GUI components
you need to reference in your activity code, as this gives you a way of referencing it in your Java code.
We also need to stop the text “Hello world!” from appearing.

You can do both these things by updating the layout like this:

Rather than delete the code that says

android:text="@string/hello_world"

we could have updated strings.xml to give the String resource hello_world an empty value. We
decided not to here as the only text we’ll ever want to display in the text view is the message passed to it
by CreateMessageActivity.

Now that we’ve updated the layout, we can get to work on the activities.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: Do I have to use intents? Can’t I just construct an instance of the second activity in the code for my first activity?

A: A: That’s a good question, but no, that’s not the “ Android way” of doing things. One of the reasons is that by passing intents to Android,
Android knows the sequence in which activities are started. This means that when you click on the Back button on your device, Android
knows exactly where to take you back to.

putExtra() puts extra information in an intent

You’ve seen how you can create a new intent using

Intent intent = new Intent(this, Target.class);

You can add extra information to this intent that can be picked up by the activity you’re targeting so it can
react in some way. To do this, you use the putExtra() method

intent.putExtra("message", value);

where message is a String name for the value you’re passing in, and value is the value. The
putExtra() method is overloaded so value has many possible types. As an example, it can be a
primitive such as a boolean or int, an array of primitives, or a String. You can use putExtra()
repeatedly to add numerous extra data to the intent. If you do this, make sure you give each one a unique
name.

NOTE

There are many different options for the type of value. You can see them all in the Google Android
documentation. Android Studio will give you a list as you type code in too.

How to retrieve extra information from an intent
The story doesn’t end there. When Android tells ReceiveMessageActivity to start,
ReceiveMessageActivity needs some way of retrieving the extra information that
CreateMessageActivity sent to Android in the intent.

There are a couple of useful methods that can help with this. The first of these is

getIntent();

getIntent() returns the intent that started the activity, and you can use this to retrieve any extra

Uploaded By: anonymousSTUDENTS-HUB.com

information that was sent along with it. How you do this depends on the type of information that was sent.
As an example, if you know the intent includes a String value with a name of “message”, you would use
the following:

You’re not just limited to retrieving String values. As an example, you can use

int intNum = intent.getIntExtra("name", default_value);

to retrieve an int with a name of name. default_value specifies what int value you should use as
a default.

POOL PUZZLE

Your job is to take code segments from the pool and place them into the blank lines in
CreateMessageActivity. java. You may not use the same code segment more than once, and you won’t need
to use all the code snippets. Your goal is to make the activity retrieve text from the message <EditText>
and add it to the intent.

Uploaded By: anonymousSTUDENTS-HUB.com

POOL PUZZLE: SOLUTION

Your job is to take code segments from the pool and place them into the blank lines in
CreateMessageActivity. java. You may not use the same code segment more than once, and you won’t need
to use all the code snippets. Your goal is to make the activity retrieve text from the message <EditText>
and add it to the intent.

Uploaded By: anonymousSTUDENTS-HUB.com

Update the CreateMessageActivity code

We updated our code for CreateMessageActivity.java so that it takes the text the user enters on the
screen and adds it to the intent. Here’s the full code (make sure you update your code to include these
changes, shown in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

Now that CreateMessageActivity has added extra information to the intent, we need to retrieve
the information and use it.

Get ReceiveMessageActivity to use the information in the intent

Now that we’ve changed CreateMessageActivity to add text to the intent, we’ll update
ReceiveMessageActivity so that it uses the text.

We’re going to get ReceiveMessageActivity to display the message in its text view when the
activity gets created. As the activity’s onCreate() method gets called as soon as the activity is created,
we’ll add the code to this method.

Uploaded By: anonymousSTUDENTS-HUB.com

To get the message from the intent, we’ll first get the intent using the getIntent() method, then get the
value of the message using getStringExtra().

Here’s the full code for ReceiveMessageActivity.java (replace the code that Android Studio generated
for you with this code, and then save all your changes):

Before we take the app for a test drive, let’s run through what the code does.

What happens when the user clicks the Send Message button
1. When the user clicks on the button, the onSendMessage() method is called.

Code within the onSendMessage() method creates an intent to start activity
ReceiveMessageActivity, adds a message to the intent, and passes it to Android with an
instruction to start the activity.

Uploaded By: anonymousSTUDENTS-HUB.com

2. Android checks that the intent is OK, and then tells ReceiveMessageActivity to start.

3. When ReceiveMessageActivity starts, it specifies that it uses layout
activity_receive_message. xml, and this gets displayed on the device.
The activity updates the layout so that it displays the extra text included in the intent.

Test drive the app

Make sure you’ve updated the two activities, save your changes, and then run the app.

Uploaded By: anonymousSTUDENTS-HUB.com

CreateMessageActivity starts, and when you enter some text and click on the Send Message
button, it launches ReceiveMessageActivity. The text you entered is displayed in the text view.

We can change the app to send messages to other people
Now that we have an app that sends a message to another activity, we can change it so that it can send
messages to other people. We can do this by integrating with the message sending apps already on the
device. Depending on what apps the user has, we can get our app to send messages via Messaging,
Gmail, Google+, Facebook, Twitter...

It’s not as hard as it sounds due to the way Android is designed to work.

Remember right at the beginning of the chapter when we said that tasks are multiple activities chained
together? Well, you’re not just limited to using the activities within your app. You can go beyond
the boundaries of your app to use activities within other apps as well.

Uploaded By: anonymousSTUDENTS-HUB.com

How Android apps work
As you’ve seen, all Android apps are composed of one or more activities, along with other components
such as layouts. Each activity is a single defined focused thing the user can do. As an example, apps such
as Gmail, Google+, Messaging, Facebook, and Twitter all have activities that enable you to send
messages, even though they may achieve this in different ways.

Intents can start activities in other apps
You’ve already seen how you can use an intent to start a second activity within the same app. The first
activity passes an intent to Android, Android checks it, and then Android tells the second activity to start.

The same principle applies to activities in other apps. You get an activity in your app to pass an intent to
Android, Android checks it, and then Android tells the second activity to start even though it’s in
another app. As an example, we can use an intent to start the activity in Gmail that sends messages, and
pass it the text we want to send. Instead of writing our own activities to send emails, we can use the
existing Gmail app.

This means that you can build apps that perform far more powerful tasks by chaining together activities
across the device.

But we don’t know what apps are on the device
There are three questions we need answers to before we can call activities in other apps:

How do we know activities are available on the user’s device?
How do we know which of these activities are appropriate for what we want to do?
How do we know how to use these activities?

The great news is that we can solve all of these problems using actions. Actions are a way of telling
Android what standard operations activities can perfom. As an example, Android knows that all activities
registered for a send action are capable of sending messages.

What you’re going to do next is learn how to create intents that use actions to return a set of activities that
you can use in a standard way — for example, to send messages.

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s what you’re going to do
1. Create an intent that specifies an action.

The intent will tell Android you want to use an activity that can send a message. The intent will
include the text of the message.

2. Allow the user to choose which app to use.
The chances are there’ll be more than one on the device capable of sending messages, so the user
will need to pick one. We want the user to be able to choose one every time they click on the
Send Message button.

Create an intent that specifies an action

So far you’ve seen how to create an intent that launches a specific activity using

The intent is an explicit intent; you explicitly tell Android which class you want it to run.

If there’s an action you want done but you don’t mind which activity does it, you create an implicit
intent. You tell Android what sort of action you want it to perform, and you leave the details of which
activity performs it to Android.

How to create the intent
You create an intent that specifies an action using the following syntax:

Intent intent = new Intent(action);

You can find out more about the sorts of activity actions you can use and the extra information
they support in the Android developer reference material: http://tinyurl.com/n57qb5.

where action is the type of activity action you want to perform. Android provides you with a number of
standard actions you can use. As an example, you can use Intent.ACTION_DIAL to dial a number,

Uploaded By: anonymousSTUDENTS-HUB.com

http://tinyurl.com/n57qb5

Intent.ACTION_WEB_SEARCH to perform a web search, and Intent.ACTION_SEND to send a
message. So if you want to create an intent that specifies you want to send a message, you use

Intent intent = new Intent(Intent.ACTION_SEND);

Adding extra information
Once you’ve specified the action you want to use, you can add extra information to it. We want to pass
some text with the intent that will form the body of the message we’re sending. To do this, you use the
following lines of code:

where messageText is the text you want to send. This tells Android that you want the activity to be
able to handle data with a MIME data-type of “text/plain”, and also tells it what the text is.

You can make extra calls to the putExtra() method if there’s additional information you want to add.
As an example, if you want to specify the subject of the message, you can also use

where subject is the message subject.

Change the intent to use an action

We’ll update CreateMessageActivity.java so that we create an implicit intent that uses a send action.
Make the changes highlighted below, and save your work:

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s break down what happens when the user clicks on the Send Message button.

What happens when the code runs
1. When the onSendMessage() method is called, an intent gets created. The startActivity()

method passes the intent to Android.
The intent specifies an action of ACTION_SEND, and a MIME type of text/plain.

2. Android sees that the intent can only be passed to activities able to handle
ACTION_SEND and text/plain data. Android checks all the activities, looking for ones
that are able to receive the intent.
If no actions are able to handle the intent, an ActivityNotFoundException is thrown.

Uploaded By: anonymousSTUDENTS-HUB.com

3. If just one activity is able to receive the intent, Android tells the activity to start and
passes it the intent.

The story continues...

4. If more than one activity is able to receive the intent, Android displays an activity
chooser dialog and asks the user which one to use.

Uploaded By: anonymousSTUDENTS-HUB.com

5. When the user chooses the activity she wants to use, Android tells the activity to start
and passes it the intent.
The activity displays the extra text contained in the intent in the body of a new message.

In order to create the activity chooser dialog, Android must know which activities are capable of
receiving the intent. On the next couple of pages we’ll look at how it does this.

The intent filter tells Android which activities can handle which actions
When Android is given an intent, it has to figure out which activity, or activities, are able to handle it. This
process is known as intent resolution.

When you use an explicit intent, intent resolution is straightforward. The intent explicitly says which
component the intent is directed at, so Android has clear instructions about what to do. As an example,
the following code explicitly tells Android to start ReceiveMessageActivity:

Intent intent = new Intent(this, ReceiveMessageActivity.class);
startActivity(intent);

When you use an implicit intent, Android uses the information in the intent to figure out which
components are able to receive it. It does this by checking the intent filters in every app’s copy of
AndroidManifest.xml.

Uploaded By: anonymousSTUDENTS-HUB.com

An intent filter specifies what types of intent each component can receive. As an example, here’s the
entry for an activity that can handle an action of ACTION_SEND. The activity is able to accept data with
MIME types of text/plain or image:

The intent filter also specifies a category. The category supplies extra information about the activity such
as whether it can be started by a web browser, or if it’s the main entry point of the app. An intent filter
must include a category of android.intent.category.DEFAULT if it’s to receive implicit intents.
If an activity has no intent filter, or it doesn’t include a category name of
android.intent.category. DEFAULT, it means that the activity can’t be started with an implicit
intent. It can only be started with an explicit intent using the fully qualified component name.

How Android uses the intent filter

When you use an implicit intent, Android compares the information given in the intent with the information
given in the intent filters specified in every app’s AndroidManifest.xml file.

Android first considers intent filters that include a category of android.
intent.category.DEFAULT:

<intent-filter>
 <category android:name="android.intent.category.DEFAULT"/>
 ...
</intent-filter>

Intent filters without this category will be omitted as they can’t receive implicit intents.

Android then matches intents to intent filters by comparing the action and MIME type contained in the
intent with those of the intent filters. As an example, if an intent specifies an action of
Intent.ACTION_SEND using:

NOTE

It will also look at the category of the intent filter if one is supplied by the intent. This isn’t used very often,
so we’re not covering how to add categories to intents.

Android will only consider activities that specify an intent filter with an action of
android.intent.action.SEND like this:

<intent-filter>
 <action android:name="android.intent.action.SEND"/>
 ...
</intent-filter>

Uploaded By: anonymousSTUDENTS-HUB.com

Similarly, if the intent MIME type is set to “text/plain” using

<intent-filter>

Android will only consider activities that can accommodate this type of data:

<intent-filter>
 <data android:mimeType="text/plain"/>
 ...
</intent-filter>

If the MIME type is left out of the intent, Android tries to infer the type based on the data the intent
contains.

Once Android has finished comparing the intent to the component intent filters, it sees how many matches
it finds. If Android finds a single match, Android starts the component (in our case, the activity) and
passes it the intent. If it finds multiple matches, it asks the user to pick one.

BE THE INTENT

Your job is to play like you’re the intent on the right and say which of the activities described below
are compatible with your action and data. Say why, or why not, for each one.

<activity android:name="SendActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="*/*"/>
 </intent-filter>
</activity>

<activity android:name="SendActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND"/>
 <category android:name="android.intent.category.MAIN"/>
 <data android:mimeType="text/plain"/>
 </intent-filter>
</activity>

<activity android:name="SendActivity">
 <intent-filter>
 <action android:name="android.intent.action.SENDTO"/>
 <category android:name="android.intent.category.MAIN"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:mimeType="text/plain"/>
 </intent-filter>
</activity>

Uploaded By: anonymousSTUDENTS-HUB.com

BE THE INTENT: SOLUTION

Your job is to play like you’re the intent on the right and say which of the activities described below
are compatible with your action and data. Say why, or why not, for each one.

Intent intent = new Intent(Intent.ACTION_SEND);
intent.setType("text/plain");
intent.putExtra(Intent.EXTRA_TEXT, "Hello");

You need to run your app on a REAL device

So far we’ve been running our apps using the emulator. The emulator only includes a small number of
apps, and there may well be just one app that can handle ACTION_SEND. In order to test our app
properly, we need to run it on a physical device where we know there’ll be more than one app that can
support our action — for example, an app that can send emails and an app that can send messages.

Here’s how you go about getting your app to run on a physical device.

1. Enable USB debugging on your device
On your device, open “Developer options” (in Android 4.0 onward, this is hidden by default). To enable
it, go to Settings → About Phone and tap the build number seven times. When you return to the previous

Uploaded By: anonymousSTUDENTS-HUB.com

screen, you should be able to see “Developer options.”

NOTE

Yep, seriously.

Within “Developer options,” tick the box to enable USB debugging

2. Set up your system to detect your device
If you’re using a Mac, you can skip this step.

If you’re using Windows, you need to install a USB driver. You can find the latest instructions here:

http://developer.android.com/tools/extras/oem-usb.html

If you’re using Ubuntu Linux, you need to create a udev rules file. You can find the latest instructions on
how to do this here:

http://developer.android.com/tools/device.html#setting-up

3. Plug your device into your computer with a USB cable
Your device may ask you if you want to accept an RSA key that allows USB debugging with your
computer. If it does, you can tick the “Always allow from this computer” option and choose OK to
enable this.

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/device.html#setting-up

NOTE

You’ll get this message if your device is running Android 4.2.2 or higher.

4. Run your app in Android Studio as normal

Android Studio will install the app on your device and launch it. You may be asked to choose which
device you want to run your app on. If so, select your device from the list available and click OK.

And here’s the app running on the physical device
You should find that your app looks about the same as when you ran it through the emulator. You’ll
probably also find that your app installs and runs quicker too.

Now that you know how to run the apps you create on your own device, you’re all set to test the latest
changes to your app.

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
Try running the app using the emulator, and then using your own device. The results you get will depend
on how many activities you have on each that support using the Send action with text data.

If you have one activity
Clicking on the Send Message button will take you straight to that app.

Uploaded By: anonymousSTUDENTS-HUB.com

If you have more than one activity
Android displays a chooser and asks you to pick which one you want to use. It also asks you whether
you want to use this action just once or always. If you choose always, the next time you click on the Send
Message button it uses the same activity by default.

Uploaded By: anonymousSTUDENTS-HUB.com

NOTE

We have lots of suitable activities available on our physical device. We decided to use the Messaging app. We
selected the “always” option — great if we always want to use Messaging, not so great if we want to use a
different one each time.

What if you ALWAYS want your users to choose an activity?
You’ve just seen that if there’s more than one activity on your device that’s capable of receiving your
intent, Android automatically asks you to choose which activity you want to use. It even asks you whether
you want to use this activity all the time or just on this occasion.

There’s just one problem with this default behavior: what if you want to guarantee that users can choose
an activity every time they click on the Send Message button? If they’ve chosen the option to always use
Gmail, for instance, they won’t be asked if they want to use Twitter next time.

Fortunately, there’s a way around this. You can create a chooser that asks you to pick an activity without
asking if you always want to use it.

createChooser() allows you to specify a title for the chooser dialog, and doesn’t give the user the
option of selecting an activity to use by default. It also lets the user know if there are no
matching activities by displaying a message.

Intent.createChooser() displays a chooser dialog
You can achieve this using the Intent.createChooser() method. This method takes the intent
you’ve already created, and wraps it in a chooser dialog. The big difference in using this method is that
you’re not given the option of choosing a default activity — you get asked to choose one every time.

You call the createChooser() method like this:

The method takes two parameters: an intent and an optional String title for the chooser dialog window.
The Intent parameter needs to describe the types of activity you want the chooser to display. You can
use the same intent we created earlier, as this specifies that we want to use ACTION_SEND with textual
data.

The createChooser() method returns a brand-new Intent. This is a new explicit intent that’s
targeted at the activity chosen by the user. It includes any extra information supplied by the original intent,
including any text.

To start the activity the user chose, you need to call

startActivity(chosenIntent);

We’ll take a closer look over the next couple of pages at what happens when you call the
createChooser() method.

What happens when you call createChooser()

Uploaded By: anonymousSTUDENTS-HUB.com

This is what happens when you run the following two lines of code:

Intent chosenIntent = Intent.createChooser(intent, "Send message...");
startActivity(chosenIntent);

1. The createChooser() method gets called.
The method includes an intent that specifies the action and MIME type that’s required.

2. Android checks which activities are able to receive the intent by looking at their intent
filters.
It matches on the actions, type of data, and categories they can support.

3. If more than one activity is able to receive the intent, Android displays an activity
chooser dialog and asks the user which one to use.
This time it doesn’t give the user the option of always using a particular activity, and it displays
“Send message...” in the title.
If no activities are found, Android still displays the chooser but shows a message to the user telling
her there are no apps that can perform the action.

Uploaded By: anonymousSTUDENTS-HUB.com

The story continues...

4. When the user chooses which activity she wants to use, Android returns a new explicit
intent describing the chosen activity.
The new intent includes any extra information that was included in the original intent, such as any
extra text.

5. The activity asks Android to start the activity specified in the intent.

Uploaded By: anonymousSTUDENTS-HUB.com

6. Android asks the activity specified by the intent to start, and then passes it the intent.

Change the code to create a chooser
We’ll change the code so that the user gets asked which activity they want to use to send a message every
time they click on the Send Message button. We’ll update the onSendMessage() method in
CreateMessageActivity.java so that it calls the createChooser() method, and we’ll add a string
resource to strings.xml for the chooser dialog title.

Update strings.xml...
We want the chooser dialog to have a title of “Send message...”. Add a string called “chooser” to
strings.xml, and give it the value “Send message...” (make sure to save your changes):

Uploaded By: anonymousSTUDENTS-HUB.com

...
 <string name="chooser">Send message...</string>
...

... and update the onSendMessage() method
We need to change the onSendMessage() method so that it retrieves the value of the chooser string
resource in strings.xml, calls the createChooser() method, and then starts the activity the user
chooses. Update your code as follows:

The getString() method is used to get the value of a string resource. It takes one parameter, the ID
of the resource (in our case, this is R.string.chooser):

Now that we’ve updated the app, let’s run the app to see our chooser in action.

Test drive the app

Uploaded By: anonymousSTUDENTS-HUB.com

Save your changes, then try running the app again.

If you have one activity
Clicking on the Send Message button will take you straight to that app just like before.

If you have more than one activity
Android displays a chooser but this time it doesn’t ask us if we always want to use the same activity. It
also displays the value of the chooser string resource in the title.

If you have NO matching activities

Uploaded By: anonymousSTUDENTS-HUB.com

If you have no activities on your device that are capable of sending messages, the createChooser()
method lets you know by displaying a message.

This behavior is another benefit to using the createChooser() method. The createChooser()
method is able to deal with situations where no activities can perform a particular action.

THERE ARE NO DUMB QUESTIONS

Q: Q: So I can run my apps in the emulator or on a physical device. Which is best?

A: A: Each one has its pros and cons.
If you run apps on your physical device, they tend to load a lot quicker than using the emulator. It’s also useful if you’re writing code that
interacts with the device hardware.
The emulator allows you to run apps against many different versions of Android, screen resolutions, and device specifications. It saves you
from buying lots of different devices.
The key thing is that you make sure you test your apps thoroughly using a mixture of the emulator and physical devices before releasing
them to a wider audience.

Q: Q: Should I use implicit or explicit intents?

A: A: It comes down to whether you need Android to use a specific activity to perform your action, or whether you just want the action done.
As an example, suppose you wanted to send an email. If you don’t mind which email app the user uses to send it, just as long as the email
gets sent, you’d use an implicit intent. On the other hand, if you needed to pass an intent to a particular activity in your app, you’d need to
use an explicit intent. You need to explicity say which activity needs to receive the intent.

Q: Q: You mentioned that an activity’s intent filter can specify a category as well as an action. What’s the difference between the
two?

A: A: An action specifies what an activity can do, and the category gives extra detail. We’ve not gone into details about the category because
you don’t often need to specify a category when you create an intent.

Q: Q: You say that the createChooser() method displays a message in the chooser if there are no activities that can handle the
intent. What if I’d just used the default Android chooser and passed an implicit intent to startActivity()?

A: A: If the startActivity() method is given an intent where there are no matching activities, an ActivityNotFoundException is thrown.
If you don’t catch this using a try/catch block, it may cause your app to crash.

Your Android Toolbox
You’ve got Chapter 3 under your belt and now you’ve added multiple activity apps and intents
to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

A task is two or more activities chained together.
The <EditText> element defines an editable text field for entering text. It inherits from the Android
View class.
You can add a new activity in Android Studio by choosing File → New... → Activity.
Each activity you create must have an entry in AndroidManifest.xml.
An intent is a type of message that Android components use to communicate with one another.
An explicit intent explicitly specifies the component the intent is targeted at. You create an explicit intent
using Intent intent = new Intent(this, Target.class);
To start an activity, call startActivity(intent). If no activities are found, it throws an
ActivityNotFoundException.
Use the putExtra() method to add extra information to an intent.
Use the getIntent() method to retrieve the intent that started the activity.
Use the get*Extra() methods to retrieve extra information associated with the intent.
getStringExtra() retrieves a String, getIntExtra() retrieves an int, and so on.
An activity action describes a standard operational action an activity can perform. To send a message,
use Intent.ACTION_SEND.
To create an implicit intent that specifies an action, use Intent intent = new
Intent(action);
To describe the type of data in the intent, use the setType() method.
Android resolves intents based on the named component, action, type of data, and categories specified
in the intent. It compares the contents of the intent with the intent filters in each app’s
AndroidManifest.xml. An activity must have a category of DEFAULT if it is to receive an implicit intent.
The createChooser() method allows you to override the default Android activity chooser dialog. It
allows you to specify a title for the dialog, and doesn’t give the user the option of setting a default
activity. If no activities can receive the intent it is passed, it displays a message. The
createChooser() method returns an Intent.
You retrieve the value of a string resource using getString(R.string.stringname);

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 4. The Activity Lifecycle: Being an
Activity

Activities form the foundation of every Android app.

So far you’ve seen how to create activities, and made one activity start another using an intent. But
what’s really going on beneath the hood? In this chapter, we’re going to dig a little deeper into the
activity lifecycle. What happens when an activity is created and destroyed? Which methods get called
when an activity is made visible and appears in the foreground, and which get called when the activity
loses the focus and is hidden? And how do you save and restore your activity’s state?

How do activities really work?
So far you’ve seen how to create apps that interact with the user, and apps that use multiple activities to
perform tasks. Now that you have these core skills under your belt, it’s time to take a deeper look at how
activities actually work. Here’s a recap of what you know so far, with a few extra details thrown in.

An app is a collection of activities, layouts, and other resources.
One of these activities is the main activity for the app.

Uploaded By: anonymousSTUDENTS-HUB.com

By default, each app runs within its own process.
This helps keep your apps safe and secure. You can read more about this in Appendix A (which
covers the Android runtime, or ART) at the back of this book.

You can start an activity in another application by passing an intent with startActivity().
The Android system knows about all the installed apps and their activities, and uses the intent to start
the correct activity.

When an activity needs to start, Android checks if there’s already a process for that app.
If one exists, Android runs the activity in that process. If one doesn’t exist, Android creates one.

Uploaded By: anonymousSTUDENTS-HUB.com

When Android starts an activity, it calls its onCreate() method.

But there are still lots of things we don’t yet know about how activities function. How long does the
activity live for? What happens when your activity disappears from the screen? Is it still running? Is it still
in memory? And what happens if your app gets interrupted by an incoming phone call? We want to be
able to control the behavior of our activities in a whole range of different circumstances, but how?

The Stopwatch app
In this chapter, we’re going to take a closer look at how activities work under the hood, common ways in
which your apps can break, and how you can fix them using the activity lifecycle methods. We’re going to
explore the lifecycle methods using a simple Stopwatch app as an example.

The Stopwatch app consists of a single activity and a single layout. The layout includes a text view
showing you how much time has passed, a Start button that starts the stopwatch, a Stop button that stops
it, and a Reset button that resets the timer value to zero.

Uploaded By: anonymousSTUDENTS-HUB.com

Build the app
You have enough experience under your belt to build the app without much guidance from us. We’re
going to give you just enough code to be able to build the app yourself, and then you can see what
happens when you try to run it.

Start off by creating a new Android project for an application named “Stopwatch” with a package name
of com.hfad. stopwatch. The minimum SDK should be API 15 so it can run on most devices.
You’ll need an activity called “StopwatchActivity” and a layout called “activity_stopwatch”.

The stopwatch layout code
Here’s the XML for the layout. It describes a single text view that’s used to display the timer, and three

Uploaded By: anonymousSTUDENTS-HUB.com

buttons to control the stopwatch. Replace the XML currently in activity_stopwatch.xml with the XML
shown here:

Uploaded By: anonymousSTUDENTS-HUB.com

DO THIS !

Make sure you update the layout and strings. xml in your app before continuing.

The stopwatch strings.xml file
The layout uses three extra String values, one for the text value of each button. These values are String
resources, so need to be added to strings. xml. Add the string values below to strings.xml:

The layout is done! Next, let’s move on to the activity.

How the activity code will work
The layout defines three buttons that we’ll use to control the stopwatch. Each button uses its onClick
attribute to specify which method in the activity should run when the button is clicked. When the Start
button is clicked, the onClickStart() method gets called, when the Stop button is clicked the

Uploaded By: anonymousSTUDENTS-HUB.com

onClickStop() method gets called, and when the Reset button is clicked the onClickReset()
method gets called. We’ll use these method to start, stop, and reset the stopwatch.

We’ll update the stopwatch using a method we’ll create called runTimer(). The runTimer()
method will run code every second to check whether the stopwatch is running, increment the number of
seconds and display the number of seconds in the text view.

To help us with this, we’ll use two private variables to record the state of the stopwatch. We’ll use an
int called seconds to track how many seconds have passed since the stopwatch started running, and
a boolean called running to record whether the stopwatch is currently running.

We’ll start by writing the code for the buttons, and then we’ll look at the runTimer() method.

Add code for the buttons
When the user clicks on the Start button, we’ll set the running variable to true so that the stopwatch
will start. When the user clicks on the Stop button, we’ll set running to false so that the stopwatch
stops running. If the user clicks on the Reset button, we’ll set running to false and seconds to 0
so that the stopwatch is reset and stops running.

Uploaded By: anonymousSTUDENTS-HUB.com

Replace the contents of StopwatchActivity.java with the code below:

The runTimer() method

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing we need to do is create the runTimer() method. The runTimer() method will get a
reference to the text view in the layout, format the contents of the seconds variable into hours, minutes,
and seconds, and then display the results in the text view. If the running variable is set to true, it will
increment the seconds variable. Here’s the code:

We need this code to keep looping so that it increments the seconds variable and updates the text view
every second. We need to do this in such a way that we don’t block the main Android thread.

In non-Android Java programs, you can perform tasks like this using a background thread. In
Androidville, this is a problem — only the main Android thread can update the user interface, and if any
other thread tries to do so, you get a CalledFromWrongThreadException.

The solution is to use a Handler. We’ll look at this on the next page.

Handlers allow you to schedule code
A Handler is an Android class you can use to schedule code that should be run at some point in the
future. You can also use it to post code that needs to run on a different thread. In our case, we’re going to
use a Handler to schedule the stopwatch code to run every second.

To use the Handler, you wrap the code you wish to schedule in a Runnable object, and then use the
Handler post() and postDelayed() methods to specify when you want the code to run. Let’s
take a closer look at these mehods.

The post() method
The post() method posts code that needs to be run as soon as possible (which is usually almost
immediately). The post() method takes one parameter, an object of type Runnable. A Runnable
object in Androidville is just like a Runnable in plain old Java, a job you want to run. You put the code
you want to run in the Runnable’s run() method, and the Handler will make sure the code is run as
soon as possible. Here’s what the method looks like:

The postDelayed() method
The postDelayed() method works in a similar way to the post() method except that you use it
post code that should be run in the future. The postDelayed() method takes two parameters: a

Uploaded By: anonymousSTUDENTS-HUB.com

Runnable and a long. The Runnable contains the code you want to run in its run() method, and
the long specifies the number of milliseconds you wish to delay the code by. The code will run as soon
as possible after the delay. Here’s what the method looks like:

On the next page, we’ll use these methods to update the stopwatch every second.

The full runTimer() code
To update the stopwatch, we’re going to repeatedly schedule code using the Handler with a delay of
1,000 milliseconds each time. Each time the code runs, we’ll increment the seconds variable and update
the text view.

Here’s the full code for the runTimer() method:

Using the post() and postDelayed() methods in this way means that the code will run as soon as
possible after the required delay, which in practice means almost immediately. While this means the code
will lag slightly over time, it’s accurate enough for the purposes of exploring the lifecycle methods in this
chapter.

We want the runTimer() method to start running when StopwatchActivity gets created, so
we’ll call it in the activity onCreate() method:

protected void onCreate(Bundle savedInstanceState) {
 ...
 runTimer();
}

We’ll show you the full code for the activity on the next page.

The full StopwatchActivity code
Here’s the full code for StopwatchActivity.java. Update your code with our changes below.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

DO THIS !

Make sure you update your activity code with our changes.

Let’s look at what happens when the code runs.

What happens when you run the app
1. The user decides she wants to run the app.

She clicks on the icon for the app on her device.

2. The AndroidManifest.xml file for the app specifies which activity to use as the launch
activity.
An intent is constructed to start this activity using startActivity(intent).

Uploaded By: anonymousSTUDENTS-HUB.com

3. Android checks if there’s already a process running for the app, and if not, creates a new
process.
It then creates a new activity object — in this case, for StopwatchActivity.

The story continues
4. The onCreate() method in the activity gets called.

The method includes a call to setContentView(), specifying a layout, and then starts the
stopwatch with runTimer().

5. When the onCreate() method finishes, the layout gets displayed on the device.
The runTimer() method uses the seconds variable to determine what text to display in the
text view, and uses the running variable to determine whether to increment the number of
seconds. As running is initially false, the number of seconds isn’t incremented.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: Why does Android run an app inside a separate process?

A: A: For security and stability. It prevents one app accessing the data of another. It also means if one app crashes, it won’t take others down
with it.

Q: Q: Why have an onCreate() method? Why not just put that code inside a constructor?

A: A: Android needs to set up the environment for the activity after it’s constructed. Once the environment is ready, Android calls
onCreate(). That’s why code to set up the screen goes inside onCreate() instead of a constructor.

Q: Q: Couldn’t I just write a loop in onCreate() to keep updating the timer?

A: A: No, onCreate() needs to finish before the screen will appear. An endless loop would prevent that happening.

Q: Q: runTimer() looks really complicated. Do I really need to do all this?

A: A: It’s a little complex, but whenever you need to schedule code like this, the code will look similar to runTimer().

Test drive the app
When we run the app in the emulator, the app works great. We can start, stop, and reset the stopwatch
without any problems at all — the app works just as you’d expect.

But there’s just one problem...
When we ran the app on a physical device, the app worked OK up until someone rotated the device.
When the device was rotated, the stopwatch set itself back to 0.

Uploaded By: anonymousSTUDENTS-HUB.com

In Androidville, it’s surprisingly common for apps to break when you rotate the device. Before we fix the
problem, let’s take a closer look at what caused it.

What just happened?
So why did the app break when the user rotated the screen? Let’s take a closer look at what really
happened.

1. The user starts the app, and clicks on the start button to set the stopwatch going.
The runTimer() method starts incrementing the number of seconds displayed in the
time_view text view using the seconds and running variables.

2. The user rotates the device.
Android sees that the screen orientation and screen size has changed, and it destroys the activity,
including any variables used by the runTimer() method.

Uploaded By: anonymousSTUDENTS-HUB.com

3. StopwatchActivity is then re-created.
The onCreate() method runs again, and the runTimer() method gets called. As the activity
has been re-created, the seconds and running variables are set to their default values.

Rotating the screen changes the device configuration
When Android runs your app and starts an activity, it takes into account the device configuration. By
this we mean the configuration of the physical device (such as the screen size, screen orientation, and
whether there’s a keyboard attached) and also configuration options specified by the user (such as the
locale).

Android needs to know what the device configuration is when it starts an activity because it can impact
what resources are needed for the application. A different layout might need to be used if the device
screen is landscape rather than portrait, for instance, and a different set of string values might need to be
used if the locale is French.

The device configuration includes options specified by the user (such as the locale), and options
relating to the physical device (such as the orientation and screen size). A change to any of these
options results in the activity being destroyed and re-created.

Uploaded By: anonymousSTUDENTS-HUB.com

When the device configuration changes, anything that displays a user interface needs to be updated to
match the new configuration. If you rotate your device, Android spots that the screen orientation and
screen size has changed, and classes this as a change to the device configuration. It destroys the current
activity, and then re-creates it again so that resources appropriate to the new configuration get picked up.

From birth to death: the states of an activity
When Android creates and destroys an activity, the activity moves from being launched, to running, to
being destroyed.

The main state of an activity is when it’s running or active. An activity is running when it’s in the
foreground of the screen, has the focus, and the user can interact with it. The activity spends most of its
life in this state. An activity starts running after it has been launched, and at the end of its life, the activity is
destroyed.

Uploaded By: anonymousSTUDENTS-HUB.com

An activity is running when it’s in the foreground of the screen.

When an activity moves from being launched to being destroyed, it triggers key activity lifecycle methods:
the onCreate() and onDestroy() methods. These are lifecycle methods that your activity inherits,
and which you can override if necessary.

The onCreate() method gets called immediately after your activity is launched. This method is where
you do all your normal activity setup such as calling setContentView(). You should always override
this method. If you don’t override it, you won’t be able to tell Android what layout your activity should
use.

onCreate() gets called when the activity is first created, and it’s where you do your normal activity
setup.

The onDestroy() method is the final call you get before the activity is destroyed. There are a number
of situations in which an activity can get destroyed — for example, if it’s been told to finish, if the activity’s
being re-created due to a change in device configuration, or if Android has decided to destroy the activity
in order to save space.

onDestroy() gets called just before your activity gets destroyed.

We’ll take a closer look at how these methods fit into the activity states on the next page.

The activity lifecycle: from create to destroy
Here’s an overview of the activity lifecycle from birth to death. As you’ll see later in the chapter, we’ve
left out some of the details, but at this point we’re just focusing on the onCreate() and
onDestroy() methods.

Uploaded By: anonymousSTUDENTS-HUB.com

1. The activity gets launched.
The activity object is created and its constructor is run.

2. The onCreate() method runs immediately after the activity is launched.
The onCreate() method is where any initialization code should go, as this method always gets
called after the activity has launched and before it starts running.

3. An activity is running when it’s visible in the foreground and the user can interact with it.
This is where an activity spends most of its life.

4. The onDestroy() method runs immediately before the activity is destroyed.
The onDestroy() method enables you to perform any final clean up such as freeing up
resources.

5. After the onDestroy() method has run, the activity is destroyed.
The activity ceases to exist.

Your activity inherits the lifecycle methods
As you saw earlier in the book, your activity extends the android.app.Activity class. It’s this

Uploaded By: anonymousSTUDENTS-HUB.com

class that gives your activity access to the Android lifecycle methods:

Context abstract class

(android.content.Context)

Uploaded By: anonymousSTUDENTS-HUB.com

NOTE

An interface to global information about the application environment. Allows access to application resources,
classes, and application-level operations.

ContextWrapper class

(android.content.ContextWrapper)

NOTE

A proxy implementation for the Context.

ContextThemeWrapper class

(android.view.ContextThemeWrapper)

NOTE

The ContextThemeWrapper allows you to modify the theme from what’s in the ContextWrapper.

Activity class

(android.app.Activity)

NOTE

The Activity class implements default versions of the lifecycle methods. It also defines methods such as
findViewById(Int) and setContentView(View).

YourActivity class

(com.hfad.foo)

NOTE

Most of the behavior of your activity is handled by superclass methods. All you do is override the methods
you need.

How do we deal with configuration changes?
As you saw, our app went wrong when the user rotated the screen. The activity was destroyed and re-
created, which meant that local variables used by the activity were lost. So how do we get around this
issue? How do we deal with device configuration changes such as a change to the screen orientation?

There are two options: we can either tell Android to bypass restarting the activity, or we can save its
current state so that the activity can re-create itself in the same state. Let’s look at these two options in
more detail.

Bypass re-creating the activity
The first option is to tell Android not to restart the activity if there’s been a configuration change. While
we’re going to show you how to do this, bear in mind that it’s usually not the best option. This is because
when Android re-creates the activity, it makes sure it uses the right resources for the new configuration. If

Uploaded By: anonymousSTUDENTS-HUB.com

you bypass this, you may have to write a bunch of extra code to deal with the new configuration yourself.

WATCH IT!

Only deal with configuration changes this way as a last resort.

You’ll bypass built-in Android behavior that could cause problems.

You can tell Android not to re-create an activity due to a configuration change by adding a line to the
activity element of the AndroidManifest.xml file like this:

android:configChanges="configuration_change"

where configuration_change is the type of configuration change.

In our case, we’d want to get Android to bypass a change to the screen orientation and screen size, so
we’d need to add the following code to the AndroidManifest.xml file:

If Android encounters this type of configuration change, it makes a call to the
onConfigurationChanged(Configuration) method instead of re-creating the activity:

public void onConfigurationChanged(Configuration config) {
}

You can implement this method to react to the configuration change if you need to.

Or save the current state...
The better way of dealing with configuration changes which you’ll use most often is to save the current
state of the activity, and then reinstate it in the onCreate() method of the activity.

To save the current state of the activity, you need to implement the onSaveInstanceState()
method. The onSaveInstanceState() method gets called before the activity gets destroyed, which
means you get an opportunity to save any values you want to retain before they get lost.

The onSaveInstanceState() method takes one parameter, a Bundle. A Bundle allows you to
gather together different types of data into a single object:

public void onSaveInstanceState(Bundle savedInstanceState) {
}

Uploaded By: anonymousSTUDENTS-HUB.com

The onCreate() method gets passed the Bundle as a parameter. This means that if you add the
values of the running and seconds variables to the Bundle, the onCreate() method will be able
to pick them up when the activity gets recreated. To do this, you use Bundle methods to add
name/value pairs to the Bundle. These methods take the form:

bundle.put*("name", value)

where bundle is the name of the Bundle, * is the type of value you want to save, and name and value
are the name and value of the data. As an example, to add the seconds int value to the Bundle,
you’d use:

bundle.putInt("seconds", seconds);

You can save multiple name/value pairs of data to the Bundle.

Here’s our onSaveInstanceState() method in full:

Uploaded By: anonymousSTUDENTS-HUB.com

Now that we’ve saved our variable values to the Bundle, we can use them in our onCreate()
method.

...then restore the state in onCreate()
As we said earlier, the onCreate() method takes one parameter, a Bundle. If the activity’s being
created from scratch, this parameter will be null. If, however, the activity’s being re-created and there’s
been a prior call to onSaveInstanceState(), the Bundle object used by
onSaveInstanceState() will get passed to the activity:

protected void onCreate(Bundle savedInstanceState) {
 ...
}

You can get values from Bundle by using methods of the form

bundle.get*("name");

where bundle is the name of the Bundle, * is the type of value you want to get, and name is the name
of the name/value pair you specified on the previous page. As an example, to get the seconds int
value from the Bundle, you’d use:

int seconds = bundle.getInt("seconds");

Putting all of this together, here’s what our onCreate() method now looks like:

Uploaded By: anonymousSTUDENTS-HUB.com

So how does this work in practice?

DO THIS !

Make sure you update your onCreate() method and add the onSaveInstanceState() method.

What happens when you run the app

The user starts the app, and clicks on the start button to set the stopwatch going.The runTimer() method starts
incrementing the number of seconds displayed in the time_view text view.

The user rotates the device.Android views this as a configuration change, and gets ready to destroy the activity.
Before the activity is destroyed, onSaveInstanceState() gets called. The onSaveInstanceState() method saves
the seconds and running values to a Bundle.

The story continues

Android destroys the activity, and then re-creates it.The onCreate() method gets called, and the Bundle gets
passed to it.

The Bundle contains the values of the seconds and running variables as they were before the activity was
destroyed.Code in the onCreate() method set the current variables to the values in the Bundle.

The runTimer() method gets called, and the timer picks up where it left off.The stopwatch gets displayed on the
device.

Test drive the app
Make the changes to your activity code, then run the app. When you click on the Start button, the timer
starts, and it continues when you rotate the device.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: Why does Android want to re-create an activity just because I rotated the screen?

A: A: The onCreate() method is normally used to set up the screen. If your code in onCreate() depended upon the screen configuration (for
example, if you had different layouts for landscape and portrait) then you would want onCreate() to be called every time the configuration
changed. Also, if the user changed the locale, you might want to recreate the UI in the local language.

Q: Q: Why doesn’t Android automatically store every instance variable automatically? Why do I have to write all of that code
myself?

A: A: You might not want every instance variable stored. For example, you might have a variable that stores the current screen width. You
would want that variable to be recalculated the next time onCreate() is called.

Q: Q: Is a Bundle some sort of Java map?

A: A: No, but it’s designed to work like a java.util.Map. Bundles have additional abilities to maps, for example, Bundles have the ability
to be sent between processes. That’s really useful, because it allows the Android OS to stay in touch with the state of an activity.

There’s more to an activity’s life than create and destroy
So far we’ve looked at the create and destroy parts of the activity lifecycle,and you’ve seen how to deal
with configuration changes such as a change in the screen orientation. But there are other events in an
activity’s life that you might want to deal with to get the app to behave in the way you want.

As an example, suppose the stopwatch is running and you get a phone call. Even though the stopwatch
isn’t visible, it will continue running. But what if you want the stopwatch to stop while it’s hidden, and
resume once the app is visible again?

NOTE

Even if you don’t really want your stopwatch to behave like this, it’s a great excuse to look at more lifecycle
methods.

Start, stop, and restart
Fortunately, it’s easy to handle actions that relate to an activity’s visibility if you use the right lifecycle
methods. In addition to the onCreate() and onDestroy() methods, which deal with the overall

Uploaded By: anonymousSTUDENTS-HUB.com

lifecycle of the activity, there are other lifecycle methods that deal with an activity’s visibility.

An activity has a state of stopped if it’s completely hidden by another activity and isn’t visible to
the user. The activity still exists in the background and maintains all state information.

There are three key lifecycle methods that deal with when an activity becomes visible or invisible to the
user. These methods are onStart(), onStop(), and onRestart(). Just as with onCreate()
and onDestroy(), your activity inherits them from the Android Activity class.

onStart() gets called when your activity becomes visible to the user.

onStop() gets called when your activity has stopped being visible to the user. This might be because it’s
completely hidden by another activity that’s appeared on top of it, or because the activity is going to be
destroyed. If onStop() is called because the activity’s going to be destroyed,
onSaveInstanceState() gets called before onStop().

onRestart() gets called after your activity has been made invisible, before it gets made visible again.

We’ll take a closer look at how these fit in with the onCreate() and onDestroy() methods on the
next page.

The activity lifecycle: the visible lifetime
Let’s build on the lifecycle diagram you saw earlier in the chapter, this time including the onStart(),
onStop(), and onRestart() methods (the bits you need to focus on are in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

1. The activity gets launched, and the onCreate() method runs.
Any activity initialization code in the onCreate() method runs. At this point, the activity isn’t yet
visible, as no call to onStart() has been made.

2. The onStart() method runs after the onCreate() method. It gets called when the activity
is about to become visible.
After the onStart() method has run, the user can see the activity on the screen.

3. The onStop() method runs when the activity stops being visible to the user.
After the onStop() method has run, the activity is no longer visible.

4. If the activity becomes visible to the user again, the onRestart() method gets called
followed by onStart().
The activity may go through this cycle many times if the activity repeatedly becomes invisible and
visible again.

5. Finally, the activity is destroyed.
The onStop() method will usually get called before onDestroy(), but it may get bypassed if

Uploaded By: anonymousSTUDENTS-HUB.com

the device is extremely low on memory.

WATCH IT!

If your device is extremely low on memory, onStop() might not get called before the activity is
destroyed.

We need to implement two more lifecycle methods
There are two things we need to do to update our Stopwatch app. First, we need to implement the
activity’s onStop() method so that the stopwatch stops running when the app isn’t visible. Once we’ve
done that, we need to implement the onStart() method so that the stopwatch starts again when the
app is visible. Let’s start with the onStop() method.

Implement onStop() to stop the timer
You override the onStop() method in the Android Activity class by adding the following method to
your activity:

@Override
protected void onStop() {
 super.onStop();
}

Whenever you override one of the Android lifecycle methods, it’s important that you first call up the
onStop() method in the superclass using:

super.onStop();

There are a couple of reasons for this. First, you need to make sure that the activity gets to perform all of
the actions in the superclass lifecycle method. Second, Android will never forgive you if you bypass this
step — it will generate an exception.

When you override an activity lifecycle method, you need to call the superclass method. If you
don’t, you’ll get an exception.

We need to get the stopwatch to stop when the onStop() method is called. To do this, we need to set
the value of the running boolean to false. Here’s the complete method:

@Override
protected void onStop() {
 super.onStop();

Uploaded By: anonymousSTUDENTS-HUB.com

 running = false;
}

So now the stopwatch stops when the activity is no longer visible. The next thing we need to do is get the
stopwatch to start again when the activity becomes visible.

SHARPEN YOUR PENCIL

Now it’s your turn. Change the activity code so that if the stopwatch was running before onStop() was
called, it starts running again when the activity regains the focus.

public class StopwatchActivity extends Activity {
 private int seconds = 0;
 private boolean running;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_stopwatch);
 if (savedInstanceState != null) {
 seconds = savedInstanceState.getInt("seconds");
 running = savedInstanceState.getBoolean("running");
 }
 runTimer();
 }

 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 savedInstanceState.putInt("seconds", seconds);
 savedInstanceState.putBoolean("running", running);
 savedInstanceState.putBoolean("wasRunning", wasRunning);
 }

 @Override
 protected void onStop() {
 super.onStop();
 running = false;
 }

SHARPEN YOUR PENCIL SOLUTION

Now it’s your turn. Change the activity code so that if the stopwatch was running before onStop() was
called, it starts running again when the activity regains the focus.

Uploaded By: anonymousSTUDENTS-HUB.com

The updated StopwatchActivity code
We updated our activity code so that if the stopwatch was running before it lost the focus, it starts running
again when it gets the focus back. Make the changes to your code:

Uploaded By: anonymousSTUDENTS-HUB.com

What happens when you run the app
1. The user starts the app, and clicks the Start button to set the stopwatch going.

The runTimer() method starts incrementing the number of seconds displayed in the
time_view text view.

Uploaded By: anonymousSTUDENTS-HUB.com

2. The user navigates to the device home screen so the Stopwatch app is no longer visible.
The onStop() method gets called, wasRunning is set to true, running is set to false,
and the number of seconds stops incrementing.

3. The user navigates back to the Stopwatch app.
The onStart() method gets called, running is set to true, and the number of seconds
starts incrementing again.

Test drive the app
Save the changes to your activity code, then run the app. When you click on the Start button the timer
starts, it stops when the app is no longer visible, and it starts again when the app becomes visible again.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: Could we have used the onRestart() method instead?

A: A: onRestart() is used when you only want code to run when an app becomes visible after having previously been invisible. It doesn’t
run when the activity becomes visible for the first time. In our case, we wanted the app to still work when we rotated the device.

Q: Q: Why should that make a difference?

A: A: When you rotate the device, the activity is destroyed and a new one is created in its place. If we’d put code in the onRestart() method
instead, it wouldn’t have run when the activity was re-created. The onStart() method gets called in both situations.

But what if an app is only partially visible?
So far you’ve seen what happens when an activity gets created and destroyed, and you’ve also seen what
happens when an activity becomes visible, and when it becomes invisible. But there’s one more situation
we need to consider: when an activity’s visible but doesn’t have the focus.

When an activity is visible but doesn’t have the focus, the activity is paused. This can happen if another
activity appears on top of your activity that isn’t full-size or that’s transparent. The activity on top has the
focus, but the one underneath is still visible and is therefore paused.

Uploaded By: anonymousSTUDENTS-HUB.com

An activity has a state of paused if it’s lost the focus but is still visible to the user. The activity is
still alive and maintains all its state information.

There are two lifecycle methods that deal with when the activity is paused and when it becomes active
again: onPause() and onResume(). onPause() gets called when your activity is visible but another
activity has the focus. onResume() is called immediately before your activity is about to start interacting
with the user. If you need your app to react in some way when your activity is paused, you need to
implement these methods.

You’ll see on the next page how these methods fit in with the rest of the lifecycle methods you’ve seen so
far.

The activity lifecycle: the foreground lifetime
Let’s build on the lifecycle diagram you saw earlier in the chapter, this time including the onResume()
and onPause() methods (the new bits are in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

1. The activity gets launched, and the onCreate() and onStart() methods run.
At this point, the activity is visible, but it doesn’t have the focus.

2. The onResume() method runs after the onStart() method. It gets called when the activity
is about to move into the foreground.
After the onResume() method has run, the activity has the focus and the user can interact with
it.

Uploaded By: anonymousSTUDENTS-HUB.com

3. The onPause() method runs when the activity stops being in the foreground.
After the onPause() method has run, the activity is still visible but doesn’t have the focus.

4. If the activity moves into the foreground again, the onResume() method gets called.
The activity may go through this cycle many times if the activity repeatedly loses and regains the
focus.

5. If the activity stops being visible to the user, the onStop() method gets called.
After the onStop() method has run, the activity is no longer visible.

6. If the activity becomes visible to the user again, the onRestart() method gets called,
followed by onStart() and onResume().
The activity may go through this cycle many times.

7. Finally, the activity is destroyed.
As the activity moves from running to destroyed, the onPause() method gets called before the
activity is destroyed. The onStop() method usually gets called too.

That’s a great question, so let’s look at this in more detail before getting back to the Stopwatch
app.

The original activity goes through all its lifecycle methods, from onCreate() to onDestroy(). A new
activity is created when the original is destroyed. As this new activity isn’t in the foreground, only the

Uploaded By: anonymousSTUDENTS-HUB.com

onCreate() and onStart() lifecycle methods get called:

1. The user launches the activity.
The activity lifecycle methods onCreate(), onStart(), and onResume() get called.

2. Another activity appears in front of it.
The activity onPause() method gets called.

3. The user rotates the device.
Android sees this as a configuration change. The onStop() and onDestroy() methods get
called, and Android destroys the activity. A new activity is created in its place.

4. The activity is visible but not in the foreground.
The onCreate() and onStart() methods get called. As the activity is only visible and
doesn’t have the focus, onResume() isn’t called.

Activities can go straight from onStart() to onStop() and bypass onPause() and onResume().

Uploaded By: anonymousSTUDENTS-HUB.com

If you have an activity that’s visible, but never in the foreground and never has the focus, the onPause()
and onResume() methods never get called.

The onResume() method gets called when the activity appears in the foreground and has the focus. If
the activity is only visible behind other activities, the onResume() method doesn’t get called.

Similarly, the onPause() method gets called when the activity is no longer in the foreground. If the
activity is never in the foreground, this method won’t get called.

Uploaded By: anonymousSTUDENTS-HUB.com

Stop the stopwatch if the activity’s paused
Let’s get back to the Stopwatch app.

So far we’ve made the stopwatch stop if the Stopwatch app isn’t visible, and made it start again when the
app becomes visible again. In addition to this, let’s get the stopwatch to stop if the activity is paused, and
start again when the activity is resumed. So which lifecycle methods do we need to implement?

Uploaded By: anonymousSTUDENTS-HUB.com

The easy answer is that we need to use the onPause() and onResume() methods, but we can take
this one step further. We’ll use these methods to replace the calls to onStop() and onStart()
that we’ve already implemented. If you look again at the lifecycle diagram, calls are made to
onPause() and onResume() in addition to onStop() and onStart() whenever an activity is
stopped and started. We’ll use the same methods for both situations as we want the app to behave in the
same way.

Here’s our version of the onPause() method:

@Override
protected void onPause() {
 super.onPause();
 wasRunning = running;
 running = false;
}

Uploaded By: anonymousSTUDENTS-HUB.com

And here’s the onResume() method:

@Override
protected void onResume() {
 super.onResume();
 if (wasRunning) {
 running = true;
 }
}

So let’s see what happens when we run the app.

DO THIS !

Replace the onStop() and onStart() methods in your code with the onPause() and onResume()
methods shown here.

What happens when you run the app
1. The user starts the app, and clicks on the start button to set the stopwatch going.

The runTimer() method starts incrementing the number of seconds displayed in the
time_view text view.

2. Another activity appears in the foreground, leaving StopwatchActivity partially visible.
The onPause() method gets called, wasRunning is set to true, running is set to false,
and the number of seconds stops incrementing.

Uploaded By: anonymousSTUDENTS-HUB.com

3. When StopwatchActivity returns to the foreground, the onResume() method gets called,
running is set to true, and the number of seconds starts incrementing again.

Test drive the app
Save the changes to your activity code, then run the app. When you click on the Start button, the timer
starts; it stops when the app is partially obscured by another activity, and it starts again when the app is
back in the foreground.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: As some of the lifecycle methods aren’t always called, it sounds like this can lead to some flaky apps. Is that right?

A: A: In certain circumstances, Android may choose not to call methods like onStop() and onPause(). These methods usually contain code
to clean up the app.
onCreate() and onStart() will always be called at the correct time, and this means that your app can also make sure it begins in the
right shape. That’s far more important.
The key thing is that you really get which lifecycle methods get called under what circumstances.

The complete activity code
Here’s the full StopwatchActivity.java code for the finished app:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

BE THE ACTIVITY

On the right, you’ll see some activity code. Your job is to play like you’re the activity and say which
code will run in each of the situations below. We’ve labeled the code we want you to consider. We’ve
done the first one to start you off.

User starts the activity and starts using it.

Code segments A, G, D. The activity is created, then it’s made visible, then it receives the focus.

User starts the activity, starts using it, then switches to another app.

Uploaded By: anonymousSTUDENTS-HUB.com

User starts the activity, starts using it, rotates the device, switches to another app, then goes back
to the activity.

NO TE

This one’s tough.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

BE THE ACTIVITY SOLUTION

On the right, you’ll see some activity code. Your job is to play like you’re the activity and say which
code will run in each of the situations below. We’ve labeled the code we want you to consider. We’ve
done the first one to start you off.

User starts the activity and starts using it.

Code segments A, G, D. The activity is created, then it’s made visible, then it receives the focus.

User starts the activity, starts using it, then switches to another app.

Code segments A, G, D, B, E. The activity is created, then it’s made visible and receives the focus. When the
user switches to another app, it loses the focus and is no longer visible to the user

User starts the activity, starts using it, rotates the device, switches to another app, then goes back
to the activity.

Code segments A, G, D, B, E, H, A, G, D, B, E, C, G, D. First, the activity is created, made visible, and receives
the focus. When the device is rotated, the activity loses the focus, stops being visible, and is destroyed. It’s
then created again, made visible, and receives the focus. When the user switches to another app and back
again, the activity loses the focus, loses visibility, becomes visible again, and regains the focus.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Your handy guide to the lifecycle methods

Method When it’s called Next method

onCreate() When the activity is first created. Use it for normal static setup, such as creating views. It
also gives you a Bundle giving the previously saved state of the activity.

onStart()

onRestart() When your activity has been stopped just before it gets started again. onStart()

onStart() When your activity is becoming visible. It’s followed by onResume() if the activity comes
into the foreground, or onStop() if the activity is made invisible.

onResume()

or onStop()

onResume() When your activity is in the foreground. onPause()

onPause() When your activity is no longer in the foreground because another activity is resuming.
The next activity isn’t resumed until this method finishes, so any code in this method
needs to be quick. It’s followed by onResume() if the activity returns to the foreground, or
onStop() if it becomes invisible.

onResume()

or onStop()

onStop() When the activity is no longer visible. This can be because another activity is covering it,
or because the activity’s being destroyed. It’s followed by onRestart() if the activity
becomes visible again, or onDestroy() if the activity is going to be destroyed.

onRestart()

or
onDestroy()

onDestroy() When your activity is about to be destroyed or because the activity is finishing. None

Your Android Toolbox
You’ve got Chapter 4 under your belt and now you’ve added the activity lifecycle to your
toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

BULLET POINTS

Each app runs in its own process by default.
Only the main thread can update the user interface.
Use a Handler to schedule code, or post code to a different thread.
A device configuration change results in the activity being destroyed and re-created.
Your activity inherits the lifecycle methods from the Android Activity class. If you override any of
these methods, you need to call up to the method in the superclass.
onSaveInstanceState(Bundle) enables your activity to save its state before the activity gets
destroyed. You can use the Bundle to restore state in onCreate().
You add values to a Bundle using bundle.put*("name", value). You retrieve values from the
bundle using bundle.get*("name").
onCreate() and onDestroy(), deal with the birth and death of the activity.
onRestart(), onStart() and onStop() deal with the visibility of the activity.
onResume() and onPause() deal with when the activity gains and loses the focus.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 5. The User Interface: Enjoy the
View

Let’s face it, you need to know how to create great layouts.

If you’re building apps you want people to use, you need to make sure they look just the way you
want. So far we’ve only scratched the surface when it comes to creating layouts, so it’s time to look a
little deeper. We’ll introduce you to more types of layout you can use, and we’ll also take you on a
tour of the main GUI components and how you use them. By the end of the chapter, you’ll see that
even though they all look a little different, all layouts and GUI components have more in common than
you might think.

Your user interface is made up of layouts and GUI components
As you already know, a layout defines what a screen looks like, and you define it using XML. Layouts
usually contain GUI components such as buttons and text fields. Your user interacts with these to make
your app do something.

All the apps you’ve seen in the book so far have used relative layouts, but there are other types of layout
you can use as well to get your app to look exactly how you want.

Uploaded By: anonymousSTUDENTS-HUB.com

In this chapter, we’re going to introduce some of the other layouts you’ll want to use in your apps, and
also more of the GUI components you can use to make your app more interactive. Let’s start with the
layouts.

Three key layouts: relative, linear, and grid
Layouts come in several flavors, and each one has their own policy to follow when deciding where to
position the views it contains. Here are three of the key ones. Don’t worry about the details for now, over
the next few pages we’re going to take you through each one.

RelativeLayout
A relative layout displays its views in relative positions. You define the position of each view relative to
other views in the layout, or relative to its parent layout. As an example, you can choose to position a text
view relative to the top of the parent layout, a spinner underneath the text view, and a button relative to
the bottom of the parent layout.

Uploaded By: anonymousSTUDENTS-HUB.com

LinearLayout
A linear layout displays views next to each other either vertically or horizontally. If it’s vertically, the
views are displayed in a single column. If it’s horizontally, the views are displayed in a single row.

GridLayout
A grid layout divides the screen into a grid of rows, columns, and cells. You specify how many columns
your layout should have, where you want your views to appear, and how many rows or columns they
should span.

RelativeLayout displays views in relative positions

As you already know, a relative layout allows you to position views relative to the parent layout, or

Uploaded By: anonymousSTUDENTS-HUB.com

relative to other views in the layout.

You define a relative layout using the <RelativeLayout> element like this:

The xmlns:android attribute is used to specify the Android namespace, and you must always set it to
"http://schemas. android.com/apk/res/android".

You MUST set the layout width and height
The android:layout_width and android:layout_height attributes specify how wide and
high you want the layout to be. These attributes are mandatory for all types of layout and view.

You can set android:layout_width and android:layout_height to "match_parent",
"wrap_content" or a specific size such as 10dp - 10 density-independent pixels.
"wrap_content" means that you want the layout to be just big enough to hold all of the views inside
it, and "match_parent" means that you want the layout to be as big as its parent — in this case, as
big as the device screen minus any padding. You will usually set the layout width and height to
"match_parent".

You may sometimes see android:layout_width and android:layout_height set to
"fill_parent". "fill_parent" was used in older versions of Android, and it’s now replaced by
"match_parent". "fill_parent" is deprecated.

GEEK BITS

What are density-independent pixels?

Some devices create very sharp images by using very tiny pixels. Other devices are cheaper to produce
because they have fewer, larger pixels. You use density-independent pixels (dp) to avoid creating interfaces
that are overly small on some devices, and overly large on others. A measurement in density-independent
pixels is roughly the same size across all devices.

Adding padding

If you want there to be a bit of space around the edge of the layout, you can set padding attributes.
These attributes tell Android how much padding you want between each of the layout’s sides and its
parent. Here’s how you would tell Android you want to add padding of 16dp around all edges of the
layout:

Uploaded By: anonymousSTUDENTS-HUB.com

The android:padding* attributes are optional, and you can use them with any layout or view.

In the above example, we’ve hardcoded the padding and set it to 16dp. An alternative approach is to
specify the padding in a dimension resource file instead. Using a dimension resource file makes it easier to
maintain the padding of all the layouts in your app.

You use a dimension resource file by setting the padding attributes in your layout file to the name of a
dimension resource like this:

Android then looks up the values of the attributes at runtime in the dimension resource file. This file is
located in the app/src/main/res/values folder, and it’s usually called dimens.xml:

When you create a new Android Studio project and add an activity to it, the IDE will usually create this
for you.

Positioning views relative to the parent layout

When you use a relative layout, you need to tell Android where you want its views to appear relative to
other views in the layout, or to its parent. A view’s parent is the layout that contains the view.

If you want a view to always appear in a particular position on the screen, irrespective of the screen size
or orientation, you need to position the view relative to its parent. As an example, here’s how you’d
make sure a button always appears in the top-right corner of the layout:

Uploaded By: anonymousSTUDENTS-HUB.com

The lines of code

android:layout_alignParentTop="true"
android:layout_alignParentRight="true"

mean that the top edge of the button is aligned to the top edge of the layout, and the right edge of the
button is aligned to the right edge of the layout. This will be the case no matter what the screen size or
orientation of your device:

Attributes for positioning views relative to the parent layout

Here are some of the most common attributes for positioning views relative to their parent layout. Add the
attribute you want to the view you’re positioning, then set its value to "true":

android:attribute="true"

Uploaded By: anonymousSTUDENTS-HUB.com

Attribute What it does

android: layout_alignParentBottom Aligns the bottom edge of the view to the bottom edge of the parent.

android: layout_alignParentLeft Aligns the left edge of the view to the left edge of the parent.

android: layout_alignParentRight Aligns the right edge of the view to the right edge of the parent.

android: layout_alignParentTop Aligns the top edge of the view to the top edge of the parent.

android: layout_centerInParent Centers the view horizontally and vertically in the parent.

android: layout_centerHorizontal Centers the view horizontally in the parent.

android: layout_centerVertical Centers the view vertically in the parent.

Positioning views relative to other views

Uploaded By: anonymousSTUDENTS-HUB.com

In addition to positioning views relative to the parent layout, you can also position views relative to other
views. You do this when you want views to stay aligned in some way, irrespective of the screen size or
orientation.

In order to position a view relative to another view, the view you’re using as an anchor must be given an
ID using the android:id attribute:

android:id="@+id/button_click_me"

The syntax "@+id" tells Android to include the ID as a resource in its resource file R.java. If you miss
out the "+", Android won’t add the ID as a resource and you’ll get errors in your code.

Here’s how you create a layout with two buttons, with one button centered in the middle of the layout,
and the second button positioned underneath the first:

The lines

android:layout_alignLeft="@+id/button_click_me"
android:layout_below="@+id/button_click_me"

ensure that the second button has its left edge aligned to the left edge of the first button, and is always
positioned beneath it.

Attributes for positioning views relative to other views

Here are some more of the attributes you can use when positioning views relative to another view. Add
the attribute to the view you’re positioning, and sets its value to the view you’re positioning relative to:

Uploaded By: anonymousSTUDENTS-HUB.com

android:attribute="@+id/view_id"

Attribute What it does

android:layout_above Put the view above the view you’re anchoring it to.

android:layout_below Puts the view below the view you’re anchoring it to.

android:layout_alignTop Aligns the top edge of the view to the top edge of the view you’re anchoring it to.

android:layout_alignBottom Aligns the bottom edge of the view to the bottom edge of the view you’re anchoring it
to.

android:layout_alignLeft Aligns the left edge of the view to the left edge of the view you’re anchoring it to.

android:layout_alignRight Aligns the right edge of the view to the right edge of the view you’re anchoring it to.

android:layout_toLeftOf Puts the right edge of the view to the left of the view you’re anchoring it to.

android:layout_toRightOf Puts the left edge of the view to the right of the view you’re anchoring it to.

Uploaded By: anonymousSTUDENTS-HUB.com

Use margins to add distance between views

When you use any of the layout attributes to position a view, the layout doesn’t leave much of a gap. You
can increase the size of the gap between views by adding one or more margins to the view.

As an example, suppose you wanted to put one view below another, but add 50dp of extra space
between the two. To do that, you’d add a margin of 50dp to the top of the bottom view:

Here’s a list of the margins you can use to give your views extra space. Add the attribute to the view, and
set its value to the size of margin you want:

android:attribute="10dp"

Attribute What it does

android:layout_marginTop Adds extra space to the top of the view.

android:layout_marginBottom Adds extra space to the bottom of the view.

android:layout_marginLeft Adds extra space to the left of the view.

android:layout_marginRight Adds extra space to the right of the view.

Uploaded By: anonymousSTUDENTS-HUB.com

RelativeLayout: a summary

Before we move on to our next type of layout, here’s a summary of how you create relative layouts.

How you specify a relative layout
You specify a relative layout using <RelativeLayout>. You must specify the layout width and height,
but padding is optional:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="16dp"
 android:paddingLeft="16dp"
 android:paddingRight="16dp"
 android:paddingTop="16dp"...>
 ...
</RelativeLayout>

You can position views relative to the layout of another view
You specify where each view should be positioned by adding layout attributes to it. These attributes can
position the view relative to the parent layout — for example, in the bottom right corner, or centered. You
can also use attributes to position views relative to another view. You anchor one view to another using
the view’s ID.

You can add margins to views to increase the space around them
When you use any of the layout attributes to position a view, the layout doesn’t leave much of a gap. You
can increase the size of the gap between views by adding one or more margins to the view:

android:layout_marginTop="5dp"
android:layout_marginBottom="5dp"
android:layout_marginLeft="5dp"
android:layout_marginRight="5dp"

So far we’ve just been working with the relative layout, but there’s another layout that’s commonly used
too: the linear layout. Let’s take a closer look.

LinearLayout displays views in a single row or column

Uploaded By: anonymousSTUDENTS-HUB.com

A linear layout displays its views next to each other, either vertically or horizontally. If it’s vertically, the
views are displayed in a single column. If it’s horizontally, the views are displayed in a single row.

How you define a linear layout
You define a linear layout using the <LinearLayout> element like this:

The android:layout_width, android:layout_height and android:orientation
attributes are mandatory. android:layout_width and android:layout_height specify the
layout width and height, just as it does with the relative layout. You use the android:orientation
attribute to specify which direction you want to arrange views in.

You arrange views vertically using:

android:orientation="vertical"

You arrange views horizontally using:

android:orientation="horizontal"

A linear layout displays views in the order they appear in the layout
XML

Uploaded By: anonymousSTUDENTS-HUB.com

When you define a linear layout, you add views to the layout in the order in which you want them to
appear. So if you want a text view to appear above a button, you must define the text view first:

With a linear layout, you only need to give your views IDs if you’re explicitly going to refer to them in your
activity code. This is because the linear layout figures out where each view should be positioned based on
the order in which they appear in the XML. Views don’t need to refer to other views in order to specify
where they should be positioned.

android:layout_width and android:layout_height are mandatory attributes for all views, no matter
which layout you use.

Just as with the relative layout, you can specify the width and height of any views using
android:layout_width and android:layout_height. The code:

android:layout_width="wrap_content"

means that you want the view to be just wide enough for its content to fit inside it — for example, the text
displayed on a button or in a text view. The code:

android:layout_width="match_parent"

means that you want the view to be as wide as the parent layout.

They can take the values wrap_content, match_parent, or a specific dimension value such as 16dp.

Let’s change up a basic linear layout

At first glance, a linear layout can seem basic and inflexible. After all, all it does is arrange views in a
particular order. To give you more flexibility, you can tweak your layouts appearance using some more of
its attributes. To show you how this works, we’re going to transform a basic linear layout.

The layout is composed of two editable text fields and a button. To start with, these text fields are simply
displayed vertically on the screen like this:

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to change the layout so that the button is displayed in the bottom-right corner of the layout,
and one of the editable text fields takes up any remaining space.

Here’s the starting point for the linear layout

The linear layout contains two editable text fields and a button. The button is labeled “Send”, and the
editable text fields contain hint text values of “To” and “Message”.

Hint text in an editable text field is text that’s displayed when the text field is empty. It’s used to give users
a hint as to what sort of text they should enter. You define hint text using the android:hint attribute:

Uploaded By: anonymousSTUDENTS-HUB.com

All of these views take up just as much vertical space in the layout as they need for their contents. So how
do we make the Message text field taller?

Make a view streeeeetch by adding weight

All of the views in our basic layout take up just as much vertical space as they need for their content.
What we actually want is to make the Message text field stretch to take up any vertical space in the layout
that’s not being used by the other views.

Uploaded By: anonymousSTUDENTS-HUB.com

In order to do this, we need to allocate some weight to the Message text field. Allocating weight to a
view is a way of telling it to stretch to take up extra space in the layout.

You assign weight to a view using

android:layout_weight="number"

where number is some number greater than 0.

When you allocate weight to a view, the layout first of all makes sure that each view has enough space for
its content. It makes sure that each button has space for its text, each editable text field has space for its
hint, and so on. Once it’s done that, the layout takes any extra space, and divides it proportionally
between the views with a weight of 1 or greater.

Adding weight to one view

We need the Message editable text field to take up any extra space in the layout. To do this, we’ll set its
layout_weight attribute to 1. As this is the only view in the layout with a weight value, this will make
the text field stretch vertically to fill the remainder of the screen. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

Giving the message editable text field a weight of 1 means that it takes up all of the extra space that’s not
used by the other views in the layout. This is because neither of the other two views have been allocated
any weight in the layout XML.

Adding weight to multiple views

In this example, we only had one view with a weight attribute set. But what if we had more than one?

Uploaded By: anonymousSTUDENTS-HUB.com

Suppose we gave the To text field a weight of 1, and the Message text field a weight of 2 like this:

<LinearLayout ... >

 ...
 <EditText
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:hint="@string/to" />

 <EditText
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="2"
 android:hint="@string/message" />

 ...
</LinearLayout>

To figure out how much extra space each view takes up, start by adding together the layout_weight
attributes for each view. In our case, this is 1+2=3. The amount of extra space taken up by each view will
be the view’s weight divided by the total weight. The To view has a weight of 1, so this means it will take
up 1/3 of the remaining space in the layout. The Message view has a weight of 2, so it will take up 2/3 of
the remaining space.

Use gravity to specify where text appears in a view

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing we need to do is move the hint text inside the Message text field. At the moment, it’s
centered vertically inside the view. We need to change it so that the text appears at the top of the text
field. We can achieve this using the android:gravity attribute.

The android:gravity attribute lets you specify how you want to position the contents of a view
inside the view — for example, how you want to position text inside a text field. If you want the text
inside a view to appear at the top, the following code will do the trick:

android:gravity="top"

We’ll add an android:gravity attribute to the Message text field so that the hint text moves to the
top of the view:

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive

Adding the android:gravity attribute to the Message text field moves the hint text to the top of the
view, just like we want.

You’ll find a list of the other values you can use with the android:gravity attribute on the next page.

Using the android:gravity attribute: a list of values

Here are some more of the values you can use with the android:gravity attribute. Add the attribute
to your view, and set its value to one of the values below:

android:gravity="value"

Uploaded By: anonymousSTUDENTS-HUB.com

Value What it does

top Puts the view’s contents at the top of the view.

bottom Puts the view’s contents at the bottom of the view.

left Puts the view’s contents at the left of the view.

right Puts the view’s contents at the right of the view.

center_vertical Centers the view’s contents vertically.

center_horizontal Centers the view’s contents horizontally.

center Centers the view’s contents vertically and horizontally.

fill_vertical Make the view’s contents fill the view vertically.

fill_horizontal Make the view’s contents fill the view horizontally.

fill Make the view’s contents fill the view.

android:gravity lets you say where you want the view’s contents to appear inside the view.

Move the button to the right with layout-gravity

There’s one final change we need to make to our layout. The Send button currently appears in the
bottom-left corner. We need to move it over to the right so that it’s in the bottom-right corner instead. To
do this, we’ll use the android:layout_gravity attribute.

The android:layout_gravity attribute lets you specify where you want a view in a linear layout to
appear in its enclosing space. You can use it to push a view to the right, for instance, or center the view
horizontally. To move our button to the right, we’d need to add the following to the button:

android:layout_gravity="right"

The android:layout_alignRight attribute only applies to relative layouts.

Uploaded By: anonymousSTUDENTS-HUB.com

Layouts have some attributes in common, such as android:layout_width and
android:layout_height. Many attributes, however, are specific to one particular type of attribute.

Most of the attributes we saw for the relative layout don’t apply to linear layouts. Linear layouts use the
concept of gravity instead, so we have to use

android:layout_gravity="right"

if we want to move a view to the right.

You’ll see a list of some of the other values you can use with the android:layout_gravity
attribute on the next page.

More values you can use with the android:layout-gravity attribute

Here are some of the values you can use with the android:layout_gravity attribute. Add the
attribute to your view, and set its value to one of the values below:

Uploaded By: anonymousSTUDENTS-HUB.com

android:layout_gravity="value"

Value What it does

top, bottom, left, right Puts the view at the top, bottom, left, or right of its container.

start, end Puts the view at the start or end of its container.

center_vertical, center_horizontal Centers the view vertically or horizontally in its container.

center Centers the view vertically and horizontally in its container.

fill_vertical, fill_horizontal Grow the view so that it fills its container in a vertical or horizontal direction.

fill Grow the view so that it fills its container in a vertical and horizontal direction.

android:layout_gravity lets you say where you want views to appear in their available space.

android:layout_gravity deals with the placement of the view itself, whereas android:gravity deals
with how to display the view contents.

The full linear layout code

Here’s the full code for the linear layout:

Uploaded By: anonymousSTUDENTS-HUB.com

LinearLayout: a summary

Here’s a summary of how you create linear layouts.

How you specify a linear layout
You specify a linear layout using <LinearLayout>. You must specify the layout width, height, and
orientation, but padding is optional:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

Uploaded By: anonymousSTUDENTS-HUB.com

 android:orientation="vertical"
 ...>
 ...
</LinearLayout>

Views get displayed in the order they appear
When you define a linear layout, you add views to the layout in the order in which you want them to
appear. That’s everything we’ve covered on linear layouts. There’s one more view group we’re going to
look at: the grid layout.

Stretch views using weight
By default, all views take up just as much space as necessary for their content. If you want to make one
or more of your views take up more space, you can use the weight attribute to make it stretch:

android:layout_weight="1"

Use gravity to specify where a view’s contents appear in a view
The android:gravity attribute lets you specify how you want to position the contents of a view
inside the view — for example, how you want to position text inside a text field.

Use layout-gravity to specify where a view appears in its enclosing space
The android:layout_gravity attribute lets you specify where you want a view in a linear layout to
appear in its enclosing space. You can use it to push a view to the right, for instance, or center the view
horizontally.

That’s everything we’ve covered on linear layouts. There’s one more view group we’re going to look at:
the grid layout.

SHARPEN YOUR PENCIL

Here’s the layout XML for the Beer Adviser app we created in Chapter 2. Change it to a linear layout that
produces the output below.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL: SOLUTION

Here’s the layout XML for the Beer Adviser app we created in Chapter 2. Change it to a linear layout that
produces the output below.

Uploaded By: anonymousSTUDENTS-HUB.com

GridLayout displays views in a grid

A grid layout splits the screen up into a grid of rows and columns, and allocates views to cells:

Uploaded By: anonymousSTUDENTS-HUB.com

WATCH IT!

GridLayout requires API level 14 or above.

If you plan on using a grid layout, make sure your app uses a minimum SDK of API 14.

How you define a grid layout
You define a grid layout in a similar way to how you define the other types of layout, this time using the
<GridLayout> element:

You specify how many columns you want the grid layout to have using:

android:columnCount="number"

where number is the number of columns. You can also specify a maximum number of rows using:

android:rowCount="number"

but in practice you can usually let Android figure this out based on the number of views in the layout.
Android will include as many rows as is necessary to display the views.

Adding views to the grid layout

You can add views to a grid layout in a similar way to how you add views to a linear layout:

<GridLayout ... >

Uploaded By: anonymousSTUDENTS-HUB.com

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textview" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/click_me" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:hint="@string/edit" />

</GridLayout>

Just like a linear layout, there’s no need to give your views IDs unless you’re explicitly going to refer to
them in your activity code. The views don’t need to refer to each other within the layout, so they don’t
need to have IDs for this purpose.

By default, the grid layout positions your views in the order in which they appear in the XML. So if you
have a grid layout with two columns, the grid layout will put the first view in the first position, the second
view in the second position, and so on.

The downside of this approach is that if you remove one of your views from the layout, it can drastically
change the appearance of the layout. To get around this, you specify where you want each view to
appear, and how many columns you want it to span.

Let’s create a new grid layout

To see this in action, we’ll create a grid layout that specifies which cells we want views to appear in, and
how many columns they should span. The layout is composed of a text view containing the text “To”, an

Uploaded By: anonymousSTUDENTS-HUB.com

editable text field that contains hint text of “Enter email address”, an editable text field that contains hint
text of “Message”, and a button labeled “Send”:

Here’s what we’re going to do
1. Sketch the user interface, and split it into rows and columns.

This will make it easier for us to see how we should construct our layout.
2. Build up the layout row by row.

We’ll start with a sketch

The first thing we’ll do to create our new layout is sketch it out. That way we can see how many rows
and columns we need, where each view should be positioned, and how many columns each view should
span.

Uploaded By: anonymousSTUDENTS-HUB.com

The grid layout needs two columns
We can position our views how we want if we use a grid layout with two columns:

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="16dp"
 android:paddingLeft="16dp"
 android:paddingRight="16dp"
 android:paddingTop="16dp"
 android:columnCount="2"
 tools:context=".MainActivity" >
</GridLayout>

Now that we have the basic grid layout defined, we can start adding views.

Row 0: add views to specific rows and columns

The first row of the grid layout is composed of a text view in the first column, and an editable text field in
the second column. You start by adding the views to the layout:

You can use android:gravity and android:layout_gravity attributes with grid layouts.

Uploaded By: anonymousSTUDENTS-HUB.com

Then you use the android:layout_row and android:layout_column attributes to say which
row and column you want each view to appear in. The row and column indices start from 0, so if you
want a view to appear in the first column and first row, you use:

Let’s apply this to our layout code by putting the text view in column 0, and the editable text field in
column 1.

Row and column indices start at 0. layout_column=“n” refers to column n+1 in the display.

Row 1: make a view span multiple columns

The second row of the grid layout is composed of an editable text field that starts in the first column and
spans across the second. The view takes up all the available space.

To get a view to span multiple columns, you start by specifying which row and column you want the view
to start in. We want the view to start in the first column of the second row, so we need to use:

android:layout_row="1"
android:layout_column="0"

Uploaded By: anonymousSTUDENTS-HUB.com

We want our view to go across two columns, and we can do this using the
android:layout_columnSpan attribute like this:

android:layout_columnSpan="number"

where number is the number of columns we want the view to span across. In our case, this is:

android:layout_columnSpan="2"

Putting it all together, here’s the code for the Message view:

Now that we’ve added the views for the first two rows, all we need to do is add the button.

Row 2: make a view span multiple columns

We need the button to be centered horizontally across the two columns like this:

Uploaded By: anonymousSTUDENTS-HUB.com

LAYOUT MAGNETS

We wrote some code to center the Send button in the third row of the grid layout, but a sudden breeze blew
some of it away. See if you can reconstruct the code using the magnets below.

 Answers in Layout Magnets Solution

The full code for the grid layout

Uploaded By: anonymousSTUDENTS-HUB.com

GridLayout: a summary

Here’s a summary of how you create grid layouts.

How you specify a grid layout
You specify a grid layout using <GridLayout>. You specify how many columns you need using the
android:columnCount attribute. You say how many rows you need using the
android:rowCount attribute:

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"

Uploaded By: anonymousSTUDENTS-HUB.com

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnCount="2"
 ... >
 ...
</GridLayout>

Specify which row and column each view should start in
You use the android:layout_row and android:layout_column attributes to say which row
and column you want each view to appear in. The row and column indices start from 0, so if you want a
view to appear in the first column and first row, you use:

android:layout_row="0"
android:layout_column="0"

Specify how many columns each view should span
You use the android:layout_columnSpan attribute to specify how many columns each view
should span. If you want a view to span across two columns, for instance, you use:

android:layout_columnSpan="2"

BE THE LAYOUT

Three of the five screens below were made from layouts on the opposite page. Your job is to match
each of the three layouts to the screen that the layout would produce.

Uploaded By: anonymousSTUDENTS-HUB.com

1. <GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnCount="3"
 tools:context=".MainActivity" >
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="fill"
 android:layout_columnSpan="3"
 android:text="@string/hello" />
</GridLayout>

2. <GridLayout xmlns:android="http://schemas.android.com/apk/res/android"

Uploaded By: anonymousSTUDENTS-HUB.com

 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnCount="2"
 tools:context=".MainActivity" >
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="fill"
 android:layout_columnSpan="2"
 android:text="@string/hello" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hi" />
</GridLayout>

3. <GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnCount="2"
 tools:context=".MainActivity" >
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="0"
 android:layout_column="0"
 android:layout_columnSpan="2"
 android:text="@string/hello" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="1"
 android:layout_column="0"
 android:text="@string/hi" />
</GridLayout>

BE THE LAYOUT: SOLUTION

Three of the five screens below were made from layouts on the opposite page. Your job is to match
each of the three layouts to the screen that the layout would produce.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Layouts and GUI components have a lot in common
You may have noticed that all layout types have attributes in common. Whichever type of layout you use,
you must specify the layout width and height using the android:layout_width and
android:layout_height attributes. This isn’t just limited to layouts — the
android:layout_width and android:layout_height are mandatory for all GUI
components too.

This is because all layouts and GUI components are subclasses of the Android View class. Let’s
look at this in more detail.

GUI components are a type of View
You’ve already seen that GUI components are all types of views — behind the scenes, they are all
subclasses of the android.view.View class. This means that all of the GUI components you use in
your user interface have attributes and behavior in common. They can all be displayed on the screen, for
instance, and they can say how tall or wide they should be. Each of the GUI components you use in your
user interface take this basic functionality, and extend it.

Layouts are a type of View called a ViewGroup

Uploaded By: anonymousSTUDENTS-HUB.com

It’s not just the GUI components that are a type of view. Under the hood, a layout is a special type of
view called a view group. All layouts are subclasses of the android.view.ViewGroup class. A
view group is a type of view that can contain other views.

A GUI component is a type of view, an object which takes up space on the screen.

A layout is a type of view group, which is a special type of view that can contain other views.

What being a view buys you
A View object occupies rectangular space on the screen. It includes the functionality all views need in
order to lead a happy helpful life in Androidville. Here are some of the areas we think are the most
important:

Getting and setting properties
Each view is a Java object behind the scenes, and that means you can get and set its properties in your
activity code. As an example, you can retrieve the value selected in a spinner or change the text in a text
view. The exact properties and methods you can access depend on the type of view.

Uploaded By: anonymousSTUDENTS-HUB.com

To help you with this, each view can have an ID associated with it so that you can refer to it in your code.

Size and position
You can specify the width and height of views so that Android knows how big they need to be. You can
also say whether any padding is needed around the view.

Once your view has been displayed, you can retrieve the position of the view, and its actual size on the
screen.

Focus handling
Android handles how the focus moves depending on what the user does. This includes responding to any
views that are hidden, removed, or made visible.

Event handling and listeners
Each of your views can respond to events. You can also create listeners so that you can react to things
happening in the view. As an example, all views can react to getting or losing the focus, and a button (and
all of its subclasses) can react to being clicked.

As a view group is also a type of view, this means that all layouts and GUI components share this
common functionality.

A layout is really a hierarchy of Views
The layout you define using XML gives you a hierachical tree of views and view groups. As an

Uploaded By: anonymousSTUDENTS-HUB.com

example, here’s a relative layout containing a button and an editable text field. The relative layout is a view
group, and the button and text field are both views. The view group is the view’s parent, and the views
are the view group’s children:

Behind the scenes, when you build your app, the layout XML is converted to a ViewGroup object
containing a tree of Views. In the example above, the button gets translated to a Button object, and the
text view gets translated to a TextView object. Button and TextView are both subclasses of View.

This is the reason why you can manipulate the views in your layout using Java code. Behind the scenes, all
of the views are rendered to Java View objects.

Playing with views
Let’s look at the most common GUI components. You’ve already seen some of these, but we’ll review
them anyway. We won’t show you the whole API for each of these — just selected highlights to get you
started.

Text view
Used for displaying text.

Uploaded By: anonymousSTUDENTS-HUB.com

Defining it in XML
You define a text view in your layout using the <TextView> element. You use android:text to say
what text you want it to display, usually by using a string resource:

<TextView
 android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/text" />

The TextView API includes many attributes to control the text view’s appearance, such as the text size.
To change the text size, you use the android:textSize attribute like this:

android:textSize="14sp"

You specify the text size using scale-independent pixels (sp). Scale-independent pixels take into account
whether users want to use large fonts on their devices. A text size of 14sp will be physically larger on a
device configured to use large fonts than on a device configured to use small fonts.

Using it in your activity code
You can change the text displayed in your text view using code like this:

TextView textView = (TextView) findViewById(R.id.text_view);
textView.setText("Some other string");

Edit Text
Like a text view, but editable.

Uploaded By: anonymousSTUDENTS-HUB.com

Defining it in XML
You define an editable text view in XML using the <EditText> element. You use the android:hint
attribute to give a hint to the user as to how to fill it in.

<EditText
 android:id="@+id/edit_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:hint="@string/edit_text" />

You can use the android:inputType attribute to define what type of data you’re expecting the user
to enter so that Android can help them. As an example, if you’re expecting the user to enter numbers, you
can use

android:inputType="number"

to provide them with a number keypad. Here are some more of our favorites:

Value What it does

phone Provides a phone number keypad.

NOT E

You can find the entire list in the online Android developer documentation.

textPassword Displays a text entry keypad, and your input is concealed.

textCapSentences Capitalizes the first word of a sentence.

textAutoCorrect Automatically corrects the text being input.

You can specify multiple input types using the | character. As an example, to capitalize the first word of a
sentence and automatically correct any misspellings, you’d use:

android:inputType="textCapSentences|textAutoCorrect"

Using it in your activity code
You can retrieve the text entered in an editable text view like this:

Uploaded By: anonymousSTUDENTS-HUB.com

EditText editText = (EditText) findViewById(R.id.edit_text);
String text = editText.getText().toString();

Button
Usually used to make your app do something when the button’s clicked.

Defining it in XML
You define a button in XML using the <Button> element. You use the android:text attribute to say
what text you want the button to display:

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/button_text" />

Using it in your activity code
You get the button to respond to the user clicking it by using the android:onClick attribute in the
layout XML, and setting it to the name of the method you want to call in your activity code:

android:onClick="onButtonClicked"

You then define the method in your activity like this:

/** Called when the button is clicked */
public void onButtonClicked(View view) {
 // Do something in response to button click
}

Uploaded By: anonymousSTUDENTS-HUB.com

Toggle button
A toggle button allows you to choose between two states by clicking a button.

Defining it in XML
You define a toggle button in XML using the <ToggleButton> element. You use the
android:textOn and android:textOff attributes to say what text you want the button to display

Uploaded By: anonymousSTUDENTS-HUB.com

depending on the state of the button:

<ToggleButton
 android:id="@+id/toggle_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOn="@string/on"
 android:textOff="@string/off" />

Using it in your activity code
You get the toggle button to respond to the user clicking it by using the android:onClick attribute in
the layout XML. You give it the name of the method you want to call in your activity code:

You then define the method in your activity like this:

Switch
A switch is a slider control that acts in the same way as a toggle button.

WATCH IT!

A Switch requires API level 14 or above.

If you want to use a switch in your app, make sure it uses a minimum SDK of API level 14.

Defining it in XML
You define a toggle button in XML using the <Switch> element. You use the android:textOn and
android:textOff attributes to say what text you want the switch to display depending on the state of
the switch:

<Switch

Uploaded By: anonymousSTUDENTS-HUB.com

 android:id="@+id/switch_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOn="@string/on"
 android:textOff="@string/off" />

Using it in your activity code
You get the switch to respond to the user clicking it by using the android:onClick attribute in the
layout XML, and setting it to the name of the method you want to call in your activity code:

android:onClick="onSwitchClicked"

You then define the method in your activity like this:

Uploaded By: anonymousSTUDENTS-HUB.com

Check boxes
Check boxes let you display multiple options to users. They can then select whichever options they want.
Each of the checkboxes can be checked or unchecked independently of any others.

Uploaded By: anonymousSTUDENTS-HUB.com

Defining them in XML
You define each checkbox in XML using the <CheckBox> element. You use the android:text
attribute to display text for each option:

<CheckBox android:id="@+id/checkbox_milk"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/milk" />

<CheckBox android:id="@+id/checkbox_sugar"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/sugar" />

Using them in your activity code
You can find whether a particular checkbox is checked using the isChecked() method. It returns
true if the checkbox is checked:

CheckBox checkbox = (CheckBox) findViewById(R.id.checkbox_milk);
boolean checked = checkbox.isChecked();
if (checked) {
 //do something
}

Just like buttons, you can respond to the user clicking a checkbox by using the android:onClick
attribute in the layout XML, and setting it to the name of the method you want to call in your activity code:

Uploaded By: anonymousSTUDENTS-HUB.com

You then define the method in your activity like this:

public void onCheckboxClicked(View view) {
 // Has the checkbox that was clicked been checked?
 boolean checked = ((CheckBox) view).isChecked();

 // Retrieve which checkbox was clicked
 switch(view.getId()) {
 case R.id.checkbox_milk:
 if (checked)
 // Milky coffee
 else
 // Black as the midnight sky on a moonless night
 break;
 case R.id.checkbox_sugar:
 if (checked)
 // Sweet
 else
 // Keep it bitter
 break;
 }
}

Radio buttons
These let you display multiple options to the user. The user can select a single option.

Uploaded By: anonymousSTUDENTS-HUB.com

Defining them in XML
You start by defining a radio group, a special type of view group, using the <RadioGroup> tag. Within
this, you then define individual radio buttons using the <RadioButton> tag:

Uploaded By: anonymousSTUDENTS-HUB.com

The radio group containing the radio buttons is a subclass of LinearLayout. You can use the same
attributes with a radio group as you can with a linear layout.

Using them in your activity code
You can find which radio button is selected using the getCheckedRadioButtonId() method:

RadioGroup radioGroup = findViewById(R.id.radioGroup);
int id = radioGroup.getCheckedRadioButtonId();
if (id == -1){
 //no item selected
}
else{
 RadioButton radioButton = findViewById(id);
}

You can respond to the user clicking a radio button by using the android:onClick attribute in the
layout XML, and setting it to the name of the method you want to call in your activity code:

<RadioGroup android:id="@+id/radio_group"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <RadioButton android:id="@+id/radio_cavemen"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/cavemen"
 android:onClick="onRadioButtonClicked" />

 <RadioButton android:id="@+id/radio_astronauts"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/astronauts"
 android:onClick="onRadioButtonClicked" />

Uploaded By: anonymousSTUDENTS-HUB.com

</RadioGroup>

You then define the method in your activity like this:

public void onRadioButtonClicked(View view) {
 RadioGroup radioGroup = findViewById(R.id.radioGroup);
 int id = radioGroup.getCheckedRadioButtonId();
 switch(id) {
 case R.id.radio_cavemen:
 // Cavemen win
 break;
 case R.id.radio_astronauts:
 // Astronauts win
 break;
 }
}

Spinner
As you’ve already seen, a spinner gives you a drop-down list of values from which only one can be
selected.

Uploaded By: anonymousSTUDENTS-HUB.com

Defining it in XML
You define a spinner in XML using the <Spinner> element. You add a static array of entries to the
spinner by using the android:entries attribute and setting it to an array of strings.

NOTE

There are other ways of populating the spinner, which you’ll see later in the book.

<Spinner
 android:id="@+id/spinner"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:entries="@array/spinner_values" />

You can add an array of strings to strings.xml like this:

<string-array name="spinner_values">
 <item>light</item>
 <item>amber</item>
 <item>brown</item>
 <item>dark</item>
</string-array>

Using it in your activity code

Uploaded By: anonymousSTUDENTS-HUB.com

You can get the value of the currently selected item by using the getSelectedItem() method and
converting it to a String:

Spinner spinner = (Spinner) findViewById(R.id.spinner);
String string = String.valueOf(spinner.getSelectedItem());

Image views
You use an image view to display an image:

Adding an image to your project
You first need to add an image file to your project as a drawable resource. If you expand the
app/src/main/res folder in your project, you should see that there’s a folder called drawable. This is the
default location for image resources. To add an image file to this folder, you simply drag the image file to
it.

If you want, you can use different image files depending on the screen density of the device. This means
you can display higher-resolution images on higher-density screens, and lower-resolution images on
lower-density screens. To do this, you create different drawable folders in app/ src/main/res for the
different screen densities. The name of the folder relates to the screen density of the device:

NOTE

You create a new folder by switching to the Project view of your folder structure, highlighting the res folder,
and choosing File, New..., Android resource directory.

Uploaded By: anonymousSTUDENTS-HUB.com

android-ldpi Low-density screens, around 120 dpi.

android-mdpi Medium-density screens, around 160 dpi.

android-hdpi High-density screens, around 240 dpi.

android-xhdpi Extra-high-density screens, around 320 dpi.

android-xxhdpi Extra-extra-high-density screens, around 480 dpi.

android-xxxhdpi Extra-extra-extra high-density screens, around 640 dpi.

NOTE

Depending on what version of Android Studio you’re running, the IDE may create some of these folders for
you automatically.

You then put different resolution images in each of the drawable* folders, making sure that each of the
image files has the same name. Android decides which image to use at runtime, depending on the screen
density of the device it’s running on. As an example, if the device has an extra high density screen, it will
use the image located in the drawable-xhdpi folder.

If an image is added to just one of the folders, Android will use the same image file for all devices. It’s
common to use the drawable folder for this purpose.

Images: the layout XML
You define an image view in XML using the <ImageView> element. You use the android:src
attribute to specify what image you want to display. You use the android:contentDescription
attribute to add a string description of the image so that your app is more accessible:

<ImageView
 android:layout_width="200dp"
 android:layout_height="100dp"
 android:src="@drawable/starbuzz_logo"
 android:contentDescription="@string/starbuzz_logo" />

The android:src attribute takes a value of the form "@drawable/ image_name", where
image_name is the name of the image (without its extension). Image resources are prefixed with
@drawable. @drawable tells Android that it’s an image resource located in one or more of the
drawable folders.

Using it in your activity code
You can set the image source and description in your activity code using the setImageResource()
and setContentDescription() methods:

ImageView photo = (ImageView)findViewById(R.id.photo);
int image = R.drawable.starbuzz_logo;
String description = "This is the logo";
photo.setImageResource(image);
photo.setContentDescription(description);

This code looks for the image resource called starbuzz_logo in the drawable* folders, and sets it as
the source of an image view with an ID of photo. When you need to refer to an image resource in your
activity code, you use R.drawable.image_name where image_name is the name of the image
(without its extension)

Uploaded By: anonymousSTUDENTS-HUB.com

Adding images to buttons
In addition to displaying images in image views, you can also display images on buttons.

Displaying text and an image on a button
To display text on a button with an image to the right of it, use the android:drawableRight
attribute and specify the image to be used:

If you want to display the image on the left, use the android:drawableLeft attribute:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableLeft="@drawable/android"
 android:text="@string/click_me" />

Use the android:drawableBottom attribute to display the image underneath the text:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableBottom="@drawable/android"
 android:text="@string/click_me" />

The android:drawableBottom attribute displays the image above the text:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableTop="@drawable/android"
 android:text="@string/click_me" />

Uploaded By: anonymousSTUDENTS-HUB.com

Image Button
An image button is just like a button, except it contains an image and no text.

Defining it in XML
You define an image button in XML using the <ImageButton> element. You use the android:src
attribute to say what image you want the image button to display:

<ImageButton
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Uploaded By: anonymousSTUDENTS-HUB.com

 android:src="@drawable/button_icon />

Using it in your activity code
You get the image button to respond to the user clicking it by using the android:onClick attribute in
the layout XML, and setting it to the name of the method you want to call in your activity code:

android:onClick="onButtonClicked"

You then define the method in your activity like this:

/** Called when the image button is clicked */
public void onButtonClicked(View view) {
 // Do something in response to button click
}

Scroll views
If you add lots of views to your layouts, you may have problems on devices with smaller screens — most
layouts don’t come with scrollbars to allow you to scroll down the page. As an example, when we added
seven large buttons to a linear layout, we couldn’t see all of them.

To add a vertical scrollbar to your layout, you surround your existing layout with a <ScrollView>
element like this:

Uploaded By: anonymousSTUDENTS-HUB.com

To add a horizontal scrollbar to your layout, wrap your existing layout inside a
<HorizontalScrollView> element instead.

Toasts
There’s one final widget we want to show you in this chapter: a toast. A toast is a simple pop-up message
you can display on the screen.

Toasts are purely informative, as the user can’t interact with them. While a toast is displayed, the activity
stays visible and interactive. The toast automatically disappears when it times out.

Uploaded By: anonymousSTUDENTS-HUB.com

Using it in your activity code
You create a toast using activity code only. You can’t define one in your layout.

To create a toast, you call the Toast.makeText() method, and pass it three parameters: a Context
(usually this for the current activity), a CharSequence that’s the message you want to display, and an
int duration. Once you’ve created the toast, you call its show() method to display it.

Here’s the code you would use to create a toast that appears on screen for a short duration:

CharSequence text = "Hello, I'm a Toast!";
int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(this, text, duration);
toast.show();

Uploaded By: anonymousSTUDENTS-HUB.com

EXERCISE

It’s time for you to try out some of the views we’ve introduced you to this chapter. Create a layout that will
create this screen:

NO TE

You probably won’t want to write the code here, but why not experiment in the IDE?

EXERCISE SOLUTION

Here’s one of the many ways in which you can create the layout. Don’t worry if your code looks different,
as there are many different solutions.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

LAYOUT MAGNETS SOLUTION

We wrote some code to center the Send button in the third row of the grid layout, but a sudden breeze blew
some of it away. See if you can reconstruct the code using the magnets below.

Your Android Toolbox
You’ve got Chapter 5 under your belt and now you’ve added views and view groups to your
toolbox.

Uploaded By: anonymousSTUDENTS-HUB.com

BULLET POINTS

GUI components are all types of view. They are all subclasses of the android.view.View class.
All layouts are subclasses of the android.view.ViewGroup class. A view group is a type of view
that can contain multiple views.
The layout XML file gets converted to a ViewGroup containing a hierarchical tree of views.
A relative layout displays child views relative to other views, or relative to the parent layout.
A linear layout lists views either horizontally or vertically. You specify the direction using the
android:orientation attribute.
A grid layout divides the screen into a grid of cells so that you can specify which cell (or cells) each
view should occupy. Use android:columnCount to say how many columns there should be. Use
android:layout_row and android:layout_column to say which cell you want each view to
appear in. Use android:layout_columnSpan to say how many columns the view should spread
across.
Use android:padding* attributes to specify how much padding you want there to be around a view.
Use android:layout_weight in a linear layout if you want a view to use up extra space in the
layout.
android:layout_gravity lets you say where you want views to appear in their available space.
android:gravity lets you say where you want the contents to appear inside the view.
<ToggleButton> defines a toggle button which allows you to choose between two states by clicking
a button.
<Switch> defines a switch control that behaves in the same way as a toggle button. It requires API
level 14 or above.
<CheckBox> defines a checkbox.
To define a group of radio buttons, first use <RadioGroup> to define the radio group. Then put
individual radio buttons in the radio group using <RadioButton>.
Use <ImageView> to display an image.
<ImageButton> defines a button with no text, just an image.
Add scrollbars using <ScrollView> or <HorizontalScrollView>.
A Toast is a pop-up message.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 6. List Views and Adapters: Getting
Organized

Want to know how best to structure your Android app?

You’ve learned about some of the basic building blocks that are used to build apps, and now it’s time to
get organized. In this chapter, we’ll show you how you can take a bunch of ideas and structure them
into an awesome app. We’ll show you how lists of data can form the core part of your app design, and
how linking them together can create a powerful and easy-to-use app. Along the way, you’ll get
your first glimpse of using event listeners and adapters to make your app more dynamic.

Every app starts with ideas
When you first come up with an idea for an app, you’ll have lots of thoughts about what the app should
contain.

As an example, the guys at Starbuzz want a new app to entice more customers to their stores. These are
some of the ideas they came up with for what the app should include:

Uploaded By: anonymousSTUDENTS-HUB.com

These are all ideas that users of the app will find useful. But how do you take all of these ideas and
organize them into an intuitive, well-organized app?

Categorize your ideas: top-level, category, and detail/edit activities
A useful way to bring order to these ideas is to categorize them into three different types of activity: top-
level activities, category activities, and detail/edit activities.

Top-level activities
A top-level activity contains the things that are most important to the user, and gives them an easy way of
navigating to them. In most apps, the first activity the user sees will be a top-level activity.

Category activities
Category activities show the data that belongs to a particular category, often in a list. These type of
activities are often used to help the user navigate to detail/edit activities. An example of a category activity
is a list of all the drinks available at Starbuzz.

Uploaded By: anonymousSTUDENTS-HUB.com

Detail/edit activities
Detail/edit activities display details for a particular record, let the user edit the record, or allow the user to
enter new records. An example of a detail/edit activity would be an activity that shows the user the details
of a particular drink.

Once you’ve categorized your activities, you can use them to construct a hierarchy showing how the user
will navigate between activities.

EXERCISE SOLUTION

Think of an app you’d like to create. What activities should it include? Organize these activities into top-level
activities, category activities, and detail/edit activities.

Navigating through the activities
When you categorize the ideas you have into top-level, category, and detail/edit activities, you can use
these categorizations to figure out how to navigate through your app. In general, you want your users to
navigate from top-level activities to detail/edit activities via category activities.

Top-level activities go at the top
These are the activities your user will encounter first, so they go at the top.

Uploaded By: anonymousSTUDENTS-HUB.com

Category activities go between top-level and detail/edit activities
Your users will navigate from the top-level activity to the category activities. In complex apps, you might
have several layers of categories and subcategories.

Detail/edit activities
These form the bottom layer of the activity hierarchy. Users will navigate to these from the category
activities.

As an example, suppose a user wanted to look at details of one of the drinks that Starbuzz serves. To do
this, she would launch the app, and be presented with the top-level activity start screen showing her a list
of options. The user would click on the option to display a list of drinks. To see details of a particular
drink, she would then click on her drink of choice from the list.

Use ListViews to navigate to data
When you structure your app in this way, you need a way of navigating between your activities. A
common approach used in this situation is to use list views. A list view allows you to display a list of data
that you can then use to navigate through the app.

As an example, on the previous page, we said we’d have a category activity that displays a list of the
drinks sold by Starbuzz. Here’s what the activity might look like:

Uploaded By: anonymousSTUDENTS-HUB.com

The activity uses a list view to display all the drinks that are sold by Starbuzz. To navigate to a particular
drink, the user clicks on one of the drinks, and the details of that drink are displayed.

We’re going to spend the rest of this chapter showing you how to use list views to implement this
approach using the Starbuzz app as an example.

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to build part of the Starbuzz app
Rather than build all the category and detail/edit activities required for the entire Starbuzz app, we’re
going to focus on just the drinks. We’re going to build a top-level activity that the user will see when
they launch the app, a category activity that will display a list of drinks, and a detail/edit activity that will
display details of a single drink.

The top-level activity
When the user launches the app, she will be presented with the top-level activity, the main entry point of
the app. This activity includes an image of the Starbuzz logo, and a navigational list containing entries for
Drinks, Food, and Stores.

When the user clicks on an item in the list, the app uses her selection to navigate to a separate activity. As
an example, if the user clicks on Drinks, the app starts a category activity relating to drinks.

Uploaded By: anonymousSTUDENTS-HUB.com

The drinks category activity
This activity is launched when the user chooses Drinks from the navigational list in the top-level activity.
The activity displays a list of all the drinks that are available at Starbuzz. The user can click on one of
these drinks to see more details of it.

The drink detail activity

Uploaded By: anonymousSTUDENTS-HUB.com

The drink activity is launched when the user clicks on one of the drinks listed by the drink category
activity.

This activity displays details of the drink the user has selected, such as its name, an image of what it looks
like, and a desciption.

How the user navigates through the app
The user navigates from the top-level activity to the drink category activity by clicking on the “Drinks”
item in the top-level activity. She then navigates to the drink activity by clicking on a drink.

Uploaded By: anonymousSTUDENTS-HUB.com

The Starbuzz app structure
The app contains three activities. TopLevelActivity is the app’s top-level activity and allows the
user to navigate through the app. DrinkCategoryActivity is a category activity; it contains a list of
all the drinks. The third activity, DrinkActivity, displays details of a given drink.

For now, we’re going to hold the drink data in a Java class. In a later chapter, we’re going to move it into
a database, but for now we want to focus on building the rest of the app without teaching you about
databases too.

1. When the app gets launched, it starts activity TopLevelActivity.
The activity uses layout activity_top_level.xml. The activity displays a list of options for Drinks,
Food, and Stores.

2. The user clicks on Drinks in TopLevelActivity.
This launches activity DrinkCategoryActivity. This activity displays a list of drinks.

NOTE

DrinkCategoryActivity doesn’t need you to create a layout for it. You’ll see why later in the chapter.

3. Details of the drinks are held in the Drink.java class file.
DrinkCategoryActivity gets the values for its list of drinks from this class.

4. The user clicks on a drink in DrinkCategoryActivity.
This launches activity DrinkActivity. The activity uses layout activity_drink. xml.

5. DrinkActivity gets details of the drink from the Drink.java class file.

Uploaded By: anonymousSTUDENTS-HUB.com

Here are the steps
There are a number of steps we’ll go through to build the app:

1. Add the Drink class and image resources.
The class contains details of the available drinks, and we’ll use images of the drinks and Starbuzz
logo in the app.

2. Create TopLevelActivity and its layout.
This is the entry point for the app. It needs to display the Starbuzz logo and include a navigational
list of options. TopLevelActivity needs to launch DrinkCategoryActivity when the
Drink option is clicked.

Uploaded By: anonymousSTUDENTS-HUB.com

3. Create DrinkCategoryActivity.
DrinkCategoryActivity contains a list of all the drinks that are available. When a drink is
clicked, it needs to launch DrinkCategory.

4. Create DrinkActivity and its layout.
DrinkActivity displays details of the drink the user clicked on in
DrinkCategoryActivity.

Create the project

You create the project for the app in exactly the same way you did for the previous chapters.

Uploaded By: anonymousSTUDENTS-HUB.com

Create a new Android project for an application named “Starbuzz” with a package name of
com.hfad.starbuzz. The minimum SDK should be API 15. You’ll need an activity called
“TopLevelActivity” and a layout called “activity_top_level”.

The Drink class

We’ll start by adding the Drink class to the app. Drink.java is a pure Java class file that activities will
get their drink data from. The class defines an array of three drinks, where each drink is composed of a
name, description, and image resource ID. Add the class to the com.hfad.starbuzz package in the
app/src/main/java folder in your project, giving it a class name of Drink. Then save your changes.

The image files
The Drink code includes three image resources for its drinks with ids of R.drawable.latte,

Uploaded By: anonymousSTUDENTS-HUB.com

R.drawable.cappuccino and R.drawable.filter. These are so we can show the user
images of the drinks. R.drawable.latte refers to an image file called latte,
R.drawable.cappuccino refers to an image file called cappuccino, and R.drawable.filter
refers to a file called filter.

We need to add these image files to the project, along with an image of the Starbuzz logo so that we can
use it in our top-level activity. To do this, download the files starbuzz-logo.png, cappuccino. png,
filter.png, and latte.png from https://tinyurl.com/HeadFirstAndroid. Then drag the file to the
app/src/main/res/drawable folder in your Starbuzz project.

When you add images to your apps, you need to decide whether to display different images for different
density screens. In our case, we’re going to use the same resolution image irrespective of screen density,
so we’ve put a single copy of the images in one folder. If you decide to cater for different screen densities
in your own apps, put images for the different screen densities in the appropriate drawable* folders as
described in Chapter 5.

When you save images to your project, Android assigns each of them an ID in the form
R.drawable.image_name. As an example, the file latte.png is given an ID of R.drawable.
latte, which matches the value of the latte’s image resource ID in the Drink class.

Now that we’ve added the Drink class and image resources to the project, let’s work on the activities.
We’ll start with the top-level activity.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

The top-level layout contains an image and a list

When we created our project, we called our default activity TopLevelActivity.java, and its layout
activity_top_level.xml. We need to change the layout so it displays an image and a list.

You saw how to display images in Chapter 5 using an image view. In this case, we need an image view
that displays the Starbuzz logo, so we’ll create one that uses starbuzz_logo.png as its source.

Here’s the code to define the image view in the layout:

When you use an image view in your app, you use the android:contentDescription attribute to
add a description of the image; this makes your app more accessible. In our case, we’re using a string
value of "@string/starbuzz_logo". Add this to strings.xml:

<resources>
 ...
 <string name="starbuzz_logo">Starbuzz logo</string>
</resources>

Uploaded By: anonymousSTUDENTS-HUB.com

That’s everything we need to add the image to the layout, so let’s move on to the list.

Use a list view to display the list of options
As we said earlier, a list view allows you to display a vertical list of data that you can then use to navigate
through the app. We’re going to add a list view to the layout that displays the list of options, and later on
we’ll use it to navigate to a different activity.

How to define a list view in XML
You add a list view to your layout using the <ListView> element. You then add an array of entries to
the list view by using the android:entries attribute and setting it to an array of strings. The array of
strings then gets displayed in the list view as a list of text views.

Here’s how you add a list view to your layout that gets its values from an array of strings called options:

Uploaded By: anonymousSTUDENTS-HUB.com

You define the array in exactly the same way that you did earlier in the book, by adding it to strings.xml
like this:

<resources>
 ...
 <string-array name="options">
 <item>Drinks</item>
 <item>Food</item>
 <item>Stores</item>
 </string-array>
</resources>

This populates the list view with three values: Drinks, Food, and Stores.

The full top-level layout code

Here’s our layout code in full (make sure you change your code to match ours):

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive
Make sure you’ve applied all the changes to activity_top_level.xml, and also updated strings.xml.
When you run the app, you should see the Starbuzz logo displayed on the device screen with the list view
underneath it. The list view displays the three values from the options array.

If you click on any of the options in the list, nothing happens, as we haven’t told the list view to respond
to clicks yet. The next thing we’ll do is see how you get list views to respond to clicks and launch a
second activity.

Get ListViews to respond to clicks with a Listener
You make the items in a list view respond to clicks by implementing an event listener.

Uploaded By: anonymousSTUDENTS-HUB.com

An event listener allows you to listen for events that take place in your app, such as when views get
clicked, when they receive or lose the focus, or when the user presses a hardware key on their device. By
implementing an event listener, you can tell when your user performs a particular action — such as
clicking on an item in a list view — and respond to it.

OnItemClickListener listens for item clicks
When you want to get items in a list view to respond to clicks, you need to create an
OnItemClickListener and implement its onItemClick() method. The
OnItemClickListener listens for when items are clicked, and the onItemClick() method lets
you say how your activity should respond to the click. The onItemClick() method includes several
parameters that you can use to find out which item was clicked, such as a reference to the view item that
was clicked, its position in the list view (starting at 0), and the row ID of the underlying data.

We want to start DrinkCategoryActivity when the first item in the list view is clicked — the item
at position 0. If the item at position 0 is clicked, we need to create an intent to start
DrinkCategoryActivity. Here’s the code to create the listener:

Once you’ve created the listener, you need to add it to the ListView.

Set the listener to the list view

Uploaded By: anonymousSTUDENTS-HUB.com

Once you’ve created the OnClickItemListener, you need to attach it to the list view. You do this
using the ListView setOnItemClickListener() method. The method takes one argument, the
listener itself:

Adding the listener to the list view is crucial, as it’s this step that makes the listener get notified when the
user clicks on items in the list view. If you don’t do this, the items in your list view won’t be able to
respond to clicks.

You’ve now seen everything you need in order to get the TopLevelActivity list view to respond to
clicks.

What happens when you run the code
1. The onCreate() method in TopLevelActivity creates an onItemClickListener and links it

to the activity’s ListView.

2. When the user clicks on an item in the list view, the onItemClickListener’s onItemClick()
method gets called.
If the Drinks item is clicked, the onItemClickListener creates an intent to start
DrinkCategoryActivity.

The full TopLevelActivity code

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s the complete code for TopLevelActivity.java. Replace the code the wizard created for
you with the code below, then save your changes:

Where we’ve got to

So far we’ve added Drink.java to our app and created TopLevelActivity and its layout.

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing we need to do is create DrinkCategoryActivity so that it gets launched when the
user clicks on the Drinks option in TopLevelActivity.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why did we have to create an event listener to get items in the ListView to respond to clicks? Couldn’t we have just used its
android:onClick attribute in the layout code?

A: A: You can only use the android:onClick attribute in activity layouts for buttons, or any views that are subclasses of Button such as
CheckBoxes and RadioButtons.
The ListView class isn’t a subclass of Button, so using the android:onClick attribute won’t work. That’s why you have to implement
your own listener.

Uploaded By: anonymousSTUDENTS-HUB.com

EXERCISE

Here’s some activity code from a separate project. When the user clicks on an item in a list view, the code is
meant to display the text of that item in a text view. Does the code do what it’s meant to? If not, why not?
The text view has an ID of text_view and the list view has an ID of list_view.

package com.hfad.ch06_ex;

import android.app.Activity;
import android.os.Bundle;
import android.widget.AdapterView;
import android.widget.ListView;
import android.widget.TextView;
import android.view.View;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 final TextView textView = (TextView) findViewById(R.id.text_view);
 AdapterView.OnItemClickListener itemClickListener =
 new AdapterView.OnItemClickListener(){
 public void onItemClick(AdapterView<?> listView,
 View v,
 int position,
 long id) {
 TextView item = (TextView) v;
 textView.setText(item.getText());
 }
 };
 ListView listView = (ListView) findViewById(R.id.list_view);
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

EXERCISE: SOLUTION

Here’s some activity code from a separate project. When the user clicks on an item in a list view, the code is
meant to display the text of that item in a text view. Does the code do what it’s meant to? If not, why not?
The text view has an ID of text_view and the list view has an ID of list_view.

A category activity displays the data for a single category

Uploaded By: anonymousSTUDENTS-HUB.com

As we said earlier, DrinkCategoryActivity is an example of a category activity. A category
activity is one that shows the data that belongs to a particular category, often in a list. You then use the
category activity to navigate to details of the data.

We’re going to use DrinkCategoryActivity to display a list of drinks. When the user clicks on one
of the drinks, we’ll show them the details of that drink.

To do this, we’ll create an activity containing a single list view that displays a list of all the drinks. As our
activity only needs to contain a single list view with no other GUI components, we can use a special kind
of activity called a list activity. So what’s a list activity?

A ListActivity is an activity that contains only a list

A list activity is type of activity that specializes in working with a list. It’s automatically bound to a list view,
so you don’t need to create one yourself. Here’s what one looks like:

Uploaded By: anonymousSTUDENTS-HUB.com

There are a couple of major advantages in using a list activity to display categories of data:

You don’t need to create your own layout.
List activities define their own layout programmatically, so there’s no XML layout for you to create or
maintain. The layout the list activity generates includes a single list view. You access this list view in
your activity code using the list activity’s getListView() method. You need this to specify what
data should be displayed in the list view.
You don’t have to implement your own event listener.
The ListActivity class already implements an event listener that listens for when items in the list
view are clicked. Instead of creating your own event listener and binding it to the list view, you just
need to implement the list activity’s onListItemClick() method. This makes it easier to get your
activity to respond when the user clicks on items in the list view. You’ll see this in action later on when
we use the onListItemClick() method to start another activity.

A ListActivity is a type of Activity that specializes in working with a ListView. It has a default
layout that contains the ListView.

Category activities generally need to display a single list view you can use to navigate to detail records, so
list activities are good for this situation.

So what does the list activity code look like?

How to create a list activity
Here’s what the basic code looks like to create a list activity. As you can see, it’s very similar to creating
an activity. Use the New Activity wizard to create a new activity in your project called
DrinkCategoryActivity, then replace the contents of DrinkCategoryActivity.java with the code
below:

NOTE

Android Studio may automatically generate a layout file for you. We won’t use it because list activities define
their own layout.

Uploaded By: anonymousSTUDENTS-HUB.com

The above code creates a basic list activity called DrinkCategoryActivity. Because it’s a list
activity, it needs to extend the ListActivity class rather than Activity.

The other difference is that you don’t need to use the setContentView() method to say what layout
the list activity should use. This is because list activities define their own layouts so you don’t need to
create one yourself. The list activity handles this for you.

Just as with normal activities, list activities need to be registered in the AndroidManifest.xml file. This is
so they can be used within your app. When you create your activity, Android Studio does this for you.

Once you’ve created a list activity, you need to populate the list with data. Let’s see how.

android:entries works for static array data held in strings.xml

When we created our first activity TopLevelActivity, we could bind data to the list view using the
android:entries attribute in our layout XML. This worked because the data was held as a static
string array resource. The array was described in strings.xml, so we could easily refer to it using

android:entries="@array/options"

where options is the name of the string array.

Using android:entries only works if the data is a static array in strings.xml. But what if it isn’t?
What if the data is held in an array you’ve programmatically created in Java code, or held in a database?
In this case, the android:entries attribute won’t work.

Uploaded By: anonymousSTUDENTS-HUB.com

If you need to bind your list view to data held in something other than a string array resource, you need to
take a different approach; you need to write activity code to bind the data. In our case, we need to bind
our list view to the drinks array in the Drink class.

For nonstatic data, use an adapter
If you need to display data in a list view that comes from a nonstatic source such as a Java array or
database, you need to use an adapter. An adapter acts as a bridge between the data source and the list
view:

There are several different types of adapter. For now, we’re going to focus on array adapters.

Connect list views to arrays with an array adapter
An array adapter is a type of adapter that’s used to bind arrays to views. You can use it with any subclass
of the AdapterView class, which means you can use it with both list views and spinners.

In our case, we’re going to use an array adapter to display data from the Drink.drinks array in the
list view.

Uploaded By: anonymousSTUDENTS-HUB.com

You use an array adapter by initializing the array adapter and attaching it to the list view.

An adapter acts as a bridge between a View and a data source. An ArrayAdapter is a type of
adapter that specializes in working with arrays.

To initialize the array adapter, you first specify what type of data is contained in the array you want to bind
to the list view. You then pass it three parameters: a Context (usually the current activity), a layout
resource that specifies how to display each item in the array, and the array itself.

Here’s the code to create an array adapter that displays Drink data from the Drink.drinks array:

You then attach the array adapter to the list view using the ListView setAdapter() method:

ListView listView = getListView();
listView.setAdapter(listAdapter);

Behind the scenes, the array adapter takes each item in the array, converts it to a String using its
toString() method and puts each result into a text view. It then displays each text view as a single
row in the list view.

Add the array adapter to DrinkCategoryActivity

We’ll change the DrinkCategoryActivity.java code so that the list view uses an array adapter to get
drinks data from the Drink class. We’ll put the code in the onCreate() method so that the list view
gets populated when the activity gets created.

Here’s the full code for the activity (update your code to reflect ours, then save your changes):

Uploaded By: anonymousSTUDENTS-HUB.com

These are all the changes that you need to get your list view to display a list of the drinks from the Drink
class.

What happens when you run the code
1. When the user clicks on the Drinks option, DrinkCategoryActivity is launched.

As DrinkCategoryActivity is a list activity, it has a default layout containing a single
ListView object. This layout is created behind the scenes in Java code, so it’s not defined by
XML.

2. DrinkCategoryActivity creates an ArrayAdapter<Drink>, an array adapter that deals
with arrays of Drink objects.

Uploaded By: anonymousSTUDENTS-HUB.com

3. The array adapter’s source is the drinks array in the Drink class.
It uses the Drink.toString() method to return the name of each drink.

4. DrinkCategoryActivity makes the ListView use the array adapter using the setAdapter()
method.
The list view uses it to display a list of the drink names.

Test drive the app
When you run the app, TopLevelActivity gets displayed as before. When you click on the Drinks
item, DrinkCategoryActivity is launched. It displays the names of all the drinks from the Drink
Java class.

App review: where we’ve got to
So far we’ve added Drink.java to our app, and created activities TopLevelActivity and
DrinkCategoryActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing we’ll do is get DrinkCategoryActivity to launch DrinkActivity, passing it
details of which drink was clicked.

Uploaded By: anonymousSTUDENTS-HUB.com

POOL PUZZLE

Your goal is to create an activity that binds a Java array of colors to a spinner. Take code snippets from the
pool and place them into the blank lines in the activity. You may not use the same snippet more than once,
and you won’t need to use all the snippets.

Note: each thing from the pool can only be used once!

 Answers in Pool Puzzle Solution.

How we handled clicks in TopLevelActivity

Earlier on in the chapter, we needed to get TopLevelActivity to react to the user clicking items in
the list view. To do that, we had to create an OnItemClickListener, implement its
onItemClick() method, and assign it to the list view:

Uploaded By: anonymousSTUDENTS-HUB.com

We had to set up an event listener in this way because list views aren’t hardwired to respond to clicks in
the way that buttons are.

So how should we get DrinkCategoryActivity to handle user clicks?

ListActivity implements an item click listener by default
There’s a significant difference between TopLevelActivity and DrinkCategoryActivity.
Whereas TopLevelActivity is a normal Activity object, DrinkCategoryActivity is a
ListActivity, a special type of activity that’s designed to work with list views.

This is significant when it comes to handling user clicks. A key difference between Activity and
ListActivity is that the ListActivity class already implements an on item click event
listener. Instead of creating your own event listener, when you use a list activity you just need to
implement the onListItemClick() method.

Pass data to an activity using the ListActivity onListItemClick() method
When you use a list activity to display categories, you’ll usually use the onListItemClick() method
to start another activity that displays details of the item the user clicked. To do this, you create an intent
that starts the second activity. You then add the ID of the item that was clicked as extra information so
that the second activity can use it when the activity starts.

In our case, we want to start DrinkActivity and pass it the ID of the drink that was selected.
DrinkActivity will then be able to use this information to display details of the right drink. Here’s the
code:

Uploaded By: anonymousSTUDENTS-HUB.com

It’s common practice to pass the ID of the item that was clicked as it’s the ID of the underlying data. If
the underlying data is an array, the ID is the index of the item in the array. If the underlying data comes
from a database, the ID is the ID of the record in the table. Passing the ID of the item in this way means
that it’s easier for the second activity to get details of the data, and then display it.

That’s everything we need to make DrinkCategoryActivity start DrinkActivity and tell it
which drink was selected. The full activity code is on the next page.

The full DrinkCategoryActivity code

Here’s the full code for DrinkCategoryActivity.java (add the new method to your code, then save your
changes):

Uploaded By: anonymousSTUDENTS-HUB.com

A detail activity displays data for a single record

As we said earlier, DrinkActivity is an example of a detail activity. A detail activity displays details
for a particular record, and you generally navigate to it from a category activity.

We’re going to use DrinkActivity to display details of the drink the user selects. The Drink class
includes the drink name, description, and image resource ID, so we’ll display this data in our layout. We’ll
include an image view for the drink image resource, and text views for the drink name and description.

Here’s our layout code. Add a new activity to your project called DrinkActivity with a layout called
activity_drink, then replace the contents of activity_drink.xml with this:

Uploaded By: anonymousSTUDENTS-HUB.com

NOTE

Make sure you create the new activity.

Once you’ve created the layout of your detail activity, we can populate its views.

Retrieve data from the intent

As you’ve seen, when you get a category activity to start a detail activity, you get items in the category
activity list view to respond to clicks. When an item is clicked, you create an intent to start the detail
activity. You pass the ID of the item the user clicked as extra information in the intent.

When the detail activity is started, the detail activity can retrieve the extra information from the intent and
use it to populate its views. In our case, we can use the information in the intent that started
DrinkActivity to retrieve details of the drink the user clicked.

When we created DrinkCategoryActivity, we added the ID of the drink the user clicked as extra
information in the intent. We gave it a label of DrinkActivity.EXTRA_DRINKNO, which we need to
define as a constant in DrinkActivity:

public static final String EXTRA_DRINKNO = "drinkNo";

Uploaded By: anonymousSTUDENTS-HUB.com

As you saw in Chapter 3, you can retrieve the intent that started an activity using the getIntent()
method. If this intent has extra information, you can use the intent’s get*() methods to retrieve it.
Here’s the code to retrieve the value of EXTRA_DRINKNO from the intent that started
DrinkActivity:

int drinkNo = (Integer)getIntent().getExtras().get(EXTRA_DRINKNO);

Once you’ve retrieved the information from the intent, you can use it to get the data you need to display in
your detail record.

In our case, we can use drinkNo to get details of the drink the user selected. drinkNo is the ID of the
drink, the index of the drink in the drinks array. This means that you can get the drink the user clicked
on using:

Drink drink = Drink.drinks[drinkNo];

This gives us a Drink object containing all the information we need to update the views attributes in the
activity:

Update the views with the data
When you update the views in your detail activity, you need to make sure that the values they display
reflect the data you’ve derived from the intent.

Our detail activity contains two text views and an image view. We need to make sure that each of these is
updated to reflect the details of the drink.

Uploaded By: anonymousSTUDENTS-HUB.com

DRINK MAGNETS

See if you can use the magnets below to populate the DrinkActivity views with the correct data.

Uploaded By: anonymousSTUDENTS-HUB.com

DRINK MAGNETS SOLUTION

See if you can use the magnets below to populate the DrinkActivity views with the correct data.

The DrinkActivity code

Here’s the code for DrinkActivity.java (replace the code the wizard gave you with the code below, then
save your changes):

Uploaded By: anonymousSTUDENTS-HUB.com

What happens when you run the app

1. When the user starts the app, it launches TopLevelActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

2. The onCreate() method in TopLevelActivity creates an onItemClickListener and links it
to the activity’s ListView.

3. When the user clicks on an item in the list view, the onItemClickListener’s onItemClick()
method gets called.
If the Drinks item was clicked, the onItemClickListener creates an intent to start
DrinkCategoryActivity.

4. DrinkCategoryActivity is a ListActivity.
The DrinkCategoryActivity list view uses an ArrayAdapter<Drink> to display a list
of drink names.

The story continues
5. When the user chooses a drink from the ListView, the onListItemClick() method gets

called.

Uploaded By: anonymousSTUDENTS-HUB.com

6. The DrinkCategoryActivity’s onListItemClick() method creates an intent to start
DrinkActivity, passing along the drink number as extra information.

7. DrinkActivity is launched.
It retrieves the drink number from the intent, and gets details for the correct drink from the Drink
class. It uses this information to update its views.

Test drive the app
When you run the app, TopLevelActivity gets displayed as before.

When you click on the Drinks item, DrinkCategoryActivity is launched. It displays all the drinks
from the Drink java class.

Uploaded By: anonymousSTUDENTS-HUB.com

When you click on one of the drinks, DrinkActivity is launched and details of the drink the user
selected are displayed.

Using these three activities, you can see how to structure your app into top-level activities, category
activities, and detail/edit activities. Later on, we’ll revisit the Starbuzz app so that you can see how you
can retrieve the drinks from a database.

Uploaded By: anonymousSTUDENTS-HUB.com

POOL PUZZLE SOLUTION

Your goal is to create an activity that binds a Java array of colors to a spinner. Take code snippets from the
pool and place them into the blank lines in the activity. You may not use the same snippet more than once,
and you won’t need to use all the snippets.

Your Android Toolbox
You’ve got Chapter 6 under your belt and now you’ve added list views and app design to your
toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

Sort your ideas for activities into top-level activities, category activities, and detail/edit activities. Use the
category activities to navigate from the top-level activities to the detail/edit activities.
Image resources go in one or more of the drawable* folders. You reference them in your layout using
@drawable/image_name. You access them in your activity code using R.drawable.
image_name.
An ImageView holds an image. Add it to your layout using <ImageView>. Use android:src to set
its source, and android:contentDescription to give it an accessible label. The equivalent
methods in Java are setImageResource() and setContentDescription().
A ListView displays items in a list. Add it to your layout using <ListView>.
Use android:entries in your layout to populate the items in your list views from an array defined in
strings.xml.
A ListActivity is an Activity that comes with a ListView. You get a reference to the
ListView using getListView().
A ListActivity has its own default layout, but you can replace it with your own.
An adapter acts as a bridge between an AdapterView and a data source. ListViews and Spinners
are both types of AdapterView.
An ArrayAdapter is an adapter that works with arrays.
Handle click events on Buttons using android:onClick in the layout code.
Handle click events on a ListView in a ListActivity by implementing the onListItemClick()
method.
Handle click events elsewhere by creating a listener and implementing its click event.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 7. Fragments: Make it Modular

You’ve seen how to create apps that work in the same way irrespective of the device they’re
running on.

But what if you want your app to look and behave differently depending on whether it’s running on a
phone or a tablet? In this chapter, we’ll show you how to make your app choose the most appropriate
layout for the device screen size. We’ll also introduce you to fragments, a way of creating modular
code components that can be reused by different activities.

Your app needs to look great on all devices
One of the great things about Android development is that you can put the exact same app on devices
with completely different screen sizes and processors, and have them run in exactly the same way. But
that doesn’t mean that they always have to look exactly the same.

On a phone:
Take a look at this image of an app on a phone. It displays a list of workouts, and when you click on one,
you are shown the details of that workout.

Uploaded By: anonymousSTUDENTS-HUB.com

On a tablet:
On a larger device, like a tablet, you have a lot more screen space available. It would be good if all the
information appeared on the same screen. On the tablet, the list of workouts only goes part-way across
the screen, and when you click on an item, the details appear on the right.

To make the phone and tablet user interfaces look different from each other, we can use separate layouts
for large devices and small devices.

Your app may need to behave differently too
It’s not enough to simply have different layouts for different devices. You also need different Java code
to run alongside the layouts so that the app can behave differently depending on the device. In our
Workout app, for instance, we need to provide one activity for tablets, and two activities for phones.

On a phone:

Uploaded By: anonymousSTUDENTS-HUB.com

On a tablet:

But that means you might duplicate code
The second activity that runs only on phones will need to insert the details of a workout into the layout.
But that code will also need to be available in the main activity for when the app is running on a tablet.
The same code needs to be run by multiple activities.

Rather than duplicate the code in the two activities, we can use fragments. So what’s a fragment?

Fragments allow you to reuse code
Fragments are like reusable components or subactivities. A fragment is used to control part of a screen,
and can be reused between screens. This means we can create a fragment for the list of workouts, and a
fragment to display the details of a single workout. These fragments can then be shared between layouts.

Uploaded By: anonymousSTUDENTS-HUB.com

A fragment has a layout
Just like an activity, a fragment has an associated layout. If you design it carefully, the Java code can be
used to control everything within the interface. If the fragment code contains all that you need to control its
layout, it greatly increases the chances that you’ll be able to reuse it elsewhere in the app.

We’re going to show you how to create and use fragments by building the Workout app.

The Workout app structure
For most of this chapter, we’re going to focus on building the version of the app that displays two
fragments alongside each other in a single activity. Here’s a breakdown of how the app is structured, and
what it does.

1. When the app gets launched, it starts activity MainActivity.
The activity uses layout activity_main.xml.

2. The activity uses two fragments, WorkoutListFragment, and WorkoutDetailFragment.
3. WorkoutListFragment displays a list of workouts.

It uses fragment_workout_list.xml as its layout.
4. WorkoutDetailFragment displays details of a workout.

It uses fragment_workout_detail.xml as its layout.
5. Both fragments get their workout data from Workout.java.

Workout.java contains an array of Workouts.

Uploaded By: anonymousSTUDENTS-HUB.com

Here are the steps
There are a number of steps we’ll go through to build the app:

1. Create the fragments.
We’ll create two fragments. WorkoutListFragment will be used to display a list of workouts,
and WorkoutDetailFragment will be used to display details of a specific workout. We’ll
display these fragments in a single activity. We’ll also add a plain old Java Workout class that the
fragments will use to get their data from.

2. Link the two fragments.
When we click on a workout in WorkoutListFragment, we want to display details of the
workout in WorkoutDetailFragment.

3. Create device-specific layouts.
Finally, we’re going to change our app so that it looks and behaves differently depending on what
sort of device it’s run on. If it’s run on a device with a large screen, the fragments will be displayed
alongside each other. If not, they’ll be displayed in separate activities.

Uploaded By: anonymousSTUDENTS-HUB.com

Create the project

Uploaded By: anonymousSTUDENTS-HUB.com

You create the project for the app in exactly the same way you did for the previous chapters.

Create a new Android project with a blank activity for an application named “Workout” with a package
name of com.hfad.workout. The minimum SDK should be at least API 17, as we’ll use this app in
the next chapter to cover areas that require API 17 or above. You’ll need to specify an activity called
“MainActivity” and a layout called “activity_main” so your code matches ours.

The Workout class

We’ll start by adding the Workout class to the app.

Workout.java is a pure Java class file that the app will get workout data from. The class defines an array
of four workouts, where each workout is composed of a name and description. Add the class to the
com.hfad. workout package in the app/src/main/java folder in your project, giving it a class name of
Workout. Then save your changes.

The data will be used by the fragment WorkoutDetailFragment. We’ll create this fragment next.

Uploaded By: anonymousSTUDENTS-HUB.com

How to add a fragment to your project

We’re going to add a new fragment called WorkoutDetailFragment to the project to display details
of a single workout. You add a new fragment in a similar way to how you add a new activity. In Android
Studio, go to File→New...→Fragment→Fragment (Blank).

You will be asked to choose options for your new fragment. Give the fragment a name of
“WorkoutDetailFragment”, tick the option to create layout XML for it, and give the fragment layout a
name of “fragment_workout_detail”. Untick the options to include fragment factory methods and interface
callbacks; these options generate extra code which you don’t need to use. When you’re done, click on
the Finish button.

NOTE

We suggest looking at the extra code Android generates for you after’ve finished this book. You might find
some of it useful depending on what you want to do.

When you click on the Finish button, Android Studio creates a new fragment file called
WorkoutDetailFragment.java in the app/src/main/java folder, and a new layout file called
fragment_workout_detail.xml in the app/src/res/layout folder.

Fragment layout code looks just like activity layout code
We’ll start by updating the layout code for the fragment. Open the file fragment_workout_detail.xml in
the app/src/res/layout folder, and replace its contents with the code below:

Uploaded By: anonymousSTUDENTS-HUB.com

As you can see, fragment layout code looks just like activity layout code. This is a very simple layout
made up of two text views: a text view with large text to display the name of the workout, and a text view
with smaller text to display the workout description. When you write your own fragment layout code, you
can use any of the views and layouts you’ve already been using to write activity layout code.

Now that we’ve created a layout for our fragment to use, we’ll look at the fragment code itself.

What fragment code looks like

The code for the fragment is held in WorkoutDetailFragment.java in the app/src/main/java folder.
Open this file now.

As you’d expect, Android Studio has generated Java code for you. Replace the code that Android
Studio has generated with the code below:

Uploaded By: anonymousSTUDENTS-HUB.com

The above code creates a basic fragment. As you can see, it’s a class that extends the
android.app.Fragment class. All fragments must subclass the Fragment class.

Our fragment also implements the onCreateView() method. The onCreateView() method gets
called each time Android needs the fragment’s layout, and it’s where you say which layout the fragment
uses. This method is optional, but as you need to implement it whenever you’re creating a fragment with a
layout, you’ll need to implement it almost every time you create a fragment.

You specify the fragment’s layout using the code

inflater.inflate(R.layout.fragment_workout_detail,
 container, false);

This is the fragment equivalent of an activity’s setContentView() method. Just like
setContentView(), you use it to say what layout the fragment should use. The container argument is
passed by the activity that uses the fragment. It’s the ViewGroup in the activity that the fragment layout
needs to be inserted into.

WATCH IT!

All fragments must have a public no-argument constructor.

This is because Android uses it to reinstantiate the fragment when needed, and if it’s not there, you’ll get a
runtime exception.

In practice, you only need to add one to your fragment code if you include another constructor with one or
more arguments. This is because if a Java class contains no constructors, the Java compiler automatically
adds a public no-argument constructor for you.

Adding a fragment to an activity’s layout
When we created our project, Android Studio created an activity for us called MainActivity.java, and a
layout called activity_main.xml. We’re going to change the layout so that it contains the fragment we just
created.

Uploaded By: anonymousSTUDENTS-HUB.com

To do this, open the activity_main.xml file in the app/src/main/res/layout folder, and replace the code
Android Studio has given you with the code below:

As you can see, the layout contains one element, <fragment>. You use the <fragment> element to
add a fragment to an activity’s layout. You specify which fragment using the class attribute and setting it
to the fully qualified name of the fragment. In our case, we’re going to create a fragment called
WorkoutDetailFragment in the com.hfad.workout package, so we use

Uploaded By: anonymousSTUDENTS-HUB.com

class="com.hfad.workout.WorkoutDetailFragment"

We’ve created a fragment and got the activity to display it in its layout. So far, though, the fragment
doesn’t actually do anything. What we need to do next is get the activity to say which workout to display,
and get the fragment to populate its views with details of the workout.

Passing the workout ID to the fragment

When you have an activity that uses a fragment, the activity will usually need to talk to it in some way. As
an example, if you have a fragment that displays detail records, you need the activity to tell the fragment
which record to display details of.

In our case, we need WorkoutDetailFragment to display details of a particular workout. To do
this, we’ll add a simple setter method to the fragment that sets the value of the workout ID. The activity
will then be able to use this method to set the workout ID. Later on, we’ll use the workout ID to update
the fragment’s views.

Here’s the revised code for WorkoutDetailFragment (update your code with our changes):

The activity needs to call the fragment’s setWorkout() method and pass it the ID of a particular
workout. Let’s see how.

Get the activity to set the workout ID
Before an activity can talk to its fragment, the activity first needs to get a reference to it. To get a
reference to the fragment, you first get a reference to the activity’s fragment manager using the activity’s

Uploaded By: anonymousSTUDENTS-HUB.com

getFragmentManager() method. You then use its findFragmentById() method to get a
reference to the fragment:

The fragment manager is used to manage any fragments used by the activity. You use it to get references
to fragments, and perform fragment transactions. You’ll see more about this later in the chapter.

Here’s our full activity code (replace the existing code in MainActivity.java with the code shown here):

As you can see, we’ve got a reference to the fragment after calling setContentView(). This is really
important, because before this, the fragment won’t have been created.

We’re using the code frag.setWorkout(1) to tell fragment which workout we want it to display
details of. This is the custom method that we created in our fragment. For now, we’re just setting the ID
of the workout in the activity’s onCreate() method so that we can see some data. Later on, we’ll
change it so that the user can select which workout they want to see.

The next thing we need to do is get the fragment to update its views when the fragment is displayed to the
user. But before we can do this, we need to understand the fragment’s lifecycle.

Activity states revisited

Just like an activity, a fragment has a number of key lifecycle methods that get called at particular times.
It’s important to know what these are and when they get called so your fragment works in just the way

Uploaded By: anonymousSTUDENTS-HUB.com

you want.

Fragments are contained within and controlled by activities, so the fragment lifecycle is closely linked to
the activity lifecycle. Here’s a reminder of the different states an activity goes through, and on the next
page we’ll show you how these relate to the fragment.

The fragment lifecycle

Uploaded By: anonymousSTUDENTS-HUB.com

A fragment’s lifecycle is very similar to an activity’s, but it has a few extra steps. This is because it needs
to interact with the lifecycle of the activity that contains it. Here are the fragment lifecycle methods, along
with where they fit in with the different activity states.

Your fragment inherits the lifecycle methods

As you saw earlier, your fragment extends the Android fragment class. This class gives your fragment
access to the fragment lifecycle methods.

Uploaded By: anonymousSTUDENTS-HUB.com

Even though fragments have a lot in common with activities, the Fragment class doesn’t extend the
Activity class. This means that some methods that are available to activities aren’t available to
fragments.

Note that the Fragment class doesn’t implement the Context class. Unlike an activity, a fragment isn’t
a type of context and therefore doesn’t have direct access to global information about the application
environment. Instead, fragments must access this information using the context of other objects such as its
parent activity.

Set the view’s values in the fragment’s onStart() method
We need to get WorkoutDetailFragment to update its views with details of the workout. We need
to do this when the activity is started, so we’ll use the fragment’s onStart() method. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

As we said on the previous page, fragments are distinct from activities, and therefore don’t have all the
methods that an activity does. Fragments don’t include a findViewById() method, for instance. To
get a reference to a fragment’s views, we first have to get a reference to the fragment’s root view using the
getView() method, and use that to find its child views.

Now that we’ve got the fragment to update its views, let’s take the app for a test drive.

You should always call up to the superclass when you implement any fragment lifecycle methods.

Test drive the app

When we run the app, details of a workout appear on the device screen.

The app looks the same as if the workout details were displayed within an activity. Because the activity is
using a fragment to display details of the workout, we can reuse the fragment in another activity if we
want to.

Uploaded By: anonymousSTUDENTS-HUB.com

What happens when you run the app
1. When the app is launched, activity MainActivity gets created.

2. MainActivity passes the workout ID to WorkoutDetailFragment in its onCreate()
method by calling the fragment’s setWorkout() method.

3. The fragment uses the value of the workout ID in its onStart() method to set the values
of its views.

Where we’ve got to
So far, we’ve created MainActivity.java, its layout activity_main. xml, the fragment
WorkoutDetailFragment.java, its layout fragment_workout_detail.xml, and the plain old Java class
file Workout.java. MainActivity uses WorkoutListFragment to display details of the workout,
and it gets the workout data from the Workout class.

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing we need to do is create the fragment WorkoutListFragment to display a list of the
workouts.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why can’t an activity get a fragment by calling the findViewById() method?

A: A: Because findViewById() always returns a View object and, surprisingly, fragments aren’t views.

Q: Q: Why isn’t findFragmentById() an activity method like findViewById() is?

A: A: That’s a good question. Fragments weren’t available in early versions of Android. It uses the fragment manager as a way to add a whole
bunch of useful code for managing fragments, without having to pack lots of extra code into the activity base class.

Q: Q: Why don’t fragments have a findViewById() method?

A: A: Because fragments aren’t views or activities. Instead, you need to use the fragment’s getView() method to get a reference to the
fragment’s root view, and then call the view’s findViewById() method to get its child views.

Q: Q: Activities need to be registered in AndroidManifest.xml so that the app can use them. Do fragments?

A: A: No. Activities need to be registered in AndroidManifest.xml, but fragments don’t.

We need to create a fragment with a list

Now that we’ve got WorkoutDetailFragment working, we need to create a second fragment that
contains a list of the different workouts. We’ll then be able to use the fragments to create different user
interfaces for phones and tablets.

Uploaded By: anonymousSTUDENTS-HUB.com

You’ve already seen how to add a list view to an activity. We can create a fragment that contains a single
list view, and then update it with the names of the workouts.

He’s right. We can use a type of fragment called a ListFragment.

We’ll look at this on the next page.

A ListFragment is a fragment that contains only a list
A list fragment is type of fragment that specializes in working with a list. Just like a list activity, it’s
automatically bound to a list view, so you don’t need to create one yourself. Here’s what one looks like:

Uploaded By: anonymousSTUDENTS-HUB.com

A ListFragment is a type of Fragment that’s specializes in working with a ListView. It has a
default layout that contains the ListView.

Just as with a list activity, there are are a couple of major advantages in using a list fragment to display
categories of data:

You don’t need to create your own layout.
List fragments define their own layout programmatically, so there’s no XML layout for you to create
or maintain. The layout the list fragment generates includes a single list view. You access this list view
in your activity code using the list fragment’s getListView() method. You need this in order to
specify what data should be displayed in the list view.
You don’t have to implement your own event listener.
The ListFragment class is registered as a listener on the list view, and listens for when items in the
list view are clicked. You use the list fragment’s onListItemClick() method to get fragment to
respond to clicks. You’ll see this in action later on.

So what does the list fragment code look like?

Uploaded By: anonymousSTUDENTS-HUB.com

How to create a list fragment

You add a list fragment to your project in the same way you add a normal fragment. Go to
File→New...→Fragment→Fragment (Blank). Give the fragment a name of “WorkoutListFragment”, and
then untick the options to create layout XML, and also the options to include fragment factory methods
and interface callbacks. List fragments define their own layouts programmatically, so you don’t need
Android Studio to create one for you. When you click on the Finish button, Android Studio creates a
new list fragment for you in a file called WorkoutListFragment.java in the app/src/main/java folder.

Here’s what the basic code looks like to create a list fragment. As you can see, it’s very similar to that of
a normal fragment. Replace the code in WorkoutListFragment with the code below:

The above code creates a basic list fragment called WorkoutListFragment. As it’s a list fragment, it
needs to extend the ListFragment class rather than Fragment.

The onCreateView() method is optional. The onCreateView() method gets called when the
fragment’s view gets created. We’re including it in our code as we want to populate the fragment’s list
view with data as soon as it gets created. If you don’t need your code to do anything at this point, you
don’t need to include the method.

Let’s see how to add data to the list view.

We’ll use an ArrayAdapter to set the values in the ListView
As mentioned in Chapter 6, you can connect data to a list view using an adapter. This is still the case
when your list view is in a fragment; ListView is a subclass of the AdapterView class, and it’s this
class that allows a view to work with adapters.

We want to supply the list view in WorkoutListFragment with an array of workout names, so we’ll
use an array adapter to bind the array to the list view.

Uploaded By: anonymousSTUDENTS-HUB.com

A Fragment isn’t a type of Context
As you’ve already seen, to create an array adapter that works with a list view, you use:

ArrayAdapter<DataType> listAdapter = new ArrayAdapter<DataType>(
 context, android.R.layout.simple_list_item_1, array);

where DataType is the type of data, array is the array and context is the current context.

When we used this in an activity, we could use this to get the current context. We could do this because
an activity is a type of context — the Activity class is a subclass of the Context class.

As you saw earlier, the Fragment class isn’t a subclass of the Context class, so using this won’t
work. Instead, you need to get the current context in some other way. If you’re using the adapter in the
fragment’s onCreateView() method as we are here, you can use the LayoutInflator object’s
getContext() method to get the context instead:

Once you’ve created the adapter, you bind it to the ListView using the fragment’s
setListAdapter() method:

setListAdapter(listAdapter);

Let’s use an array adapter to populate the list view in our fragment with a list of workouts.

The updated WorkoutListFragment code

We’ve updated our WorkoutListFragment.java code so that it populates the list view with the names of
the workouts. Apply the changes to your code, then save your changes:

Uploaded By: anonymousSTUDENTS-HUB.com

Now that the WorkoutListFragment contains a list of workouts, let’s see what it looks like by using
it in our activity.

Display WorkoutListFragment in the MainActivity layout
We’re going to add our new WorkoutListFragment to our MainActivity layout so that it
appears to the left of WorkoutDetailFragment. Displaying fragments side by side in this manner is a
common way of designing apps to work on tablets.

To do this, we’ll use a linear layout with a horizontal orientation. We’ll use layout weights to control how
much horizontal space each fragment should take up.

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s the code below (update your version of activity_main.xml to reflect our changes):

Let’s see what the app now looks like.

Test drive the app
When we run the app, a list of the workouts appears in a list on the left of the screen, and details of a
single workout appears on the right. We hardcoded which workout should appear in our
MainActivity.java code, so no matter which workout the user clicks on, details of the Core Agony
workout will be displayed.

Uploaded By: anonymousSTUDENTS-HUB.com

We need to get WorkoutDetailFragment to respond to clicks in
WorkoutListFragment
Here’s a reminder of where we’ve got to with our app. As you can see, we’ve now created all the
components our app needs:

Uploaded By: anonymousSTUDENTS-HUB.com

We’re not finished coding these components though. Instead of displaying details of a hardcoded workout
in WorkoutDetailFragment, we need to get it to display details of the workout the user clicks on in
WorkoutListFragment.

Wiring up the list to the detail

There are a few ways that we can make the detail change when an item is clicked on the list. We’ll do
something like this:

1. Add code to WorkoutListFragment that waits for a workout to be clicked.
2. When that code runs, we’ll call some code in MainActivity.java that...
3. ...will change the details in the detail fragment.

We don’t want to write code in WorkoutListFragment that talks directly to
WorkoutDetailFragment. Can you think why?

The answer is reuse. We want our fragments to know as little as possible about the environment that
contains it. The more a fragment needs to know about the activity using it, the less reusable it is.

Uploaded By: anonymousSTUDENTS-HUB.com

We need to use an interface to decouple the fragment from the activity.

We need to decouple the fragment with an interface
We have two objects that need to talk to each other — the fragment and the activity — and we want
them to talk without one side knowing too much about the other. The way we do that in Java is with an
interface. When we define an interface, we’re saying what the minimum requirements are for one
object to talk usefully to another. It means that we’ll be able to get the fragment to talk to any kind of
activity, so long as that activity implements the interface.

We’re going to create an interface called WorkoutListListener, that looks like this:

interface WorkoutListListener {
 void itemClicked(long id);
};

So long as an activity implements this interface, we’ll be able to tell it that an item on the list fragment has
been clicked. This is what will happen at runtime:

1. The WorkoutListListener will tell the fragment that it wants to listen.
2. A user will click on a workout in the list.
3. The onListItemClicked() method in the list-fragment will be called.
4. That method will then call the WorkoutListListener’s itemClicked() method with the

ID of the workout that was clicked

But when will the activity say that it’s listening?
When will the activity tell the fragment that it’s ready to receive updates about what item’s been clicked?
If you look back at the fragment lifecycle, you’ll see that when the fragment is attached to the activity, the
fragment’s onAttach() method is called with the value of the activity:

@Override
public void onAttach(Activity activity) {
 ...
}

We can use this method to register the activity with the fragment. Let’s take a look at the code.

First, add the interface to the list fragment

We’ve updated our WorkoutListFragment.java code to add a listener (apply the changes to your code,
then save your work):

Uploaded By: anonymousSTUDENTS-HUB.com

Then make the activity implement the interface
Now we need to make MainActivity.java implement the WorkoutListListener interface we just
created. Update your code with our changes below:

Uploaded By: anonymousSTUDENTS-HUB.com

When an item is clicked in the fragment, the itemClicked() method in the activity will be called. We
can put code in this method to show the details of the workout that’s just been selected.

But how do we update the workout details?
The WorkoutDetailFragment updates its views when the fragment is started. But once the fragment
is displayed on screen, how do we get the fragment to update the details?

You might be thinking that we could play with the fragment’s lifecycle so that we get it to update. Instead,
we’ll replace the detail fragment with a brand-new detail fragment, each time we want its text to
change.

There’s a really good reason why...

You want fragments to work with the back button

Suppose a user clicks on one workout, then a second workout. When they click on the back button,
they’re going to expect to be returned back to the first workout they chose.

Uploaded By: anonymousSTUDENTS-HUB.com

In every app we’ve built so far, the back button has returned the user to the previous activity. Now that
we’re using fragments, we need to understand what happens when you click the back button.

Welcome to the back stack
The back stack is the list of places that you’ve visited on the device. Each place is a transaction on the
back stack.

A lot of transactions move you from one activity to another:

So when you go to a new activity, a transaction to do that is recorded on the back stack. If ever you
press the back button, that transaction is reversed, and you’re returned to the activity you were at before.

But back stack transactions don’t have to be activities. They can just be changes to the fragments on the
screen:

Transaction: Replace the 'Strength and length' detail fragment with a 'Core
agony' fragment
Transaction: Replace the 'Core agony' fragment with 'The wimp special'

That means that fragment changes can be undone with the back button, just like activity changes can.

Don’t update — instead, replace

Instead of updating the views in WorkoutDetailFragment, we will replace it with a new instance of
WorkoutDetailFragment set up to display details of the next workout that’s been selected. That
way, we can store the fragment replacement inside a back stack transaction, and the user will be unable
to undo the change by hitting the back button. But how do we replace one fragment with another?

We’ll need to begin by making a change in the activity_main.xml layout file. Instead of inserting
WorkoutDetailFragment directly, we’ll use a frame layout.

Add a fragment to an activity using <fragment> if you don’t need it to respond to changes in the
user interface. Otherwise, use a <FrameLayout>.

Uploaded By: anonymousSTUDENTS-HUB.com

A frame layout is a type of view group that’s used to block out an area on the screen. You define it using
the <FrameLayout> element. You use it to display single items — in our case, a fragment. We’ll put
our fragment in a frame layout so that we can control its contents programmatically. Whenever an item in
the WorkoutListFragment list view gets clicked, we’ll replace the contents of the frame layout with
a new instance of WorkoutDetailFragment that displays details of the correct workout:

Next, we’ll write the code to add the fragment to the frame layout.

Using fragment transactions
You replace the fragment at runtime inside a fragment transaction. A fragment transaction is a set of
changes you want to apply relating to the fragment, all at the same time.

To create a fragment transaction, you start by getting a FragmentTransaction from the fragment
manager:

You then specify all the actions you want to group together in the transaction. In our case, we want to
replace the fragment in the frame layout, and we do this using the fragment’s replace() method:

where R.id.fragment_container is the ID of the container containing the fragment. You may also
add a fragment to a container using the add() method, or remove a fragment using the remove()
method:

Uploaded By: anonymousSTUDENTS-HUB.com

You can use the setTransition() method to say what sort of transition animation you want for this
transaction.

where transition is the type of animation. Options for this are TRANSIT_FRAGMENT_CLOSE (a
fragment is being removed from the stack), TRANSIT_FRAGMENT_OPEN (a fragment is being added),
TRANSIT_FRAGMENT_FADE (the fragment should fade in and out) and TRANSIT_NONE (no
animation).

Once you’ve specified all the actions you want to take as part of the transaction, you can use the
addToBackStack() method to add the transaction to the back stack of transactions. This allows the
user to go back to a previous state of the fragment when they press the Back button. The
addToBackStack() method takes one parameter, a String name you can use to label the
transaction:

To commit the changes to the activity, you call the commit() method:

transaction.commit();

The commit() method applies the changes.

The updated MainActivity code

We want to get a new instance of WorkoutDetailFragment that displays the correct workout,
display the fragment in the activity using a fragment transaction, and then add the transaction to the back
button back stack. Here’s the full code:

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s see what happens when we run the code.

Test drive the app
When we run the app, a list of the workouts appears in a list on the left of the screen. When we click on
one of the workouts, details of that workout appear on the right. If we click on another workout and then
click on the back button, details of the workout we chose previously appear on the screen.

Uploaded By: anonymousSTUDENTS-HUB.com

The app seems to be working fine as long as you don’t rotate the screen. If you change the screen
orientation, there’s a problem. Let’s see what happens.

Rotating the device breaks the app

When you rotate the app, there’s a problem. Regardless of which workout you’ve chosen, when you
rotate the device, the app displays details of the first workout.

Uploaded By: anonymousSTUDENTS-HUB.com

When we first looked at the activity lifecycle, you saw how when you rotate the device, Android destroys
and re-creates the activity. When this happens, local variables used by the activity can get lost. If the
activity uses a fragment, the fragment gets destroyed and re-created along with the activity. This
means that any local variables used by the fragment can also lose their state.

In our WorkoutDetailFragment, we use a local variable called workoutId to store the ID of the
workout the user clicks on in the WorkoutListFragment list view. When the user rotates the device,
workoutId loses its current value and it’s set to 0 by default. The fragment then displays details of the
workout with an ID of 0 — the first workout in the list.

You deal with this problem in a fragment in a similar way to how you deal with it in an activity. You first
override the fragment’s onSaveInstanceState() method, and put the local variable whose state
you want to save in the method’s Bundle parameter:

You then retrieve the value from the Bundle in the fragment’s onCreateView() method:

We’ll show you the revised code on the next page.

The WorkoutDetailFragment code

Uploaded By: anonymousSTUDENTS-HUB.com

Phone versus tablet

There’s one more thing we want to do with our Workout app. We want to make the app behave
differently depending on whether we’re running it on a phone or a tablet.

On a tablet

Uploaded By: anonymousSTUDENTS-HUB.com

If we’re running the app on a tablet, we want it to look and behave how it does now. We want the list of
workouts and the workout details to appear side by side in the same activity. When you click on a
workout, its details appear alongside it.

On a phone
If we’re running the app on a phone, we want the app to behave differently. We want the list of workouts
to appear in one activity and take up the full screen of the device. When you click on a workout, this will
launch a second activity that displays details of the workout.

Uploaded By: anonymousSTUDENTS-HUB.com

The phone and tablet app structures
Here’s how the tablet and phone versions of the app need to work:

On a tablet
The tablet version of the app will work in the same way the app does currently:

Uploaded By: anonymousSTUDENTS-HUB.com

On a phone
Instead of using both fragments inside MainActivity, MainActivity will use
WorkoutListFragment and DetailActivity will use WorkoutDetailFragment.
MainActivity will start DetailActivity when the user clicks on a workout.

We need to get the app to look and behave differently depending on whether the app is run on a phone or
a tablet. To help us do this, let’s see how we can get our app to choose a different layout depending on
the type of device it’s running on.

Put screen-specific resources in screen-specific folders

Earlier in the book, you saw how you could get different devices to use image resources appropriate to
their screen size by putting different sized images in the different drawable folders. As an example, you
put images you want devices with high density screens to use in the drawable-hdpi folder.

You can do something similar with other resources such as layouts, menus, and values. If you want to
create multiple versions of the same resources for different screen specs, you just need to create multiple
resource folders with an appropriate name. The device will then load the resources at runtime from the
folder that’s the closest match to its screen spec.

As an example, if you want to have one layout for large screen devices, and a couple of other layouts for
other devices, you put the layout for the large device in the app/src/main/res/layout-large folder, and the
layouts for the other devices in the app/src/main/res/layout folder. When the app gets run on a device
with a large screen, the device will use the layout in the layout-large folder:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll show you all the different options you can use for your resource folder names.

The different folder options
You can put all kinds of resources (drawables or images, layouts, menus, and values) in different folders
to specify which types of device they should be used with. The screen-specific folder name can include
screen size, density, orientation and aspect ratio, each part separated by hyphens. As an example, if you
want to create a layout that will only be used by very large tablets in landscape mode, you would create a
folder called layout-xlarge-land and put the layout file in that folder. Here are the different options you
can use for the folder names:

Android decides at runtime which resources to use by looking for the best match. If there’s no exact
match, it will use resources designed for a smaller screen than the current one. If resources are only
available for screens larger than the current one, Android won’t use them and the app will crash.

Uploaded By: anonymousSTUDENTS-HUB.com

If you only want your app to work on devices with particular screen sizes, you can specify this in
AndroidManifest.xml using the <supports-screens> attribute. As an example, if you don’t
want your app to run on devices with small screens, you’d use

<supports-screens android:smallScreens="false"/>

NOTE

For more information on the settings on this page, see
https://developer.android.com/guide/practices/screens_support.html

Using the different folder names, you can create layouts that are specific for phones and tablets. Let’s
start with the tablet version of our app.

BE THE FOLDER STRUCTURE

Below you’ll see the code for an activity. You want to display one layout when it runs on devices with
large sized screens, and another layout when it runs on devices with normal sized screens. Which of
these folder structures will allow you to do that?

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/guide/practices/screens_support.html

BE THE FOLDER STRUCTURE SOLUTION

Below you’ll see the code for an activity. You want to display one layout when it runs on devices with
large sized screens, and another layout when it runs on devices with smaller sized screens. Which of
these folder structures will allow you to do that?

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ...
 }

Uploaded By: anonymousSTUDENTS-HUB.com

}

Tablets use layouts in the layout-large folder

Uploaded By: anonymousSTUDENTS-HUB.com

Getting the tablet version of our app up and running is easy — all we need to do is put our existing activity
layout file activity_main.xml into the app/src/main/res/layout-large folder. The layout in this folder will
then only be used by devices with a large screen.

If the app/src/main/res/layout-large folder doesn’t exist in your Android Studio project, you’ll need to
create it. To do this, switch to the Project view of your folder structure, highlight the app/src/main/res
folder in the folder explorer, and choose File→New...→Directory. When prompted, give the folder a
name of “layout-large”. When you click on the OK button, Android Studio will create the new
app/src/main/res/layout-large folder for you.

To copy the activity_main.xml layout file, highlight the file in the explorer, and choose the Copy
command from the Edit menu. Then highlight the new layout-large folder, and choose the Paste
command from the Edit menu. Android Studio will copy the activity_main.xml file into the
app/src/main/res/layout-large folder.

If you open the file, it should look like this:

Uploaded By: anonymousSTUDENTS-HUB.com

This layout will be used by devices with a large screen, so when the app is run on a tablet, the two
fragments will be displayed side by side. Next, let’s deal with the phone layouts.

The MainActivity phone layout
When the app runs on a phone, we want MainActivity to just display WorkoutListFragment,
and not WorkoutDetailFragment. To do this, we’ll update the code in activity_main.xml in the
app/src/main/res/layout folder so that it just contains WorkoutListFragment. Any phones that run
the app will use the layout in the layout folder, whereas any tablets will use the layout in the layout-large
folder.

To do this, open the activity_main.xml file in the app/src/main/res/layout folder, then replace the XML
with the code below:

Uploaded By: anonymousSTUDENTS-HUB.com

As MainActivity only needs to display WorkoutListFragment when it’s running on a phone,
there’s no need for us to create a separate layout that contains the <fragment> element. This is only
necessary when you need to display multiple fragments.

Note that the version of activity_main.xml in the layout folder doesn’t contain the
fragment_container frame layout, whereas the version of activity_main.xml in the layout-large
folder does. This is because only the version of activity_main.xml in the layout-large folder needs to
display WorkoutDetailFragment. Later on, we’ll be able to use this fact to figure out which layout
the app’s using on the user’s device.

The next thing we need to do is create a second activity that uses WorkoutDetailFragment.

RELAX

To get our app to look different on a phone and a tablet, we’re juggling two different layouts with
the same name.

Take the next few pages slowly, and double-check you’re updating the correct version of the layout.

Phones will use DetailActivity to display details of the workout

We’re going to create a second activity called DetailActivity. This activity will contain
WorkoutDetailFragment, and will be used by phones to display details of the workout the user
selects.

Use the Android Studio New Activity wizard to create a new blank activity called DetailActivity.java
with a layout called activity_detail.xml. This layout needs to be in the app/src/main/res/layout folder so
that any device can use it.

Uploaded By: anonymousSTUDENTS-HUB.com

The layout just needs to contain the fragment WorkoutDetailFragment. Update the code in
activity_detail.xml as follows:

As well as updating the activity_detail layout, we need to update DetailActivity itself. If the app
is running on a phone, MainActivity will need to start DetailActivity using an intent. This intent
will need to include the ID of the workout the user has selected as extra information. The
DetailActivity will then need to pass this to the WorkoutDetailFragment using its
setWorkout() method.

Uploaded By: anonymousSTUDENTS-HUB.com

POOL PUZZLE

Your job is to take code segments from the pool and place them into the blank lines in DetailActivity.java.
You may not use the same code segment more than once, and you won’t need to use all the code segments.
Your goal is to get the workout ID from the intent, and pass it to WorkoutDetailFragment.

Uploaded By: anonymousSTUDENTS-HUB.com

POOL PUZZLE SOLUTION

Your job is to take code segments from the pool and place them into the blank lines in DetailActivity.java.
You may not use the same code segment more than once, and you won’t need to use all the code segments.
Your goal is to get the workout ID from the intent, and pass it to WorkoutDetailFragment.

The full DetailActivity code
Here’s the full code for DetailActivity (replace the code Android Studio has generated for you
with the code below):

Uploaded By: anonymousSTUDENTS-HUB.com

The DetailActivity code gets the ID of the workout from the intent that started the activity. The
next thing we need to do is get MainActivity to start DetailActivity — but only if the app’s
being run on a phone.

But how can we tell?

Use layout differences to tell which layout the device is using

We want MainActivity to perform different actions when the user clicks on a workout depending on
whether the device is using activity_main.xml in the layout or layout-large folder.

If the app is running on a phone, the device will be using activity_main.xml in the layout folder. This
layout doesn’t include WorkoutDetailFragment, so if the user clicks on a workout, we want
MainActivity to start DetailActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

If the app is running on a tablet, the device will be using activity_main.xml in the layout-large folder.
This layout includes a frame layout with an ID of fragment_container that’s used to display
WorkoutDetailFragment. If the user clicks on a workout in this case, we need to display a new
instance of WorkoutDetailFragment in the fragment_container frame layout.

We can deal with both these situations in MainActivity by checking which layout the device is using.
We can tell this by looking for a view with an ID of fragment_container.

If fragment_container exists, the device must be using activity_main. xml in the layout-large
folder, so we know we have to display a new instance of WorkoutDetailFragment when the user
clicks on a workout. If fragment_container doesn’t exist, the device must be using the version of
activity_main.xml in the layout folder, so we need to start DetailActivity instead.

The revised MainActivity code
Here’s the full code for MainActivity.java (update your code with our changes):

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s see what happens when we run the app.

Test drive the app

Uploaded By: anonymousSTUDENTS-HUB.com

When you run the app on a tablet, it appears just as before. A list of the workout names appears on the
left of the screen, and when you click on one of the workouts, its details appear on the right.

When you run the app on a phone, the list of workout names appears on the screen. When you click on
one of the workouts, its details are displayed in a separate activity.

Uploaded By: anonymousSTUDENTS-HUB.com

Your Android Toolbox
You’ve got Chapter 7 under your belt and now you’ve added fragments to your toolbox.

Fragment Lifecycle Methods

Uploaded By: anonymousSTUDENTS-HUB.com

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

BULLET POINTS

A fragment is used to control part of a screen. It can be reused across multiple activities.
A fragment has an associated layout.
A fragment is a subclass of the android.app.Fragment class.
The onCreateView() method gets called each time Android needs the fragment’s layout.
Add a fragment to an activity’s layout using the <fragment> element and adding a class attribute.
The fragment lifecycle methods tie in with the states of the activity that contains the fragment.
The Fragment class doesn’t extend the Activity class or implement the Context class.
Fragments don’t have a findViewById() method. Instead, use the getView() method to get a
reference to the root view, then call the view’s findViewById() method.
A list fragment is a fragment that comes complete with a ListView. You create one by subclassing
ListFragment.
If you need to get a fragment to respond to changes in the user interface, use the <FrameLayout>
element.
Use fragment transactions to make a set of changes to an existing fragment and add to the back stack.
Make apps look different on different devices by putting separate layouts in device-appropriate folders.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

Chapter 8. Nested Fragments: Dealing with
Children

You’ve seen how using fragments in activities allow you to reuse code and make your apps
more flexible.

In this chapter, we’re going to show you how to nest one fragment inside another. You’ll see how to
use the child fragment manager to tame unruly fragment transactions. Along the way you’ll see why
knowing the differences between activities and fragments is so important.

Creating nested fragments
In Chapter 7, you saw how to create fragments, how to include them in activities, and how to connect
them together. To do this, we created a list fragment displaying a list of workouts, and a fragment
displaying details of a single workout.

It’s not just activities that can contain fragments — fragments can be nested inside other fragments. So
that you can see this in action, we’re going to add a stopwatch fragment to our workout detail fragment.

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll add a new stopwatch fragment
We’re going to add a new stopwatch fragment called StopwatchFragment.java that uses a layout called
fragment_stopwatch.xml. We’re going to base the fragment on the stopwatch activity we created back
in Chapter 4.

We already know that activities and fragments behave in similar ways, but we also know that a fragment is
a distinct type of object — a fragment is not a subclass of activity. Is there some way we could rewrite
that activity code so that it works like a fragment?

Fragments and activities have similar lifecycles...
To understand how to rewrite an activity as a fragment, we need to think a little about the similarities and
differences between them. If we looks at the lifecycles of fragments and activities, we’ll see that they’re

Uploaded By: anonymousSTUDENTS-HUB.com

very similar:

Lifecycle Method Activity? Fragment?

onAttach()

onCreate()

onCreateView()

onActivityCreated()

onStart()

onPause()

onResume()

onStop()

onDestroyView()

onRestart()

onDestroy()

onDetach()

... but the methods are slightly different
Fragment lifecycle methods are almost the same as activity lifecycle methods, but there’s one major
difference: activity lifecycle methods are protected and fragment lifecycle methods are public. And
we’ve already seen that the way fragments create a layout from a layout resource file is different.

Also, in a fragment, we can’t call methods like findViewById() directly. Instead, we need to find a
reference to a View object, and then call view.findViewById().

With these similarities and differences in mind, it’s time you started to write some code...

SHARPEN YOUR PENCIL

This is the code for StopwatchActivity we wrote earlier. You’re going to convert this code into a
fragment called StopwatchFragment. With a pencil, make the changes you need. Keep the following
things in mind:

- Instead of a layout file called activity_stopwatch.xml, it will use a layout called fragment_stopwatch.xml.

- Make sure the access restrictions on the methods are correct.

- How will you specify the layout?

- The runTimer() method won’t be able to call findViewById(), so you might want to pass a view
object into runTimer().

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL SOLUTION

This is the code for StopwatchActivity we wrote earlier. You’re going to convert this code into a
fragment called StopwatchFragment. With a pencil, make the changes you need. Keep the following
things in mind:

- Instead of a layout file called activity_stopwatch.xml, it will use a layout called fragment_stopwatch.xml.

Uploaded By: anonymousSTUDENTS-HUB.com

- Make sure the access restrictions on the methods are correct.

- How will you specify the layout?

- The runTimer() method won’t be able to call findViewById(), so you might want to pass a view
object into runTimer().

Uploaded By: anonymousSTUDENTS-HUB.com

The StopwatchFragment code
We’ll add StopwatchFragment to our Workout project so that we can use it in our app. You do this
in the same way you did in Chapter 7. Go to File→New...→Fragment→Fragment (Blank). Give the
fragment a name of “StopwatchFragment”, a layout name of “fragment_stopwatch”, and untick the
options for including fragment factory methods and interface callbacks.

When you click on the Finish button, Android Studio creates a new fragment for you in a file called
StopwatchFragment.java in the app/src/main/java folder. Replace the fragment code Android Studio
gives you with the following code (this is the code you updated in the exercise on the previous page):

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the Java code we need for our StopwatchFragment. The next thing we need to do is say
what the fragment should look like by updating the layout code Android Studio gave us.

The StopwatchFragment layout
We’ll use the same layout for StopwatchFragment as we used in our original Stopwatch app.
Replace the contents of fragment_stopwatch.xml with the code below:

Uploaded By: anonymousSTUDENTS-HUB.com

The StopwatchFragment layout uses String values
The XML code in fragment_stopwatch.xml uses string values for the text on the Start, Stop, and Reset
buttons. We need to add these to strings. xml:

Uploaded By: anonymousSTUDENTS-HUB.com

The Stopwatch fragment looks just like it did when it was an activity. The difference is that we can now
use it in other activities and fragments.

The next thing we need to do is display it when we show the user details of the workout they choose.

Adding the stopwatch fragment to WorkoutDetailFragment
We’re going to add the StopwatchFragment inside the WorkoutDetailFragment. The user
interface of MainActivity on a tablet will link together like this:

Uploaded By: anonymousSTUDENTS-HUB.com

We need to add it programmatically
You’ve seen that there are two ways of adding a fragment, using a layout file and writing Java code. If
you add a fragment to another fragment’s layout the result can be flaky, so we’re going to add the
StopwatchFragment to the WorkoutDetailFragment using Java code. That means we’re
going to do it in almost the same way that we added the WorkoutDetailFragment to the activity.
There’s just one difference which we’ll come to.

If you nest fragments inside fragments, you need to add the nested fragment programmatically.

Add a FrameLayout where the fragment should appear
As you saw in Chapter 7, to add a fragment programmatically using Java code, you add a frame layout to
your layout where you want the fragment to go.

Uploaded By: anonymousSTUDENTS-HUB.com

We want to put our StopwatchFragment in WorkoutDetailFragment underneath the workout
name and description. We’ll add a frame layout underneath the name and description text views that will
be used to contain StopwatchFragment:

Now that we’ve added the frame layout to the layout, we need to add the fragment to it in our Java code.

Then display the fragment in Java code
We want to add StopwatchFragment to the frame layout when WorkoutDetailFragment’s
view gets created. We’ll do this in a similar way to how we did in Chapter 7, by replacing the fragment
that’s displayed in the frame layout using a fragment transaction. Here’s a reminder of the code we used in
Chapter 7:

We used the above code to replace the fragment that’s displayed in an activity, but this time there’s a key
difference. Instead of replacing the fragment that’s displayed in an activity, we want to replace the

Uploaded By: anonymousSTUDENTS-HUB.com

fragment that’s displayed in a fragment. This means that we need to make a small change to how we
create the fragment transaction.

When we wanted to display a fragment in an activity, we created the fragment transaction using the
activity’s fragment manager like this:

The getFragmentManager() method gets the fragment manager associated with the fragment’s
parent activity. This means that the fragment transaction is linked to the activity.

When you want to display fragments inside another fragment, you need to use a slightly different fragment
manager. You need to use the fragment manager associated with the parent fragment instead. This
means that any fragment transactions will be linked to the parent fragment rather than the activity.

To get the fragment manager that’s associated with the parent fragment, you use the
getChildFragmentManager() method. This means that the code to begin the transaction looks
like this:

So what difference does using getChildFragmentManager() make in practice?

getFragmentManager() creates transactions at the activity lavel
Let’s first look at what would happen if our WorkoutDetailFragment used
getFragmentManager() to create the fragment transaction to display StopwatchFragment.

When someone clicks on a workout, we want the app to display the details of the workout and the
stopwatch. MainActivity creates a transaction to display WorkoutDetailFragment. If we use
getFragmentManager() to display the StopwatchFragment as well, we’ll have two
transactions on the back stack.

Beware the back button
The problem with using two transactions to display the workout is that weird things happen if the user
presses the back button.

When a user clicks on a workout, and then clicks the back button, they will expect the screen to go back
to how it looked before. But the back button simply undoes the last transaction on the back stack.
That means if we create two transactions to the workout detail and the stopwatch, if the user clicks the
back button then all that will happen is the stopwatch will be removed. They have to click it again to
remove the workout detail section.

Uploaded By: anonymousSTUDENTS-HUB.com

Nested fragments need nested transactions
The problem of having multiple transactions for nested fragments was why the child fragment manager
was created. The transactions created by the child fragment manager fit inside the main transactions. So
when we add the StopwatchFragment to the WorkoutDetailFragment using a transaction
created by getChildFragmentManager().beginTransaction(), the transactions are nested
like this:

The back stack has one transaction that contains the second transaction. When someone presses the
back button, the display-the-detail-fragment transaction is undone, and that will mean that the display-
the-stopwatch-fragment transaction is undone at the same time. When the user presses the back button,
the app behaves correctly:

Uploaded By: anonymousSTUDENTS-HUB.com

Display the fragment in its parent’s onCreateView() method
We want to add StopwatchFragment to the frame layout when WorkoutDetailFragment’s
view gets created. When WorkoutDetailFragment’s view gets created, its onCreateView()
method gets called, so we’ll add a fragment transaction to the onCreateView() method to display
StopwatchFragment. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

As you can see, the code looks almost identical to the code used to display a fragment inside an activity.
The key difference is that we’re displaying a fragment inside another fragment, so we need to use
getChildFragmentManager() instead of getFragmentManager().

We’ll show you the full code for WorkoutDetailFragment on the next page, and then see how it
runs.

THERE ARE NO DUMB QUESTIONS

Q: Q: I can see that the child fragment manager handles the case where I put one fragment inside another. But what if I put one
fragment inside another, inside another, inside another...?

A: A: The transactions will all be nested within each other, leaving just a single transaction at the activity level. So the nested set of child
transactions will be undone by a single Back button click.

The full WorkoutDetailFragment code
Here’s the full code for WorkoutDetailFragment.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
Now that you’ve added the code to display the stopwatch, let’s run the app and check that it works.

If you select one of the workouts, the workout detail appears along with the stopwatch. If you click on
the Back button, the whole screen goes back to how it looked before:

Uploaded By: anonymousSTUDENTS-HUB.com

But there’s a problem if you try to interact with the stopwatch
If you try to press one of the buttons on the stopwatch, a weird thing happens. The app crashes:

Let’s look at what went wrong.

Why does the app crash if you press a button?
When we converted the stopwatch activity into a fragment, we didn’t change any of the code relating to
the buttons. We know this code worked great when it was in an activity, so why should it cause the app
to crash in a fragment?

Here’s the error output from Android Studio. Can you see what may have caused the problem?

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s look at the StopwatchFragment layout code
In the layout code for the StopwatchFragment, we’re binding the buttons to methods in the same
way that we did for an activity, by using the android:onClick attribute to say which method should
be called when each button is clicked:

Uploaded By: anonymousSTUDENTS-HUB.com

So why should we have a problem now that we’re using a fragment?

The onClick attribute calls methods in the activity, not the fragment
There’s a big problem with using the android:onClick attribute to say which method should be
called when a view is clicked. The attribute specifies which method should be called in the current
activity. This is fine when the views are in an activity’s layout. When the views are in a fragment this
leads to problems. Instead of calling methods in the fragment, Android calls methods in the parent activity.
If it can’t find the methods in this activity, the app crashes.

The problem occurs regardless of whether the fragment is included in an activity, or nested inside another
fragment. It applies to all fragments.

Uploaded By: anonymousSTUDENTS-HUB.com

It’s not just buttons that have this problem. The android:onClick attribute can be used with any
views that are subclasses of the Button class. This includes checkboxes, radio buttons, switches, and
toggle buttons.

Now we could move the methods out of the fragment into the activity, but that approach has a major
disadvantage. It would mean that the fragment is no longer self-contained — if we wanted to reuse the
fragment in another activity, we’d need to include the code in that activity too. Instead, we’ll deal with it
in the fragment.

How to make button clicks call methods in the fragment
There are two things you need to do in order to get buttons in a fragment to call methods in the fragment
instead of the activity:

1. Remove references to android:onClick in the fragment layout.
Buttons attempt to call methods in the activity when the android:onClick attribute is used, so
these need to be removed from the fragment layout.

2. Bind the buttons to methods in the fragment by implementing an onClickListener.
This will ensure that the right methods are called when the buttons are clicked.

Let’s do this now in our StopwatchFragment.

First, remove the onClick attributes from the fragment’s layout
The first thing we’ll do is remove the android:onClick lines of code from the fragment’s layout. This
will stop Android trying to call methods in the activity when the buttons are clicked:

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing is to get the fragment to respond to button clicks.

Make the fragment implement OnClickListener
To make the buttons call methods in StopwatchFragment when they are clicked, we’ll make the
fragment implement the View.OnClickListener interface like this:

This turns StopwatchFragment into a type of View.OnClickListener so that it can respond to
when views are clicked.

You tell the fragment how to respond to clicks by implementing the View.OnClickListener

Uploaded By: anonymousSTUDENTS-HUB.com

onClick() method. This method gets called whenever a view in the fragment is clicked.

The onClick() method has a single View parameter. This is the view that the user clicks on. You can
use the View getId() method to find out which view the user clicked on, and then decide how to
react.

CODE MAGNETS

See if you can complete the StopwatchFragment onClick() method. You need to call the
onClickStart() method when the Start button is clicked, the onClickStop() method when the Stop
button is clicked, and the onClickReset() method when the Reset button is clicked.

@Override
public void onClick(View v) {

 switch (........·..................) {
 case R.id.start_button:

 onClickStart(.............);
 break;
 case R.id.stop_button:

 (..............);
 break;
 case R.id.reset_button:
 (..............);
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

CODE MAGNETS SOLUTION

See if you can complete the StopwatchFragment onClick() method. You need to call the
onClickStart() method when the Start button is clicked, the onClickStop() method when the Stop
button is clicked, and the onClickReset() method when the Reset button is clicked.

The StopwatchFragment onClick() method
Here’s the code to implement the StopwatchFragment onClick() method so that the correct
method gets called when each button is clicked:

There’s just one more thing we need to do: we need to attach the listener to the buttons in the fragment.

Attach the OnClickListener to the buttons
To make the views respond to clicks, you need to call each view’s setOnClickListener() method.
The setOnClickListener() method takes an OnClickListener object as a parameter. As

Uploaded By: anonymousSTUDENTS-HUB.com

StopwatchFragment implements the OnClickListener interface, we can use this to pass the
fragment as the OnClickListener.

As an example, here’s how you attach the OnClickListener to the Start button:

The call to each view’s setOnClickListener() method needs to be made after the fragment’s
views have been created. This means they need to go in the StopwatchFragment
onCreateView() method like this:

We’ll show you the full StopwatchFragment code on the next page.

The StopwatchFragment code
Here’s the revised code for StopwatchFragment.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s see what happens when we run the app.

Test drive the app
Now when you run the app, the buttons on the stopwatch work correctly.

Uploaded By: anonymousSTUDENTS-HUB.com

But there’s a problem when you rotate the device
If you start the stopwatch and then rotate the device, something strange happens. The stopwatch is reset
to 0:

We’ve seen before that changing the screen orientation can reset the views. So what happens to
fragments when you change the orientation?

Rotating the device re-creates the activity
As you already know, when you’re running an app and rotate the device, the activity that’s running gets
destroyed and re-created. All variables in the activity code are set back to their default values; if you want
to save these values before the activity’s destroyed, you need to use the activity’s
onSaveInstanceState() method.

But what if the activity contains a fragment? You’ve already seen that the activity and fragment lifecycles

Uploaded By: anonymousSTUDENTS-HUB.com

are closely related, but what happens to the fragment when you rotate the device?

What happens to the fragment when you rotate the device
1. An activity contains a fragment.

2. When the user rotates the device, the activity is destroyed along with the fragment.

3. The activity is re-created and its onCreate() method is called.
The onCreate() method includes a call to setContentView().

4. When the activity’s setContentView() method runs, it reads the activity’s layout and
replays its fragment transactions.
The fragment is re-created in line with its latest transaction.

When you rotate the device, the fragment should go back to the same state it was in before the device
was rotated. So why, in our case, has the stopwatch been reset? To get some clues, let’s look at the

Uploaded By: anonymousSTUDENTS-HUB.com

WorkoutDetailFragment onCreateView() method.

onCreateView() runs AFTER the transactions have been replayed
The onCreateView() method runs after the activity has replayed all of the activity’s fragment
transactions. Here’s the method. Can you see why the stopwatch gets reset to 0 seconds when the device
is rotated?

The onCreateView() method includes a fragment transaction that replaces the stopwatch fragment
with a brand-new one. This means that two things happen:

1. The activity replays its fragments transactions, putting the stopwatch fragment in the state it was in
before the device was rotated.

2. The onCreateView() method gets rid of the stopwatch fragment the activity reinstated, and
replaces it with a brand-new one. As it’s a new version of the fragment, the stopwatch is reset to
0.

To stop this from happening, we need to make sure we only replace the fragment if the
savedInstanceState Bundle is null. This will mean that a brand-new StopwatchFragment is

Uploaded By: anonymousSTUDENTS-HUB.com

only displayed when the activity is first created.

The WorkoutDetailFragment code
Here’s the full code for WorkoutDetailFragment.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s see what happens when we run the code.

Test drive the app
Run the app, start the stopwatch, then rotate the device. Let’s see what happens to the stopwatch.

Uploaded By: anonymousSTUDENTS-HUB.com

The stopwatch keeps going. Even though rotating the device means that the activity is destroyed, the
fragment transactions replay successfully. We’re no longer replacing StopwatchFragment with a
brand-new fragment.

THERE ARE NO DUMB QUESTIONS

Q: Q: If I use the android:onClick attribute in my fragment layout code, will Android really try to call a method in my activity?

A: A: Yes, it will. Rather than use the android:onClick attribute to get views to respond to clicks, implement an OnClickListener instead.

Q: Q: Does this apply to nested fragments, or fragments in general?

A: A: It’s common behavior with all fragments, irrespective of whether they’re nested inside another fragment.

Q: Q: Should I use fragments in my own apps?

A: A: That depends on your app and what you want to achieve. One of the major benefits of using fragments is that you can use them to
support a wide range of different screen sizes. You can, say, choose to display fragments side by side on tablets and on separate screens on
smaller devices. You’ll also see some more ways in which using fragments can be useful in the next couple of chapters...

BE THE FRAGMENT

Below are two pieces of fragment layout code, and on the next page there are two pieces of fragment
Java code. Your job is to play like you’re the fragment and say which combination will display a
message when the switch in the layout is on.

Uploaded By: anonymousSTUDENTS-HUB.com

BE THE FRAGMENT SOLUTION

Below are two pieces of fragment layout code, and on the next page there are two pieces of fragment
Java code. Your job is to play like you’re the fragment and say which combination will display a
message when the switch in the layout is on.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Your Android Toolbox
You’ve got Chapter 8 under your belt and now you’ve added nested fragments to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

Fragments can contain other fragments.
If you’re nesting a fragment in another fragment, you need to add the nested fragment programmatically
in Java code.
When you perform transactions on a nested fragment, use getChildFragmentManager() to create
the transaction.
If you use the android:onClick attribute in a fragment, Android will look for a method of that name
in the fragment’s parent activity.
Instead of using the android:onClick attribute in a fragment, make the fragment implement the
View.OnClickListener interface and implement its onClick() method.
When the device configuration changes, the activity and its fragments get destroyed. When the activity
is re-created, it replays its fragment transactions in the onCreate() method’s call to
setContentView().
The fragment’s onCreateView() method runs after the activity has replayed its fragment
transactions.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 9. Action Bars: Taking Shortcuts

Everybody likes a shortcut.

And in this chapter you’ll see how to add shortcuts to your apps using action bars. We’ll show you how
to start other activities by adding action items to your action bar, how to share content with other apps
using the share action provider, and how to navigate up your app’s hierarchy by implementing the
action bar’s Up button. Along the way, you’ll see how to give your app a consistent look and feel using
themes, and introduce you to the Android support library package.

Great apps have a clear structure
Back in Chapter 6, we looked at ways of structuring an app to create the best user experience.
Remember that when you create an app, you will have three different types of screen:

Top-level screens
This is usually the first activity in your app that your user sees.

Category screens
Category screens show the data that belongs to a particular category, often in a list. They allow the user
to navigate to detail/edit screens.

Uploaded By: anonymousSTUDENTS-HUB.com

Detail/edit screens
These display details for a particular record, let the user edit the record, or allow the user to enter new
records.

They also have great shortcuts
If a user’s going to use your app a lot, they’ll want quick ways to get around. We’re going to look at
navigational views that will give your user shortcuts around your app, providing more space in your app
for actual content. Let’s begin by taking a closer look at the top-level screen in the above Pizza app.

Different types of navigation
In the top-level screen of the Pizza app, there’s a list of options for places in the app the user can go to.

Uploaded By: anonymousSTUDENTS-HUB.com

The first three options link to category activities; the first presents the user with a list of pizzas, the second
a list of pasta, and the third displays a list of stores. You can think of the category activities as being
passive. They display information and help you get around.

The fourth option links to a detail/edit activity that allows the user to create an order. This option is
active. It allows the user to create something.

You generally deal with active and passive navigation options in different ways. In this chapter, we’re
going to look at how you deal with active navigation options.

Using actions for navigation
In Android apps, active navigational options are usually added to the action bar. The action bar is the bar
you often see at the top of activities. It’s the place where common actions are displayed, so it normally
includes buttons that are best described using verbs such as Create, Search, or Edit.

In the Pizza app, we can make it easy for the user to place an order wherever they are in the app by
adding an action bar to the top of every activity. The action bar will include a Create Order button so the
user has access to it wherever they are.

Let’s take a closer look at how you add action bars to your apps.

Let’s start with the action bar
The action bar has a number of uses:

For displaying the app or activity name so that the user knows where in the app they are. As an
example, an email app might use it to indicate whether the user is in her inbox or junk folder.

Uploaded By: anonymousSTUDENTS-HUB.com

For making key actions prominent in a way that’s predictable — for example, sharing content or
performing searches.
For navigating to other activities to perform an action.

To add an action bar, you need to use a theme that includes an action bar. A theme is a style that’s
applied to an entire activity or application so that your app has a consistent look and feel. It controls such
things as the color of the activity background and action bar, and the style of the text. Android has a
number of built-in themes you can use.

THEMES

Android comes with a bunch of built-in themes. You can find a whole list in the Android R.style reference
documentation:

http://developer.android.com/reference/android/R.style.html

API level 11 and above
If you want your apps to run on API level 11 or above, you add an action bar by applying Theme.Holo
or one of its subclasses. This is what you’ll need to do most of the time. For API level 21 or above, you
have the added option of using one of the newer Theme.Material themes. There are several different
themes to choose from depending on what appearance you want your app to have. As an example,
applying a theme of Theme.Material.Light.DarkActionBar will give you activities with a light
background and a dark action bar.

API level 7 or above
If you need to support older devices running API level 7 or above, you can still add an action bar but you
need to do it slightly differently. You first need to change your activities so that they extend the class
android.support.v7.app.ActionBarActivity instead of the android.app.Activity
class. You must then apply one of the Theme.AppCompat themes.

NOTE

You only need to take this approach if you intend to support older devices running API levels 7, 8, 9, or 10.
Most devices run a higher API level than this.

The ActionBarActivity class and the Theme.AppCompat themes are included in the Android
support libraries. Let’s look at these in more detail.

The Android support libraries
As time passes, Android continued to add new features. But what if you want to use the latest Android
widgets on a device that’s two or three years old? The Android support libraries are a set of code
libraries that you can include in your project. They’re primarily there for backward compatibility, as they
allow you to use newer features of Android in older devices.

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/reference/android/R.style.html

Some features of Android are only available in the support libraries, so if you need to use these features in
your app, you need to use the support library. As an example, the DrawerLayout APIs allow you to
create a navigation drawer you can pull out from the side of the screen, and these APIs are currently only
available in the v4 support library.

The Android support library package includes several support libraries. Each one targets a base API level
and includes a specific set of features. The name of the support library reflects the lowest version number
of Android the library is compatible with. The v4 support library, for instance, can be used with API level
4 and higher. Similarly, the v7 support libraries can be used with API level 7 and higher. Each of these
libraries undergo revisions to include new features and bug fixes.

The classes in a support library are stored within packages named android.support.v*. As an
example, the v4 library has classes in the android.support.v4 package.

Here are some of the libraries in the Android support library package:

Android Studio will often add support libraries to your project by default. To see this, let’s create a new
project to prototype the Pizza app and see if there are any references to them.

Your project may include support libraries
We’re going to build a prototype of the Pizza app that supports API level 17 and above. Create a new
Android project with a blank activity for an application named “Bits and Pizzas” with a package name of
com.hfad.bitsandpizzas. The minimum SDK should be API level 17. Specify an activity called
“MainActivity”, a layout called “activity_main” and a menu resource called “menu_main”.

We’re going to look at how your new project may be using support libraries by default. First, let’s look at
MainActivity.java. Here’s the code that Android Studio created for us. By default, MainActivity
extends the android.support.v7.app.ActionBarActivity class. In other words, it’s using a
v7 support library:

Uploaded By: anonymousSTUDENTS-HUB.com

The ActionBarActivity class is used in conjunction with the Theme.AppCompat themes to add
action bars to apps that support API levels between 7 and 10. If you use the ActionBarActivity
class as the superclass for your activities, you have to use one of these themes or your app won’t run.
You can’t use more recent themes, such as Material.

Even if you remove references to ActionBarActivity from your app, the v7 support library may still
be a dependency in your project. You can see this by going to File→Project Structure. When you click
on the app module and choose Dependencies, you may find there’s a reference to the v7 appcompat
library:

We’ll get the app to use up to date themes
We want our prototype app to include action bars. The app supports devices running a minimum of API
level 17, so we don’t need to provide backward compatibility by using ActionBarActivity and
Theme.AppCompat. Instead, we’ll bring the look more up to date by using a Holo theme by default,
and get it to switch to a Material theme if it’s running on API level 21.

To do this, we need to do two things:

1. Make sure the activity code doesn’t reference ActionBarActivity.
If it does, we’ll only be able to use a Theme.AppCompat theme.

2. Apply the themes.
We’ll get the app to pick up the right theme for the API level it’s running on.

We’re going to keep the dependency on the v7 appcompat library as this has an impact on the code
you’ll write later on.

Change MainActivity to use an Activity
We’ll start by making sure that MainActivity.java uses the Activity class and not
ActionBarActivity. Update your code so that it looks like the code below:

Uploaded By: anonymousSTUDENTS-HUB.com

Now that we know MainActivity doesn’t use ActionBarActivity, we’ll look at how you
apply a theme.

Apply a theme in AndroidManifest.xml
As you’ve already seen, the app’s AndroidManifest.xml file provides essential information about the app
such as what activities it contains. It also includes a number of attributes that have an impact on your
action bars.

Here’s the AndroidManifest.xml code Android Studio created for us (we’ve highlighted the key areas):

The android:icon attribute is used to assign an icon to the app. The icon is used as the launcher icon
for the app, and if the theme you’re using displays an icon in the action bar, it will use this icon.

The icon can be a drawable or mipmap resource. A mipmap is an image that can be used for application

Uploaded By: anonymousSTUDENTS-HUB.com

icons, and they’re held in mipmap* folders in app/src/main/res. Just as with drawables, you can add
different images for different screen densities by adding them to an appropriately named mipmap folder.
As an example, an icon in the mipmap-hdpi folder will be used by devices with high-density screens. You
refer to mipmap resources in your layout using @mipmap.

NOTE

Android Studio creates default application icons for you for different screen densities. Older versions of
Android Studio put the icons in the drawable folders, and newer versions put them in the mipmap folders.

The android:label attribute assigns a user-friendly label to the app or activity, depending on whether
it’s used in the <application> or <activity> attribute. The action bar displays the current
activity’s label. If the current activity has no label, it uses the app’s label instead.

The android:theme attribute specifies the theme. Using this attribute in the <application>
element applies it to the entire app. Using it in the <activity> element applies it to a single activity.

Our android:theme attribute has the value "@style/AppTheme". The @style prefix means that
the theme is defined in a style resource file. So what’s a style resource file?

Define styles in style resource files
A style resource file holds details of any themes you want to use.

When you create a project in Android Studio, the IDE creates a default style resource file for you called
styles.xml located in the app/src/main/res/values folder. It will look something like this:

The style resource file contains one or more styles. Each style is defined using the <style> element.

Each style must have a name, which you define with the name attribute. The style must have a name so
that the android:theme attribute in AndroidManifest.xml can refer to it. In our case, the style has a
name of "AppTheme", so AndroidManifest.xml can refer to is using "@style/AppTheme".

Uploaded By: anonymousSTUDENTS-HUB.com

The parent attribute specifies where the style should inherit its properties from. In the case above, this
is "Theme.AppCompat.Light.DarkActionBar".

You can also use the style resource file to customize the look of your app by modifying the properties of
an existing theme. To do this, you add an <item> element to the <style> that describes the
modification you want to make. As an example, here’s how you’d modify the theme so that all the
activities have a red background:

We’re not going to go into detail about customizing themes here. If you want to learn more we suggest
you look at the online reference documentation:
http://developer.android.com/guide/topics/ui/themes.html.

On the next page, we’re going to change the theme used by the app.

Set the default theme in styles.xml
We’re going to change the app so that it uses Theme.Holo.Light by default, and switches to using
Theme.Material.Light if the app’s running on API level 21.

We’ll start by changing the default theme. To do this, open the style resource file styles.xml located in the
app/src/main/res/values folder. This is the default style resource file. By default, we want to use a theme
of Theme.Holo.Light, so this needs to be reflected in the <style> attribute like this:

<resources>
 <style name="AppTheme" parent="android:Theme.Holo.Light">
 <!-- Customize your theme here. -->
 </style>
</resources>

Use a Material theme on newer devices
As you saw in Chapter 8, you can use different folder structures to get your app to use different resources
at runtime. As an example, you saw how to get your app to use different layout files depending on the size
of the device screen.

Here, we need the app to use a different style resource depending on the API level the app’s running on.
To get the app to use a particular resource if the app’s running on API level 21, we can create a new

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/guide/topics/ui/themes.html

values-v21 resource file and add the resource to this folder.

To do this, create a new folder in the app/src/main/res folder called values-v21. Then copy the file
styles.xml from the values folder, and paste it in the values-v21 folder.

We want the app to use a Material theme if it’s running on API level 21, so edit styles.xml in the values-
v21 folder so that it uses a theme of Theme.Material.Light:

The style name we’re using in each style resource file should be the same, because this enables an
appropriate theme to be used at runtime. Let’s see how.

What happens when you run the app
1. When you run the app, Android sees that it needs to apply the theme described by

@style/AppTheme.

2. If the app’s running on API level 21, it uses the style called AppTheme in the values-21
folder.
The style specifies a theme of Theme.Material.Light, so it applies this theme.

Uploaded By: anonymousSTUDENTS-HUB.com

3. If the app’s running on an API level below 21, it uses the style called AppTheme in the
values folder.
The style specifies a theme of Theme.Holo.Light, so this theme is applied instead.

Test drive the app
When you run the app, MainActivity has an action bar. If you run the app on a device that has API
level 21, the app uses a theme of Theme.Material.Light. If you run the app on a device with a
lower API level, it uses a theme of Theme.Holo.Light.

Adding action items to the action bar
Most of the time, you’ll want to add action items to the action bar. These are buttons or text in the action
bar you can click on to make something happen. As an example, we’re going to add a “Create Order”
button to our action bar.

Uploaded By: anonymousSTUDENTS-HUB.com

To add action items to the action bar, you do three things:

1. Define the action items in a menu resource file.
2. Get the activity to inflate the menu resource.

You do this by implementing the onCreateOptionsMenu() method.
3. Add code to say what each item should do when clicked.

You do this by implementing the onOptionsItemSelected() method.

We’ll start with the menu resource file.

The menu resource file
When you create a project containing an activity, Android Studio creates a default menu resource file for
you. We told Android Studio to call this file menu_main.xml, and it created it in the
app/src/main/res/menu folder. All menu resource files go in this folder.

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s the menu resource file Android Studio created for us. It describes a single Settings action item that
appears in the action bar overflow:

Each menu resource file has a <menu> element at its root. A menu resource file defines a single menu, or
set of items to be added to the action bar. Your app can contain multiple resource files, and this is useful if
you want different activities to have different items on their action bars.

Items are added to the menu using the <item> element. Each action item is described using a separate
<item>. The <item> element has a number of attributes you can use, here are some of the most
common ones:

android:id Gives the item a unique ID. You need this in order to refer to the item in your activity code.

android:icon The item’s icon. This is a drawable or mipmap resource.

android:title The item’s text. This may not get displayed if your item has an icon if there’s not space in
the action bar for both. If the item appears in the action bar’s overflow, only the text will be
displayed.

android:orderInCategory An integer value that helps Android decide the order in which items should appear in the
action bar.

The code above uses another attribute, showAsAction. We’ll look at this on the next page.

The menu showAsAction attribute
The showAsAction attribute is used to say how you want the item to appear in the action bar. As an
example, you can use it to get an item to appear in the overflow rather than the main action bar, or to
place an item on the main action bar only if there’s room. The attribute can take the following values:

Uploaded By: anonymousSTUDENTS-HUB.com

"ifRoom" Place the item in the action bar if there’s space. If there’s not space, put it in the overflow.

"withText" Include the item’s title text.

"never" Put the item in the overflow area, and never in the main action bar.

"always" Always place the item in the main area of the action bar. This value should be used sparingly; if you
apply this to many items, they may overlap each other.

Let’s look again at the showAsAction attribute in the menu resource code. Notice how the
showAsAction attribute is prefixed with app: not android:

Earlier in the chapter, you saw how our project had a dependency on the v7 appcompat library. The v7
appcompat library doesn’t include showAsAction in the android namespace.

If your project has a dependency on the v7 appcompat library, showAsAction must be prefixed
with app:, and the <menu> attribute must include an attribute of

xmlns:app="http://schemas.android.com/apk/res-auto"

If your project has no dependency on the v7 appcompat library, showAsAction must be prefixed
with android:, not app:. You can also omit the attribute

xmlns:app="http://schemas.android.com/apk/res-auto"

from the <menu> element.

Add a new action item
We’re going to add a new item to the action bar for creating orders. The item will have a title of “Create
Order” and an icon.

When you use icons in your action bar, you can create your own or use icons from the Android action bar
icon pack. The icon pack contains many standard icons you can use in your apps.

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to use the ic_action_new_event icon from the icon pack. First, download the icon
pack from https://developer.android.com/design/downloads/index.html. If you expand it, you’ll see
there are many different icons for different themes and screen sizes.

The ic_action_new_event icons are located in the Action Bar
Icons/holo_light/05_content_new_event folder. There are different icons for different screen sizes,
indicated by their folder name. You need to copy the icons to appropriate folders in your project. Copy
the icon in the drawable-hdpi folder to the drawable_hdpi folder in your project, and so on.

NOTE

If Android Studio hasn’t created the folders for you, you’ll need to create them yourself.

Once you’ve added the icons, add a new action_create_order string resource to strings.xml:

Then add the menu item to menu_main.xml:

Now that you’ve added action items to the menu resource file, you need to add the items to your action
bar in your activity code. Let’s see how.

Inflate the menu in the activity with the onCreateOptionsMenu()
method
Once you’ve created a menu resource file, you add the items it contains to the action bar by implementing

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/design/downloads/index.html

the activity’s onCreateOptionsMenu() method. It runs when the action bar’s menu gets created and
takes one parameter, a Menu object representing the action bar.

Here’s our onCreateOptionsMenu() method:

You add items to the action bar using

This takes the menu items in the menu_main.xml menu resource file, and adds them to the action bar
Menu object.

React to action item clicks with the onOptionsItemSelected() method
You get your activity to react to when an action item in the action bar is clicked by implementing the
onOptionsItemSelected() method. This method runs whenever an item in the action bar is
clicked.

The onOptionsItemSelected() method takes one attribute, a MenuItem object that represents
the item on the action bar that was clicked. You can use the MenuItem’s getItemId() method to get
the ID of the item on the action bar that was clicked so that you can perform an appropriate action, such
as starting a new activity.

Here’s the code for our onOptionsItemSelected() method:

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to get the Create Order action item to start a new activity called OrderActivity when
it’s clicked.

Create OrderActivity
We need to create a new activity called OrderActivity so our Create Order action item can launch
it.

Start by creating a new blank activity. Give it a name of “OrderActivity”, a layout name of
“activity_order”, a title of “Create Order”, and a menu resource name of “menu_order”.

Here’s the code for OrderActivity.java. Make sure that your code reflects ours. In particular, make sure
that OrderActivity extends the Activity class and not ActionBarActivity. This is because
you can only use one of the Theme.AppCompat themes with ActionBarActivity, and we want
to use the Holo and Material themes .

Uploaded By: anonymousSTUDENTS-HUB.com

We’ve not included the onCreateOptionsMenu() and onOptionsItemSelected() methods
in our OrderActivity code, as we don’t need OrderActivity to display menu items from the
menu resource file in its action bar. These methods would need to be added if we ever did want to display
menu items.

Now that we’ve created OrderActivity, let’s get the Create Order action item in MainActivity
to start it.

Start OrderActivity with the Create Order action item
We want to get the Create Order action item in the MainActivity action bar to start
OrderActivity when it’s clicked. To do this, we need to update MainActivity’s
onOptionsItemSelected() method. We’ll start OrderActivity using an intent.

Here’s the code we need to change:

When the Create Order action item is clicked, it will create an intent that starts OrderActivity.

We’ll show you the full MainActivity.java code on the next page.

The full MainActivity.java code

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
When you run the app, a new Create Order action item is displayed in the MainActivity action bar.
When you click on the action item, it starts OrderActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

RELAX

Don’t worry if your action item doesn’t appear in the main action bar.

The action item may appear in the overflow instead. This is due to a bug in some revisions of the v7
appcompat library. If this is a problem in your app, report it to Google.

THERE ARE NO DUMB QUESTIONS

Q: Q: My app already includes a label and icon. Where did they come from?

A: A: When you create an Android project using an IDE like Android Studio, the IDE creates a bunch of code for you. This includes things
such as the app label and icon.

Q: Q: Can you use action bars if you want to support an API below level 7?

A: A: No, you can’t. This isn’t that big a deal, though, because very few devices run API level 7 or below.

Q: Q: Why do I have to use ActionBarActivity if I want to support an API below level 11?

A: A: You have to use the Android support library to add an action bar in this case.

Q: Q: Would I ever want to use different themes for different API levels?

A: A: You might. Material was introduced with API level 21, so you might want apps to use this theme if it’s available.

Q: Q: You say you can apply themes to activities individually. Would I ever want to do that?

A: A: Yes, you might. The Holo and Material themes have several subclasses of themes that give activities a slightly different appearance. If
you want to give one of your activities a different look, you might want it to use a different theme.

Sharing content on the action bar
The next thing we’ll look at is how to use an action provider with your action bar. An action provider is an
item you add to your action bar that handles its own appearance and behavior.

We’re going to concentrate on using the share action provider. The share action provider allows users to

Uploaded By: anonymousSTUDENTS-HUB.com

share content in your app with other apps such as Gmail. As an example, you could use it to let users
send details of a particular pizza to one of their contacts.

The share action provider defines its own icon, so you don’t have to add it yourself. When you click on it,
it provides you with a list of apps you can use to share content.

You share the content with an intent
To get the share action provider to share content, you pass it an intent. The intent you pass it defines the
content you want to share, and its type. As an example, if you define an intent that passes text with an
ACTION_SEND action, the share action will offer you a list of apps on your device that are capable of
sharing this type of data.

1. Your activity creates an intent and passes it to the share action provider.
The intent describes the content that needs to be shared, its type, and an action.

2. When the user clicks on the share action, the share action uses the intent to present the
user with a list of apps that can deal with it.
The user chooses an app, and the share action provider passes the intent to the app’s activity that
can handle it.

Uploaded By: anonymousSTUDENTS-HUB.com

Add a share action provider to menu_main.xml
You add a share action to the action bar by including it in the menu resource file.

To start, add a new action_share string to strings.xml. We’ll use it to add a title to the share action
in case it appears in the overflow:

<string name="action_share">Share</string>

You add the share action to the menu resource file using the <item> element as before. This time,
however, you need to specify that you’re using a share action provider. You do this by adding an attribute
of android:actionProviderClass and setting it to
android.widget.ShareActionProvider.

Here’s the code to add the share action:

Uploaded By: anonymousSTUDENTS-HUB.com

When you add a share action to your menu resource file, there’s no need to include an icon. The share
action provider already defines one.

Now that we’ve added the share action to the action bar, let’s specify what content to share.

Specify the content with an intent
To get the share action to share content when it’s clicked, you need to tell it what to share in your activity
code. You do this by passing the share action provider an intent using its setShareIntent() method.
Here’s how you’d get the share action to share some default text when it’s clicked:

Uploaded By: anonymousSTUDENTS-HUB.com

You need to call the share action provider’s setShareIntent() method whenever the content you
wish to share has changed. As an example, if you’re flicking through images in a photo app, you need to
make sure you share the current photo.

We’ll show you our full activity code on the next page, and then we’ll see what happens when the app
runs.

The full MainActivity.java code
Here’s the full activity code for MainActivity.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
When you run the app, the share action is displayed in the action bar. When you click on it, it gives you a
list of apps to choose from that can accept the intent we want to share. When you choose an app, it
shares the default text.

NOTE

Remember, the share action may appear in the action bar overflow instead of on the main area of the action
bar.

Enabling Up navigation

Uploaded By: anonymousSTUDENTS-HUB.com

If you have an app that contains a hierarchy of activities, you can enable the Up button on the action bar
to navigate through the app using hierarchical relationships. As an example, MainActivity in our app
includes an action item on its action bar that starts a second activity, OrderActivity. If we enable the
Up button on OrderActivity’s action bar, the user will be able to return to MainActivity by
clicking on it.

Up navigation may sound the same as using the Back button, but it’s different. The Back button allows
users to work their way back through the history of activities they’ve been to. The Up button, on the
other hand, is purely based on the app’s hierarchical structure.

So that you can see this in action, we’re going to enable the Up button on OrderActivity’s action
bar. When you click on it, it will display MainActivity.

Use the Back button to navigate back to the previous activity.
Use the Up button to navigate up the app’s hierarchy.

Uploaded By: anonymousSTUDENTS-HUB.com

Setting an activity’s parent
The Up button enables the user to navigate up a hierarchy of activities in the app. You declare this
hierarchy in AndroidManifest.xml by specifying the parent of each activity. As an example, we want the
user to be able to navigate from OrderActivity to MainActivity when they press the Up button,
so this means that MainActivity is the parent of OrderActivity

From API level 16, you specify the parent activity using the android:parentActivityName
attribute. For older versions of Android, you need to include a <meta-data> element that includes the
name of the parent activity. Here are both approaches in our AndroidManifest.xml:

Finally, we need to enable the Up button in OrderActivity.

Adding the Up button
You enable the Up button from within your activity code. You first get a reference to the action bar using
the activity’s getActionBar() method. You then call the action bar’s
setDisplayHomeAsUpEnabled() method, passing it a value of true.

ActionBar actionBar = getActionBar();
actionBar.setDisplayHomeAsUpEnabled(true);

WATCH IT!

If you enable the Up button for an activity, you must specify its parent.

If you don’t, you’ll get a null pointer exception when you call the setDisplayHomeAsUpEnabled() method.

Uploaded By: anonymousSTUDENTS-HUB.com

We want to enable the Up button in OrderActivity, so we’ll add the code to the onCreate()
method in OrderActivity.java. Here’s our full activity code:

Let’s see what happens when we run the app.

Test drive the app
When you run your app and click on the Create Order action item, OrderActivity is displayed as
before.

Uploaded By: anonymousSTUDENTS-HUB.com

OrderActivity displays an Up button in its action bar. When you click on the Up button, it displays
its hierarchical parent MainActivity.

Your Android Toolbox
You’ve got Chapter 9 under your belt and now you’ve added action bars to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

To add an action bar to apps supporting API level 11 or above apply one of the Holo or Material themes.
Add an action bar to apps supporting API level 7 or above by applying an AppCompat theme and using
the ActionBarActivity class. If you use ActionBarActivity, you must use an AppCompat
theme.
ActionBarActivity and the AppCompat themes are in the v7 appcompat support library.
The android:theme attribute in AndroidManifest.xml specifies which theme to apply.
You define styles in a style resource file using the <style> element. The name attribute gives the style
a name. The parent attribute specifies where the style should inherit its properties from.
The default folder for style resource files is app/src/main/res/values. Put a style resource file in the
app/src/main/res/values-v21 folder if you want it to be used on API level 21.
Add action items to your action bar by adding items to a menu resource file.
Add the items in the menu resource file to the action bar by implementing the activity’s
onCreateOptionsMenu() method.
Say what items should do when clicked by implementing the activity’s onOptionsItemSelected()
method.
You can share content by adding the share action provider to your action bar. Add it by including it in
your menu resource file. Call its setShareIntent() method to pass it an intent describing the
content you wish to share.
Add an Up button to your action bar to navigate up the app’s hierarchy. Specify the hierarchy in
AndroidManifest.xml. Use the ActionBar setDisplayHomeAsUpEnabled() method to enable the
Up button.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 10. Navigation Drawers: Going
Places

Apps are so much better when they’re easy to navigate.

In this chapter, we’re going to introduce you to the navigation drawer, a slide-out panel that appears
when you swipe the screen with your finger or click an icon on the action bar. We’ll show you how to use
it to display a list of links that take you to all the major hubs of your app. You’ll also see how
switching fragments makes those hubs easy to get to and fast to display.

The Pizza app revisited
In Chapter 9, we showed you a sketch of the top-level screen of the Pizza app. It contained a list of
options to places in the app the user could go to. The first three options linked to category screens for
pizzas, pasta, and stores, and the final option links to a detail/edit screen where the user could create an
order.

Uploaded By: anonymousSTUDENTS-HUB.com

So far you’ve seen how you can add action items to the action bar. This approach is best used for active
options such as creating an order, but what about the category screens? As these are more passive and
used for navigating through the app, we’ll take a different approach.

We’re going to add the Pizzas, Pasta, and Stores options to a navigation drawer. A navigation drawer is
a slide-out panel that contains links to the main parts of the app. These main parts are called the major
hubs of the app, and they are typically the main navigation points within the app — the top-level screens
and the categories:

Navigation drawers deconstructed
You implement a navigation drawer using a special type of layout called a DrawerLayout. The
DrawerLayout manages two views:

A view for the main content. This is usually a FrameLayout so that you can display and switch
fragments.
A view for the navigation drawer, usually a ListView.

By default, the DrawerLayout displays the view containing the main content. It looks just like a normal
activity:

Uploaded By: anonymousSTUDENTS-HUB.com

When you click on the navigation drawer icon or swipe your finger from the edge of the screen, the view
for the navigation drawer slides over the main content:

This content can then be used to navigate through the app.

So how does this affect the structure of the Pizza app?

The Pizza app structure
We’re going to change MainActivity so that it uses a drawer layout. It will contain a frame layout for
displaying fragments, and a list view to display a list of options.

The list view will contain options for Home, Pizzas, Pasta, and Stores so that the user can easily navigate
to the major hubs of the app. We’ll create fragments for these different options. This means that we’ll be
able to switch the fragments at runtime, and the user will be able to access the navigation drawer from
each of the different screens.

Uploaded By: anonymousSTUDENTS-HUB.com

Here are the steps we’ll go through to do this:

1. Create fragments for the major hubs.
2. Create and initialize the navigation drawer.

The navigation drawer will contain a ListView displaying the list of options.
3. Get the ListView to respond to item clicks.

This will allow the user to navigate to the major hubs of the app.
4. Add an ActionBarDrawerToggle.

This lets the user control the drawer through the action bar and allows the activity to respond to
drawer open and close events.

RELAX

Adding a navigation drawer takes a lot of code.

We’re going to spend the rest of the chapter showing you how to add one, and we’ll show you the entire
MainActivity.java code at the end.

Create TopFragment

We’ll use TopFragment to display the top-level content. For now, we’ll use it to display the text “Top
fragment” so that we know which fragment we’re displaying. Create a new blank fragment with a
fragment name of TopFragment and a layout name of fragment_top.

Uploaded By: anonymousSTUDENTS-HUB.com

NOTE

We’re using a blank fragment for all of our fragments as we’re going to replace all the code Android Studio
generates for us.

Here’s the code for TopFragment.java:

Add the following string resource to strings.xml; we’ll use this in our fragment layout:

Here’s the code for fragment_top.xml:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <TextView
 android:text="@string/title_top"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</RelativeLayout>

Uploaded By: anonymousSTUDENTS-HUB.com

Create PizzaFragment

We’ll use a ListFragment called PizzaFragment to display the list of pizzas. Create a new blank
fragment with a fragment name of PizzaFragment, and untick the option to create a layout. This is because
list fragments don’t need a layout — they use their own.

Next, add a new string array resource called “pizzas” to strings.xml (this contains the names of the
pizzas):

Then change the code for PizzaFragment.java so that it’s a ListFragment. Its list view should be
populated with the pizza names. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

Create PastaFragment
We’ll use a ListFragment called PastaFragment to display the list of pasta. Create a new blank
fragment with a fragment name of PastaFragment. You can untick the option to create a layout as list
fragments use their own layouts.

Next, add a new string array resource called “pasta” to strings.xml (this contains the names of the pasta):

Then change the code for PastaFragment.java so that it’s a ListFragment. Its list view should be
populated with the pasta names. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

Create StoresFragment

We’ll use a ListFragment called StoresFragment to display the list of pasta. Create a new blank
fragment with a fragment name of “StoresFragment.” Untick the option to create a layout as list fragments
define their own layouts.

Next, add a new string array resource called “stores” to strings.xml (this contains the names of the
stores):

Then change the code for StoresFragment.java so that it’s a ListFragment. Its list view should be
populated with the store names. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

Add the DrawerLayout
Next, we’ll change the layout of MainActivity.java so that it uses a DrawerLayout. As we said
earlier, this will contain a FrameLayout that will display fragments, and a ListView for the navigation
drawer.

You create the DrawerLayout using code like this:

Uploaded By: anonymousSTUDENTS-HUB.com

The DrawerLayout is the root component of the new layout. That’s because it needs to control
everything that appears on the screen. The DrawerLayout class comes from the v4 support library, so
we use its full class path of android.support.v4.widget.DrawerLayout.

The first element in the DrawerLayout is used to display the content. In our case, this is a
FrameLayout that we’ll use to display fragments. You want this to be as large as possible, so you set
its layout_width and layout_height attributes to "match_parent".

The second element in the DrawerLayout defines the drawer itself. If you use a ListView, this will
display a drawer that contains a list of options. You usually want this to partially fill the screen horizontally
when it slides out, so you set its layout_height attribute to "match_parent" and its
layout_width attribute to a fixed width.

We’ll show you the full code for activity_main.xml on the next page.

The full code for activity_main.xml

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s the full code for activity_main.xml:

Take a careful note of the settings we’re using with the <ListView> element, as any navigation drawer
you create is likely styled in a similar way.

To set the size of the drawer, you use the layout_width and layout_height attributes. We’ve set
layout_width to “240dp” so that the drawer is 240dp wide when it’s open.

Setting the layout_gravity attribute to "start" places the drawer on the left in languages where
text runs from left to right, and places it on the right in countries where text runs from right to left.

The divider, dividerHeight, and background attributes are used to switch off divider lines
between the options and set the background color.

Finally, setting the choiceMode attribute to "singleChoice" means only one item can be selected
at a time.

WATCH IT!

If your project doesn’t include a dependency on the v7 appcompat support library, the navigation
drawer code in this chapter won’t work.

You manage dependencies by navigating to File→Project Structure→App→Dependencies.

Initialize the drawer’s list
Now that we’ve added a drawer layout to activity_main.xml, we need to specify its behavior in
MainActivity.java. The first thing we’ll do is populate the list view. To do this, we’ll add an array of

Uploaded By: anonymousSTUDENTS-HUB.com

options to strings.xml. We’ll then use an array adapter to populate the list.

Here’s the array of strings you need to add to strings.xml (each item in the array refers to which fragment
you want to display when it’s clicked):

We’ll populate the list view in MainActivity.java’s onCreate() method. We’ll use private variables for
the array and list view as we’ll need these later on. Here’s the code:

Now that we’ve populated the list view with a list of options, we’ll get the list to respond to item clicks.

Use an OnItemClickListener to respond to clicks in the list view

You get the list view to respond to clicks in the same way that we did in Chapter 6, by using an
onItemClickListener. We’re going to create the listener, implement its onItemClick()
method, and assign the listener to the list view. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

The onItemClick() method needs to include the code you want to run when the user clicks on an
item in the list view. We’ll get it to call a new selectItem() method, passing in the position of the
selected item. We’ll write this method next.

The method should do three things:

Switch the fragment in the frame layout.
Change the title in the action bar to reflect the layout.
Close the navigation drawer.

You already know everything you need in order to do the first of these tasks, so have a go at the exercise
on the next page.

CODE MAGNETS

When the user clicks on an item in the navigation drawer list view, we need to display the correct fragment
in the content_frame frame layout. See if you can finish the code below.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

CODE MAGNETS SOLUTION

When the user clicks on an item in the navigation drawer list view, we need to display the correct fragment
in the content_frame frame layout. See if you can finish the code below.

The selectItem() method so far
Here’s our revised MainActivity.java code (when an item in the navigation drawer gets clicked, it calls
the selectItem(), which method displays a fragment):

Uploaded By: anonymousSTUDENTS-HUB.com

Now that the selectItem() method displays the correct fragment, we’ll get it to change the action
bar title.

Changing the action bar title

Uploaded By: anonymousSTUDENTS-HUB.com

In addition to switching the fragment that’s displayed, we need to change the title of the action bar so that
it reflects which fragment is displayed. By default, we want the action bar to display the name of the app,
but if the user clicks on the Pizzas option, for example, we want to change the action bar title to “Pizzas”.
This will help the user know where they are in the app.

To do this, we’ll use the position of the chosen item to get the title that should be displayed from the titles
array. We’ll then update the action bar title using the ActionBar setTitle() method. We’ll put this
in a separate method as we’ll need it later on. Here’s the code:

Closing the navigation drawer
The final thing we’ll get the selectItem() code to do is close the navigation drawer. This saves the
user from closing it themselves.

You close the drawer by getting a reference to the DrawerLayout and calling its closeDrawer()
method. The closeDrawer() method takes one parameter, the View that you’re using for the
navigation drawer. In our case, it’s the ListView that displays the list of options:

Uploaded By: anonymousSTUDENTS-HUB.com

Now that you’ve seen all the components needed for the selectItem() code, let’s look at the full
code and how it’s used in MainActivity.

The updated MainActivity.java code

Here’s the updated code for MainActivity.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Get the drawer to open and close

So far we’ve added a navigation drawer to MainActivity, populated it with a list of the major hubs in
the app, and got the activity to respond when an item is clicked. The next thing we’ll look at is how to
open and close the drawer, and how to respond to its state.

There are a couple of reasons why you might want to respond to the state of the navigation drawer. First,
you might want to change the title of the action bar when the navigation drawer opens and closes. You

Uploaded By: anonymousSTUDENTS-HUB.com

might, say, want to display the app name when the drawer is open, and display the selected fragment
when the drawer is closed.

Another reason relates to the action items on the action bar. When the drawer is open, you may want to
hide some or all of these action items so that the user can only click on them when the drawer is closed.

Over the next few pages, we’re going to show you how to set up a DrawerListener so that you can
listen for DrawerLayout events. We’ll use it to hide the share action on the action bar when the
navigation drawer is open, and make it visible again when the drawer closes.

RELAX

We know it seems like you have to take care of a lot of things when you create a navigation drawer.

Even though the code might seem complex, stick with it and you’ll be fine.

Using an ActionBarDrawerToggle
The best way of setting up a DrawerListener is to use an ActionBarDrawerToggle. An
ActionBarDrawerToggle is a special type of DrawerListener that works with an action bar. It
allows you to listen for DrawerLayout events like a normal DrawerListener, and it also lets you
open and close the drawer by clicking on an icon on the action bar.

You start by creating two String resources in strings.xml that describe the “open drawer” and “close
drawer” actions. These are needed for accessibility:

Uploaded By: anonymousSTUDENTS-HUB.com

Then create a new ActionBarDrawerToggle by calling its constructor and passing it four
parameters: a Context (usually this for the current Context), the DrawerLayout, and the two
String resources. You then override the ActionBarDrawerToggle’s onDrawerClosed() and
onDrawerOpened() methods:

Once you’ve created the ActionBarDrawerToggle, you set it to the DrawerLayout using the
DrawerLayout’s setDrawerListener() method:

Modifying action bar items at runtime

Uploaded By: anonymousSTUDENTS-HUB.com

If you have items on your action bar that are specific to the contents of a particular fragment, you may
want to hide them when the drawer is open, and display them again when the drawer is open.When you
need to modify the contents of the action bar in this way, you have to do two things.

First, you need to call the activity’s invalidateOptionsMenu() method. This tells Android that the
menu items that need to be on the action bar have changed and should be re-created.

When you call the invalidateOptionsMenu() method, the activity’s
onPrepareOptionsMenu() method gets called. You can override this method to specify how the
menu items need to change.

We’re going to change the visibility of the share action on our action bar depending on whether the
drawer is open or closed. We therefore need to call the invalidateOptionsMenu() method in the
onDrawerClosed() and onDrawerOpened() methods of the ActionBarDrawerToggle:

We then use the activity’s onPrepareOptionsMenu() method to set the visibility of the share action:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll take you through the full code.

The updated MainActivity.java code
Here’s the revised code for MainActivity.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Enable the drawer to open and close

We’ve added a navigation drawer to MainActivity, populated it with a list of options, got the activity
to respond when an option is clicked, and seen how to hide action items when the drawer is open. The
final thing we’ll do is let the user open and close the drawer by clicking on an icon in the action bar.

As we said earlier, this functionality is one of the advantages of using an ActionBarDrawerToggle.
To switch it on, we need to add some extra code. We’ll take you through the code changes individually,
then show you the full MainActivity.java code right at the end.

Uploaded By: anonymousSTUDENTS-HUB.com

First, you enable the icon in the action bar. You do that using these two method calls in the activity’s
onCreate() method:

These lines of code enable the activity’s Up button. As we’re using an ActionBarDrawerToggle,
the Up button will be used to activate the drawer instead of navigating up the app’s hierarchy.

Next, you need to get the ActionBarDrawerToggle to handle being clicked. To do this, you call its
onOptionsItemSelected() method from within the activity’s onOptionsItemSelected()
method like this:

The code

drawerToggle.onOptionsItemSelected(item)

returns true if the ActionBarDrawerToggle has handled being clicked. If it returns false, this
means that another action item in the action bar has been clicked, and the rest of the code in the activity’s
onOptionsItemSelected() method will run.

Uploaded By: anonymousSTUDENTS-HUB.com

Syncing the ActionBarDrawerToggle state
There are just two more things we need to do in order to get our ActionBarDrawerToggle working
properly.

First, we need to call the ActionBarDrawerToggle’s syncState() method from within the
activity’s postCreate() method. The syncState() method synchronizes the state of the drawer
icon with the state of the DrawerLayout.

NOTE

We’d love it if the navigation drawer handled this for you automatically, but it doesn’t. You have to handle it
yourself.

You need to call the syncState() method in the activity’s onPostCreate() method so that the
ActionBarDrawerToggle is in the right state after the activity is created:

Finally, if the device configuration changes, we need to pass details of the configuration change to the
ActionBarDrawerToggle. We do this by calling the ActionBarDrawerToggle’s
onConfigurationChanged() method from within the activity’s onConfigurationChanged()
method:

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll show you where the latest code changes fit into MainActivity. java on the next page, and then
we’ll see what happens when we run the app.

The updated MainActivity.java code

Here’s the revised code for MainActivity.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
When we run the app, MainActivity is displayed. It features a working navigation drawer:

Uploaded By: anonymousSTUDENTS-HUB.com

The Share action item is visible when the drawer is closed, and hidden when the drawer is open:

There’s just one thing we need to sort out: we need to make sure the correct title in the action bar is
displayed when the device is rotated or the user presses the back button. So what currently happens?

The title and fragment are getting out of sync
When we click on one of the options in the navigation drawer, the title in the action bar reflects the
fragment that’s displayed. As an example, if you click on the Pizzas option, the action bar title gets set to
“Pizzas”:

Uploaded By: anonymousSTUDENTS-HUB.com

If you click on the Back button, the title isn’t updated to reflect the fragment that’s displayed. As an
example, suppose you click on the Stores option, followed by the Pizzas option. A list of pizzas is
displayed and the title reflects this. If you then click on the Back button, StoresFragment is displayed
but the title is “Pizzas”:

If you rotate the device, the title reverts to “Bits and Pizzas” irrespective of what fragment is displayed:

Let’s fix these problems, starting with keeping the action bar title in sync when the device is rotated.

Dealing with configuration changes
As you already know, when you rotate your device, the current activity gets destroyed and re-created.
This means that any user interface changes you have made are lost, including changes to the action bar
title.

Just as we did in earlier chapters, we’ll use the activity’s onSaveInstanceState() method to save
the position of the currently selected item in the navigation drawer. We can then use this in the
onCreate() method to update the title in the action bar.

Here are the code changes:

Uploaded By: anonymousSTUDENTS-HUB.com

Reacting to changes on the back stack
The final thing we need to address is how to make the action bar title reflect the fragment that’s displayed
when the user clicks on the back button. We can do this by adding a
FragmentManager.OnBackStackChangedListener to the activity’s fragment manager.

The FragmentManager.OnBackStackChangedListener interface listens for changes to the
back stack. This includes when a fragment transaction is added to the back stack, and when the user

Uploaded By: anonymousSTUDENTS-HUB.com

clicks on the back button to navigate to a previous back stack entry.

You add an OnBackStackChangedListener to the activity’s fragment manager like this:

When the back stack changes, the OnBackStackChangedListener’s
onBackStackChanged() method gets called. Any code you want to run when the user clicks on the
back button should be added to this method.

When the onBackStackChanged() method gets called, we want to do three things.

Update the currentPosition variable so that it reflects the position in the list view of the
currently displayed fragment.
Call the setActionBarTitle() method, passing it the value of currentPosition.
Make sure that the right option in the navigation drawer’s list view is highlighted by calling its
setItemChecked() method.

Each of these depends on us knowing the position in the list view of the currently displayed fragment. So
how do we work this out?

Adding tags to fragments
To work out what the value of currentPosition should be, we’ll check what type of fragment is
currently attached to the activity. As an example, if the attached fragment is an instance of
PizzaFragment, we’ll set currentPosition to 1.

We’ll get a reference to the currently attached fragment by adding a String tag to each fragment. We’ll
then use the fragment manager’s findFragmentByTag() method to retrieve the fragment.

You add a tag to a fragment as part of a fragment transaction. Here’s the current fragment transaction
we’re using in our selectItem() method to replace the fragment that’s currently displayed:

FragmentTransaction ft = getFragmentManager().beginTransaction();
ft.replace(R.id.content_frame, fragment);

Uploaded By: anonymousSTUDENTS-HUB.com

ft.addToBackStack(null);
ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);
ft.commit();

To add a tag to the fragment, you add an extra String parameter to the replace() method in the
transaction:

In the above code, we’re adding a tag of "visible_fragment" to the replace() method. Every
fragment that’s displayed in MainActivity will be tagged with this value.

Next, we’ll use the fragment manager’s findFragmentByTag() method to get a reference to the
currently attached fragment.

Find the fragment using its tag
To retrieve the fragment that’s currently attached to the activity, we’ll pass the tag we set as part of the
fragment transaction to the findFragmentByTag() method:

The findFragmentByTag() method starts by searching all fragments that are currently attached to
the activity. If it can find no fragment with the correct tag, it then searches through all fragments on the
back stack. By giving all fragments the same tag of "visible_fragment", the above code will get a
reference to the fragment that’s currently attached to the activity.

Here’s the full code for the OnBackStackListener. We’re using the findFragmentByTag()
method to get a reference to the currently attached fragment. We’re then checking which type of fragment
it’s an instance of so we can work out the value of currentPosition:

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code we need to get our action bar titles to sync with the displayed fragment when the user
clicks on the Back button. Before we see it running, let’s look at the full code for MainActivity.java.

The full MainActivity.java code
Here’s the entire code for MainActivity.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
Let’s see what happens when we run the app.

Uploaded By: anonymousSTUDENTS-HUB.com

When you click on the back button, the previously selected fragment is displayed and the action bar title
stays in sync. The action bar title also stays in sync when you rotate the device.

Your Android Toolbox
You’ve got Chapter 10 under your belt and now you’ve added drawer layouts to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

Use a DrawerLayout to create an activity with a navigation drawer. Use the drawer to navigate to the
major hubs of your app.
If you’re using an action bar, use ActionBarDrawerToggle as a DrawerListener. This allows
you to respond to the drawer opening and closing, and adds an icon to the action bar for opening and
closing the drawer.
To change action bar items at runtime, call invalidateOptionsMenu() and add the changes in the
activity’s onPrepareOptionsMenu() method.
React to changes on the back stack by implementing the
FragmentManager.OnBackStackChangedListener().
The fragment manager’s findFragmentByTag() method searches for fragments with a given tag.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 11. SQLite Databases: Fire Up the
Database

If you’re recording high scores or saving tweets, your app will need to store data. And on
Android you usually keep your data safe inside a SQLite database. In this chapter, we’ll show you how
to create a database, add tables to it, and prepopulate it with data, all with the help of the friendly
SQLite helper. You’ll then see how you can cleanly roll out upgrades to your database structure, and
how to downgrade it if you need to pull any changes.

Back to Starbuzz
Back in Chapter 6, we created an app for Starbuzz. The app allows users to navigate through a series of
screens so that they can see the drinks available at Starbuzz.

Uploaded By: anonymousSTUDENTS-HUB.com

The Starbuzz database gets its drink data from a Drink class containing a selection of drinks available at
Starbuzz. While this made building the first version of the app easier, there’s a better way of storing and
persisting data.

Over the next two chapters, we’re going to change the Starbuzz database so that it gets its data from a
SQLite database. In this chapter, we’ll see how to create the database, and in the next chapter, we’ll
show you how to connect activities to it.

Android uses SQLite databases to persist data
All apps need to store data, and the main way you do that in Androidville is with a SQLite database.
Why SQLite?

It’s lightweight.
Most database systems need a special database server process in order to work. SQLite doesn’t, a
SQLite database is just a file. When you’re not using the database, it doesn’t use up any processor
time. That’s important on a mobile device, because we don’t want to drain the battery.

We’re going to go through the basics of SQLite in this chapter.

It’s optimized for a single user.
Our app is the only thing that will talk to the database, so we shouldn’t have to identify ourselves with
a username and password.

Uploaded By: anonymousSTUDENTS-HUB.com

If you plan on doing a lot of database heavy lifting in your apps, we suggest you do more
background reading on SQLite and SQL.

It’s stable and fast.
SQLite databases are amazingly stable. They can handle database transactions, which means if
you’re updating several pieces of data and screw up, SQLite can roll the data back. Also, the code
that reads and writes the data is written in optimized C code. Not only is it fast, but it also reduces the
amount of processor power it needs.

Where’s the database stored?
Android automatically creates a folder for each app where the app’s database can be stored. When we
create a database for the Starbuzz app, it will be stored in the following folder:

An app can store several databases in this folder. Each database consists of two files.

The first file is the database file and has the same name as your database — for example, “starbuzz”.
This is the main SQLite database file. All of your data is stored in this file.

The second file is the journal file. It has the same name as your database, with a suffix of “-journal” —
for example, “starbuzz-journal”. The journal file contains all of the changes made to your database. If
there’s a problem, Android will use the journal to undo (or rollback) your latest changes.

Android comes with SQLite classes
Android uses a set of classes that allows you to manage a SQLite database. There are three types of
object that do the bulk of this work.

The SQLite Helper
You create a SQLite helper by extending the SQLiteOpenHelper class. This enables you to create
and manage databases.

Uploaded By: anonymousSTUDENTS-HUB.com

Cursors
A Cursor lets you read from and write to the database. It’s like a ResultSet in JDBC.

The SQLite Database
The SQLiteDatabase class gives you access to the database. It’s like a SQLConnection in JDBC.

We’re going to use these objects to show you how to create a SQLite database your app can use to
persist data by replacing the Drink class with a SQLite database.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: If there’s no username and password on the database, how is it kept secure?

A: A: The directory where an app’s databases are stored is only readable by the app itself. The database is secured down at the operating
system level.

Q: Q: Can I write an Android app that talks to some other kind of external database, such as Oracle?

A: A: There’s no reason why you can’t access other databases over a network connection, but be careful to conserve the resources used by
Android. For example, you might use less battery power if you access your database via a web service. That way, if you’re not talking to
the database, you’re not using up any resources.

Q: Q: Why doesn’t Android use JDBC to access SQLite databases?

A: A: We know we’re going to be using a SQLite database, so using JDBC would be overkill. Those layers of database drivers that make
JDBC so flexible would just drain the battery on an Android device.

Q: Q: Is the database directory inside the app’s directory?

A: A: No. It’s kept in a separate directory from the app’s code. That way, the app can be overwritten with a newer version, but the data in the
database will be kept safe.

The current Starbuzz app structure
Here’s a reminder of the current structure of the Starbuzz app:

1. TopLevelActivity contains a list of options for Drinks, Food, and Stores.
2. When the user clicks on the Drinks option, it launches DrinkCategoryActivity.

This activity displays a list of drinks that it gets from the Java Drink class.
3. When the user clicks on a drink, its details get displayed in DrinkActivity.

DrinkActivity gets details of the drink from the Java Drink class.

How does the app structure need to change if we’re to use a SQLite database?

DO THIS !

We’re going to update the Starbuzz app in this chapter, so open your original Starbuzz project in
Android Studio.

We’ll change the app to use a database
We’ll use a SQLite helper to create a SQLite database we can use with our Starbuzz app. We’re going to
replace our Drink Java class with a database, so we need our SQLite helper to do the following:

1. Create the database.

Uploaded By: anonymousSTUDENTS-HUB.com

Before we can do anything else, we need to get the SQLite helper to create version 1 (the first
version) of our Starbuzz database.

2. Create the Drink table and populate it with drinks.
Once we have a database, we can create a table in it. The table structure needs to reflect the
attributes in the current Drink class, so it needs to be able to store the name, description, and
image resource ID of each drink. We’ll then add three drinks to it.

The app has the same structure as before except that we’re replacing the file Drink.java with a SQLite
helper and a SQLite Starbuzz database. The SQLite helper will maintain the Starbuzz database, and
provide access to it for the other activities. We’ll change the activities to use the database in the next
chapter.

Let’s start by looking at the SQLite helper.

The SQLite helper manages your database

The SQLiteOpenHelper class is there to help you create and maintain your SQLite databases. Think
of it as a personal assistant who’s there to take care of the general database housekeeping.

Let’s look at some typical tasks that the SQLite helper can assist you with:

Uploaded By: anonymousSTUDENTS-HUB.com

Create the SQLite helper

You create a SQLite helper by writing a class that extends the SQLiteOpenHelper class. When you
do this, you must override the onCreate() and onUpgrade() methods. These methods are
mandatory.

The onCreate() method gets called when the database first gets created on the device. The method
should include all the code needed to create the tables you need for your app.

The onUpgrade() method gets called when the database needs to be upgraded. As an example, if you
need to make table changes to your database after it’s been released, this is the method to do it in.

Uploaded By: anonymousSTUDENTS-HUB.com

In our app, we’re going to use a SQLite helper called StarbuzzDatabaseHelper. Create this class
in your Starbuzz project by highlighting the app/src/main/java/com.hfad.starbuzz folder in your project
folder explorer, and navigating to File→New...→Java Class. Give the class a name of
“StarbuzzDatabaseHelper”, then replace its contents with the code below:

To get the SQLite helper to do something, we need to add code to its methods. The first thing to do is tell
the SQLite helper what database it needs to create.

1. Specify the database
There are two pieces of information the SQLite helper needs in order to create the database.

Uploaded By: anonymousSTUDENTS-HUB.com

First, we need to give the database a name. By giving the database a name, we make sure that the
database remains on the device when it’s closed. If we don’t, the database will only be created in
memory, so once the database is closed, it will disappear.

The second piece of information we need to provide is the version of the database. The database version
needs to be an integer value, starting at 1. The SQLite helper uses this version number to determine
whether the database needs to be upgraded.

NOTE

Creating databases that are only held in memory can be useful when you’re testing your app.

You specify the database name and version by passing them to the constructor of the
SQLiteOpenHelper superclass. We’re going to give our database a name of “starbuzz”, and as it’s
the first version of the database, we’ll give it a version number of 1. Here’s the code we need (update
your version of StarbuzzDatabaseHelper. java with the code below):

The constructor specifies details of the database, but the database doesn’t get created at that point. The
SQLite helper waits until the app needs to access the database, and the database gets created at that
point.

Once you’ve told the SQLite helper what database to create, you can specify its tables.

Uploaded By: anonymousSTUDENTS-HUB.com

Inside a SQLite database

The data inside a SQLite database is stored in tables. A table contains several rows, and each row is split
into columns. A column contains a single piece of data, like a number of a piece of text.

You need to create a table for each distinct piece of data that you want to record. In the Starbuzz app, for
example, we’ll need to create a table for the drink data. It will look something like this:

Some columns can be specified as primary keys. A primary key uniquely identifies a single row. If you say
that a column is a primary key, then the database won’t allow you to store rows with duplicate keys.

We recommend that your tables have a single integer primary key column called _id. This is because
Android code is hardwired to expect a numeric _id column, so not having one can cause you problems
later on.

It’s an Android convention to call your primary key columns _id. Android code expects there to be
an _id column on your data. Ignoring this convention will make it harder to get the data out of
your database and into your user interface.

Storage classes and data-types
Each column in a table is designed to store a particular type of data. For example, in our DRINK table,

Uploaded By: anonymousSTUDENTS-HUB.com

the DESCRIPTION column will only ever store text data. Here are the main data types you can use in
SQLite, and what they can store:

INTEGER Any integer type

TEXT Any character type

REAL Any floating-point number

NUMERIC Booleans, dates, and date-times

BLOB Binary Large Object

Unlike most database systems, you don’t need to specify the column size in SQLite. Under the hood, the
data type is translated into a much broader storage class. This means you can say very generally what
kind of data you’re going to store, but you’re not forced to be specific about the size of data.

You create tables using Structured Query Language (SQL)
Every application that talks to SQLite needs to use a standard database language called Structured Query
Language. SQL is used by almost every type of database. If you want to create the DRINK table, you
will need to do it in SQL.

This is the SQL command to create the table:

The CREATE TABLE command says what columns you want in the table, and what the data type is of
each column. The _id column is the primary key of the table, and the special keyword
AUTOINCREMENT means that when we store a new row in the table, SQLite will automatically
generate a unique integer for it.

The onCreate() method is called when the database is created
The SQLite helper is in charge of creating the SQLite database the first time it needs to be used. First, an
empty database is created on the device, and then the SQLite helper onCreate() method is called.

The onCreate() method is passed a SQLiteDatabase object as a parameter. We can use this to
run our SQL command with the method:

The SQLiteDatabase class gives you access to the database.

This method has one parameter, the SQL you want to execute.

Here’s the full code for the onCreate() method:

@Override
public void onCreate(SQLiteDatabase db){
 db.execSQL("CREATE TABLE DRINK ("
 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

Uploaded By: anonymousSTUDENTS-HUB.com

 + "NAME TEXT, "
 + "DESCRIPTION TEXT, "
 + "IMAGE_RESOURCE_ID INTEGER);");
}

This gives us an empty DRINK table, but what if we want to prepopulate it with data?

Insert data using the insert() method

The SQLiteDatabase class contains several methods that enable you to insert, update, and delete data.
We’ll look at these methods over the next few pages, starting with inserting data.

If you need to prepopulate a SQLite table with data, you can use the SQLiteDatabase insert()
method. This method allows you to insert data into the database, and returns the ID of the record once
it’s been inserted. If the method is unable to insert the record, it returns a value of -1.

Uploaded By: anonymousSTUDENTS-HUB.com

To use the insert() method, you need to specify the table you want to insert into, and the values
you’re inserting. You say what values you want to insert by creating a ContentValues object. A
ContentValues object is used to hold name/value pairs of data:

ContentValues drinkValues = new ContentValues();

You add name/value pairs of data to the ContentValues object using its put() method. We want to
use it to insert a row of data into the DRINK table, so we’ll populate it with the name of each column in
the DRINK table, and the value we want to go in each field:

Finally, we’ll use the SQLiteDatabase insert() method to insert the values into the DRINK table:

db.insert("DRINK", null, drinkValues);

Running these lines of code will insert the Latte record into the DRINK table:

The insert() method takes the following general form:

The nullColumnHack String value is optional and most of the time you’ll want to set it to null like
we did in the code above. It’s there in case the ContentValues object is empty and you want to insert
an empty row into your table. SQLite won’t let you insert an empty row without you specifying the name
of at least one column; the nullColumnHack parameter allows you to specify one of the columns.

Update records with the update() method
You update existing records in SQLite using the SQLiteDatabase update() method. This method
allows you to update records in the database, and returns the number of records it’s updated. To use the
update() method, you need to specify the table you want to update records in, the values you want to
update, and the conditions for updating them. Here’s what it looks like:

public int update (String table,
 ContentValues values,
 String whereClause,
 String[] whereArgs)

As an example, here’s how you’d change the value of the DESCRIPTION column to “Tasty” where the
name of the drink is “Latte”:

Uploaded By: anonymousSTUDENTS-HUB.com

The first parameter of the update() method is the name of the table you want to update (in this case,
the DRINK table).

The second parameter specifies what values you want to update. Just as you did with the insert()
method, you say what values you want to update by creating a ContentValues object to hold
name/value pairs of data:

ContentValues drinkValues = new ContentValues();
drinkValues.put("DESCRIPTION", "Tasty");

The third parameter gives conditions for which records you want to update. In the above example,
"NAME = ?" means that the NAME column should be equal to some value. The ? symbol is a
placeholder symbol for this value. The query uses the contents of the last parameter to say what the value
should be (in this case, “Latte”).

You can also specify multiple criteria, and we’ll show you this on the next page.

WATCH IT!

If you set the last two parameters of the update() method to null, ALL records in the table will be
updated.

As an example, the code

db.update("DRINK",
 drinkValues,
 null, null);

will update all records in the DRINK table.

Multiple conditions

If you want to apply multiple conditions to your query, you need to make sure you specify the conditions
in the same order you specify the values. As an example, here’s how you’d update records from the
DRINK table where the name of the drink is “Latte”, or the drink description is “Our best drip coffee”.

The condition values must be Strings, even if the column you’re applying the condition to doesn’t contain
Strings. If this is the case, you need to convert your values to Strings. As an example, here’s how you’d
return DRINK records where the _id is 1:

Uploaded By: anonymousSTUDENTS-HUB.com

Delete records with the delete() method
The SQLiteDatabase delete() method works in a similar way to the update() method you’ve
just seen. It takes the following form:

public int delete (String table,
 String whereClause,
 String[] whereArgs)

As an example, here’s how you’d delete all records from the database where the name of the drink is
“Latte”:

The first parameter is the name of the table you want to delete records from (in this case, DRINK). The
second and third arguments allow you to describe conditions to specify exactly which records you wish to
delete (in this case, where NAME = “Latte”).

Now that you’ve seen the kinds of operations you can do to manipulate data in a SQLite table, you have
everything that you need to create a SQLite database and create tables and prepoplute them with data.
On the next page, we’ll put this into practice in our SQLite helper code.

The StarbuzzDatabaseHelper code

Here’s the complete code for StarbuzzDatabaseHelper.java (update your code to reflect our changes):

Uploaded By: anonymousSTUDENTS-HUB.com

What the SQLite helper code does

1. The user installs the app and launches it.
When the app needs to access the database, the SQLite helper checks to see if the database
already exists.

Uploaded By: anonymousSTUDENTS-HUB.com

2. If the database doesn’t exist, it gets created.
It’s given the name and version number specified in the SQLite helper.

3. When the database is created, the onCreate() method in the SQLite helper is called.
It adds a DRINK table to the database, and populates it with records.

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL

Here’s the onCreate() method of a SQLiteOpenHelper class. Your job is to say what values have been
inserted into the NAME and DESCRIPTION columns of the DRINK table when the onCreate() method
has finished running.

@Override
public void onCreate(SQLiteDatabase db) {
 ContentValues espresso = new ContentValues();
 espresso.put("NAME", "Espresso");
 ContentValues americano = new ContentValues();
 americano.put("NAME", "Americano");
 ContentValues latte = new ContentValues();
 latte.put("NAME", "Latte");
 ContentValues filter = new ContentValues();
 filter.put("DESCRIPTION", "Filter");
 ContentValues mochachino = new ContentValues();
 mochachino.put("NAME", "Mochachino");

 db.execSQL("CREATE TABLE DRINK ("
 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 + "NAME TEXT, "
 + "DESCRIPTION TEXT);");
 db.insert("DRINK", null, espresso);
 db.insert("DRINK", null, americano);
 db.delete("DRINK", null, null);
 db.insert("DRINK", null, latte);
 db.update("DRINK", mochachino, "NAME = ?", new String[] {"Espresso"});
 db.insert("DRINK", null, filter);
}

SHARPEN YOUR PENCIL SOLUTION

Here’s the onCreate() method of a SQLiteOpenHelper class. Your job is to say what values have been
inserted into the NAME and DESCRIPTION columns of the DRINK table when the onCreate() method
has finished running.

Uploaded By: anonymousSTUDENTS-HUB.com

What if you need to change the database?
So far, you’ve seen how to create a SQLite database that your app will be able to use to persist data. But
what if you need to make changes to the database at some future stage?

As an example, suppose lots of users have already installed your Starbuzz app on their devices, and you
want to a add a new FAVORITE column to the DRINK table. How would you distribute this change to
new and existing users?

Uploaded By: anonymousSTUDENTS-HUB.com

When you need to change an app’s database, there are two key scenarios you have to deal with.

The first scenario is that the user has never installed your app before, and doesn’t have the database
installed on her device. In this case, the SQLite helper creates the database the first time the database
needs to be accessed, and runs its onCreate() method.

The second scenario is where the user installs a new version of your app which includes a different
version of the database. If the SQLite helper spots that the database that’s installed is out of date, it will
call either the onUpgrade() or onDowngrade() method.

So how can the SQLite helper tell if the database is out of date?

SQLite databases have a version number

The SQLite helper can tell whether the SQLite database needs updating by looking at its version number.
You specify the version of the database in the SQLite helper by passing it to the SQLiteOpenHelper
superclass in its constructor.

Earlier on, we specified the version number of the database like this:

Uploaded By: anonymousSTUDENTS-HUB.com

...
 private static final String DB_NAME = "starbuzz";
 private static final int DB_VERSION = 1;

 StarbuzzDatabaseHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
}
...

GEEK BITS

SQLite databases support a version number that’s used by the SQLite helper, and an internal schema version.
Whenever a change is made to the database schema, such as the table structure, the database increments the
schema version by 1. You have no control over this value, it’s just used internally by SQLite.

When the database gets created, its version number gets set to the version number in the SQLite helper,
and the SQLite helper onCreate() method gets called.

When you want to update the database, you change the version number in the SQLite helper code. To
upgrade the database, specify a number that’s larger than you had before, and to downgrade your
database, specify a number that’s lower:

Most of the time, you’ll want to upgrade the database, so specify a number that’s larger. This is because
you usually only downgrade your database when you want to pull changes you made in a previous
upgrade.

When the user installs the latest version of the app on her device, the first time the app needs to use the
database, the SQLite helper checks its version number against that of the database on the device.

If the version number in the SQLite helper code is higher than that of the database, it calls the SQLite
helper onUpgrade() method. If the version number in the SQLite helper code is lower than that of the
database, it calls the onDowngrade() method instead.

Once it’s called either of these methods, it changes the version number of the database to match the
version number in the SQLite helper.

Upgrading the database: an overview
Here’s what happens when you release a new version of the app where you’ve changed the SQLite
helper version number from 1 to 2:

1. The user installs the new release of the app and runs it.

2. If this is the first time the user has installed the app, the database doesn’t exist, so the
SQLite helper creates it.

Uploaded By: anonymousSTUDENTS-HUB.com

The SQLite helper gives the database the name and version number specified in the SQLite helper
code.

3. When the database is created, the onCreate() method in the SQLite helper is called.
The onCreate() method includes code to populate the database.

The story continues....
4. If the user installed a previous version of the app and accessed the database, the

database already exists.
If the database already exists, the SQLite helper doesn’t re-create it.

5. The SQLite helper checks the version number of the database against the version
number in the SQLite helper code.
If the SQLite helper version number is higher than the database version, it calls the
onUpgrade() method. If the SQLite helper version number is lower than the database version,
it calls the onDowngrade() method. It then changes the database version number to reflect the

Uploaded By: anonymousSTUDENTS-HUB.com

version number in the SQLite helper code.

How the SQLite helper makes decisions
Here’s a summary of what the SQLite helper does depending on whether the database already exists and
the version number of the database.

Uploaded By: anonymousSTUDENTS-HUB.com

1. If the database doesn’t already exist, the SQLite helper creates the database, and the
helper onCreate() method runs.

2. If the database already exists, the SQlite helper checks the version number held on the
database with the version number in the helper.

3. If the version number in the SQLite helper is larger than the version number held on the
database, the onUpgrade() method is called.
The SQlite helper then updates the database version number.

4. If the version number in the SQLite helper is smaller than the version number held on
the database, the onDowngrade() method is called.
The SQlite helper then updates the database version number.

Uploaded By: anonymousSTUDENTS-HUB.com

5. If the version number in the SQLite helper is the same as the version number held on the
database, neither method is called.
The database is already up to date.

Now that you’ve seen under what circumstances the onUpgrade() and onDowngrade() methods
get called, let’s find out more about how you use them.

Upgrade your database with onUpgrade()

The onUpgrade() method has three parameters — the SQLite database, the version number of the
database itself, and the new version of the database that’s passed to the SQLiteOpenHelper
superclass:

The version numbers are important, as you can use them to say what database changes should be made
depending on which version of the database the user already has. As an example, suppose you needed to
run code when the database is currently at version 1. Your code would look like this:

You can also use the version numbers to apply successive updates like this:

Using this approach means that you can make sure that the user gets all the database changes applied that
they need, irrespective of which version they have installed.

The onDowngrade() method works in a similar way to the onUpgrade() method. Let’s take a look
on the next page.

Uploaded By: anonymousSTUDENTS-HUB.com

Downgrade your database with onDowngrade()
The onDowngrade() method isn’t used as often as the onUpgrade() method, as it’s used to revert
your database to a previous version. This can be useful if you release a version of your app that includes
database changes, but you then discover that there are bugs. The onDowngrade() method allows you
to pull the changes and set the database back to its previous version.

Just like the onUpgrade() method, the onDowngrade() method has three parameters — the
SQLite database you want to downgrade, the version number of the database itself, and the new version
of the database that’s passed to the SQLiteOpenHelper superclass:

Just as with the onUpgrade() method, you can use the version numbers to revert changes specific to a
particular version. As an example, if you needed to make changes to the database when the database
version number is 3, you’d use code like following:

Let’s put this into practice by upgrading the database.

Let’s upgrade the database

Suppose we need to upgrade our database to add a new column to the DRINK table. As we want all
new and existing users to get this change, we need to make sure that it’s included in both the
onCreate() and onUpgrade() methods. The onCreate() method will make sure that all new
users get the new column, and the onUpgrade() method will make sure that all existing users get it too.

Uploaded By: anonymousSTUDENTS-HUB.com

Rather than put similar code in both the onCreate() and onUpgrade() methods, we’re going to
create a separate updateMyDatabase() method, called by both the onCreate() and
onUpgrade() methods. We’ll move the code that’s currently in the onCreate() method to this new
updateMyDatabase() method, and we’ll add extra code to create the extra column. Using this
approach means that you can put all of your database code in one place, and more easily keep track of
what changes you’ve made each time you’ve updated the database:

BE THE SQLITE HELPER

On the right, you’ll see some SQLite helper code. Your job is to play like you’re the SQLite helper
and say which code will run for each of the users below. We’ve labeled the code we want you to
consider. We’ve done the first one to start you off.

User 1 runs the app for the first time.

Code segment A. The user doesn’t have the database, so the onCreate() method runs.

User 2 has database version 1.

User 3 has database version 2.

User 4 has database version 3.

User 5 has database version 4.

User 6 has database version 5.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

BE THE SQLITE HELPER SOLUTION

On the right you’ll see some SQLite helper code. Your job is to play like you’re the SQLite helper
and say which code will run for each of the users below. We’ve labeled the code we want you to
consider. We’ve done the first one to start you off.

User 1 runs the app for the first time.

Code segment A. The user doesn’t have the database, so the onCreate() method runs.

User 2 has database version 1.

Code segment B then D. The database needs to be upgraded with oldVersion == 1.

User 3 has database version 2.

Code segment D. The database needs to be upgraded with oldVersion == 2.

User 4 has database version 3.

Code segment C then D. The database needs to be upgraded with oldVersion == 3.

User 5 has database version 4.

None. The user has the correct version of the database.

User 6 has database version 5.

Code segment F. The database needs to be downgraded with oldVersion == 5.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Upgrading an existing database

When you need to upgrade your database, there are two types of actions you might want to perform:

Change the database records.
Earlier on in the chapter, you saw how to insert, update, or delete records in your database using the
SQLiteDatabase insert(), update(), and delete() methods. You may add more
records when you upgrade the database, or change or remove the records that are already there.
Change the database structure.
You’ve already seen how you can create tables in the database. You may also want to add columns
to existing tables, rename tables, or remove tables completely.

We’ll look at how to perform these actions over the next few pages, starting with changing the database
structure to add columns to existing tables.

Add new columns to tables using SQL
Earlier on in the chapter, you saw how you could create tables using the SQL CREATE TABLE
command like this:

You can also use SQL to change an existing table using the ALTER TABLE command. As an example,
here’s what the command looks like to add a column to a table:

In the example above, we’re adding a column called FAVORITE that holds numeric values to the
DRINK table.

On the next page, we’ll show you how to rename a table, or remove it from the database.

Renaming tables

You can also use the ALTER TABLE command to rename a table. As an example, here’s how you’d
rename the DRINK table to FOO:

Delete tables by dropping them

Uploaded By: anonymousSTUDENTS-HUB.com

In addition to creating and altering tables, you can delete them using the DROP TABLE command:

This command is useful if you have a table in your database schema that you know you don’t need any
more, and want to remove it in order to save space.

Execute the SQL using execSQL()
As you saw earlier in the chapter, you can execute SQL commands using the SQLiteDatabase
execSQL() method:

SQLiteDatabase.execSQL(String sql);

As an example, here’s how you’d execute SQL to add a new FAVORITE column to the DRINK table:

db.execSQL("ALTER TABLE DRINK ADD COLUMN FAVORITE NUMERIC;");

You can use the execSQL() method any time you need to execute SQL on the database.

Now that you’ve seen the sorts of actions you might want to perform when upgrading your database, let’s
apply this to StarbuzzDatabaseHelper.java.

The full SQLite helper code
Here’s the full code for StarbuzzDatabaseHelper.java that will add a new FAVORITE column to the
DRINK table. Update your code to match ours (the changes are in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

The SQLite helper code (continued)

Uploaded By: anonymousSTUDENTS-HUB.com

The new code in the SQLite helper means that existing users will get the new FAVORITE column added
to the DRINK table the next time they access the database. It also means that any new users will get the
complete database created for them, including the new column.

We’ll go through what happens when the code runs on the next page.

What happens when the code runs
1. When the database first needs to be accessed, the SQLite helper checks whether the

database already exists.

2. If the database doesn’t exist, the SQLite helper creates it and runs its onCreate()
method.
Our onCreate() method code calls the updateMyDatabase() method. This creates the
DRINK table (including the extra column) and populates the table with records.

Uploaded By: anonymousSTUDENTS-HUB.com

3. If the database already exists, the SQLite helper checks the version number of the
database against the version number in the SQLite helper code.
If the SQLite helper version number is higher than the database version, it calls the
onUpgrade() method. If the SQLite helper version number is lower than the database version,
it calls the onDowngrade() method. Our SQLite helper version number is higher than that of
the database, so the onUpgrade() method is called. It calls the updateMyDatabase()
method, and this adds an extra column called FAVORITE to the DRINK table.

Your Android Toolbox
You’ve got Chapter 11 under your belt and now you’ve added creating, updating, and upgrading
databases to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

Android uses SQLite as its backend database to persist data.
The SQLiteDatabase class gives you access to the SQLite database.
A SQLite helper lets you create and manage SQLite databases. You create a SQLite helper by extending
the SQLiteOpenHelper class.
You must implement the SQLiteOpenHelper onCreate() and onUpgrade() methods.
The database gets created the first time it needs to be accessed. You need to give the database a name
and version number, starting at 1. If you don’t give the database a name, it will just get created in
memory.
The onCreate() method gets called when the database first gets created.
The onUpgrade() method gets called when the database needs to be upgraded.
Execute SQL using the SQLiteDatabase execSQL(String) method.
Add records to tables using the insert() method.
Update records using the update() method.
Remove records from tables using the delete() method.

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 12. Cursors and Asynctasks:
Connecting to Databases

So how do you connect your app to a SQLite database?

So far you’ve seen how to create a SQLite database using a SQLite helper. The next step is to get your
activities to access it. In this chapter, you’ll find out how to use cursors to get data from the database,
how to navigate cursors, and how to get data from them. You’ll then find out how to use cursor
adapters to connect them to list views. Finally, you’ll see how writing efficient multithreaded code with
AsyncTasks will keep your app speedy.

The story so far...
In Chapter 11, you saw how to write a SQLite helper to create a database, and how to add tables and
prepopulate them with data. You also saw how to make the SQLite helper deal with database upgrades
so that you can change the structure of the database and manipulate the data it contains by upgrading it.

In this chapter, we’re going to show you how to get your activities to interact with the database so that
your user can read from and write to the database using your app.

Here’s the current state of our Starbuzz app:

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to change the Starbuzz app so that it uses the Starbuzz SQLite database instead of the Java
Drink class.

We’ll change the app to use the database
There are two activities that use the Drink class. We need to get them to read data from the SQLite
database with assistance from the SQLite helper. Here’s what we’ll do:

1. Update the Drink code in DrinkActivity.
DrinkActivity uses the Drink class to display the details it has for a given drink. We’ll
change the activity so that it retrieves the record for that drink from the Starbuzz database.

2. Update the Drink code in DrinkCategoryActivity.
DrinkCategoryActivity uses the Drink class to display a list of all the drinks. We’ll
change this so that the activity displays a list of all the records in the DRINK table.

3. Let users choose their favorite drinks.
In Chapter 11, we upgraded the database so that the DRINK table includes a FAVORITE
column. We’ll change the app so that users can flag which drinks are their favorites, and display a
list of these favorites in TopLevelActivity.

Here’s what the structure of the app will look like:

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s start with DrinkActivity.java.

The current DrinkActivity code

Here’s a reminder of what the current DrinkActivity.java code looks like. The onCreate() method
gets the drink number selected by the user, gets the drink details from the Drink class, and then
populates the activity’s views using the drink attributes:

Uploaded By: anonymousSTUDENTS-HUB.com

Get data from the database with a cursor
Our current DrinkActivity code depends on being able to get details of a particular drink from the
Drink class. How do we change this so that we can retrieve drink details from the Starbuzz database
instead? How do you change an activity so that it reads data from a database?

The solution is to use a cursor.

Cursors give you access to database data
A cursor gives you access to database recordsets. You specify what data you want access to, and the
cursor brings back the records from the database. You then navigate through the records supplied by the
cursor.

Uploaded By: anonymousSTUDENTS-HUB.com

You create a cursor by specifying what data you want access to using a database query. So what’s a
query?

A query lets you say what records you want from the database

A database query gives you a way of saying exactly which records you want access to from the database.
As an example, you can say you want to access all the data from the DRINK table, or just those drinks
whose name begins with “L”. The more you can restrict the data you return, the more efficient your query
will be.

Specify the table and columns
The first thing to specify in your query is which table you want to get records from, and which columns
you need.

Declare any conditions that restrict your selection
Once you’ve said what columns you want, you can filter your data by declaring any conditions the data

Uploaded By: anonymousSTUDENTS-HUB.com

must meet. In our app, for example, we want to retrieve the drink the user selected, and we can do this
by only returning records where the drink _id has a particular value.

Other stuff you can use queries for
If you expect your query to return several rows of data, you might find it useful to say what order you
want the records to be in. As an example, you might want to order the drink records in drink name order.
You can also use queries to group the data in some way, and apply aggregate functions to it. As an
example, you might want to return a count of how many drinks there are and display it in your app.

So how do you create a query?

The SQLiteDatabase query() method lets you build SQL using a query
builder
You can build a query using the SQLiteDatabase query() method. The query() method returns
an object of type Cursor, which your activities can use to access the database.

Here is the basic form of the query() method:

You can use this version of the query() method to specify which table you want to return data from,
which columns you want, what conditions you want to apply to the data, what data aggregations you
need, and how you want the data ordered.

Behind the scenes, Android uses the query() method to construct an SQL SELECT statement.

There are several other overloaded versions of the query() method which allow you to add extra
details to your query, such as whether you want each row to be unique, and the maximum number of
rows you want to be returned. We’re not going to go into all these variations, but if you’re interested, you
can find a full list of the overloaded methods in the online Android documentation:

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

Over the next few pages, we’ll go through some of the most common ways in which you might want to
use the query() method.

Specifying table and columns

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

The simplest type of database query you can create is to return all the records for particular columns
without specifying criteria. To do this, put the name of the table as the first parameter, and a String
array of the column names as the second. As an example, here’s how you’d use the query() method to
return the contents of the name and description columns from the DRINK table:

Restrict your query by applying conditions
You can apply conditions to your database query by specifying what values particular columns should
have using the third and fourth query parameters. As an example, here’s how you’d say you only want to
return records from the DRINK table where the name of the drink is “Latte”:

The third parameter "NAME = ?" means that the NAME column should equal some value. The ?
symbol is a placeholder symbol for this value. The query uses the contents of the fourth parameter to say
what the value should be (in this case, “Latte”).

Applying multiple conditions to your query
If you want to apply multiple conditions to your query, you need to make sure you specify the conditions
in the same order you specify the values. As an example, here’s how you’d return records from the
DRINK table where the name of the drink is “Latte”, or the drink description is “Our best drip coffee”.

Uploaded By: anonymousSTUDENTS-HUB.com

If you specify the conditions in a different order to the values, your cursor will return the wrong data. As
an example, it might pair the value “Latte” with the DESCRIPTION column rather than the NAME
column. This wouldn’t return any records.

You specify conditions as String values
The condition values must be Strings. If the column you’re applying the condition to doesn’t contain
text, you still need to convert your values to Strings. As an example, here’s how you’d return DRINK
records where the _id is 1:

Order data in your query

If you want to display data in your app in a particular order, you can use the query to sort the data by a
particular column. This can be useful if, for example, you want to display drink names in alphabetical
order.

By default, the data in the table appears in _id order as this was the order in which data was entered:

_id NAME DESCRIPTION IMAGE_RESOURCE_ID FAVORITE

1 "Latte" "Espresso and steamed milk" 54543543 1

2 "Cappuccino" "Espresso, hot milk and steamed-milk foam" 654334453 0

3 "Filter" "Our best drip coffee" 44324234 0

If you wanted to retrieve data from the NAME and FAVORITE column in ascending NAME order, you
could use the following:

Uploaded By: anonymousSTUDENTS-HUB.com

The ASC keyword means that you want to order that column in ascending order. Columns are ordered in
ascending order by default, so if you want you can omit the ASC. To order the data in descending order
instead, you’d use DESC.

You can sort by multiple columns too. As an example, here’s how you’d order by FAVORITE in
descending order, followed by NAME in ascending order:

You’ve now seen the most common ways of using the query() method, but there are still more things
you can do.

Using SQL functions in queries
If you’re familiar with SQL functions, the great news is you can use them in queries. They allow you to
retrieve things like the number of rows in a table, the average value of a column, or the highest value.

Here are some of the most useful SQL functions you can use in your queries:

AVG() The average value

COUNT() The number of rows

SUM() The sum

MAX() The largest value

MIN() The smallest value

As an example, if you wanted to count how many drinks there are in the DRINK table, you could use the
SQL COUNT() function to count the number of values in the _id column:

If the DRINK table contained an extra PRICE column that gave the price of each drink, you could find
out the average drink price using the SQL AVG() function to find the average value of the PRICE
column:

Uploaded By: anonymousSTUDENTS-HUB.com

SQL GROUP BY and HAVING clauses

If you’re familiar with the GROUP BY and HAVING clauses of SQL, you can use these in the fifth and
sixth parameters of the query() method.

As an example, suppose you wanted to find out how many drinks there are for each value of
FAVORITE. To do this, you’d create a query to return the FAVORITE column and a count of drinks.
You’d then group by the FAVORITE column to return the number of drinks there are for each value of
FAVORITE:

RELAX

We’re not teaching you SQL in this book, just giving you a glimpse of what you can do.

If you think this is something you’ll find useful, we suggest picking up a copy of Head First SQL.

If the data in the DRINKS table looks like this:

the query will return data like this:

Now that you’ve seen how to create a cursor using the query() method, it’s time for you to have a go

Uploaded By: anonymousSTUDENTS-HUB.com

at creating one for the Starbuzz app.

CODE MAGNETS

In our code for DrinkActivity, we want to get the name, description, and image resource ID for the
drink passed to it in an intent. Can you construct a query() method that will do that?

Uploaded By: anonymousSTUDENTS-HUB.com

CODE MAGNETS SOLUTION

In our code for DrinkActivity we want to get the name, description and image resource ID for the
drink passed to it in an intent. Can you construct a query() method that will do that?

Get a reference to the database
Over the past few pages, you’ve seen how to build a query that returns a cursor. The query() method
is defined in the SQLiteDatabase class, which means in order to call it we need to get a reference to
our Starbuzz database. The SQLiteOpenHelper class implements a couple of methods that can help
us with this: getReadableDatabase() and getWritableDatabase(). Each of these methods
returns an object of type SQLiteDatabase, which gives us access to the database. You call the
methods like this:

A cursor lets you read data from the database.

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);
SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

and

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);
SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

So what’s the difference between these two methods?

getReadableDatabase() versus getWritableDatabase()
You’re probably thinking that getReadableDatabase() returns a read-only database object, and
getWritableDatabase() returns one that’s writable. In fact, most of the time
getReadableDatabase() and getWritableDatabase() both return a reference to the
same database object. This database object can be used to read and write data to the database. So why
is there a getReadableDatabase() method if it returns the same object as the
getWriteableDatabase() method?

The key difference between the getReadableDatabase() and getWritableDatabase()

Uploaded By: anonymousSTUDENTS-HUB.com

methods is what happens if it’s not possible to write to the database. This can happen if the disk is full, for
instance.

If you use the getWritableDatabase() method in this case, the method will fail, and throw a
SQLiteException. But if you use the getReadableDatabase() method, the method will try to
get a read-only reference to the database. It may still throw a SQLiteException if it can’t get read-
only access to the database.

If you only need read data from a database, you’re best off using the getReadableDatabase()
method. If you need to write to the database, use the getWritableDatabase() method instead.

NOTE

You’ll probably be able to write to the database if you use getReadableDatabase(), but it’s not guaranteed.

getReadableDatabase()

getWritableDatabase()

Uploaded By: anonymousSTUDENTS-HUB.com

The code for getting a cursor

Putting all of this together, here’s the code for getting a cursor. We’ll use this code later in the
onCreate() method of our activity.

What the code does
1. The starbuzzDatabaseHelper is created.

Uploaded By: anonymousSTUDENTS-HUB.com

2. starbuzzDatabaseHelper creates a SQLiteDatabase object called db.

3. The cursor is created by calling the SQLiteDatabase query() method.

To read a record from a cursor, you first need to navigate to it
You’ve now seen how to create a cursor; you use the SQLiteDatabase query() method to say
what data you want the cursor to return. But that’s not the end of the story — we need to read values
from it.

Whenever you need to retrieve values from a particular record in a cursor, you first need to navigate to
that record. You need to do this irrespective of how many records are returned by the cursor.

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll look at how you navigate cursors.

Navigating cursors

There are four main methods you use to navigate through the records in a cursor. These methods are
moveToFirst(), moveToLast(), moveToPrevious(), and moveToNext().

To get access to the first record returned by the cursor, you can use its moveToFirst() method (it
returns a value of true if it finds a record, and false if the cursor hasn’t returned any records):

if (cursor.moveToFirst()) {
 //Do something
};

If you want to navigate to the last record returned by the cursor, you can use the moveToLast()
method instead (just like the moveToFirst() method, it returns a value of true if it finds a record,
and false if it doesn’t):

if (cursor.moveToLast()) {
 //Do something
};

To iterate through the records in the cursor, you use the moveToPrevious() and moveToNext()
methods.

The moveToPrevious() method moves you to the previous record in the cursor (it returns true if it
succeeds in moving to the previous record, and false if it fails — which could be because it’s already at
the first record, or because the cursor doesn’t contain any records):

Uploaded By: anonymousSTUDENTS-HUB.com

if (cursor.moveToPrevious()) {
 //Do something
};

The moveToNext() method works in the same way as the moveToPrevious() method, except
that it moves you to the next record in the cursor (it returns true if it succeeds in moving to the next
record, and false if it fails):

if (cursor.moveToNext()) {
 //Do something
};

Once you’ve navigated to a record in your cursor, you can access its values. We’ll look at that on the next
page.

Getting cursor values
Once you’ve moved to a record in a cursor, you can retrieve values from it so that you can display them
in your activity’s views. You retrieve a value from the current record in a cursor using its get*()
methods. The exact method you use for this depends on the type of value you want to retrieve. As an
example, the getString() method returns the value of a column as a String, and the getInt()
method returns the value of a column as an int. Each of the methods takes a single parameter, the
column index.

As an example, here’s the query we used to create our cursor:

Cursor cursor = db.query ("Drink",
 new String[] {"NAME", "DESCRIPTION",
"IMAGE_RESOURCE_ID"},
 "_id = ?",
 new String[] {Integer.toString(1)},
 null, null,null);

The cursor has three columns: NAME, DESCRIPTION, and IMAGE_RESOURCE_ID. The first two
columns, NAME and DESCRIPTION, contain data of type String. The third column,

Uploaded By: anonymousSTUDENTS-HUB.com

IMAGE_RESOURCE_ID, contains data of type int.

Suppose you wanted to get the value of the NAME column for the current record. NAME is the first
column in the cursor, and contains String values. You’d therefore get the contents of the NAME
column using the getString() method like this:

Similarly, suppose you wanted to get the contents of the IMAGE_RESOURCE_ID column. This is the
third column in the cursor, and contains int values, so you’d use the code:

int imageResource = cursor.getInt(2);

NOTE

You can find details of all the cursor get methods in
http://developer.android.com/reference/android/database/Cursor.html.

Finally, close the cursor and database
Once you’ve finished retrieving values from the cursor, you need to close the cursor and the database in
order to release their resources. You do this by calling the cursor and database close() methods:

cursor.close();
db.close();

We’ve now covered all the code we need to replace the code in DrinkActivity so that it gets its
data from the Starbuzz database. Let’s look at the code.

The DrinkActivity code

Here’s the full code for DrinkActivity.java (apply the changes in bold to your code, then save your
work):

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/reference/android/database/Cursor.html

Uploaded By: anonymousSTUDENTS-HUB.com

So that’s the DrinkActivity code complete. Let’s see what’s next.

RELAX

Connecting your activities to a database takes more code than using a Java class.

But if you take your time working through the code in this chapter, you’ll be fine.

What we’ve done so far

Now that we’ve finished updating the DrinkActivity.java code, let’s look at the app structure diagram to
see what we’ve done, and what we need to do next.

Uploaded By: anonymousSTUDENTS-HUB.com

DrinkActivity now gets all of its drink data from the Starbuzz database. Next, we need to update
the code in DrinkCategoryActivity so that it uses data from the database rather than from the
Java Drink class.

THERE ARE NO DUMB QUESTIONS

Q: Q: How much SQL do I need to know to create cursors?

A: A: It’s useful to have an understanding of SQL SELECT statements, as behind the scenes the query() method translates to one. In general,
your queries probably won’t be too complex, but SQL knowledge is a useful skill.

Q: Q: You said that if the database can’t be accessed, a SQLiteException is thrown. How should I deal with it?

A: A: First, check the exception details. The exception might be caused by an error in SQL syntax which you can then rectify.
How you handle the exception depends on the impact it has on your app. As an example, if you can get read access to the database but
can’t write to it, you can still give the user read-only access to the database, but you might want to tell the user that you can’t save their
changes. Ultimately, it all depends on your app.

The current DrinkCategoryActivity code

Here’s a reminder of what the current DrinkCategoryActivity.java code looks like. The onCreate()
method populates a ListView with drinks using an ArrayAdapter. The onListItemClick()
method adds the drink the user selects to an intent, and then starts DrinkActivity:

Uploaded By: anonymousSTUDENTS-HUB.com

How do we replace the array data in the ListView?

The listDrinks list view gets its data from the Drink.drinks array. Now, what we could do is
read the list of drinks from the database, and then store them in an array that we pass to the array
adapter.

That would work, but can you think of a reason why that might be a bad idea?

Uploaded By: anonymousSTUDENTS-HUB.com

For our very small database, there’s no real problem in reading all of the data from the database and
storing it in an array in memory. But if you have an app that stores a very large amount of data, then it’s
going to take some time to read it all out of the database. It may also take a lot of memory to store it all in
an array some place.

Instead, we’re going to switch from using an ArrayAdapter to a CursorAdapter.

A CursorAdapter is just like an ArrayAdapter, except instead of getting its data from an array, it
reads the data from a cursor.

Let’s look at how it works.

A CursorAdapter reads just enough data
Let’s pretend that our database is a lot larger. For example, let’s say Starbuzz massively extended its
range of artisan coffees for the hipster market. Instead of three types of coffee, the different combinations
of extra shots, milk, and granola sprinkles might mean that we need to store 300 drinks in the database.
But we can only see a few at a time in the list.

The ListView can only display a limited number of items at one time. On a small device, it might only
initially show, say, the first 11 coffees. If we were using an array, we would have to read all 300 coffees
from the database into the array before we could display any on the screen.

That’s not how it works with a CursorAdapter.

1. The ListView gets displayed on the screen.
When the list is first displayed, it will be sized to fit the screen. Let’s say it has space to show five
items.

Uploaded By: anonymousSTUDENTS-HUB.com

2. The ListView asks its adapter for the first five items.
The ListView doesn’t know where the data is coming from — whether it’s an array or a
database — but it does know that it will be given the data by its adapter. So it makes a request to
the adapter for the first five drinks.

The story continues

3. The CursorAdapter asks its cursor to read five rows from the database.
A CursorAdapter is given a cursor when it’s constructed, and it will ask the cursor for data
only when it needs it.

4. The cursor reads the first five rows from the database.
Even though the database table contains 300 rows, the cursor only needs to read the first five.
That’s a lot more efficient, and it means that the screen can start displaying data much sooner.

Uploaded By: anonymousSTUDENTS-HUB.com

5. The user scrolls the list.
As the user scrolls the list, the CursorAdapter asks the cursor to read a few more rows from
the database. If the user scrolls the list just a little, and uncovers one new item, the cursor will read
one more row from the database.

So a CursorAdapter is a lot more efficient than the ArrayAdapter. It only reads the data it
needs. That means it’s faster and takes up less memory, and speed and memory are both
important things to keep in mind.

A SimpleCursorAdapter maps data to views
We’re going to create a simple cursor adapter to use with our app. A SimpleCursorAdapter is an
implementation of CursorAdapter that can be used in most cases where you need to display cursor
data in a list view. It takes columns from a cursor, and maps them to TextViews or ImageViews.

Uploaded By: anonymousSTUDENTS-HUB.com

In our case, we want to display a list of drink names in our DrinkCategoryActivity list view, so
we’ll use a simple cursor adapter to map the name of each drink to a text view in the list view:

First, create the cursor
The first thing to think about when creating a cursor to use with a cursor adapter is what columns the
cursor needs to contain. The cursor should include all the columns that need to be displayed in the list
view, along with a column called _id. The _id column must be included, or the cursor adapter won’t
work. So why’s that?

In Chapter 11, we mentioned that it was an Android convention to give the primary key column in a table
the name _id. This is so integral to Android that the cursor adapter assumes that this column will be
there, and uses it to uniquely identify each row in the cursor. When you use a cursor adapter with a list
view, the list view uses this column to identify which row the user has clicked.

As we’re using a cursor adapter to display the names of the drinks, our cursor must contain the _id and
NAME columns like this:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll use the cursor to create the cursor adapter.

Creating the SimpleCursorAdapter

To create a simple cursor adapter, you need to tell it how you want the data to be displayed, which cursor
to use, and which columns should be mapped to which views. Here’s how you’d create a simple cursor
adapter to display a list of drink names:

Just as we did with the array adapter, we’re using android.R.layout.simple_list_item_1 to
tell Android that we want to display each row in the cursor as a single text view in the list view. This text
view has an ID of android.R.id.text1.

The general form of the SimpleCursorAdapter constructor looks like this:

The context and layout parameters are exactly the same ones you used when you created an array
adapter. context is the current context, and layout says how you want to display the data. Instead of
saying which array we need to get our data from, we need to specify which cursor contains the data using
the cursor parameter. You then use fromColumns to specify which columns in the cursor you want to

Uploaded By: anonymousSTUDENTS-HUB.com

use, and toViews to say which views you want to display them in.

The flags parameter is generally set to 0, which is the default. The alternative is to set it to
FLAG_REGISTER_CONTENT_OBSERVER to register a content observer that will be notified when the
content changes. We’re not covering this here, as it can lead to memory leaks. Later in the chapter, you’ll
see how to deal with the underlying data changing.

Closing the cursor and database
When we introduced you to cursors earlier in the chapter, we said that you needed to close the cursor
and database after you’d finished with it in order to release their resources. In our DrinkActivity
code, we used a cursor to retrieve drink details from the database, and once we’d used these values with
our views, we immediately closed the cursor and database.

When you use a cursor adapter, it works slightly differently; the cursor adapter needs the cursor to stay
open in case it needs to retrieve more data from it. This will happen if the user scrolls down the list of
items in the list view, and needs to see more data.

This means that you can’t immediately close the cursor and database once you’ve used the
setAdapter() method to connect it to your list view. Instead, you can use the activity’s
onDestroy() method to close them. As the activity’s being destroyed, there’s no further need for the
cursor or database connection, so they can be closed:

On the next page, see if you can update the code for DrinkCategoryActivity.

POOL PUZZLE

Your job is to take code segments from the pool and place them into the blank lines in
DrinkCategoryActivity.java. You may not use the same code segment more than once, and you won’t need
to use all the code segments. Your goal is to populate the ListView with a list of drinks from the database.

Uploaded By: anonymousSTUDENTS-HUB.com

Note: each thing from the pool can only be used once!

Uploaded By: anonymousSTUDENTS-HUB.com

POOL PUZZLE SOLUTION

Your job is to take code segments from the pool and place them into the blank lines in
DrinkCategoryActivity.java. You may not use the same code segment more than once, and you won’t need
to use all the code segments. Your goal is to populate the ListView with a list of drinks from the database.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

The revised code for DrinkCategoryActivity

Here’s the full code for DrinkCategoryActivity.java, replacing the array adapter with a cursor adapter
(the changes are in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s try running the app.

Test drive the app

Make the changes to the code, and then build and redeploy the app. When you do that, you’ll see that
the app looks exactly the same as before.

Uploaded By: anonymousSTUDENTS-HUB.com

But now the data is being read from the database. In fact, you can now delete the Drink.java code,
because we no longer need the array of drinks. Every piece of data we need is now coming from the
database.

Where we’ve got to
Here’s the current state of the Starbuzz app:

There’s one more change we’re going to make to the app. We’re going to get the app to update data in
the database.

Put important information in the top-level activity
When we first created our Starbuzz app, we designed the top-level activity to be very simple. The top-
level activity is the first activity that the user sees when they launch your app, and all the Starbuzz one
contains is an image and three navigation items which could be moved into a navigation drawer. It’s a

Uploaded By: anonymousSTUDENTS-HUB.com

good idea to keep your user interface simple, but is this too simple?

The design of your top-level activity needs careful thought, as it’s the first thing that your user sees.
Ideally, it should contain content that’s useful for new and existing users. One way of achieving this is to
think about what your users will want to do in your app, and then give them a means of doing this from
the front screen. As an example, if you were designing an app to play music, you might want to include
the most recent albums the user has played in the top-level activity so that they’re easy for the user to
find.

We’re going to change the Starbuzz top-level activity by adding the users favorite drinks to it, and
allowing them to click straight through to the drink they select.

To do this, we first need to allow users to say which drinks are their favorites.

Add favorites to DrinkActivity

In Chapter 11, we added a FAVORITE column to the DRINK table in the Starbuzz database. We’ll use
this column to let users indicate whether a particular drink is one of their favorites so that we know which
drinks to display in TopLevelActivity. We’ll let users edit drinks within DrinkActivity, as this
activity displays details of the drink.

To do this, we need to add a new view to activity_drink.xml that will be used to edit and display the
value of the FAVORITE column. The type of view you use in a layout depends on what type of data you
need to use it for. We need a view that will allow the user to choose true/false values, so we’re going to
use a checkbox.

Uploaded By: anonymousSTUDENTS-HUB.com

First, add a String resource called favorite to strings.xml (we’ll use this as a label for the checkbox):

<string name="favorite">Favorite</string>

Then add the checkbox to activity_drink.xml. We’re giving it an ID of favorite, and using its
android:text attribute to display its label. We’re also setting its android:onClick attribute to
“onFavoriteClicked” so that the onFavoriteClicked() method in DrinkActivity will be called
when the user clicks on the checkbox.

Add a new column to the cursor
The next thing is to change the DrinkActivity code so that the favorite checkbox displays the value
of the FAVORITE column that’s in the database.

Uploaded By: anonymousSTUDENTS-HUB.com

We can retrieve the value of the FAVORITE column in the same way that we did for the other views in
the activity, by adding the FAVORITE column to our cursor. We can then retrieve the value of the
FAVORITE column from the cursor, and set the value of the checkbox to that value. Here’s the relevant
part of the onCreate() method:

That’s enough to make sure the value of the FAVORITE column is displayed in the checkbox. Next, we
need to get the checkbox to update the database when it’s clicked.

Respond to clicks to update the database

Uploaded By: anonymousSTUDENTS-HUB.com

When we added the checkbox to activity_drink.xml, we set the android:onClick attribute to
onFavoriteClicked(). This means that whenever the checkbox is clicked, the
onFavoriteClicked() method in the activity will get called. We need to get this method to update
the database with the current value of the checkbox. If the user checks or unchecks the checkbox, the
onFavoriteClicked() method will get called and the user’s change will be saved to the database.

In Chapter 11, you saw how to use SQLiteDatabase methods to change the data held in a SQLite
database. You saw how to use the insert() method to insert data, the delete() method to delete
data, and the update() method to update existing records.

You can use these methods to change data from within your activity. As an example, you could use the
insert() method to add new drink records to the DRINK table, or the delete() method to delete
them. In our case, we want to update the DRINK table’s FAVORITE column with the value of the
checkbox, and we can do this using the update() method.

As a reminder, the update() method takes the following form:

database.update(String table,
 ContentValues values,
 String whereClause,
 String[] whereArgs);

where table is the name of the table you want to update, and values is a ContentValues object
containing name/value pairs of the columns you want to update and the values you want to set them to.
The whereClause and whereArgs parameters specify which records you want to update

You already know everything you need to get DrinkActivity to update the FAVORITE column for
the current drink when the checkbox is clicked, so have a go at the following exercise.

Uploaded By: anonymousSTUDENTS-HUB.com

CODE MAGNETS

In our code for DrinkActivity we want to update the FAVORITE column in the database with the value
of the favorite checkbox. Can you construct the onFavoriteClicked() method so that it will do that?

Uploaded By: anonymousSTUDENTS-HUB.com

CODE MAGNETS SOLUTION

In our code for DrinkActivity we want to update the FAVORITE column in the database with the value
of the favorite checkbox. Can you construct the onFavoriteClicked() method so that it will do that?

The DrinkActivity code
Here’s the full code for DrinkActivity.java (changes are in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Display favorites in TopLevelActivity
The final thing we need to do is display the user’s favorite drinks in TopLevelActivity.

We need to add a new ListView to the layout.
This will display a list of the user’s favorite drinks.
We need to populate the ListView.
We’ll populate the list with the user’s favorite drinks from the database.
We need to get the ListView to respond to clicks.
If the user clicks on one of their favorite drinks, we’ll display details of the drink in
DrinkActivity.

Applying all of these changes will enable us to display the user’s favorite drinks in
TopLevelActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

Over the next few pages, we’ll go through the code to do this.

Display the favorite drinks in activity_top_level.xml

As we said on the previous page, we’re going to add a list view to activity_top_level.xml, which we’ll
use to display a list of the user’s favorite drinks. We’ll also add a text view to display a heading for the list.

First, add the following String resource to strings.xml (we’ll use this for the text view’s text):

<string name="favorites">Your favorite drinks:</string>

Next, update activity_top_level.xml to add the text view and list view like this:

Uploaded By: anonymousSTUDENTS-HUB.com

Those are all the changes we need to make to activity_top_level. xml. Next, we need to update
TopLevelActivity.java.

What changes are needed for TopLevelActivity.java
The next thing we need to do is display the users favorite drinks in the list view we just added, and get the
list view to respond to clicks. To do this, we need to do the following:

1. We need to create a cursor to populate the ListView.
The cursor will return all drinks where the FAVORITE column has been set to 1 — all drinks that
the user has flagged as being a favorite. Just as we did in our code for
DrinkCategoryActivity, we can connect the cursor to the ListView using a
CursorAdapter.

2. We need to create an onItemClickListener so that the ListView can respond to clicks.
If the user clicks on one of her favorite drinks, we can create an intent that starts
DrinkActivity, passing it the ID of the drink that was clicked. This will show the user details
of the drink they’ve just chosen.

Uploaded By: anonymousSTUDENTS-HUB.com

You’ve already seen the code you need to do this, so over the next few pages, we’ll give you the full code
for TopLevelActivity. java.

The new top-level activity code

Here’s the new code we need to add to TopLevelActivity.java (there’s a lot of new code, so go through
it carefully and take your time):

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

The above code populates a list view with the user’s favorite drinks. When the user clicks on one of these
drinks, an intent starts DrinkActivity and passes it the ID of the drink. Details of the drink are then
displayed. We’ll show you this running on the next page, along with a problem we need to sort out.

Test drive the app
When we open the app, the new text view and new favorites list view are displayed in
TopLevelActivity, as you’d expect. No drinks are displayed in the list view because no drinks have
been chosen as favorites yet.

Uploaded By: anonymousSTUDENTS-HUB.com

When we navigate to DrinkActivity, a new checkbox is displayed. If we click on it, this flags that
the drink is a favorite.

When we go back to TopLevelActivity, the drink we selected as a favorite isn’t displayed in the
favorites list view. It only appears if we rotate the device.

Uploaded By: anonymousSTUDENTS-HUB.com

BRAIN POWER

Why do you think the drink we chose as a favorite doesn’t appear in the list view until we rotate the screen?
Think about this before turning the page.

Cursors don’t automatically refresh

If the user chooses a new favorite drink by navigating through the app to DrinkActivity, the new
favorite drink isn’t automatically displayed in the favorites list view in TopLevelActivity. This is
because cursors retrieve data when the cursor gets created. In our case, the cursor is created in the
activity onCreate() method, so it gets its data when the activity is created. When the user navigates
through the other activities, TopLevelActivity is stopped, not destroyed and re-created.

Uploaded By: anonymousSTUDENTS-HUB.com

Cursors don’t automatically keep track of whether the underlying data in the database has changed. If the
underlying data changes after the cursor’s been created, the cursor doesn’t get updated. It still contains
the original records, and none of the changes.

So how do we get around this?

Change the cursor with changeCursor()
The solution is to change the underlying cursor used by the favorites list view to a new version when the
user returns to TopLevelActivity. If we do this in the activity’s onRestart() method, the data in
the ListView will get refreshed when the user returns to TopLevelActivity. Any new favorite drinks
the user has chosen will be displayed, and any drinks that are no longer flagged as favorites will be
removed from the list.

To do this, we can use the CursorAdapter changeCursor() method. The changeCursor()
method replaces the cursor currently used by a cursor adapter to a new one, and closes the old cursor.
Here’s what the method looks like:

The changeCursor() method takes one parameter, the new cursor. Here’s an example of the code in
action:

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll show you the revised code for TopLevelActivity.java on the next few pages.

The revised TopLevelActivity.java code

Here’s the full TopLevelActivity.java code (our changes are in bold):

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code we need for our top-level activity. Let’s take it for a spin and see how it works.

Test drive the app
This time when we flag a drink as being a favorite, it appears in TopLevelActivity. When we click
on the drink, the app shows us the details of that drink.

Uploaded By: anonymousSTUDENTS-HUB.com

Databases are powerful, but they can be slow.

That means that even though our app works, we need to keep an eye on performance...

Databases can make your app go in sloooo-moooo....

Uploaded By: anonymousSTUDENTS-HUB.com

Think about what your app has to do when it opens a database. It first needs to go searching through the
flash to find the database file. If the database file isn’t there, it needs to go create a blank database. Then
it needs to run all of the SQL commands to create tables inside the database and any initial data it needs.
Finally, it needs to fire off some queries to get the data out of there.

That takes time. For a tiny database like the one used in the Starbuzz app, it’s not a lot of time. But as a
database gets bigger and bigger, that time will increase and increase. Before you know it, your app will
lose its mojo and will be slower than YouTube on Thanksgiving.

There’s not a lot you can do about the speed of creating and reading from a database, but there is a lot
you can do to prevent it slowing up your interface.

Life is better when threads work together
The big problem with accessing a slow database is that can make your app feel unresponsive. To
understand why, you need to think about how threads work in Android. Since Lollipop, there are three
kinds of threads you need to think about:

The main event thread
This is the real workhorse in Android. It listens for intents, it receives touch messages from the
screen, and it calls all of the methods inside your activities.
The render thread
You don’t normally interact with this thread, but it reads a list of requests for screen updates and then
calls the low-level graphics hardware to repaint the screen and make your app look pretty.
All of the other thread that you create

If you’re not careful, your app will do almost all of its work on the main event thread. Why? Because it’s
the main event thread that runs your event methods. If you just drop your database code into the
onCreate() method (as we did in the Starbuzz app) then the main event thread will be busy talking to
the database, instead of rushing off to look for any events from the screen or other apps. If your database
code takes a long time, users will feel like they’re being ignored.

So the trick is to move your database code off the main event thread and run it in a custom
thread in the background.

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL

We’re going to run the DrinkActivity database code in a background thread, but before we rush off and
start hacking code, let’s take a moment to think about what we need to do.

The code that we have at the moment does three different things. Which thread do you think each block of
code should run on? Choose the type of thread you think each should run on.

1. Set up the interface.

2. Talk to the database.

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);
SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();
Cursor cursor = db.query ("Drink",...

Main event thread A background thread

3. Update the views with the database data.

name.setText(...);
description.setText(...);
photo.setImageResource(...);

Main event thread A background thread

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL SOLUTION

We’re going to run the DrinkActivity database code in a background thread, but before we rush off and
start hacking code, let’s take a moment to think about what we need to do.

The code that we have at the moment does three different things. Which thread do you think each block of
code should run on? Choose the type of thread you think each should run on.

1. Set up the interface.

2. Talk to the database.

3. Update the views with the database data.

What code goes on which thread?
When you use databases in your app, it’s a good idea to run database code in a background thread, and
update views with the database data in the main event thread. We’re going to work through the
onFavoritesClicked() method in the DrinkActivity code so that you can see how to
approach this sort of problem.

Here’s the code for the method (we’ve split it into sections, which we’ll describe below):

Uploaded By: anonymousSTUDENTS-HUB.com

1. Code that needs to be run before the database code
The first few lines of code gets the value of the favorite checkbox, and puts it in the
drinkValues ContentValues object. This code must be run before the database code.

2. Database code that needs to be run on a background thread
This updates the DRINK table.

3. Code that needs to be run after the database code
If the database is unavailable, we want to display a message to the user. This must run on the main
event thread.

We’re going to implement the code using an AsyncTask. So what’s that, anyway?

AsyncTask performs asynchronous tasks
The AsyncTask class lets you perform operations in the background. When they’ve finished running, it
then allows you to update views in the main event thread. If the task is repetitive, you can even use it to
publish the progress of the task while it’s running.

You create an AsyncTask by extending the AsyncTask class, and implementing its
doInBackground() method. The code in this method runs in a background thread, so it’s the perfect
place for you to put database code. The AsyncTask class also has an onPreExecute() method that
runs before doInBackground(), and an onPostExecute() method that runs afterward. There’s
an onProgressUpdate() method if you need to publish task progress.

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s what it looks like:

private class MyAsyncTask extends AsyncTask<Params, Progress, Result>

 protected void onPreExecute() {
 //Code to run before executing the task
 }

 protected Result doInBackground(Params... params) {
 //Code that you want to run in a background thread
 }

 protected void onProgressUpdate(Progress... values) {
 //Code that you want to run to publish the progress of your task
 }

 protected void onPostExecute(Result result) {
 //Code that you want to run when the task is complete
 }
}

AsyncTask is defined by three generic parameters: Params, Progress, and Results. Params is
the type of object used to pass any task parameters to the doInBackground() method, Progress
is the type of object used to indicate task progress, and Result is the type of the task result. You can
set any of these to Void if you’re not going to use them.

We’ll go through this over the next few pages by creating a new AsyncTask called
UpdateDrinkTask we can use to update drinks in the background. Later on, we’ll add this to our
DrinkActivity code.

The onPreExecute() method
We’ll start with the onPreExecute() method. This gets called before the background task begins, and
it’s used to set up the task. It’s called on the main event thread, so it has access to views in the user
interface. The onPreExecute() method takes no parameters, and has a void return type.

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to use the onPreExecute() method to get the value of the favorite checkbox, and put it
in the drinkValues ContentValues object. This is because we need access to the checkbox in
order to do this, and it must be done before any of our database code can be run. We’re using a separate
attribute outside the method for the drinkValues ContentValues object so that other methods in
the class can access it.

Here’s the code:

Next, we’ll look at the doInBackground() method.

The doInBackground() method
The doInBackground() method runs in the background immediately after onPreExecute(). You
define what type of parameters the task should receive, and what the return type should be.

We’re going to use the doInBackground() method for our database code so that it runs in a
background thread. We’ll pass it the ID of the drink we need to update, and we’ll use a Boolean return
value, so we can tell whether the code ran successfully:

Uploaded By: anonymousSTUDENTS-HUB.com

Next, we’ll look at the onProgressUpdate() method.

The onProgressUpdate() method
The onProgressUpdate() method is called on the main event thread, so has access to views in the
user interface. You can use this method to display progress to the user by updating views on the screen.
You define what type of parameters the method should have.

Uploaded By: anonymousSTUDENTS-HUB.com

The onProgressUpdate() method runs if a call to publishProgress() is made by the
doInBackground() method like this:

We’re not publishing the progress of our task, so we don’t need to implement this method. We’ll indicate
that we’re not using any objects for task progress by changing the signature of UpdateDrinkTask:

Finally, we’ll look at the onPostExecute() method.

Uploaded By: anonymousSTUDENTS-HUB.com

The onPostExecute() method
The onPreExecute() method is called after the background task has finished. It’s called on the main
event thread, so has access to views in the user interface. You can use this method to present the results
of the task to the user. The onPostExecute() method gets passed the results of the
doInBackground() method, so must take parameters that match the doInBackground() return
type.

We’re going to use the onPostExecute() method to check whether the database code in the
doInBackground() method ran successfully. If it didn’t, we’ll display a message to the user. We’re
doing this in the onPostExecute() method as this method can update the user interface; the
doInBackground() method runs in a background thread, so can’t update views.

Here’s the code:

The AsyncTask class

Uploaded By: anonymousSTUDENTS-HUB.com

When we first introduced the AsyncTask class, we said it was defined by three generic parameters:
Params, Progress, and Results. You specify what these are by looking at the type of parameters
used by your doInBackground(), onProgressUpdate(), and onPostExecute() methods.
Params is the type of the doInBackground() parameters, Progress is the type of the
onProgressUpdate() parameters, and Result is the type of the onPostExecute() method:

In our example, doInBackground() takes Integer parameters, and onPostExecute() takes a
Boolean parameter. We’re not using the onProgressUpdate() method. This means that in our
example, Params is Integer, Progress is Void and Result is Boolean:

private class UpdateDrinkTask extends AsyncTask<Integer, Void, Boolean> {
 ...
 protected Boolean doInBackground(Integer... drinks) {
 ...
 }

 protected void onPostExecute(Boolean... success) {
 ...
 }
}

You now know everything you need to create a task — let’s see how you run it.

Execute the AsyncTask
You run the task by calling your AsyncTask’s execute() method. If your doInBackground()
method takes parameters, you add these to the execute() method. As an example, we want to pass
the drink the user chose to the AsyncTask’s doInBackground() method, so we call it using:

int drinkNo = (Integer)getIntent().getExtras().get(EXTRA_DRINKNO);
new UpdateDrinkTask().execute(drinkNo);

The type of parameter you pass with the execute() method must match the type of parameter
expected by the AsyncTask doInBackground() method. Our doInBackground() method
takes Integer parameters, so we need to pass integers:

protected Boolean doInBackground(Integer... drinks) {
 ...
}

Uploaded By: anonymousSTUDENTS-HUB.com

We’re going to execute UpdateDrinkTask in DrinkActivity’s onFavoritesClicked()
method. Here’s what the method looks like:

We’ll show you the new DrinkActivity.java code on the next page.

The DrinkActivity.java code
When you create an AsyncTask, you add it as an inner class to the activity that needs to use it. We’re
going to add our UpdateDrinkTask class as an inner class to DrinkActivity.java. We’ll execute the
task in DrinkActivity’s onFavoriteClicked() method so that the task updates the database in
the background when the user clicks on the favorite checkbox.

Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

That’s everything you need in order to create an AsyncTask. When the user clicks on the favorite
checkbox in DrinkActivity, the database gets updated in the background.

In an ideal world, all of your database code should run in the background. We’re not going to
change our other Starbuzz activities to do this, but why not have a go yourself?

A summary of the AsyncTask steps

1. onPreExecute() is used to set up the task.
It’s called before the background task begins, and runs on the main event thread.

2. doInBackground() runs in the background thread.
It runs immediately after onPreExecute(). You can specify what type of parameters it has,
and what its return type is.

3. onProgressUpdate() is used to display progress.
It runs in the main event thread when the doInBackground() method calls
publishProgress().

4. onPostExecute() is used to display the task outcome to the user when doInBackground
has finsihed.
It runs in the main event thread. It takes the return value of doInBackground() as a
parameter.

Uploaded By: anonymousSTUDENTS-HUB.com

THERE ARE NO DUMB QUESTIONS

Q: Q: I’ve written code before that just ran the database code and it was fine. Do I really need to run it in the background?

A: A: For really small databases, like the one in the Starbuzz app, you probably won’t notice the time it takes to access the database. But
that’s just because the database is small. If you use a larger database, or if you run an app on a slower device, the time it takes to access the
database will be significant. So yes, you should always run database code in the background.

Q: Q: Remind me - why is it bad to update a view from the background thread?

A: A: The short answer is that it will throw an exception if you try. The longer answer is that multi-threaded user interfaces are hugely buggy.
Android avoided the problem by simply banning them.

Q: Q: Which part of the database code is slowest? Opening the database, or reading data from it?

A: A: There’s no general way of knowing. If your database has a complex data structure, then the first time you open the database will take a
long time because it will need to create all the tables. If you’re running a complex query, that might take a very long time. In general, play
it safe and run everything in the background.

Q: Q: If it take a few seconds to read data from the database, what will the user see?

A: A: The user will see blank views until the database code sets the values.

Q: Q: Why have you put the database code for just one activity in an AsyncTask?

A: A: We wanted to show you how to use AsyncTasks in one activity as an example. In the real world, you should do this for the database
code in all your activities.

Your Android Toolbox
You’ve got Chapter 12 under your belt and now you’ve added connecting your app to SQLite
databases to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

BULLET POINTS

A Cursor lets you read from and write to the database.
You create a cursor by calling the SQLiteDatabase query() method. Behind the scenes, this builds
a SQL SELECT statement.
The getWritableDatabase() method returns a SQLiteDatabase object that allows you to read
from and write to the database.
The getReadableDatabase() returns a SQLiteDatabase object. This gives you read-only
access to the database. It may also allow you to read from and write to the database, but this isn’t
guaranteed.
Navigate through a cursor using the moveTo*() methods.
Get values from a cursor using the get*() methods.
Close cursors and database connections after you’ve finished with them.
A CursorAdapter is an adapter that works with cursors. Use SimpleCursorAdapter to populate
a ListView with the values returned by a cursor.
Design your app so that you put useful content in your top-level activity.
The CursorAdapter changeCursor() method replaces the cursor currently used by a cursor
adapter to a new cursor that you provide. It then closes the old cursor.
Run your database code in a background thread using AsyncTask.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

Chapter 13. Services: At Your Service

There are some operations you want to keep on running, irrespective of which app has the
focus.

As an example, If you start playing a music file in a music app, you’d probably expect it to keep on
playing when you switch to another app. In this chapter, you’ll see how to use services to deal with
situations just like this. Along the way, you’ll see how to use some of Android’s built-in services. You’ll
see how to to keep your users informed with the notification service, and how the location service
can tell you where you’re located.

Services work behind the scenes
An Android app is a collection of activities and other components. The bulk of your code is there to
interact with the user, but sometimes you need to do things in the background. You might want to
download a large file, stream a piece of music, or listen for a message from the server.

These kinds of tasks aren’t what activities are designed to do. In simple cases, you can create a thread,
but if you’re not careful your activity code will start to get complex and unreadable.

That’s why services were invented. A service is an application component like an activity but without a
user interface. They have a simpler lifecycle than an activity, and they come with a bunch of features that
make it easy to write code that will run in the background while the user is doing something else.

Uploaded By: anonymousSTUDENTS-HUB.com

There are two types of service
Services come in two different flavors:

Started services
A started service can run in the background indefinitely, even when the activity that started it is
destroyed. If you wanted to download a large file from the Internet, you would probably create it as a
started service. Once the operation is done, the service stops.
Bound services
A bound service is bound to another component such as an activity. The activity can interact with it,
send requests, and get results. A bound service runs as long as components are bound to it. When
components are no longer bound to it, the service is destroyed. If you wanted to create an odometer
to measure the distance traveled by a vehicle, you’d probably use a bound service. This way, any
activities bound to the service could keep asking the service for updates on the distance traveled.

In this chapter, we’re going to create two services: a started service and a bound service. We’ll start with
the started service.

The started service app
We’re going to create a new project that contains an activity called MainActivity, and a service
called DelayedMessageService. Whenever MainActivity calls
DelayedMessageService, it will wait for 10 seconds and then display a piece of text.

We’re going to do this in three stages:

1. Display the message in the log.
We’ll start by displaying the message in the log so that we can check the service works OK. We
can look at the log in Android Studio.

2. Display the message in a Toast.
We’ll get the message to appear in a pop-up toast so that you don’t have to keep your device
connected to Android Studio in order to see it working.

3. Display the message in a Notification.
We’ll get DelayedMessageService to use Android’s built-in notification service to display
the message in a notification. This will mean that the user will be able to look at the message at a
later time.

Create the project
We’ll start by creating the project. Create a new Android project for an application named “Joke” with a
package name of com.hfad.joke. The minimum SDK should be API 16 so that it will work with
most devices. You’ll need a blank activity called “MainActivity” and a layout called “activity_main” so that

Uploaded By: anonymousSTUDENTS-HUB.com

your code matches ours.

The next thing we need to do is create the service.

We’re going to create an IntentService

You create a new service by extending either the Service class or the IntentService class.

The Service class is the base class for creating services. It provides you with basic service functionality,
and you’ll usually extend this class if you want to create a bound service.

The IntentService class is a subclass of Service that’s designed to handle intents. You’ll usually
extend this class if you want to create a started service.

As we’re creating a started service, we’re going to add a new intent service to the project. To do this, go
to File→New... and select the Service option. When prompted, choose the option to create a new
IntentService. Give the service a name of DelayedMessageService, and untick the option to
include helper start method. This is because we’re going to replace the code that Android Studio
generates for us.

You implement an intent service by extending the IntentService class and implementing its
onHandleIntent() method. This method should contain the code you want to run when the service
is called:

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll show you an overview of this on the next page.

The IntentService from 50,000 feet
We’re using an IntentService to create a started service, so lets’s take a look at how they work.

1. An activity says what service it needs to call by creating an explicit intent.
The intent specifies the service it’s intended for.

2. The intent is passed to the service.

3. The service starts and handles the intent.
The IntentService onHandleIntent() method gets called and runs in a separate
thread. If the service is passed multiple intents, it deals with them in sequence, one at a time. Once
the service has finished running, it stops.

Uploaded By: anonymousSTUDENTS-HUB.com

As you can see, a service is started in the same way that you start an activity: by creating an intent. The
difference is that when you start a service, what’s on screen doesn’t change because the service has no
user interface.

We want DelayedMessageService to display a message in Android’s log. Before we update the
service, let’s look at how you log messages.

How to log messages

Adding messages to a log can be a useful way of checking your code is working the way you want. You
tell Android what to log in your Java code, and when the app’s running, you check the output in
Android’s log, or logcat.

You log messages using one of the following methods in the Android.util.Log class:

Log.v(String tag, String message) Logs a verbose message.

Log.d(String tag, String message) Logs a debug message.

Log.i(String tag, String message) Logs an information message.

Log.w(String tag, String message) Logs a warning message.

Log.e(String tag, String message) Logs an error message.

There’s also a Log.wtf() method you can use to report exceptions that should never happen.
According to the Android documentation, wtf means “What a Terrible Failure”. We know it means
“Welcome to Fiskidagurinn”, which refers to the Great Fish Day festival held annually in Dalvik,
Iceland. Android Developers can often be heard to say “My AVD just took 8 minutes to boot up.
WTF??” as a tribute to the small town that gave its name to the standard Android executable
bytecode format.

Each message is composed of a String tag you use to identify the source of the message, and the
message itself. As an example, to log a verbose message that’s come from
DelayedMessageService, you use the Log.v() method like this:

Log.v("DelayedMessageService", "This is a message");

You can view the logcat in Android Studio, and filter by the different types of message. To see the logcat,
select the Android option at the bottom of your project screen in Android Studio and then select the
Devices|logcat tab:

Uploaded By: anonymousSTUDENTS-HUB.com

The full DelayedMessageService code
We want our service to get a piece of text from an intent, wait for 10 seconds, then display the piece of
text in the log. To do this, we’ll create a showText() method to log the text, and then call it from the
onHandleIntent() method after a delay.

Here’s the full code for DelayedMessageService.java (replace the code Android Studio has created for
you with this code):

Uploaded By: anonymousSTUDENTS-HUB.com

You declare services in AndroidManifest.xml

Just like activities, services need to be declared in AndroidManifest.xml using the <service> element.
This is so that Android can call the service; if a service isn’t declared in AndroidManifest.xml, Android
can’t call it.

Android Studio declares the service in AndroidManifest.xml for you automatically when you create a
new service. Here’s what the code looks like:

Uploaded By: anonymousSTUDENTS-HUB.com

The <service> element contains two attributes.

The android:name attribute tells Android what the name of the service is — in our case,
DelayedMessageService.

The android:exported attribute tells Android whether the service can be used by other apps.
Setting it to false means that the service will only be used within the current app.

Now that we have a service, we need to run it by getting an activity to call it.

Add a button to activity_main.xml
We’re going to get MainActivity to start DelayedMessageService whenever a button is
clicked. We’ll start by adding the button to MainActivity’s layout.

First, add the following values to strings.xml (we’ll use them in our activity and layout code):

Next, update activity_main.xml so that MainActivity displays a button:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll update the code for MainActivity.java so that it starts the service.

You start a service using startService()

You start a service from an activity in a similar way to how you start another activity. You create an
explicit intent that’s directed at the service you want to start. You then start the service using the
startService() method:

We’ll use this in MainActivity’s onClick() method so that the service gets started whenever its
button gets clicked. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code we need to get our activity to start the service. Let’s see what happens when we run
the app.

Test drive the app

When you run the app, MainActivity is displayed. It contains a single button:

Press the button, switch back to Android Studio, and watch the logcat output in the lower-right corner of
the IDE. After 10 seconds, the word “Timing!” appears in the logcat.

Uploaded By: anonymousSTUDENTS-HUB.com

Now that we know the service works, let’s make it display a message on the screen so you don’t have to
keep your device plugged into your computer to see it running.

We want to send a message to the screen

Services don’t have user interfaces like activities do, but that doesn’t mean that they don’t need to keep
the user informed about stuff that’s happening. The user might need to know when a file has been
downloaded, for instance.

In our case, it would be a lot neater if we could display a message in a toast on the screen instead of in
the log. There’s just one thing — any code that updates the user interface needs to run in the main thread

Uploaded By: anonymousSTUDENTS-HUB.com

Screen updates require the main thread
As you’ve seen, when you use an intent service, you put the code you want to run in the
onHandleIntent() method. This code then runs in the background in a separate thread. This is great
for code that you want to run in the background, but not so great if you want to update the user interface.
This is because you can only update the user interface in the main thread.

To get around this, we’ll use a handler. As we said back in Chapter 4, a handler lets you post code that
needs to be run to a separate thread. We can use the handler post() method to post the code to create
a toast to the main thread. The code will then run on the main thread and the toast will get displayed
correctly.

To get the code working, we need to do the following:

Create a handler in the main thread.
Use the Handler post() method in the service onHandleIntent() method to display a
toast.

The first thing we need to look at is how to create a handler in the main thread.

onStartCommand() runs on the main thread
To create a handler on the main thread, we need to create a Handler object in a method that runs on
the main thread. We can’t use the onHandleIntent() method, as this runs in a background thread.
Instead, we’ll use the onStartCommand() method.

The onStartCommand() method gets called every time the intent service is started. The
onStartCommand() method runs on the main thread, and runs before the onHandleIntent()
method. If we create a handler in the onStartCommand() method, we’ll be able to use it to post code
to the main thread in the onHandleIntent() method:

Uploaded By: anonymousSTUDENTS-HUB.com

When you use the onStartCommand(), you must call its super implementation using:

super.onStartCommand(intent, flags, startId)

This is so that the intent service can properly handle the life of its background thread.

On the next page, we’ll show you the full code for DelayedMessageService.java and then look at it
running.

The full DelayedMessageService.java code

Uploaded By: anonymousSTUDENTS-HUB.com

The application context

Let’s take a closer look at the line of code that displays the toast:

Toast.makeText(getApplicationContext(), text, Toast.LENGTH_LONG).show();

The first parameter of the Toast.makeText() method is the context in which you want the toast to
appear. When you create a toast in an activity, you use this to pass it the instance of the current activity.

This doesn’t work in a service, because the service context doesn’t have access to the screen. Whenever

Uploaded By: anonymousSTUDENTS-HUB.com

you need a context in a service in situations like this, you must use getApplicationContext()
instead. This gives us the context for whatever app happens to be in the foreground when the code is run.
It means that the service will be able to make a toast appear, even if we’ve switched to a different app.

Test drive the app
Let’s try running our app again.

When you click on the button in MainActivity, a toast appears after 10 seconds. The toast appears
irrespective of which app has the focus.

If you click on the button multiple times in quick succession, multiple toasts appear about 10 seconds
apart. The service deals with each intent it receives, one at a time.

Can we improve on using Toasts?

We now know how to send a piece of text to the screen using a toast. That’s useful if we want to tell the
user that, say, the very long download of a file has completed. But the truth is toasts don’t really stand out
that much, and if you’re not looking at the screen at exactly the right moment, you don’t even see them. If

Uploaded By: anonymousSTUDENTS-HUB.com

we really want to keep the user informed about important stuff, we need to replace our toast with a
notification.

Notifications are messages that appear in a list at the top of the screen. If the user doesn’t happen to see
the notification at the time it was created, it doesn’t matter. She can still see them by dragging her finger
down from the top of the screen to open the navigation drawer.

To send the notification, we’re going to use one of Android’s built-in services, the notification service.

Android comes with a number of built-in services that you can use in your app. These include the alarm
service (used for controlling alarms), the download service (used for requesting HTTP downloads), and
the location service (used for controlling location updates).

You use the notification service to manage notifications. We’ll give you an overview of how it will fit in
with the app on the next page.

How you use the notification service
Here’s an overview of how our app will work with the Android notification service:

1. MainActivity starts DelayedMessageService by passing it an intent.

2. DelayedMessageService creates a new Notification object.
The Notification object contains details of how the notification should be configured, such
as its text, title, and icon.

Uploaded By: anonymousSTUDENTS-HUB.com

3. DelayedMessageService creates a NotificationManager object to access Android’s
notification service.
DelayedMessageService passes the Notification object to the
NotificationManager, and the notification gets displayed.

We’ll start by creating the notification.

You create notifications using a notification builder

You create a notification using a notification builder to create a new Notification object. The
notification builder allows you to create a notification with a specific set of features, without writing too
much code. Each notification must include a small icon, a title, and some text.

Here’s an example of the code you use to create a notification. It displays a high priority notification that
vibrates when the notification appears and disappears once it’s clicked:

These are just some of the properties that you can set. You can also set things like visibility to control
whether the notification will appear on the lock-screen, a number to display a count next to the
notification in case you want to send many notifications from the same app, and a sound to make the
notification make a noise. You can find out more about these properties here:

https://developer.android.com/reference/android/app/Notification.Builder.html

It’s also a good idea to say which activity should be displayed when the user clicks on the notification. In
our case, for instance, we can get Android to display MainActivity when the notification is
clicked.We’ll show you how to do this on the next page.

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/reference/android/app/Notification.Builder.html

WATCH IT!

Some of the notification properties require API level 16 or above.

If you need to support older devices, you won’t be able to use all of the properties.

Getting your notification to start an activity
You get a notification to start an activity when it’s clicked using a pending intent. A pending intent is an
intent an app can pass to other applications so that they can submit the intent on your app’s behalf at a
later time.

Here are the steps you go through to create the pending intent:

1. Create an explicit intent
First, you create a simple explicit intent directed to the activity you want to start when the notification is
clicked. In our case, we’ll start MainActivity:

2. Pass the intent to the TaskStackBuilder
Next, we use a TaskStackBuilder to make sure that the back button will play nicely when the
activity gets started. The TaskStackBuilder allows you to access the history of activities used by the
back button. We need to get the back stack related to the activity, and then add the intent we just created
to it:

The story continues on the next page.

3. Get the pending intent from the TaskStackBuilder

Uploaded By: anonymousSTUDENTS-HUB.com

Next, we get the pending intent from the TaskStackBuilder using its getPendingIntent()
method. The getPendingIntent() method takes two int parameters, a request code that can be
used to identify the intent, and a flag that specifies the pending intent’s behavior.

Here are the different flag options:

FLAG_CANCEL_CURRENT If a matching pending intent already exists, cancel it before generating a new one.

FLAG_NO_CREATE If a matching pending intent doesn’t already exist, don’t create one and return null.

FLAG_ONE_SHOT The pending intent can only be used once.

FLAG_UPDATE_CURRENT If a matching pending intent already exists, keep it and replace its extra data with the contents
of the new intent.

In our case, we’ll use FLAG_UPDATE_CURRENT to modify any existing pending intent. Here’s the
code:

4. Add the intent to the notification
Finally, you add the pending intent to the notification using the setContentIntent() method:

Once you’ve given the notification a pending intent telling it which activity to start when it’s clicked, all
that’s left is to display it.

Send the notification using the notification service
So far we’ve looked at how to create and configure a notification. The next thing is to pass it to the
Android notification service so that it appears on the device.

You access Android’s built-in services using the getSystemService() method. It takes one
argument, the name of the service you want to use.

In our case, we want to use the notification service, so we use code like this:

Uploaded By: anonymousSTUDENTS-HUB.com

The NOTIFICATION_ID is used to identify the notification. If we send another notification with the
same ID, it will replace the current notification. This is useful if you want to update an existing notification
with new information.

The notification service deals will all of the issues involved in a background service sending updates to the
screen. This means that you no longer need to use a handler in order to update the user interface; the
notification service handles it for you.

On the next page, we’ll show you the updated code for DelayedMessageService.

THERE ARE NO DUMB QUESTIONS

Q: Q: Why do I need to include an icon in a notification?

A: A: The notification system needs an icon to display the notification at the very top of the screen.

Q: Q: What happens if I don’t set the priority and switch vibrate on?

A: A: The notification will still be sent, but it won’t pop up on your screen. You’ll still see it listed in the navigation drawer.

The full code for DelayedMessageService.java

Here’s the full code for DelayedMessageService.java. It now uses a notification instead of a toast to
display a message:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code we need for our started service. Let’s go through what happens when the code runs.

What happens when you run the code
Before you see the app up and running, let’s go through what happens when the code runs:

1. MainActivity starts DelayedMessageService by passing it an intent.
The intent contains the message MainActivity wants DelayedMessageService to
display.

2. DelayedMessageService waits for 10 seconds.

Uploaded By: anonymousSTUDENTS-HUB.com

3. DelayedMessageService creates an intent for MainActivity.

4. DelayedMessageService creates a TaskStackBuilder and asks it to add the intent to
MainActivity’s back stack.

The story continues
5. The TaskStackBuilder use the intent to create a pending intent and passes it to

DelayedMessageService.

6. DelayedMessageService creates a Notification object, sets details of how it should be
configured, and passes it the pending intent.

7. DelayedMessageService creates a NotificationManager object to access Android’s
notification service and passes it the Notification.
The notification service displays the notification.

Uploaded By: anonymousSTUDENTS-HUB.com

8. When the user clicks on the Notification, the Notification uses its pending intent to start
MainActivity.

Let’s take the app for a test drive.

Test drive the app

When you click on the button in MainActivity, a notification is displayed after 10 seconds. You’ll
receive the notification irrespective of which app you’re in.

When you click on the notification, Android returns you to MainActivity.

Uploaded By: anonymousSTUDENTS-HUB.com

So far you’ve seen how to create a started service that displays a notification using the Android
notification service. After an exercise, we’ll look at how you create a bound service.

SERVICE MAGNETS

Below you’ll see most of the code needed to create a started service called WombleService that plays a
.mp3 file in the background, and an activity that uses it. See if you can finish off the code.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

SERVICE MAGNETS SOLUTION

Below you’ll see most of the code needed to create a started service called WombleService that plays a
.mp3 file in the background, and an activity that uses it. See if you can finish off the code.

Bound services are more interactive
As we said earlier, a started service runs in the background indefinitely, even when the activity that started
it is destroyed. Once the operation is done, the service stops itself.

A bound service is bound to another component such as an activity. The activity can interact with it, send
requests, and get results. To see this in action, we’re going to create a new app that uses a bound service
that will work like an odometer to track the distance traveled by a vehicle.

How the odometer app will work
We’re going to create a new project with an activity called MainActivity, and a service called
OdometerService. MainActivity will use OdometerService to get the distance traveled.

1. MainActivity binds to OdometerService.

Uploaded By: anonymousSTUDENTS-HUB.com

MainActivity uses the OdometerService getMiles() method to ask for the number
of miles traveled.

2. The OdometerService uses the Android location services to keep track of when the
device moves.
It uses these locations to calculate how far the device has traveled.

3. The OdometerService returns the distance traveled to MainActivity.
MainActivity displays the distance traveled to the user.

We’ll start by creating the service. Let’s see what we need to do.

The steps needed to create the OdometerService

There are a few steps we need to go through in order to create the OdometerService:

1. Define an OdometerBinder.
A Binder object allows activities to bind to services. We’ll define a subclass of Binder called
OdometerBinder that will enable our activity to connect to the OdometerService.

2. Create a LocationListener and register it with Android’s location service.
This will allow the OdometerService to listen for changes in the device location and work out
the distance traveled in meters.

Uploaded By: anonymousSTUDENTS-HUB.com

3. Create a public getMiles() method.
The activity will be able to use this to get the number of miles traveled.

We’ll start by creating a new project for our Odometer app.

Create a new Odometer project
Create a new Android project for an application named “Odometer” with a package name of
com.hfad.odometer. The minimum SDK should be API 16 so that it will work with most devices.
You’ll need a blank activity called “MainActivity” and a layout called “activity_main” so that your code
matches ours.

We’re going to add a new service to the project. This time we’re going to use a service that extends the
Service class and not the IntentService class. This is because the IntentService class is
intended for services that handle intents, as we did in the previous example. In this case, we’re going to
start the service by binding to it so there’s no advantage in using the IntentService class.

Uploaded By: anonymousSTUDENTS-HUB.com

You add a service that extends the Service class in a similar way to how we added a service earlier.
Go to File→New... and select the Service option. When prompted, choose the option to create a new
Service (not an IntentService), and give the service a name of “OdometerService”. Untick the “exported”
option as this only needs to be true if you want services outside this app to access the service. Make sure
that the “enabled” option is ticked; if it isn’t, the activity won’t be able to run the app.

Here’s what the code looks like to create a bound service based on the Service class:

The onBind() method is used to bind the service to an activity. We’ll look at how binding works on the
next page.

How binding works

This is how an activity binds to a bound service:

1. The activity creates a ServiceConnection object.
A ServiceConnection is used to form a connection with the service.

2. The activity passes an Intent down the connection to the service.
The intent contains any additional information the activity needs to pass to the service.

3. The bound service creates a Binder object.
The Binder contains a reference to the bound service. The service sends the Binder back along

Uploaded By: anonymousSTUDENTS-HUB.com

the connection.

4. When the activity receives the Binder, it takes out the Service object and starts to use
the service directly.

To allow the activity to bind to the service, we need to get the service to create the Binder object, and
pass it to the activity using its onBind() method.

Define the Binder
When an activity asks to bind to a service using a service connection, the connection calls the onBind()
method of the service. The onBind() method returns a Binder back to the connection. This is then
passed back to the activity.

When you create a bound service, you need to define the Binder yourself. We’re going to define a
Binder called OdometerBinder by declaring it as an inner class like this:

We’ll then return an instance of the OdometerBinder in the service onBind() method:

Uploaded By: anonymousSTUDENTS-HUB.com

When the activity binds to the service with a service connection, the connection will call the onBind()
method, which will return the OdometerBinder object. When the activity receives the
OdometerBinder from the connection, it will use the getOdometer() method to get the
OdometerService object.

NOTE

You’ll see this in action when we create an activity that uses the service.

Get the service to do something

The next thing we need to is get our service to do something. We want our service to be able to tell the
activity how far the device has traveled. There are two things we need to do to enable this:

1. Set up a listener when the service gets created that will listen for changes in the device
location.

Uploaded By: anonymousSTUDENTS-HUB.com

2. Return the number of miles traveled to the activity whenever the activity asks for it.

Let’s start by looking at what methods are available in the Service class that might be useful to us.

The Service class has four key methods
We’re creating a bound service that extends the Service class. The Service class has four key
methods that you might want to use:

Method When it’s called What you use it for

onCreate() When the service is first
created

One-time setup procedures, such as instantiation

onStartCommand() When an activity starts the
service using the
startService() method

You don’t need to implement this method if your service isn’t a
started service; it will only run if the service is started using
startService()

onBind() When an activity wants to bind
to the service

You must always implement this method by returning an IBinder
object; if you don’t want activities to bind to the service, return
null instead

onDestroy() When the service is no longer
being used and is about to be
destroyed

Use this method to clean up any resources

In our case, we want to start getting location updates when the service is created. As this is a one-time
setup, we’ll do this in the onCreate() method:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll look at how we can get location updates.

Location, location, location...

If you want to find out the location of your device, you use the Android location service. The location
service uses information from the GPS system and the names and strengths of nearby WiFi networks to
find your location on the surface of the Earth.

You start by creating a LocationListener. A location listener is used for getting updates on when
the device location has changed. You create the location listener like this:

To keep track of distances in location, you need to override the LocationListener
onLocationChanged() method. This method has one parameter, a Location object that
represents the device current location.

You can find the distance in meters between two locations using the Location distanceTo()
method. As an example, if you use a Location object called lastLocation to record the device’s
last location, you can find the distance in meters between the locations using:

double distanceInMeters = location.distanceTo(lastLocation);

We’ll show you the full code for the listener on the next page.

Add the LocationListener to the service
Here’s the revised code for OdometerService.java (the onCreate() method includes a location

Uploaded By: anonymousSTUDENTS-HUB.com

listener that keeps track of the distance the device has traveled):

Now that we’ve created a listener, we need to register it with the location service.

Registering the LocationListener

You register the location listener with the Android location service using a LocationManager object.
A location manager gives you access to the location service, and you create one like this:

Uploaded By: anonymousSTUDENTS-HUB.com

The getSystemService() method returns a reference to a system level service. In this case, we
want to use Android’s location service, so we use:

getSystemService(Context.LOCATION_SERVICE);

Once you have a location manager, you can use its requestLocationUpdates() method to
register the location listener with the location service, and specify criteria for how often you want the
listener to get updated. The requestLocationUpdates() method takes four parameters: a GPS
provider, the minimum time interval between location updates in milliseconds, the minimum distance
between location updates in meters, and a LocationListener.

Here’s how you’d use the method to get updates every second when the device has moved more than a
meter:

We can use this in the Service onCreate() method to register the listener we created with the
location service and make sure it gets regular updates. Here’s the code:

That’s everything we need to register the listener with the location service and get it to keep track of the
distance traveled. Next, we need to get it to report back to the activity.

Tell the activity the distance traveled
If you remember, there were two things we needed our service to do.

The first thing we needed was to get it to keep track of the distance traveled by the device. We’ve now
done this by creating a location listener and registering it with the location service.

The second thing we need is to get the service to tell the activity how far the device has traveled so that it
can tell the user. To do this, we’ll create a simple getMiles() method in the service that converts the
current distance traveled into miles. The activity will call this method whenever it want to know the
distance.

Uploaded By: anonymousSTUDENTS-HUB.com

Here’s what the getMiles() method looks like:

The method takes the current distance traveled in meters, then divides it by 1609.344 to get the distance
traveled in miles.

That’s everything we need for our OdometerService.java code. We’ll show you the full code on the next
page.

The full OdometerService.java code

Here’s the full code for our bound service OdometerService.java:

Uploaded By: anonymousSTUDENTS-HUB.com

The code allows an activity to bind to it, and when asked, it tells the activity how far the device has
traveled. There’s one more thing we need to do with our service; we need to give the app permission to
use the GPS.

Update AndroidManifest.xml

When you create an app, Android allows you to perform most actions by default. But there are some
actions that Android needs the user to give permission for in order for them to work correctly. One of
these actions is using the device GPS. If your app needs to use the device GPS, the user needs to give
permission when the app is installed.

You tell Android that your app needs permission to use the GPS using the <uses-permission>
element like this:

Uploaded By: anonymousSTUDENTS-HUB.com

If you don’t include this permission in AndroidManifest.xml, the app will crash.

You also need to check that Android Studio has added your service to AndroidManifest.xml:

Let’s revisit where we’ve got to with our app after an exercise.

Uploaded By: anonymousSTUDENTS-HUB.com

SERVICE MAGNETS

See if you can complete the code below to create a bound service called NumberService that returns a
random number when its getNumber() method is called:

Uploaded By: anonymousSTUDENTS-HUB.com

SERVICE MAGNETS SOLUTION

See if you can complete the code below to create a bound service called NumberService that returns a
random number when its getNumber() method is called.

Where we’ve got to
Let’s look again at what we want our app to do so we can see what’s left:

1. MainActivity binds to OdometerService.
MainActivity uses the OdometerService getMiles() method to ask for the number
of miles traveled.

2. The OdometerService uses the Android location services to keep track of when the
device moves.
It uses these locations to calculate how far the device has traveled.

Uploaded By: anonymousSTUDENTS-HUB.com

3. The OdometerService returns the distance traveled to MainActivity.
MainActivity displays the distance traveled to the user.

So far we’ve created the OdometerService. It uses the Android location services to track locations,
and uses this to calculate the distance traveled.

The next thing we need to do is create MainActivity. We need to get it to bind to
OdometerService, and then use the OdometerService getMiles() method to display the
distance the device has traveled.

Update MainActivity’s layout

We need to get MainActivity to use the service to display the number of miles traveled, so we’ll start
by updating the layout file activity_main.xml. We’ll add a text view to the layout that we can use to
display the mileage. We’ll update the text view every second in our Java code.

Here’s the code for activity_main.xml:

Uploaded By: anonymousSTUDENTS-HUB.com

Next, we need to update the activity code so that it binds to the service and updates the text view. We
already know how to update views, but what we don’t know is how to bind to the service. Let’s see how
it’s done.

Create a ServiceConnection
Earlier on in the chapter, we said that an activity binds to a service using a ServiceConnection
object. A ServiceConnection is an interface with two methods: onServiceConnected() and
onServiceDisconnected().

The onServiceConnected() method is called when a connection to the service has been
established and a Binder object is received from the service. You can use the binder to get a reference
to the service.

The onServiceDisconnected() method is used when the connection to the service has been lost.

When you need an activity to bind to a service, you need to create your own implementation of the

Uploaded By: anonymousSTUDENTS-HUB.com

ServiceConnection. Here’s ours:

When the service is connected, the onServiceConnected() method uses the Binder object to get
a reference to the service. We’re also using the onServiceConnected() and
onServiceDisconnected() methods to record whether the service is currently connected.

Bind to the service when the activity starts

We’re going to use the connection to bind to the service when the activity becomes visible. As a reminder,
when an activity becomes visible, its onStart() method gets called.

To bind to the service, you first create an explicit intent that’s directed at the service you want to bind to.
You then use the activity’s bindService() method to bind to the service:

Uploaded By: anonymousSTUDENTS-HUB.com

The code Context.BIND_AUTO_CREATE tells Android to create the service if it doesn’t already
exist.

Unbind from the service when the activity stops
When the activity loses visibility, we’re going to unbind from the service. When an activity loses visibility,
its onStop() method gets called.

You unbind from the service using the unbindService() connection. The method takes one
parameter, our connection. We’re going to check whether the service is bound when the activity loses
visibility, and if it is, we’ll unbind it:

So far we have an activity that binds to the service when the activity starts, and unbinds from the service
when the activity stops. The final thing we need to do is get the activity to ask the service for the distance
traveled.

Display the distance traveled

Once you have a connection to the service, you can call its methods. We’re going to call the
OdometerService getMiles() method every second to get the distance traveled, and then use it
to update the text view in the layout. We’ll call the getMiles() method every second and update the
text view each time it’s called.

Uploaded By: anonymousSTUDENTS-HUB.com

To do this, we’re going to write a new method called watchMileage(). This works in exactly the
same way as the runTimer() method we used in Chapter 4. The only difference is that it displays miles
traveled instead of elapsed time.

Here’s our watchMileage() method:

We’ll then call this method in the activity’s onCreate() method so that it starts running when the activity
gets created:

@Override
protected void onCreate(Bundle savedInstanceState) {
 ...
 watchMileage();
}

We’ll show you the full code for MainActivity on the next page.

Uploaded By: anonymousSTUDENTS-HUB.com

The full MainActivity.java code

Here’s the complete code for MainActivity.java:

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code you need to get MainActivity to use the OdometerService. Let’s see what
happens when you run the code.

What happens when you run the code

Before you see the app up and running, let’s go through what happens when the code runs:

1. When the MainActivity starts, the onStart() method creates a ServiceConnection.
It asks to bind to the OdometerService.

Uploaded By: anonymousSTUDENTS-HUB.com

2. The OdometerService starts and its onBind() method is called with a copy of the intent
from the MainActivity.

3. The onBind() method returns a Binder object.

The story continues
4. MainActivity gets a reference to OdometerService from the Binder and starts to use the

service directly.

5. While MainActivity is running, the watchMileage() method calls the OdometerService
getMiles() method every second and updates the screen.

6. When MainActivity stops, it disconnects from the OdometerService by calling
unbindService().

Uploaded By: anonymousSTUDENTS-HUB.com

Let’s run the app and see what it does.

Test drive the app

To see the app in action, you’ll need to run it on a device that has a GPS. If you don’t, the app won’t
work.

When you start the app, it says the distance traveled is 0 miles. An icon appears at the top of the device
indicating that the location service has been activated:

When you take your device on a road trip, the distance traveled increases.

We know you’re full of great ideas for improving the Odometer app, so why not try them out? As
an example, why not try adding Start, Stop, and Reset buttons?

Uploaded By: anonymousSTUDENTS-HUB.com

Your Android Toolbox
You’ve got Chapter 13 under your belt and now you’ve added services to your toolbox.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

BULLET POINTS

A service is a component that can perform tasks in the background. It doesn’t have a user interface.
A started service can run in the background indefinitely, even when the activity that started it is
destroyed. Once the operation is done, it stops itself.
You declare services in AndroidManifest.xml using the <service> element.
You can create a simple started service by extending the IntentService class and overriding its
onHandleIntent() method. The IntentService class is designed for handling intents.
You start a started service using the startService() method.
If you override the IntentService onStartCommand() method, you must call its super
implementation.
You create a notification using a notification builder. You get your notification to start an activity using a
pending intent. You then use Android’s notification service to display the notification.
A bound service is bound to another component such as an activity. The activity can interact with it and
get results.
You usually create a bound service by extending the Service class. You must define your own
Binder object, and override the onBind() method. This is called when a component wants to bind to
the service.
The Service onCreate() method is called when the service is created. Use it for instantiation.
The Service onDestroy() method is called when the service is about to be destroyed.
You can use the Android location service to get the current location of the device. You create a
LocationListener, and then register it with the location service. You can add criteria for how often
the listener is notified of changes. When you use the device GPS, you need to add a permission for it in
AndroidManifest.xml.
To bind an activity to a service, you create a ServiceConnection. You override the
onServiceConnected() method to get a reference to the service.
You bind to the service using the bindService() method. You unbind from the service using the
unbindService() method.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

Chapter 14. Material Design: Living in a
Material World

With API level 21, Google introduced Material Design.

In this chapter, we’ll look at what Material Design is, and how to make your apps fit in with it. We’ll
start by introducing you to card views you can reuse across your app for a consistent look and feel.
Then we’ll introduce you to the recycler view, the list view’s flexible friend. Along the way, you’ll see
how to create your own adapters, and how to completely change the look of a recycler view with just
two lines of code.

Welcome to Material Design
Material Design was launched with API level 21 and it’s intended to give a consistent look and feel to all
Android apps. The idea is that a user can switch from a Google app like the Play Store to an app
designed by a third-party developer and instantly feel comfortable and know what to do. The Material
part of the name comes from Material Design’s visual style, which makes the parts of your interface look
like overlapping pieces of material or paper:

Uploaded By: anonymousSTUDENTS-HUB.com

Material Design uses animation and 3D effects likes drop-shadows to make it clear to the user how they
can interact with the app. To do this, Material Design includes a set of support libraries that contains
different widgets and themes for use in Material Design apps. In this chapter, we’ll take a few of these
widgets and use them to make the Pizza app we developed in Chapter 9 and Chapter 10 fit in with
Material Design.

CardViews and RecyclerViews
Two of the most important Material Design widgets are recycler views and card views.

A card view is a container for other views. Card views have rounded corners, and a drop-shadow that
makes them appear to be floating above the background. You can animate a card view so that it will
appear to move when you push it.

A recycler view is like a new kind of list view A recycler view gets its name because it can efficiently
reuse (or recycle) views to create the appearance of a list on the screen. A recycler view can be used to
display card views.

We’re going to change the Pizza app so that it uses card views and recycler views. We’ll convert the app
so that the list of pizzas goes

from this:

Uploaded By: anonymousSTUDENTS-HUB.com

to this:

GEEK BITS

Material Design uses a lot of 3D effects. But doesn’t this slow your device? On most devices, the answer is
no. If possible, the Material views will try to use the power of the graphics hardware to generate the drop-
shadows in much the same way that a game would. That means that not only are generated shadows
rendered beautifully, but they also take no extra time to draw. On older devices, the views will insert shadow
images behind each view. That will take a little extra processing power and some extra memory. If you want
to run your app on a very old device, it’s best to check it against an actual device before release.

The Pizza app structure
We’re going to change the app so that we use a card view and recycler view for the list of pizzas. Here’s
a breakdown of how the app will be structured and what it will do:

1. When the app gets launched, it starts MainActivity.
The activity uses layout activity_main.xml and has a navigation drawer. When the user clicks on
one of the options in the navigation drawer, it displays the appropriate fragment.

Uploaded By: anonymousSTUDENTS-HUB.com

2. When the user clicks the Pizzas option, it displays PizzasMaterialFragment.
PizzasMaterialFragment contains a recycler view.

3. PizzaMaterialFragment uses an adapter, CaptionedImagesAdapter, to display card views
showing an image and caption for each pizza.
The card views are defined in card_captioned_image.xml. Pizza data is held in Pizzas.java.

4. When the user clicks on a pizza, details of the pizza are displayed in PizzaDetailActivity.
5. When the user clicks on the Create Order action in the action bar of MainActivity or

PizzaDetailActivity, OrderActivity is displayed.

Add the pizza data
We’ll start by adding the pizza images to the Bits and Pizzas project. Download the files diavolo.jpg and
funghi.jpg from https://tinyurl.com/HeadFirstAndroid. Then drag them to the folder
app/src/main/res/drawablenodpi. If Android Studio hasn’t created the folder for you, you’ll need to
create it.

We’re putting the images in the drawable-nodpi folder because we want the device to use the same
images, regardless of the dpi of the screen. If you wanted, you could create separate images for different
device resolutions and put them in the appropriate drawable* folder.

DO THIS !

We’re going to update the Pizza app in this chapter, so open your original Bits and Pizzas project in
Android Studio.

Add the Pizza class
We’ll add a Pizza class to the app which the recycler view will get its pizza data from. The class defines
an array of two pizzas, where each pizza is composed of a name and image resource ID. Add the class to
the com.hfad.bitsandpizzas package in the app/src/main/java folder in your project, giving it a
class name of Pizza. Then save your changes:

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

NOTE

In a real app, we might use a database for this. We’re using a Java class here for simplicity.

We’re going to use a recycler view and card view in the app, and these require support libraries. We’ll
add these next.

Add the support libraries
Card views and recycler views come from the CardView and RecyclerView v7 libraries, so we need to
add these libraries as dependencies. To do this, go to File→Project Structure. In the Project Structure
window, select app and switch to the Dependencies tab. Then add library dependencies for recyclerview-
v7 and cardview-v7.

Uploaded By: anonymousSTUDENTS-HUB.com

When you add dependencies, Android Studio records them in the app/build.gradle file:

If you wish, you can manage the library dependencies for your app by editing this file directly. It will have
the same effect as adding dependencies in the Project Structure window.

Now that you’ve added the support libraries, we’ll create the card view.

Create the CardView
You use card views to visually represent the basic data items in your app in a recognizable and coherent
way. The basic data items in our Pizza Shop app are pizzas, pasta, and stores, so we’re going to create a
card view we can use to displays these items.

Uploaded By: anonymousSTUDENTS-HUB.com

You create a card view by including it in a layout. You can either add it to an existing layout, or create a
new layout file for it. Creating a new layout file for the card view means that you can use the card view
inside a recycler view.

We want to use the card view inside a recycler view, so we’re going to put it in its own layout file. To do
this, add a new layout file to the app/src/main/res/layout folder called card_captioned_image.xml.

You define a card view using code like this:

The CardView class comes from the v7 CardView support library, so we have to use its full class path
of android.support.v7.widget.CardView.

You give your card view rounded corners by adding a namespace of

xmlns:card_view="http://schemas.android.com/apk/res-auto"

Uploaded By: anonymousSTUDENTS-HUB.com

and using the card_view:cardCornerRadius attribute to set the corner radius. As an example, the
code

card_view:cardCornerRadius="4dp"

sets the card corner radius to 4dp.

You define the appearance of the card view by adding other views to it. In our case, we want to display
an image and text in the card view. We’ll show you the full code on the next page

The full card_captioned_image.xml code
Here’s the full code for card_captioned_image.xml (we’ve added a linear layout to the card view, and
put an image view and text view inside the linear layout; we’ve taken this approach because the
CardView class extends the FrameLayout class, and frame layouts are designed to hold a single child
view — in this case, the frame layout has a single child view of a linear layout):

We’ll be able to use this card view layout for any data items that consist of a caption and an image, such
as our pizza data.

The next thing we need to do is create a recycler view that will display a list of our card views.

RecyclerViews use RecyclerView.Adapters
A recycler view is a more advanced version of a list view. Just like a list view, a recycler view is a

Uploaded By: anonymousSTUDENTS-HUB.com

scrollable container used for displaying sets of data. A recycler view, however, is more efficient at
displaying large data sets. This is because a recycler view reuses (or recycles) views when they are no
longer visible on screen, whereas a list view displays a new view for each item that appears on screen.

Just like a list view, you add data to a recycler view using an adapter. Unfortunately, recycler views don’t
work with any of the built-in adapters such as array adapters or cursor adapters. Instead, you have to
create your own that’s a subclass of the RecyclerView.Adapter class.

The adapter has two main jobs: to create each of the views that are visible within the recycler view, and to
configure the view to match a piece of data.

In our case, the recycler view needs to display a list of cards, each containing an image view and a text
view. This means that the adapter needs to create views for these items, and replace their contents when
each item in the data set is no longer visible.

Over the next few pages, we’re going to create a recycler view adapter. We need it to do three things:

1. Specify what type of data the adapter should work with.
We need to tell the adapter to use card views. Each card view needs to be populated with an
image and its caption.

2. Create the views.
The adapter needs to create all of the views that will need to be displayed on screen.

3. Bind the data to the views.
The adapter needs to populate each of the views with data when it becomes visible.

We’ll start by adding a RecyclerView.Adapter class to our project.

Create the basic adapter
We’re going to create a recycler view adapter called CaptionedImagesAdapter. Create a new
class called CaptionedImagesAdapter, then replace the code with the following:

Uploaded By: anonymousSTUDENTS-HUB.com

As you can see, the CaptionedImagesAdapter extends the RecyclerView.Adapter class
and implements its getItemCount(), onCreateViewHolder(), and onBindViewHolder()
methods. The getItemCount() method is used to return the number of items in the data set, the
onCreateViewHolder() method is used to create the views, and the onBindViewHolder() is
used to set the values inside the views. You must override these methods whenever you create your own
recycler view adapter

The class also defines a view holder, which you use to say what data the adapter should work with. We’ll
look at this next.

Define the adapter’s ViewHolder
A view holder provides a reference to the view or views for each data item in the recycler view. It’s a
holder for the views you want to display.

When you create a recycler view adapter, you need to create a view holder inside the adapter. You do
this by extending the RecyclerView.ViewHolder class, and specifying what type of data it should
hold.

Uploaded By: anonymousSTUDENTS-HUB.com

Each data item in our recycler view is a card view, so we need to make our view holder store card views.
Here’s the code:

When you create a view holder, you must call the ViewHolder super constructor using:

super(v);

This is because the ViewHolder superclass includes metadata such as the item’s position in the recycler
view, and you need this for the adapter to work properly.

Now that we’ve created a view holder to store card views, we’ll get the adapter to display the card
views in the recycler view.

Create the ViewHolders
The recycler view maintains a fixed set of view holders that contain the views that appear in the list on the
screen. The number of view holders depends on the size of the screen they need to appear on, and how
much space each item takes up. To enable the recycler view to figure out how many view holders it needs
to maintain, you need to tell it which layout to use for each view holder in the adapter’s
onCreateViewHolder() method.

Uploaded By: anonymousSTUDENTS-HUB.com

When the recycler view is first constructed, it builds this set of view holders by repeatedly calling the
adapter’s onCreateViewHolder() method until all the view holders it needs have been created. The
onCreateViewHolder() method takes two parameters: the ViewGroup parent object (the
recycler view itself) and an int parameter called viewType. This is used if you want to display different
kinds of views for different items in the list.

We want to create view holders that contains a card view based on our card_captioned_image.xml
layout. Here’s the code that will do that:

Now that the adapter can create the view holders in the recycler view, we need to get the adapter to
populate the card views they contain with data.

Each card view displays an image and a caption
Each time the user scrolls the recycler view and a new item appears, the recycler view will take one of the
view holders in its pool and call the onBindViewHolder() method to bind data to its contents. The
code in the onBindViewHolder() method needs to set the contents of the views in the view holder
so that they match the data.

In our case, the view holder contains card views that we need to populate with images and captions. To
do this, we’ll add a constructor to the adapter so that the recycler view can pass data to it. We’ll then use
the onBindViewHolder() method to bind the data to the card views.

Create the constructor
The recycler view needs to pass arrays of captions and image IDs to the adapter, so we’ll add a

Uploaded By: anonymousSTUDENTS-HUB.com

constructor that will take these as parameters. We’ll store the arrays in instance variables. We’ll also use
the number of captions passed to the adapter to determine the number of items in the data set:

Now that the adapter can receive the data, we’ll get the adapter to display it in the recycler view by
writing the onBindViewHolder() method.

Add the data to the card views
The onBindViewHolder() method gets called whenever the recycler view needs to display data in a
view holder. It takes two parameters: the view holder that data needs to be bound to, and the position in
the data set of the data that needs to be bound.

We need to populate our card view with data. The card view contains two views, an image view with an
ID of info_image, and a text view with an ID of info_text. We’ll populate these with data from
the captions and imageIds arrays.

Here’s the code that will do that:

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code we need for our adapter. We’ll show you the full code on the next page.

The full code for CaptionedImagesAdapter.java

Uploaded By: anonymousSTUDENTS-HUB.com

Create the recycler view
So far we’ve created a card view and an adapter. The next thing we need to do is create the recycler
view. The recycler view will pass the adapter pizza data so that it can populate the card views with pizzas.

We’re going to put the recycler view in a new fragment. This is because we’re going to display it in
MainActivity whenever the user clicks on the Pizzas option in the navigation drawer:

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll start by creating the fragment. Add a new blank fragment to your project. Give the fragment a name
of “PizzaMaterialFragment” and a layout name of “fragment_pizza_material”.

On the next page, we’ll add the recycler view to the layout.

Add the RecyclerView to the layout
You add a recycler view to the layout using the
<android.support.v7.widget.RecyclerView> element.

Here’s the code for fragment_pizza_material.xml; it contains a recycler view with an ID of
pizza_recycler:

Uploaded By: anonymousSTUDENTS-HUB.com

You add scrollbars to the recycler view using the android:scrollbars attribute. We’ve set this to
"vertical" because we want our recycler view to display a vertical list that will scroll vertically.

Now that we’ve added a recycler view to fragment_pizza_material. xml, we need to add code to
PizzaMaterialFragment.java to control its behavior.

Using the adapter
In the code for PizzaMaterialFragment.java, we’ll get the recycler view to use the adapter. We need to
tell the adapter what data to use via the adapter’s constructor, and then use the RecyclerView
setAdapter() method to assign the adapter to the recycler view:

We’ll show you the code for PizzaMaterialFragment.java on the next page.

The PizzaMaterialFragment.java code
Here’s the code for PizzaMaterialFragment.java (it creates an instance of
CaptionedImagesAdapter, tells it to use pizza names and images for its data, and assigns the
adapter to the recycler view):

Uploaded By: anonymousSTUDENTS-HUB.com

There’s just one more thing we need to do: we need to specify how the views in the recycler view should
be arranged.

A RecyclerView uses a layout manager to arrange its views
One of the ways in which a recycler view is more flexible than a list view is when it comes to arranging its
views. A list view displays its views in a single vertical list, but a recycler view gives you more options.
You can choose to display views in a linear list, a grid, or a staggered grid.

You specify how to arrange the views using a layout manager. The layout manager positions views inside a
recycler view, and the type of layout manager you use determines how items are positioned:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll show you how to specify which layout manager to use.

Specifying the layout manager
You specify the layout manager, using the following lines of code:

The above code tells the recycler view to use a LinearLayoutManager, so all the views in the
recycler view will be displayed in a list:

Uploaded By: anonymousSTUDENTS-HUB.com

Using a layout manager means that it’s easy to change the appearance of your recycler view. If you want
to display your views in a grid instead, for instance, you just change the code to use a
GridLayoutManager instead:

The full PizzaMaterialFragment.java code
Here’s the full code for PizzaMaterialFragment.java:

Uploaded By: anonymousSTUDENTS-HUB.com

Now that we’ve finished the recycler view code, let’s change MainActivity so that it’s displayed
when the user clicks on the Pizzas option in the navigation drawer.

Get MainActivity to use the new PizzaMaterialFragment
When the user clicks on the Pizzas option, the ListFragment called PizzaFragment currently gets
displayed. To display PizzaMaterialFragment instead, we need to replace all references to
PizzaFragment in our MainActivity code with PizzaMaterialFragment.

PizzaFragment is used two times in MainActivity.java, in its onCreate() and selectItem()
methods. Change these lines of code to use PizzaMaterialFragment instead:

Uploaded By: anonymousSTUDENTS-HUB.com

Before we run the app, let’s go through what the code we’ve written so far will do.

What happens when the code runs
1. The user clicks on the Pizzas option in the navigation drawer.

Code in MainActivity runs to display PizzaMaterialFragment, and
PizzaMaterialFragment’s onCreateView() method runs.

2. The PizzaMaterialFragment onCreateView() method creates a LinearLayoutManager
and assigns it to the recycler view.
The LinearLayoutManager means that the views will be displayed in a list. As the recycler
view has a vertical scrollbar, the list will be displayed vertically.

Uploaded By: anonymousSTUDENTS-HUB.com

3. The PizzaMaterialFragment onCreateView() method creates a new
CaptionedImagesAdapter.
It passes the names and images of the pizzas to the adapter using the adapter’s constructor, and
sets the adapter to the recycler view.

The story continues
4. The adapter creates a view holder for each of the CardViews the recycler view needs to

display.

5. The adapter then binds the pizza names and images to the text view and image view in
each card view.

Uploaded By: anonymousSTUDENTS-HUB.com

Next, let’s run the app and see how it looks.

Test drive the app
Run the app, open the navigation drawer, and click on the Pizzas option.

Uploaded By: anonymousSTUDENTS-HUB.com

The recycler view is displayed containing a linear list of card views. Each card view contains pizza data.

RECYCLERVIEW MAGNETS

Use the magnets on this page and the next to create a new recycler view for the pasta dishes. The recycler
view should contain a linear list of card views, each one displaying the name and image of a pasta dish.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

RECYCLERVIEW MAGNETS SOLUTION

Use the magnets on this page and the next to create a new recycler view for the pasta dishes. The recycler
view should contain a linear list of card views, each one displaying the name and image of a pasta dish.

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Where we’ve got to
Here’s a reminder of where we’ve got to with our app:

1. When the app gets launched, it starts MainActivity.
The activity uses layout activity_main.xml and has a navigation drawer. When the user clicks on
one of the options in the navigation drawer it displays the appropriate fragment.

2. When the user clicks the Pizzas option, it displays PizzasMaterialFragment.
PizzasMaterialFragment contains a recycler view.

3. PizzaMaterialFragment uses an adapter, CaptionedImagesAdapter, to display card views
showing an image and caption for each pizza.
The card views are defined in card_captioned_image.xml.

Uploaded By: anonymousSTUDENTS-HUB.com

The next thing we need to do is get the recycler view to respond to clicks so it starts
PizzaDetailActivity when the user clicks on one of the pizzas. PizzaDetailActivity will
then display details of the pizza the user selected.

We’ll create PizzaDetailActivity next.

Create PizzaDetailActivity
PizzaDetailActivity will display the name of the pizza the user selected, along with its image.

Create a new blank activity called “PizzaDetailActivity” with a layout name of “activity_pizza_detail” and
a title of “Pizza Detail”. Then update activity_pizza_detail.xml with the code below, which adds a text
view and image view to the layout that we’ll use to display details of the pizza:

Uploaded By: anonymousSTUDENTS-HUB.com

We’ll look at what we need the code for PizzaDetailActivity.java to do on the next page.

What PizzaDetailActivity.java needs to do
There are a few things that we need PizzaDetailActivity.java to do:

PizzaDetailActivity’s main purpose is to display the name and image of the pizza the user
has selected. To do this, we’ll get the ID of the pizza the user has selected from the intent that started
the activity. We’ll pass this to PizzaDetailActivity from PizzaMaterialFragment when
the user clicks on one of the pizzas in the recycler view.
Back in Chapter 9, we created a menu resource file that describes items we wanted to add to the
action bar. We’ll use the onCreateOptionsMenu() to add these items to
PizzaDetailActivity’s action bar.
The menu resource file describes a Share action that we can use to share information. We’ll add an
intent to the Share action that will share the name of the pizza the user has selected.
The menu resource file also describes a Create Order action. When the user clicks on this, we’ll start
OrderActivity.
We’ll enable the PizzaDetailActivity’s Up button so that when the user clicks on it, they get
returned to MainActivity.

Update AndroidManifest.xml
We’ll start by updating AndroidManifest.xml to specify that MainActivity is the parent of
PizzaDetailActivity. This means that when the user clicks on the Up button in

Uploaded By: anonymousSTUDENTS-HUB.com

PizzaDetailActivity’s action bar, MainActivity will be displayed:

Once you’ve done that, we’ll look at how to get the recycler view to respond to clicks.

The code for PizzaDetailActivity.java
Here’s the full code for PizzaDetailActivity.java (don’t worry if it seems like a lot, this is all code that
you’ve seen before):

Uploaded By: anonymousSTUDENTS-HUB.com

Once you’ve updated your PizzaDetailActivity.java code, we’ll look at how to get the recycler view to
respond to clicks.

Getting a RecyclerView to respond to clicks
We need to get items in the recycler view to respond to clicks so that we can start
PizzaDetailActivity when the user clicks on a particular pizza.

When you create a navigation list with a list view, you can respond to click events within the list by giving
the list view an OnItemClickListener. The list view listens to each of the views that it contains, and
if any of them are clicked, the list view calls its OnItemClickListener. That means that you can
respond to list item clicks with very little code.

List views are able to do this because they inherit a bunch of functionality from a very deep hierarchy of
superclasses. Recycler views, however, don’t have such a rich set of built-in methods, as they don’t
inherit from the same superclasses:

Uploaded By: anonymousSTUDENTS-HUB.com

While this gives you more flexibility, it also means that with the recycler view you have to do a lot more of
the work yourself. So how do we get the recycler view to respond to clicks?

You can listen to views from the adapter
If you want your recycler view to respond to clicks, you need to write the code yourself. In order to write
event code, you need access to the views that appear inside the recycler view. So where do you do that?

The views are all created inside the CaptionedImagesAdapter class. When a view appears on
screen, the recycler view calls the onBindViewHolder() code to make the card view match the
details of the list item.

Let’s say you want to send the user to an activity that displays a single pizza whenever a pizza card view
is clicked. That means you could put some code inside the adapter to start an activity like this:

Uploaded By: anonymousSTUDENTS-HUB.com

But just because you could write this code, doesn’t necessarily mean that you should.

BRAIN POWER

You could respond to a click event by adding code to your adapter class. Is there a reason why you wouldn’t
want to do that?

Keep your adapters reusable
If you deal with click events in the CaptionedImagesAdapter class, you’ll limit how that adapter
can be used. Think about the app we’re building. We want to display lists of pizzas, pasta, and stores. In
each case, we’ll probably want to display a list of captioned images. If we modify the
CaptionedImagesAdapter class so that clicks always send the user to an activity that displays
details of a single pizza, we won’t be able to use the CaptionedImagesAdapter for the pasta and
stores lists. We’ll have to create a separate adapter for each one.

Decouple your adapter with an interface
Instead, we’ll keep the code that starts the activity outside of the adapter. When someone clicks on an
item in the list, we want the adapter to call the fragment that contains the list and the fragment code can
then fire off an intent to the next activity. That way we can reuse CaptionedImagesAdapter for the
pizzas, pasta, and stores lists, and leave it to the fragments in each case to decide what happens in
response to a click.

We’re going to use a similar pattern to the one that allowed us to decouple a fragment from an activity.
We’ll create a Listener interface inside CaptionedImagesAdapter like this:

public static interface Listener {
 public void onClick(int position);
}

We’ll call the Listener’s onClick() method whenever one of the card views in the recycler view is
clicked. We’ll then add code to PizzaMaterialFragment so that it implements the interface; this
will allow the fragment to respond to clicks and start an activity.

This is what will happen at runtime:

1. A user will click on a card view in the recycler view.

Uploaded By: anonymousSTUDENTS-HUB.com

2. The Listener’s onClick() method will be called.
3. The onClick() method is implemented in PizzaMaterialFragment. Code in the

fragment starts PizzaDetailActivity.

Let’s start by adding code to CaptionedImagesAdapter.java.

Add the interface to the adapter
We’ve updated our CaptionedImagesAdapter.java code to add the Listener interface and call its
onClick() method whenever one of the card views is clicked (apply the changes to your code, then
save your work):

Uploaded By: anonymousSTUDENTS-HUB.com

Now that we’ve added a Listener to the adapter, we’ll implement it in
PizzaMaterialFragment.java.

Implement the listener in PizzaMaterialFragment.java
We’ll implement CaptionedImagesAdapter’s Listener interface in
PizzaMaterialFragment so that when a card view in the recycler view is clicked,
PizzaDetailActivity will be started. Here’s the code:

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

That’s all the code we need to make views in the recycler view respond to clicks. By taking this
approach, we can use the same adapter and card view for different types of data that is composed of an
image view and text view.

Let’s see what happens when we run the code.

Test drive the app
Run the app, open the navigation drawer, and click on the Pizzas option. A list of card views is displayed,
each one showing a different pizza, as before. Let’s see what happens when you click on one of the
pizzas:

Uploaded By: anonymousSTUDENTS-HUB.com

The card view responds to the click, and displays PizzaDetailActivity.

There’s just one more thing we need to look at: the content we need to include in TopFragment.

Bring the content forward
When we first looked at the design of the Pizza app, TopFragment contained a list of navigation
options. We moved these away from TopFragment using a combination of an action bar and navigation
drawer, leaving TopFragment empty. So what should TopFragment contain?

TopFragment is our top-level screen, so it’s the first screen that your users see when they start the app.
Your top-level screen should be rewarding for both new and regular users, and one way you can do this
is by bringing the content forward.

If you look at some of the Google apps on your device, there’s one thing they have in common: they allow
you to get to the main content of the app quickly by bringing some of it forward onto the top-level screen.
The Calendar app displays upcoming events. Apps such as Play Books and Play Music display your
recent actions and recommendations. They form the centerpiece of the top-level screen.

Uploaded By: anonymousSTUDENTS-HUB.com

We can bring the content forward in our Pizza app by displaying some of the food that’s available in
TopFragment. The good news is that you can do this with very little effort using the skills you’ve
already learned in this chapter.

Uploaded By: anonymousSTUDENTS-HUB.com

EXERCISE

You’re going to change TopFragment so that it displays introductory text and a recycler view that displays
pizzas. First, write the layout code for fragment_top.xml. You need TopFragment to look like the image
below.

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL

Next, add code to the box below to finish writing the code for TopFragment.java so that the recycler view
is populated with two pizzas in a grid layout. If the user clicks on one of the pizzas, display its details in
PizzaDetailActivity.java.

Uploaded By: anonymousSTUDENTS-HUB.com

EXERCISE SOLUTION

You’re going to change TopFragment so that it displays introductory text and a recycler view that displays
pizzas. First, write the layout code for fragment_top.xml. You need TopFragment to look like the image
below.

Uploaded By: anonymousSTUDENTS-HUB.com

SHARPEN YOUR PENCIL SOLUTION

Next, add code to the box below to finish writing the code for TopFragment.java so that the recycler view
is populated with two pizzas in a grid layout. If the user clicks on one of the pizzas, display its details in
PizzaDetailActivity.java.

The full code for fragment_top.xml
We’ve changed TopFragment so that it displays introductory text and two pizzas. We’ll show you the
full code over the next couple of pages.

First, add the following to strings.xml:

<string name="welcome_text">We offer a range of freshly baked pizza and
pasta
dishes. Why not try some?</string>

Then update fragment_top.xml with the following code:

Uploaded By: anonymousSTUDENTS-HUB.com

On the next page, we’ll show you the code for TopFragment.java.

The full code for TopFragment.java

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
Let’s see what happens when you run the app.

Uploaded By: anonymousSTUDENTS-HUB.com

TopFragment is displayed, showing some introductory text and two of the pizzas. When you click on a
pizza, its details are displayed in PizzaDetailActivity.

Your Android Toolbox
You’ve got Chapter 14 under your belt and now you’ve added Material Design to your tool box.

NOTE

You can download the full code for the chapter from https://tinyurl.com/HeadFirstAndroid.

Uploaded By: anonymousSTUDENTS-HUB.com

https://tinyurl.com/HeadFirstAndroid

BULLET POINTS

Card views and recycler views have their own support libraries.
Add a card view to a layout using the <android.support.v7.widget.CardView> element.
Give the card view rounded corners using the cardCornerRadius attribute. This requires a
namespace of "http://schemas.android.com/apk/res-auto".
Recycler views work with adapters that are subclasses of RecyclerView.Adapter.
When you create your own RecyclerView.Adapter, you must define the ViewHolder and
implement the onCreateViewHolder(), onBindViewHolder(), and getItemCount()
methods.
You add a recycler view to a layout using the <android.support.v7.widget.RecyclerView>
element. You give it a scrollbar using the android:scrollbars attribute.
Use a layout manager to specify how items in a recycler view should be arranged. A
LinearLayoutManager arranges items in a linear list, a GridLayoutManager arranges items in a
grid, and a StaggeredGridLayoutManager arranges items in a staggered grid.

Uploaded By: anonymousSTUDENTS-HUB.com

Part I. Leaving town...

It’s been great having you here in Androidville

We’re sad to see you leave, but there’s nothing like taking what you’ve learned and putting it to use.
There are still a few more gems for you in the back of the book and an index to read through, and then
it’s time to take all these new ideas and put them into practice. Bon voyage!

Uploaded By: anonymousSTUDENTS-HUB.com

Appendix A. ART: The Android Runtime

Android apps need to run on devices with low-powered processors and very little memory.

Java apps can take up a lot of memory, and because they run inside their own Java Virtual Machine
(JVM), Java apps can take a long time to start when they’re running on low-powered machines. Android
deals with this by not using the JVM for its apps. Instead, it uses a very different virtual machine called the
Android runtime (ART). In this appendix, we’ll look at how ART gets your Java apps to run well on a
small, low-powered device.

What is the Android runtime (ART)?
The Android runtime (ART) is the system that runs your compiled code on an Android device. It first
appeared on Android with the release of KitKat and became the standard way of running code in
Lollipop.

ART is designed to run your compiled Android apps quickly and efficiently on small, low-powered
devices.

ART is very different from the JVM
Java has been around for a very long time, and compiled Java programs have almost always run on
Oracle’s Java Virtual Machine (JVM). The JVM simulates a CPU chip, and it reads a compiled .class file
that contains JVM machine code instructions called bytecodes. Traditionally you would compile .java
source files into .class files. You would then run these using the JVM interpreter.

Uploaded By: anonymousSTUDENTS-HUB.com

ART is very different. When you compile an Android application, everything starts in the same way. You
write .java source files and compile them into .class files, but then a tool called dx will convert the set of
.class (or .jar archives) into a single file called classes.dex.

This classes.dex file also contains bytecodes, but they are different from the bytecodes in a .class file.
The .dex bytecodes are for a completely different virtual processor called Dalvik. In fact, dex stands for
Dalvik Executable.

The Dalvik processor is kind of similar to the JVM. Both the JVM and Dalvik are virtual processors.
They are both theoretical chips. But the Oracle JVM is a stack-based processor and Dalvik is a register-
based processor. Some people believe that code for register-based processors can be tuned to be
smaller and to run faster. By converting a whole set of different files into a single classes.dex file, the dx
tool is able to make the compiled app a lot smaller because it can remove a lot of duplicated symbols that
might appear in many .class files.

The classes.dex file is then compressed with a bunch of other resource and data files into a ZIP-
compressed file called an application package or APK file. The .apk file is the final compiled application
that can be installed on an Android device. This is the file that you’ll eventually upload to the Google Play
Store.

How Android runs an APK file
The APK file is just a ZIP-compressed archive. When it’s transferred to an Android device, it’s stored in
a directory called /data/app/<package name> and then the classes.dex file is extracted from it.

When the classes.dex file is extracted from the APK archive, it’s converted into a native library. The
Dalvik bytecodes become actual native machine code instructions that can be run directly by the device’s
CPU. This compiled library is then stored in the /data/dalvik-cache directory. Android only needs to

Uploaded By: anonymousSTUDENTS-HUB.com

perform this native compilation step the first time that the app is run. From then on, the Android device
can simply load and run the native library.

Android is just a version of the Linux operating system, and Linux doesn’t normally have the ability to run
Android apps. That’s why each Android device runs a process called Zygote. Zygote is like an Android
process that is already up and running. When you tell Android to start a new Android app, Zygote will
create a forked version of itself. A forked process is just another copy of the process in memory. Linux
can fork processes very quickly, so by forking the Zygote process and then loading the native library, an
Android app can be loaded very quickly.

Performance and size
Android devices usually have a lot less power and storage than machines that normally run Java code.
ART uses .dex files that are normally smaller than their equivalent .class files. The Oracle JVM can
compile some parts of the code it interprets using just-in-time compilation, which means that the JVM
converts Java bytecode into machine code while it’s running the code. This is fine for applications that run
for a very long time, like application servers, but Android applications might be started and stopped
regularly. By compiling all of the Dalvik bytecodes into a native library ahead of time, ART ensures that it
only needs to compile the code once.

Finally, the Oracle Java runtime can take some time to start on low-powered devices. By using the
Zygote process, Android is able to get apps up and running much more quickly. The Zygote process can
also use shared memory to securely execute code that will be common to all Dalvik processes.

Security
An Android device might run code from many different developers, and it’s important that each app is
completely isolated from every other app. Without that separation, one app might breach the security of
any other app on the device. To ensure that apps are isolated, Android will run each app in a separate
process, with an automatically generated user account. This allows apps to be isolated using operating
system security provided by Linux. If the Oracle Java runtime was used, each process would require its
own Java process, which would greatly increase the memory required to run several apps.

Uploaded By: anonymousSTUDENTS-HUB.com

Appendix B. ADB: The Android Debug
Bridge

In this book, we’ve focused on using an IDE for all your Android needs. But there are times when
using a command-line tool can be plain useful, like those times when Android Studio can’t see your
Android device but you just know it’s there. In this chapter, we’ll introduce you to the Android Debug
Bridge (or adb), a command-line tool you can use to communicate with the emulator or Android
devices.

adb: your command-line pal
Every time your development machine needs to talk to an Android device, whether it’s a real device
connected with a USB cable, or a virtual device running in an emulator, it does it by using the Android
Debug Bridge (adb). The adb is a process that’s controlled by a command that’s also called adb.

The adb command is stored in the platform-tools directory of the Android System Developer’s
Kit. On a Mac, you’ll probably find it in /Users/<username>/Library/Android/sdk/platform-tools. If
you add the platform-tools directory to your PATH, you will be able to run adb from the command line.

In a terminal or at a command prompt, you can use it like this:

Uploaded By: anonymousSTUDENTS-HUB.com

The adb devices command means “Tell me which Android devices you are connected to”. The adb
command works by talking to an adb server process, which runs in the background. The adb server is
sometimes called the adb dæmon or adbd. When you enter an adb command in a terminal, a request is
sent to network port 5037 on your machine. The adbd listens for commands to come in on this port.
When Android Studio wants to run an app, or check the log output, or do anything else that involves
talking to an Android device, it will do it via command port 5037.

When the adbd receives a command, it will forward it to a separate adbd process that’s running in the
relevant Android device. This will then be able to make changes to the Android device or return the
requested information.

Sometimes, if the adb server isn’t running, the adb command will need to start it:

Likewise, if ever you plug in an Android device and Android Studio can’t see it, you can manually kill the
adb server and restart it:

Uploaded By: anonymousSTUDENTS-HUB.com

By killing and restarting the server, you force adb to get back in touch with any connected Android
devices.

Running a shell
Most of the time you won’t use adb directly; you’ll let an IDE like Android Studio do the work for you.
But there are times when it can be useful to go to the command line and interact with your devices
directly.

One example is if you want to run a shell on your device:

The adb shell command will open up an interactive shell directly on the Android device. The adb
shell command will only work when there is a single Android device connected, otherwise it won’t
know which Android device you want to talk to.

Once you open a shell to your device, you can run a lot of the standard Linux commands:

Uploaded By: anonymousSTUDENTS-HUB.com

Get the output from logcat
All of the apps running on your Android device sending their output to a central stream called the logcat.
You can see the live output from the logcat by running the adb logcat command:

The logcat output will keep streaming until you stop it. It can be useful to run adb logcat if you want
to store the output in a file. The adb logcat command is used by Android Studio to produce the
output you see in the Devices/logcat frame.

Copying files to/from your device
The adb pull and adb push commands can be used to transfer files back and forth. For example,
here we are copying the /default.prop/ properties file into a local file called 1.txt:

Uploaded By: anonymousSTUDENTS-HUB.com

And much, much more...
There are many, many commands that you can run using adb: you can back up and restore databases
(very useful if you need to debug a problem with a database app), start the adb server on a different port,
reboot machines, or just find out a lot of information about the running devices. To find out all the options
available, just type adb on the command line:

Uploaded By: anonymousSTUDENTS-HUB.com

Appendix C. The Emulator: The Android
Emulator

Ever felt like you were spending all your time waiting for the emulator?

There’s no doubt that using the Android emulator is useful. It allows you to see how your app will run on
devices other than the physical ones you have access to. But at times it can feel a little... sluggish. In this
appendix, we’re going to explain why the emulator can seem slow. Even better, we’ll give you a few tips
we’ve learned for speeding it up.

Why the emulator is so slow
When you’re writing Android apps, you’ll spend a lot of time waiting for the Android emulator to start up
or deploy your code. Why is that? Why is the Android emulator so sloooooow? If you’ve ever written
iPhone code, you will know how fast the iPhone simulator is. If it’s possible for the iPhone, then why not
for Android?

There’s a clue in the name: the iPhone Simulator and the Android Emulator.

The iPhone Simulator simulates a device running the iOS operating system. All of the code for iOS is
compiled to run natively on the Mac and the iPhone Simulator runs at Mac-native speed. That means it
can simulate an iPhone boot-up in just a few seconds.

The Android Emulator works in a completely different way. An Android Emulator uses an open source
application called QEMU (or Quick Emulator) to emulate the entire Android hardware device. It runs
code that interprets machine code that’s intended to be run by the device’s processor. It has code that
emulates the storage system, the screen, and pretty much every other piece of physical equipment on an
Android device.

Uploaded By: anonymousSTUDENTS-HUB.com

An emulator like QEMU creates a much more realistic representation of a virtual device than something
like the iPhone Simulator does, but the downside is that it has to do far more work for even simple
operations like reading disk or displaying something on a screen. That’s why the emulator takes so long to
boot up a device. It has to pretend to be every little hardware component inside the device, and it has to
interpret every single instruction.

How to speed up your Android development
1. Use a real device
The simplest way to speed up your development process is by using a real device. A real device will boot
up much faster than an emulated one, and it will probably deploy and run apps a lot more quickly. If you
want to develop on a real device, you may want to go into “Developer options” and check the Stay
Awake option. This will prevent your device locking the screen, which is useful if you are repeatedly
deploying to it.

2. Use an emulator snapshot
Booting up is one of the slowest things the emulator does. If you save a snapshot of the device while it’s
running, the emulator will be able to reset itself to this state without having to go through the boot-up
process. To use a snapshot with your device, open the AVD manager from the Android Studio menu by
selecting Tools→Android→AVD Manager, edit the AVD by clicking on the Edit symbol, then check the
“Store a snapshot for faster startup” option.

This will save a snapshot of what the memory looks like when the device is running. The emulator will be
able to restore the memory in this state without booting the device.

3. Use hardware acceleration
By default, the QEMU emulator will have to interpret each machine code instruction on the virtual device.
That means it’s very flexible because it can pretend to be lots of different CPUs, but it’s one of the main
reasons why the emulator is slow. Fortunately, there’s a way to get your development machine to run the
machine code instructions directly. There are two main types of Android Virtual Device: ARM machines
and x86 machines. If you create an x86 Android device and your development machine is using a
particular type of Intel x86 CPU, then you can configure your emulator to run the Android machine code
instructions directly on your Intel CPU.

You will need to install Intel’s Hardware Accelerated Execution Manager (HAXM). At the time of writing
, you can find HAXM here:

NOTE

If it’s moved, a quick search should track it down.

https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager

HAXM is a hypervisor. That means it can switch your CPU into a special mode to run virtual machine
instructions directly. HAXM will only run on Intel processors that support Intel Virtualization Technology.

Uploaded By: anonymousSTUDENTS-HUB.com

https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager

If your development machine is compatible, then HAXM will make your AVD run much faster.

Uploaded By: anonymousSTUDENTS-HUB.com

Appendix D. Leftovers: The Top Ten Things
(we didn’t cover)

Even after all that, there’s still a little more.

There are just a few more things we think you need to know. We wouldn’t feel right about ignoring them,
and we really wanted to give you a book you’d be able to lift without extensive training at the local gym.
Before you put down the book, read through these tidbits.

1. Distributing your app
Once you’ve developed your app, you’ll probably want to make it available to other users. You’ll usually
want to do this by releasing your app through an app marketplace such as Google Play.

There are two stages to this: preparing your app for release, and then releasing it.

Preparing your app for release
Before you can release your app, you need to configure, build, and test a release version of your app.
This includes tasks such as deciding on an icon for your app and modifying AndroidManifest.xml so that
only devices that are able to run your app are able to download it.

Before you release your app, make sure that you test it on at least one tablet and one phone to check that
it looks the way you expect and its performance is acceptable.

You can find further details of how to prepare your app for release here:

http://developer.android.com/tools/publishing/preparing.html

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/tools/publishing/preparing.html

Releasing your app
This stage includes publicizing your app, selling it, and distributing it.

To release your app on the Play Store, you need to register for a publisher account and use the
Developer Console to publish your app. You can find further details here:

http://developer.android.com/distribute/googleplay/start.html

For ideas on how to best target your app to your users and build a buzz about it, we suggest you explore
the documents here:

http://developer.android.com/distribute/index.html

2. Content providers
You’ve seen how to use intents to start activities in other apps. As an example, you can start the
Messaging app to send the text you pass to it. But what if you want to use another app’s data in your own
app? What if you want to use Contacts data in your app to perform some task, or insert a new Calendar
event?

You can’t access another app’s data by interrogating its database, Instead, you use a content provider.
A content provider is an interface that allows apps to share data in a controlled way. It allows you to
perform queries to read the data, insert new records, and update or delete existing records.

If you want other apps to use your data, you can create your own content provider.

You can find out more about the concept of content providers here:

http://developer.android.com/guide/topics/providers/content-providers.html

Here’s a guide on using Contacts data in your app:

http://developer.android.com/guide/topics/providers/contacts-provider.html

Here’s a guide on using Calendar data:

http://developer.android.com/guide/topics/providers/calendar-provider.html

3. The WebView class

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/distribute/googleplay/start.html
http://developer.android.com/distribute/index.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/contacts-provider.html
http://developer.android.com/guide/topics/providers/calendar-provider.html

If you want to provide your users with access to web content, you have two options. The first option is to
develop a web app that users can access on their device using a browser. The second option is to use the
WebView class.

The WebView class allows you to display the contents of a web page inside your activity’s layout. You
can use it to deliver an entire web app as a client application, or to deliver individual web pages. This
approach is useful if there’s content in your app you might need to update, such as an end-user agreement
or user guide.

You add a WebView to your app by including it in your layout like this:

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/webview"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

You tell it which web page to load using the loadUrl() method in your Java code like this:

WebView webView = (WebView) findViewById(R.id.webview);
webView.loadUrl("http://www.oreilly.com/");

You also need to specify that the app must have Internet access by adding the INTERNET permission to
AndroidManifest.xml:

<manifest ... >
 <uses-permission android:name="android.permission.INTERNET" />
 ...
</manifest>

You can find out more about using web content in your apps here:

http://developer.android.com/guide/webapps/index.html

4. Animation
As Android devices use more of the power from their built-in graphics hardware, animation is being used
more and more to improve the user’s app experience.

There are several types of animation that you can perform in Android:

Property animation
Property animation relies on the fact that the visual components in an Android app use a lot of numeric
properties to describe their appearance. If you change the value of a property like the height or the width
of a view, you can make it animate. That’s what property animation is: smoothly animating the properties
of visual components over time.

View animations
A lot of animations can be created declaratively as XML resources. So you can have XML files that use a
standard set of animations (like scaling, translation, and rotation) to create effects that you can call from
your code. The wonderful thing about declarative view animations is that they are decoupled from your
Java code, so they are very easy to port from one app project to another.

Activity transitions
Let’s say you write an app that displays a list of items with names and images. You click on an item and
you’re taken to a detail view of it. The activity that shows you more detail will probably use the same
image that appeared in the previous list activity.

Activity transitions allow you to animate view from one activity that will also appear in the next activity. So

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/guide/webapps/index.html

you can make an image from a list smoothly animate across the screen to the position it takes in the next
activity. This will give your app a more seamless feel.

To learn more about Android animation see:

https://developer.android.com/guide/topics/graphics/index.html

To learn about activity transitions and Material Design, see:

https://developer.android.com/training/material/animations.html

5. Maps
An Android device can go everywhere with you, and so location and mapping are important features in
many Google apps.

If you install the Google Play Services library, you can embed Google Maps directly into your app. It
comes with the full power of the native app, plus you can do a huge amount of customization to make
maps a fully integrated part of your app.

You insert a map into a layout as a fragment:

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
android:name="com.google.android.gms.maps.MapFragment"/>

Then you can programmatically access the map from your code as a GoogleMap object:

GoogleMap map = getMap();

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/guide/topics/graphics/index.html
https://developer.android.com/training/material/animations.html

And then you add your own features to the map. For example, you add polylines to it like this:

routeLine = map.addPolyline(new PolylineOptions()
 .width(ROUTE_THICKNESS_PIXELS)
 .color(Color.RED));

You can also listen to events on the app. With an OnCameraChangeListener you can see when the
user moves the map to a different location, and with an OnMapClickListener you can tell the
latitude and longitude of the point on the map where a user just clicked:

map.setOnCameraChangeListener(new OnCameraChangeListener() {
 @Override
 public void onCameraChange(CameraPosition cameraPosition) {
 // Dragged to a new place on the map
 }
});

map.setOnMapClickListener(new OnMapClickListener() {
 @Override
 public void onMapClick(LatLng latLng) {
 // Clicked at a latitude/longitude latLng
 }
});

To find out more about Google Maps and how you can integrate them with your Android app, go to:

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/google/play-services/maps.html

6. Cursor loaders
If you do much work with databases or content providers, sooner or later you’ll encounter cursor
loaders. A cursor loader runs an asynchronous query in the background and returns the results to the
activity or fragment that called it. It manages your cursor for you so that you don’t have to. It also notifies
you if the data changes so that you can deal with it in your views.

You can find out more about cursor loaders here:

https://developer.android.com/training/load-data-background/setup-loader.html

7. Broadcast receivers
Suppose you want your app to react in some way when a system event occurs. You may, for example,
have built a music app, and you want it to stop playing music if the headphones are removed. How can
your app tell when these events occur?

System events include things like the device running low on power, a new incoming phone call, or the
system getting booted. Android broadcasts these system events when they occur, and you can listen out
for them by creating a broadcast receiver. Broadcast receivers allow you to subscribe to particular
broadcast messages. This means that you can get your app to respond to system events.

You can find out more about broadcast receivers here:

http://developer.android.com/reference/android/content/BroadcastReceiver.html

8. App widgets
An app widget is a small application view that you can add to other apps or your home screen. It gives
you direct access to an app’s core content or functionality from your home screen without you having to
launch the app.

Here’s an example of an app widget:

Uploaded By: anonymousSTUDENTS-HUB.com

https://developer.android.com/google/play-services/maps.html
https://developer.android.com/training/load-data-background/setup-loader.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

To create an app widget, you need an AppWidgetProviderInfo object, an
AppWidgetProvider class implementation, and a View layout. The AppWidgetProviderInfo
object describes metadata for the widget, such as its AppWidgetProvider class and layout. It’s
defined in XML. The AppWidgetProvider class implementation contains the methods that you need
to interface with the app widget. The View layout is an XML layout that describes how the app widget
should look.

To find out how you create your own app widgets, look here:

http://developer.android.com/guide/topics/appwidgets/index.html

9. NinePatch graphics
A NinePatch graphic is a stretchable bitmap you can use as a view’s background. The image is
automatically resized depending on the contents of the view and the size of the screen. The clever bit is
that you define which areas should stretch, and which areas shouldn’t.

As an example, suppose you wanted to use the following image as the background of a button:

You need the image to be able to stretch so that it can accommodate different lengths of text, but you
don’t want the edges of the image to get distorted as it stretches:

If you turn the image into a NinePatch graphic, you can get the image to stretch exactly how you want.

Android includes a tool called the Draw 9-patch tool that helps you create NinePatch images. You can

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/guide/topics/appwidgets/index.html

find out more about the Draw 9-patch tool and NinePatch graphics in general by following this link:

http://developer.android.com/guide/topics/graphics/2dgraphics.html#nine-patch

10. Testing
All modern development relies heavily on testing, and Android comes with a lot of built-in support. As the
main Android language is Java, you can use the standard Java testing frameworks, but Android takes
things a whole step further by including a testing framework right in the SDK. In fact, Android Studio
automatically creates a file hierarchy for tests every time you create a project.

Android testing is based on JUnit, with extensions specially built for Android. You can use
AndroidTestCases for basic component testing. The framework includes mocks for objects like
Intents and Contexts to make the testing of an individual component easier.

There’s also a special ApplicationTestCase that’s useful for testing that the basic configuration of
files like AndroidManifest.xml is set up correctly.

The most impressive thing in the basic test framework is Instrumentation Testing. Android apps can be
instrumented so that the interactions between a component and the operating system can be monitored
and changed. This means that you can run tests directly on a device that can call the lifecycle methods of
an activity and fire off intents to the operating system.

To find out more about the Android testing framework, go here:

http://d.android.com/tools/testing/testing_android.html

For more advanced scenario testing, you should look at the Robotium testing framework. Robotium
builds on the instrumentation testing used in the basic Android framework, and takes it to a whole new
level. With Robotium you can write test code that almost reads like the test scripts that manual testers
perform.

For more information on Robotium go to:

https://code.google.com/p/robotium/

Uploaded By: anonymousSTUDENTS-HUB.com

http://developer.android.com/guide/topics/graphics/2dgraphics.html#nine-patch
http://d.android.com/tools/testing/testing_android.html
https://code.google.com/p/robotium/

Appendix E. O’reilly®: Android Development
What will you learn from this book?
If you have an idea for a killer Android app, this book will help you build your first working application in
a jiffy. You’ll learn hands-on how to structure your app, design interfaces, create a database, make your
app work on various smartphones and tablets, and much more. It’s like having an experienced Android
developer sitting right next to you! All you need is some Java know-how to get started.

Uploaded By: anonymousSTUDENTS-HUB.com

Why does this book look so different?
Based on the latest research in cognitive science and learning theory, Head First Android Development
uses a visually rich format to engage your mind, rather than a text-heavy approach that puts you to sleep.
Why waste your time struggling with new concepts? This multi-sensory learning experience is designed for
the way your brain really works.

“A comprehensive beginner’s guide to Android development, easy to read and full of excellent examples
and exercises.”

— Edward Yue Shung Wong (@arkangelofkaos)

“This is, without a doubt, the best available book for learning Android development. If you can get only
one, make it this one.”

— Kenneth Kousen President, Kousen IT Inc., and JavaOne Rock Star

“Become an able Android developer applying up-to-date patterns and create that next killer app. Head First
Android Development will be your friendly, accurate, and fun-to-be-with master craftsman on that path.”

— Ingo Krotzky Android Learner

Programming / Android

twitter.com/headfirstlabs

facebook.com/HeadFirst

oreilly.com

headfirstlabs.com

Uploaded By: anonymousSTUDENTS-HUB.com

http://twitter.com/headfirstlabs
http://facebook.com/HeadFirst
http://oreilly.com
http://headfirstlabs.com

Index

A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears. Because some sections
have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking
on any link will take you directly to the place in the text in which the marker appears.

A

action bars

about, Action Bars: Taking Shortcuts, Different types of navigation

adding action items to

defining action items, The menu resource file

getting activity to inflate menu resource, Inflate the menu in the activity with the
onCreateOptionsMenu() method

reacting to item clicks, React to action item clicks with the onOptionsItemSelected() method

adding buttons, Add a new action item

changing title, Changing the action bar title

code for, Test drive the app, The full MainActivity.java code

creating order activity, Create OrderActivity

defining styles in style resource files, Define styles in style resource files

enabling up navigation, Enabling Up navigation

icons on, Apply a theme in AndroidManifest.xml, Add a new action item

labels on, Apply a theme in AndroidManifest.xml

minimum API level for supporting, Test drive the app

modifying items at runtime, Modifying action bar items at runtime

sharing content on, Sharing content on the action bar

themes

Uploaded By: anonymousSTUDENTS-HUB.com

about, Let’s start with the action bar

AppCompat, Your project may include support libraries

applying in AndroidManifest.xml, Apply a theme in AndroidManifest.xml

customizing, Define styles in style resource files

Holo, Let’s start with the action bar, We’ll get the app to use up to date themes, Test drive the app

Material, Let’s start with the action bar, We’ll get the app to use up to date themes, Set the default
theme in styles.xml, Test drive the app

modifying properties of, Define styles in style resource files

using on different levels different, Test drive the app

updating, Dealing with configuration changes

uses of, Let’s start with the action bar

action providers

adding new action, Add a share action provider to menu_main.xml

using with action bar, Sharing content on the action bar

ActionBarActivity class, Your project may include support libraries, Test drive the app

ActionBarDrawerToggle

enabling drawer to open and close, Enable the drawer to open and close

modifying items at runtime, Modifying action bar items at runtime

syncing, Syncing the ActionBarDrawerToggle state

using, Using an ActionBarDrawerToggle

actionProviderClass attribute, Add a share action provider to menu_main.xml

active navigational options, adding to action bar, Different types of navigation

activities, How do activities really work?

(see also activity life cycle)

about, Welcome to Androidville, Your Android Toolbox, How do activities really work?

chaining multiple

Uploaded By: anonymousSTUDENTS-HUB.com

about, Apps can contain more than one activity

calling second activity, An intent is a type of message

changing app to send messages, Test drive the app

creating AndroidManifest file, Welcome to the Android manifest file

creating project, Here’s the app structure

creating second activity, Create the second activity and layout

declaring activities, Every activity needs to be declared

passing data to second activity, Pass text to a second activity

configuring, 5. Configure the activity

creating, 4. Create an activity

creating new, Create the second activity and layout

file code exercise, The design editor

fragments vs., Activity states revisited

interactive app

about, You’re going to build a Beer Adviser app

default, We’ve created a default activity and layout

multiple with intents

about, How Android apps work

creating chooser, What if you ALWAYS want your users to choose an activity?

displaying activity chooser dialog, The story continues...

intent filters in, The intent filter tells Android which activities can handle which actions, If you have
NO matching activities

no matching activities, If you have NO matching activities

running app on devices, You need to run your app on a REAL device, If you have NO matching
activities

specifying action, Create an intent that specifies an action

state of stop, There’s more to an activity’s life than create and destroy

using intent to start, Use an intent to start the second activity

working with layouts, Activities and layouts from 50,000 feet

Uploaded By: anonymousSTUDENTS-HUB.com

activity categories

building Starbuzz app using, We’re going to build part of the Starbuzz app

(see also Starbuzz app)

drink detail activity, The drink detail activity

drinks category activity, We’re going to build part of the Starbuzz app

top level activity, We’re going to build part of the Starbuzz app

types of

about, Categorize your ideas: top-level, category, and detail/edit activities

navigating through, Navigating through the activities

activity chooser dialog, displaying, The story continues...

Activity class

accessing lifecycle methods, Your activity inherits the lifecycle methods

as subclass of Context class, We’ll use an ArrayAdapter to set the values in the ListView

using in Pizza app, We’ll get the app to use up to date themes

activity element

using label attribute in, Apply a theme in AndroidManifest.xml

using theme attribute in, Apply a theme in AndroidManifest.xml

activity life cycle

Uploaded By: anonymousSTUDENTS-HUB.com

about, How do activities really work?, Your Android Toolbox

accessing lifecycle methods, Your activity inherits the lifecycle methods

fragments lifecycle vs., Fragments and activities have similar lifecycles...

from birth to death, What just happened?

from create to destroy, The activity lifecycle: from create to destroy

guide to methods, The activity lifecycle: the foreground lifetime

methods dealing with state of activity in, There’s more to an activity’s life than create and destroy

overriding method in, We need to implement two more lifecycle methods

stopwatch app

about, The Stopwatch app

activity code of, How the activity code will work

adding code for buttons, Add code for the buttons

building, The Stopwatch app

complete activity code, The complete activity code

creating runTimer() method, The runTimer() method

dealing with configuration changes, How do we deal with configuration changes?

foreground lifetime in, The activity lifecycle: the foreground lifetime

formatting time on stopwatch app, The full StopwatchActivity code

implementing onStop(), We need to implement two more lifecycle methods

layout code for, The stopwatch layout code

pausing and resuming, The activity lifecycle: the foreground lifetime

reset, The full StopwatchActivity code

restoring state of activity, The updated StopwatchActivity code

rotating device, What just happened?

running, What happens when you run the app

scheduling code, Handlers allow you to schedule code

working with activity code, How the activity code will work

Activity Magnets exercise, updating onClickFindBeer() method, Update the activity code

Uploaded By: anonymousSTUDENTS-HUB.com

ActivityNotFoundException, An intent is a type of message, What happens when the code runs

activity_main.xml

changing layout in, What’s in the layout?

controlling app appearance, Refining the app

in gradle projects, Useful files in your project

in Workout app, Adding a fragment to an activity’s layout

RelativeLayout element, in, activity_main.xml has two elements, Your Android Toolbox

TextView element in, activity_main.xml has two elements

adapters

about, android:entries works for static array data held in strings.xml

array (see ArrayAdapter)

binding listAdaper to ListView, We’ll use an ArrayAdapter to set the values in the ListView

RecyclerView

about, RecyclerViews use RecyclerView.Adapters

adding interface to, Add the interface to the adapter

code for CaptionedImagesAdapter, Create the recycler view

creating, Create the basic adapter

creating constructor, Each card view displays an image and a caption

decoupling with interface, Keep your adapters reusable

keeping reusable, Keep your adapters reusable

using, Add the RecyclerView to the layout

ViewHolder for, Define the adapter’s ViewHolder

AdapterView class

ListView using, Connect list views to arrays with an array adapter, We’ll use an ArrayAdapter to set
the values in the ListView

spinners using, Connect list views to arrays with an array adapter

adb (Android Debug Bridge), adb: your command-line pal

add() method, Using fragment transactions

addToBackStack() method, Using fragment transactions

Uploaded By: anonymousSTUDENTS-HUB.com

ALTER TABLE command, Renaming tables

Android application package (APK) file, in Android app, You can watch progress in the console

Android apps

activities in, Welcome to Androidville

(see also activities)

about, Welcome to Androidville, Your Android Toolbox, How do activities really work?

configuring, 5. Configure the activity

creating, 4. Create an activity

file code exercise, The design editor

working with layouts, Activities and layouts from 50,000 feet

animation, 4. Animation

APK file in, Run the app in the emulator

content providers, 2. Content providers

creating

about, Here’s what we’re going to do

building app (see basic app, building)

changing app, Refining the app

development environment, Your development environment

installing Android Studio, Install Java

installing Java, Install Java

running app, Run the app in the Android emulator

distributing, 1. Distributing your app

embedding maps, 5. Maps

Java in, purpose of, Welcome to Androidville

layouts in

Uploaded By: anonymousSTUDENTS-HUB.com

about, Welcome to Androidville, Your Android Toolbox

creating, You’ve just created your first Android app

file code exercise, The design editor

working with activities, Activities and layouts from 50,000 feet

resource files in, Welcome to Androidville

rotating device, What just happened?

running app on devices, You need to run your app on a REAL device

running inside separate process, The story continues

storing every instance variable, Test drive the app

structure of, Great apps have a clear structure

testing, 10. Testing

using Java in, Here’s what we’re going to do

Android Debug Bridge (adb), adb: your command-line pal

Android devices

about, Welcome to Androidville

app layouts for

determining which layout device is using, Use layout differences to tell which layout the device is
using

different folder options, The different folder options

layouts for phone, The MainActivity phone layout, The full DetailActivity code

layouts for tablets, Tablets use layouts in the layout-large folder

phone vs. tablet, Phone versus tablet

putting screen-specific resources in folders, Put screen-specific resources in screen-specific folders

running code, Use layout differences to tell which layout the device is using

apps and rotating, What just happened?, Rotating the device breaks the app, Rotating the device re-
creates the activity

emulator vs. physical, If you have NO matching activities

running app on devices, You need to run your app on a REAL device

using app across all, Your app needs to look great on all devices

Uploaded By: anonymousSTUDENTS-HUB.com

Android emulator, Run the app in the Android emulator, The Emulator: The Android Emulator

Android platform, The Android platform dissected

Android Runtime (ART), The Android platform dissected, What just happened?, Your Android Toolbox,
What is the Android runtime (ART)?

Android SDK (Software Development Kit), Your development environment

Android Studio

as version of IntelliJ IDEA, Your development environment

building apps using, Then install Android Studio

console in, You can watch progress in the console

creating AndroidManifest file with, Welcome to the Android manifest file

gradle build system and

about, Then install Android Studio

key files and folders in, Useful files in your project

installing, Install Java

layout file code exercise, The design editor

New Project Screen, 2. Configure the project

project created with wizard

about, You’ve just created your first Android app

code editor, Edit code with the Android Studio editors, What’s in the layout?

design editor, Edit code with the Android Studio editors, What’s in the layout?

folder structure in, Android Studio creates a complete folder structure for you

useful files in, Useful files in your project

Welcome Screen, Install Java, Let’s build the basic app

XML created by, Take the app for a test drive

Your Virtual Devices screen, Creating an Android Virtual Device

Android versions, 3. Specify the API level

Android Virtual Device (AVD)

Uploaded By: anonymousSTUDENTS-HUB.com

about, Run the app in the Android emulator

creating, Creating an Android Virtual Device

launching Android Studio emulator with, You can watch progress in the console

running app in, Run the app in the emulator

AndroidManifest.xml

about, Welcome to the Android manifest file

applying theme in, Apply a theme in AndroidManifest.xml

declaring services in, You declare services in AndroidManifest.xml

declaring Services in, Update AndroidManifest.xml

DEFAULT category in, What happens when the code runs, Your Android Toolbox

for stopwatch app, What happens when you run the app

fragments and, Where we’ve got to

in gradle projects, Useful files in your project

intent filters in, The intent filter tells Android which activities can handle which actions, If you have NO
matching activities

registering list activities in, How to create a list activity

animation, 4. Animation

ANT build tool, Then install Android Studio

API levels

adding action bar at different, Let’s start with the action bar

minimum level for supporting action bars, Test drive the app

specifying, 3. Specify the API level

support libraries for, The Android support libraries

using style resource depending on, Set the default theme in styles.xml

APIs, in application framework, The Android platform dissected

APK (Android application package) file

about, Run the app in the emulator

Java source code in, What just happened?

app namespace, in showAsAction attribute, The menu showAsAction attribute

Uploaded By: anonymousSTUDENTS-HUB.com

app widgets, 8. App widgets

app/src/main folder, Your Android Toolbox

appcompat library, v7, The Android support libraries, The menu showAsAction attribute

AppCompat themes, Your project may include support libraries

application element

using label attribute in, Apply a theme in AndroidManifest.xml

using theme attribute in, Apply a theme in AndroidManifest.xml

application framework

about, The Android platform dissected

APIs in, The Android platform dissected

AppTheme style, What happens when you run the app

ArrayAdapter

about, Connect list views to arrays with an array adapter

connecting ListView to arrays using, Connect list views to arrays with an array adapter, Initialize the
drawer’s list

CursorAdapter vs., The story continues

populating list view with, The updated WorkoutListFragment code

arrays

replacing in ListView data in, How do we replace the array data in the ListView?

static array data, android:entries works for static array data held in strings.xml

string, Add values to the spinner, Test drive the changes, Your Android Toolbox, Use a list view to
display the list of options, Create PizzaFragment, Initialize the drawer’s list

using ArrayAdapter to connect list views to, Initialize the drawer’s list

ART (Android Runtime), The Android platform dissected, What just happened?, Your Android Toolbox,
What is the Android runtime (ART)?

ASC keyword, Order data in your query

AsyncTask

Uploaded By: anonymousSTUDENTS-HUB.com

about, Cursors and Asynctasks: Connecting to Databases, The AsyncTask class

executing, Execute the AsyncTask

parameters defining, AsyncTask performs asynchronous tasks, The AsyncTask class

performing asynchronous tasks, AsyncTask performs asynchronous tasks

summary of, A summary of the AsyncTask steps

AUTOINCREMENT, You create tables using Structured Query Language (SQL)

AVD (Android Virtual Device)

about, Run the app in the Android emulator

creating, Creating an Android Virtual Device

reusing, What just happened?

running app in, Run the app in the emulator

test drive app, Test drive

AVG() functions, Using SQL functions in queries

AWT, Here’s what we’re going to do

B

Back button, You want fragments to work with the back button, getFragmentManager() creates
transactions at the activity lavel, Enabling Up navigation, The title and fragment are getting out of sync

back stacks, You want fragments to work with the back button, Nested fragments need nested
transactions, Reacting to changes on the back stack

background attribute, The full code for activity_main.xml

basic app, building

about, Then install Android Studio

adding activities and layouts, Activities and layouts from 50,000 feet

configuring project, 2. Configure the project

creating project, Let’s build the basic app

specifying API level, 3. Specify the API level

Bates., Bert Head First Java, Here’s what we’re going to do

Be the... exercises

Uploaded By: anonymousSTUDENTS-HUB.com

activity, The complete activity code

folder structure, The different folder options

fragment, Test drive the app

intent, How Android uses the intent filter

layout, Specify how many columns each view should span

SQLite Helper, Let’s upgrade the database

Beer Advisor app

about, You’re going to build a Beer Adviser app

changing to linear layout, Use layout-gravity to specify where a view appears in its enclosing space

connect activity, We need to make the button do something

creating project, You’re going to build a Beer Adviser app

default activity and layout, We’ve created a default activity and layout

updating layout, Adding components with the design editor

adding components with design editor, Adding components with the design editor

adding values to spinner, Add values to the spinner

buttons and text in View class, activity_find_beer.xml has a new button

changes to XML, Changes to the XML...

using string resources, Use string resources rather than hardcoding the text

write logic, onClickFindBeer() needs to do something

accessing text view methods, Once you have a View, you can access its methods

building custom Java class, Building the custom Java class

first version of activity, The first version of the activity

referencing text views, onClickFindBeer() needs to do something

retrieving values in spinner, Once you have a View, you can access its methods

second version of activity, Activity code version 2

setting text in TextView, Once you have a View, you can access its methods

beginTransaction() method, Nested fragments need nested transactions

Binders, The steps needed to create the OdometerService, How binding works

Uploaded By: anonymousSTUDENTS-HUB.com

bindService() method, Bind to the service when the activity starts

BLOB data type, Inside a SQLite database

bottom value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

bound services

about, Services work behind the scenes

odometer app

about, Bound services are more interactive

binding to service, How binding works, Update MainActivity’s layout

creating project, Bound services are more interactive

displaying distance traveled, Display the distance traveled

getting distance device travels, Get the service to do something

getting miles for distance, Tell the activity the distance traveled

broadcast receivers, 7. Broadcast receivers

build folder, in gradle projects, Useful files in your project

build tools, Then install Android Studio

Bundle parameter, Or save the current state..., Rotating the device breaks the app

Button element

about, activity_find_beer.xml has a new button

as GUI component, Button

attributes of, ...are reflected in the design editor

calling a method, Make the button call a method

in multiple activities app, Update the layout

in Relative Layout element, The TextView element

making public and void return type, Add an onClickFindBeer() method to the activity

buttons

Uploaded By: anonymousSTUDENTS-HUB.com

about, activity_find_beer.xml has a new button

adding images to, Adding images to buttons

Back, You want fragments to work with the back button, getFragmentManager() creates transactions
at the activity lavel, Enabling Up navigation, The title and fragment are getting out of sync

Create Order, Different types of navigation, Add a new action item

Create virtual device, Run the app in the Android emulator

moving to right layout, Move the button to the right with layout-gravity

radio, Radio buttons

Reset, The stopwatch layout code, The full StopwatchActivity code, The StopwatchFragment layout
uses String values, Let’s look at the StopwatchFragment layout code, Attach the OnClickListener to
the buttons

Start, The stopwatch layout code, The StopwatchFragment layout, Let’s look at the
StopwatchFragment layout code, Attach the OnClickListener to the buttons

Stop, The stopwatch layout code, The StopwatchFragment layout, Let’s look at the
StopwatchFragment layout code, Attach the OnClickListener to the buttons

toggle, Toggle button

Up, Enabling Up navigation, Enable the drawer to open and close

bypass configuration changes symbol (|), How do we deal with configuration changes?

C

CalledFromWrongThreadException, The runTimer() method

CaptionedImagesAdapter, You can listen to views from the adapter

CardView

about, CardViews and RecyclerViews

adding data to, Add the data to the card views

contents of, Each card view displays an image and a caption

creating, Create the CardView

support libraries for, Add the support libraries

cardview library, v7, The Android support libraries

category activities

Uploaded By: anonymousSTUDENTS-HUB.com

about, Categorize your ideas: top-level, category, and detail/edit activities

building Starbuzz app using drink, We’re going to build part of the Starbuzz app

drinks category activity

about, A category activity displays the data for a single category

adding array adapter, Add the array adapter to DrinkCategoryActivity

creating DrinkCategoryActivity, Here are the steps, How to create a list activity

full code for, The full DrinkCategoryActivity code

responding to clicks with listener, How we handled clicks in TopLevelActivity

starting DrinkCategoryActivity, Get ListViews to respond to clicks with a Listener, Pass data to an
activity using the ListActivity onListItemClick() method

working with data, android:entries works for static array data held in strings.xml

in app structure, The Starbuzz app structure

navigating through, Navigating through the activities

structure of apps and, Great apps have a clear structure

center value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

center_horizontal value, Using the android:gravity attribute: a list of values, More values you can use with
the android:layout-gravity attribute

center_vertical value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

changeCursor() method, Change the cursor with changeCursor()

changing apps, Refining the app

check boxes, Add favorites to DrinkActivity, The onPreExecute() method

CheckBox element, as GUI component, Check boxes

choiceMode attribute, The full code for activity_main.xml

close() method, Getting cursor values

closeDrawer() method, Closing the navigation drawer

code editor, Android Studio, Edit code with the Android Studio editors, What’s in the layout?

Code Magnets exercises

Uploaded By: anonymousSTUDENTS-HUB.com

completing StopwatchFragment onClick() method, Make the fragment implement OnClickListener

constructing

onFavoriteClicked() method, Respond to clicks to update the database

query() method, SQL GROUP BY and HAVING clauses

displaying correct fragment in frame layout, Use an OnItemClickListener to respond to clicks in the list
view

columnCount attribute, GridLayout displays views in a grid, Your Android Toolbox

command line tool, adb, adb: your command-line pal

commit() method, Using fragment transactions

configuration changes, dealing with, How do we deal with configuration changes?

configuration files, in folder structure in Android Studio project, Android Studio creates a complete folder
structure for you

constructor vs. onCreate() method, The story continues

content providers, 2. Content providers

contentDescription attribute, using with ImageView, The top-level layout contains an image and a list,
Your Android Toolbox

ContentValues object, holding name/value pairs of data, Insert data using the insert() method

Context abstract class, Your activity inherits the lifecycle methods

Context class, Activity class as subclass of, We’ll use an ArrayAdapter to set the values in the ListView

ContextThemeWrapper class, Your activity inherits the lifecycle methods

ContextWrapper class, Your activity inherits the lifecycle methods

core applications, The Android platform dissected

COUNT() functions, Using SQL functions in queries

Create a virtual device button, Run the app in the Android emulator

Create Order button, Different types of navigation, Add a new action item

CREATE TABLE command, You create tables using Structured Query Language (SQL)

createChooser() method, What if you ALWAYS want your users to choose an activity?, If you have NO
matching activities

CreateMessageActivity, putExtra() puts extra information in an intent, Change the intent to use an action

current state of activity, saving, Or save the current state...

Uploaded By: anonymousSTUDENTS-HUB.com

cursor adapters, Cursors and Asynctasks: Connecting to Databases

Cursor class, Android comes with SQLite classes

cursor loaders, 5. Maps

CursorAdapter, How do we replace the array data in the ListView?

cursors

about, Cursors and Asynctasks: Connecting to Databases

adding column to, Add a new column to the cursor

close database and, Getting cursor values

code for getting, The code for getting a cursor

creating, A SimpleCursorAdapter maps data to views

get database data with, Get data from the database with a cursor

getting values, Getting cursor values

navigating, To read a record from a cursor, you first need to navigate to it

populating list view with, What changes are needed for TopLevelActivity.java

refreshing automatically, Cursors don’t automatically refresh

Custom Java class, in interactive apps, You’re going to build a Beer Adviser app

D

data types, SQLite, Inside a SQLite database

DEFAULT category, What happens when the code runs, Your Android Toolbox

DelayedMessageService

adding button for, Add a button to activity_main.xml

code for

displaying message in log, The full DelayedMessageService code

displaying message in notification, The full code for DelayedMessageService.java

displaying message in Toast, onStartCommand() runs on the main thread

creating, We’re going to create an IntentService

displaying messages with, How to log messages

name attribute and, You declare services in AndroidManifest.xml

Uploaded By: anonymousSTUDENTS-HUB.com

delete() method, Multiple conditions, Respond to clicks to update the database

density-independent pixels (dp), RelativeLayout displays views in relative positions

DESC keyword, Order data in your query

design editor, Android Studio, Edit code with the Android Studio editors, What’s in the layout?, Adding
components with the design editor, Let’s take the app for a test drive

detail activities

about, Categorize your ideas: top-level, category, and detail/edit activities

building Starbuzz app using drink, The drink detail activity

drink detail activity

code for, The DrinkActivity code

creating DrinkActivity, Here are the steps

displaying data for single record, A detail activity displays data for a single record

launching DrinkActivity, The story continues

retrieving data from intent, Retrieve data from the intent

updating views with data, Update the views with the data

in app structure, The Starbuzz app structure

navigating through, Navigating through the activities

structure of apps and, Great apps have a clear structure

detail/edit activities

about, Categorize your ideas: top-level, category, and detail/edit activities

structure of apps and, Great apps have a clear structure

DetailActivity.java, Phones will use DetailActivity to display details of the workout, The full DetailActivity
code

development environment, Your development environment

device configuration

changes to, Your Android Toolbox

rotating screen changing, Rotating the screen changes the device configuration, Rotating the device
breaks the app, Rotating the device re-creates the activity

DEX code, Android Runtime running, What just happened?

Uploaded By: anonymousSTUDENTS-HUB.com

distanceTo() method, Location, location, location...

distributing apps, 1. Distributing your app

divider attribute, The full code for activity_main.xml

dividerHeight attribute, The full code for activity_main.xml

doInBackground() method, AsyncTask performs asynchronous tasks, The doInBackground() method, A
summary of the AsyncTask steps

dp (density independent pixels), RelativeLayout displays views in relative positions

drawable folders, Put screen-specific resources in screen-specific folders

DrawerLayout

about, Navigation drawers deconstructed

creating, The full code for activity_main.xml

FrameLayout in, Add the DrawerLayout, Closing the navigation drawer

DrawerLayout APIs, The Android support libraries

DrawerLayout class, adding, Add the DrawerLayout

drawerList, Closing the navigation drawer

DrawerListener, ActionBarDrawerToggle as, Using an ActionBarDrawerToggle

Drink Magnets exercise, populating views with data, Update the views with the data

DrinkActivity, The current DrinkActivity code

Uploaded By: anonymousSTUDENTS-HUB.com

about, We’ll change the app to use the database

adding favorites to, Put important information in the top-level activity

adding column to cursor, Add a new column to the cursor

code for, The DrinkActivity code

displaying favorites in, Display favorites in TopLevelActivity

putting important information in top level activity, Put important information in the top-level activity

refreshing cursors automatically, Cursors don’t automatically refresh

updating database by responding to clicks, Respond to clicks to update the database

code for, The current DrinkActivity code, The DrinkActivity code, The DrinkActivity.java code

cursors

close database and, Getting cursor values

code for getting, The code for getting a cursor

get database data with cursor, Get data from the database with a cursor

getting values, Getting cursor values

navigating, To read a record from a cursor, you first need to navigate to it

databases making app run slow

about, Test drive the app, A summary of the AsyncTask steps

AsyncTask performing asynchronous tasks, AsyncTask performs asynchronous tasks

getting reference to database, SQL GROUP BY and HAVING clauses

queries

about, A query lets you say what records you want from the database

applying conditions to, Specifying table and columns

creating, The SQLiteDatabase query() method lets you build SQL using a query builder

sorting data in, Order data in your query

specifying conditions as Strings, Applying multiple conditions to your query

specifying table and columns, Specifying table and columns

using SQL functions in, Using SQL functions in queries

DrinkCategoryActivity, The current DrinkCategoryActivity code

Uploaded By: anonymousSTUDENTS-HUB.com

about, We’ll change the app to use the database

code for, The current DrinkCategoryActivity code, The revised code for DrinkCategoryActivity

CursorAdapters

about, How do we replace the array data in the ListView?

closing database and, Closing the cursor and database

mapping data using SimpleCursorAdapter to views, A SimpleCursorAdapter maps data to views

reading data, A CursorAdapter reads just enough data

replacing array data in ListView, How do we replace the array data in the ListView?

DROP TABLE command, Renaming tables

drop-down list of values (see spinner element)

E

Eclipse, Then install Android Studio

EditText class, Update the CreateMessageActivity code

EditText element

about, Update the layout

as GUI component, Edit Text

emulator, Android, The Emulator: The Android Emulator

end value, More values you can use with the android:layout-gravity attribute

entries attribute, using for static array data held in strings.xml, android:entries works for static array data
held in strings.xml

event listener

implementing, Get ListViews to respond to clicks with a Listener, Where we’ve got to, How we
handled clicks in TopLevelActivity

set listener to ListView, Set the listener to the list view

execSQL() method, Renaming tables

execute() method, Execute the AsyncTask

exercises

activity file code, The design editor

app layouts for phones and. tablets, The different folder options

Uploaded By: anonymousSTUDENTS-HUB.com

applying activity code to situations, The complete activity code

calling custom Java class, Enhance the activity to call the custom Java class so that we can get REAL
advice

center Send Button in grid layout, Row 2: make a view span multiple columns, Using it in your activity
code

changing

app to linear layout, Use layout-gravity to specify where a view appears in its enclosing space

TopFragment, Bring the content forward, Bring the content forward

choosing type of thread for block of code to run on, Life is better when threads work together

completing StopwatchFragment onClick() method, Make the fragment implement OnClickListener

constructing

onFavoriteClicked() method, Respond to clicks to update the database

query() method, SQL GROUP BY and HAVING clauses

converting code to fragment, ... but the methods are slightly different

creating

activity that binds Java array to spinner, App review: where we’ve got to, Test drive the app

bound service, Update AndroidManifest.xml

layout with check boxes, Using it in your activity code

RecyclerView, Test drive the app

started service, Test drive the app

determining results of onCreate() method, What the SQLite helper code does

displaying correct fragment in frame layout, Use an OnItemClickListener to respond to clicks in the list
view

fragment layout code vs. Java code, Test drive the app

identifying compatible actions with intents, How Android uses the intent filter

layout file code, The design editor

matching

layout to screen layout produced, Specify how many columns each view should span

SQLite Helper code to users, Let’s upgrade the database

Uploaded By: anonymousSTUDENTS-HUB.com

organizing ideas into types of activity categories, Categorize your ideas: top-level, category, and
detail/edit activities

populating

list view from DrinkCategoryActivity, Closing the cursor and database

views with data, Update the views with the data

putting code in

CreateMessageActivity, How to retrieve extra information from an intent

DetailActivity.java, Phones will use DetailActivity to display details of the workout

restoring state of activity in activity life cycle, Implement onStop() to stop the timer

testing user clicks to display text of item, Where we’ve got to

updating

onClickFindBeer() method, Once you have a View, you can access its methods

TextView element, Pass text to a second activity

writing code for TopFragment, Bring the content forward, Bring the content forward

explicit intents, The intent filter tells Android which activities can handle which actions, If you have NO
matching activities, Getting your notification to start an activity

exported attribute, You declare services in AndroidManifest.xml

F

favorites, adding to DrinkActivity, Put important information in the top-level activity

Uploaded By: anonymousSTUDENTS-HUB.com

about, Add favorites to DrinkActivity

databases making app run slow

about, Test drive the app, A summary of the AsyncTask steps

AsyncTask performing asynchronous tasks, AsyncTask performs asynchronous tasks

top level activity

adding column to cursor, Add a new column to the cursor

code for, The DrinkActivity code

displaying favorites in, Display favorites in TopLevelActivity

putting important information in, Put important information in the top-level activity

refreshing cursors automatically, Cursors don’t automatically refresh

updating database by responding to clicks, Respond to clicks to update the database

fill value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

fill_horizontal value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute, Row 0: add views to specific rows and columns

fill_parent setting, RelativeLayout displays views in relative positions

fill_vertical value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

findFragmentById() method, Get the activity to set the workout ID, Where we’ve got to

findFragmentByTag() method, Adding tags to fragments

findViewById() method, Once you have a View, you can access its methods, The first version of the
activity, What being a view buys you, Where we’ve got to, Fragments and activities have similar
lifecycles...

flags parameters, Creating the SimpleCursorAdapter

folder structure, in Android Studio project, Android Studio creates a complete folder structure for you

folders, screen specific

layout-large, Put screen-specific resources in screen-specific folders, Tablets use layouts in the layout-
large folder

options for, The different folder options

putting screen-specific resources in, Put screen-specific resources in screen-specific folders

foreground lifetime, The activity lifecycle: the foreground lifetime

Uploaded By: anonymousSTUDENTS-HUB.com

Fragment class, What fragment code looks like, Your fragment inherits the lifecycle methods, Your
Android Toolbox

fragment element

about, Adding a fragment to an activity’s layout

adding fragment to activity using, Don’t update — instead, replace

fragment lifecycle methods, The fragment lifecycle, Your Android Toolbox

fragments

about, Fragments allow you to reuse code

activity vs., Activity states revisited

adding

and removing, Using fragment transactions

tags to, Adding tags to fragments

to frame layout, Using fragment transactions

device layouts

determining which layout device is using, Use layout differences to tell which layout the device is
using

different folder options, The different folder options

layouts for phone, The MainActivity phone layout, The full DetailActivity code

layouts for tablets, Tablets use layouts in the layout-large folder

phone vs. tablet, Phone versus tablet

putting screen-specific resources in folders, Put screen-specific resources in screen-specific folders

running code, Use layout differences to tell which layout the device is using

layout code, Fragment layout code looks just like activity layout code, Adding a fragment to an
activity’s layout

linking, Wiring up the list to the detail

Uploaded By: anonymousSTUDENTS-HUB.com

about, Wiring up the list to the detail

code for, Phone versus tablet

interface for decoupling fragment, We need to decouple the fragment with an interface

replacing instances of WorkoutListFragment, Don’t update — instead, replace

rotating device, Rotating the device breaks the app

updating MainActivity.java, The updated MainActivity code

working with back button, You want fragments to work with the back button

nested

about, Nested Fragments: Dealing with Children

adding StopwatchFragment to WorkoutDetailFragment, Adding the stopwatch fragment to
WorkoutDetailFragment

attaching onClickListener to buttons, Attach the OnClickListener to the buttons

code for, The StopwatchFragment code, The StopwatchFragment code, The
WorkoutDetailFragment code

creating, Creating nested fragments

error output for buttons in, Why does the app crash if you press a button?

implementing onClickListener, Make the fragment implement OnClickListener

implementing StopwatchFragment onClick() method, Make the fragment implement
OnClickListener

needing nested transactions, Nested fragments need nested transactions

onClick attribute and, The onClick attribute calls methods in the activity, not the fragment

rotating device containing, Rotating the device re-creates the activity

not type of Context, We’ll use an ArrayAdapter to set the values in the ListView

Pizza app

Uploaded By: anonymousSTUDENTS-HUB.com

about, The Pizza app structure

changing TopFragment, Bring the content forward, The full code for fragment_top.xml

creating PastaFragment, Create PastaFragment

creating PizzaFrament, Create TopFragment

creating StoresFragment, Create StoresFragment

creating TopFragment, Create TopFragment

RecyclerView, Create the recycler view, The full PizzaMaterialFragment.java code, Implement the
listener in PizzaMaterialFragment.java

StopwatchFragment in

adding to WorkoutDetailFragment, Adding the stopwatch fragment to WorkoutDetailFragment

code for, The StopwatchFragment code, The StopwatchFragment code

error output for buttons in, Why does the app crash if you press a button?

layout for, The StopwatchFragment layout

onClick attribute and, The onClick attribute calls methods in the activity, not the fragment

onClick() method, Make the fragment implement OnClickListener

onCreateView() method, Attach the OnClickListener to the buttons

title getting out of sync with, The title and fragment are getting out of sync

working with back button, You want fragments to work with the back button

Workout app

adding to project, How to add a fragment to your project

passing workout id, Passing the workout ID to the fragment

WorkoutDetailFragment

about, Here are the steps

adding stopwatch fragment to, Creating nested fragments

adding StopwatchFragment to, Adding the stopwatch fragment to WorkoutDetailFragment

creating, How to add a fragment to your project

running, Test drive the app

setting views values, Set the view’s values in the fragment’s onStart() method

WorkoutListFragment

Uploaded By: anonymousSTUDENTS-HUB.com

about, Here are the steps

code for, Display WorkoutListFragment in the MainActivity layout

creating, We need to create a fragment with a list

replacing instances of, Don’t update — instead, replace

running, Test drive the app

updating code, The updated WorkoutListFragment code

WorkoutListListener

creating interface called, We need to decouple the fragment with an interface

implementing interface, Then make the activity implement the interface

FragmentTransaction, Using fragment transactions

FrameLayout class, The full card_captioned_image.xml code

FrameLayout element

about, Don’t update — instead, replace

adding fragment to, Using fragment transactions

in DrawerLayout, Add the DrawerLayout, Closing the navigation drawer

functions, SQL, Using SQL functions in queries

G

getActionBar() method, Adding the Up button

getBrands() method, We need to make the button do something, Building the custom Java class, What
happens when you run the code

getChildFragmentManager() method, Then display the fragment in Java code, Nested fragments need
nested transactions, Nested fragments need nested transactions

getDescription() method, The Workout class

getFragmentManager() method, Get the activity to set the workout ID, Adding the stopwatch fragment to
WorkoutDetailFragment, Find the fragment using its tag

getHeight() method, What being a view buys you

getId() method, What being a view buys you, Make the fragment implement OnClickListener

getInt() method, Getting cursor values

getIntent() method, putExtra() puts extra information in an intent, Get ReceiveMessageActivity to use the
information in the intent, Retrieve data from the intent

Uploaded By: anonymousSTUDENTS-HUB.com

getIntExtra() method, putExtra() puts extra information in an intent

getItemCount() method, Create the basic adapter

getListView() method, A ListActivity is an activity that contains only a list, A ListFragment is a fragment
that contains only a list

getMiles() method, Bound services are more interactive, Tell the activity the distance traveled, Where
we’ve got to, Display the distance traveled, The story continues

getname() method, The Workout class

getOdometer() method, Define the Binder

getPendingIntent() method, 3. Get the pending intent from the TaskStackBuilder

getReadableDatabase() method, SQL GROUP BY and HAVING clauses

getSelectedItem() method, Once you have a View, you can access its methods, The first version of the
activity, Test drive the changes

getString() method, Change the code to create a chooser, Getting cursor values

getStringExtra() method, Get ReceiveMessageActivity to use the information in the intent

getSystemService() method, Send the notification using the notification service, Registering the
LocationListener

getView() method, Set the view’s values in the fragment’s onStart() method

getWidth() method, What being a view buys you

getWritableDatabase() method, SQL GROUP BY and HAVING clauses

Google Maps, embedding, 5. Maps

GPS system, Location, location, location..., Registering the LocationListener

gradle build system, Android Studio and, Then install Android Studio, Useful files in your project

graphics, NinePatch, 9. NinePatch graphics

gravity attribute, Use gravity to specify where text appears in a view, Row 0: add views to specific rows
and columns

grid layout

Uploaded By: anonymousSTUDENTS-HUB.com

about, Three key layouts: relative, linear, and grid

adding views to, Adding views to the grid layout

creating new, Let’s create a new grid layout

displaying views in, GridLayout displays views in a grid

full code for, GridLayout: a summary

sketching, We’ll start with a sketch

summary for creating, GridLayout: a summary

gridlayout library, v7, The Android support libraries

GridLayoutManager, A RecyclerView uses a layout manager to arrange its views

Groovy, Then install Android Studio

GROUP BY clauses, SQL GROUP BY and HAVING clauses

GUI components

adding to layout, The TextView element

as type of view, GUI components are a type of View

Button element as, Button

CheckBox element as, Check boxes

EditText element as, Edit Text

image buttons os, Adding images to buttons

ImageView element os, Image views

layouts and, Layouts and GUI components have a lot in common

RadioButton element as, Radio buttons

ScrollView element as, Scroll views

Spinner element as, Spinner

Switch element as, Switch

TextView element as, Playing with views

Toasts element as, Toasts

ToggleButton element as, Toggle button

H

Uploaded By: anonymousSTUDENTS-HUB.com

Handlers

about, Handlers allow you to schedule code

creating, The full runTimer() code, onStartCommand() runs on the main thread

posting code using, The full StopwatchActivity code

scheduling code using, Handlers allow you to schedule code

HAVING clauses, SQL GROUP BY and HAVING clauses

Head First Java (Sierra and Bates), Here’s what we’re going to do

Head First SQL (O’Reilly media), SQL GROUP BY and HAVING clauses

hint text, Here’s the starting point for the linear layout

Holo themes, Let’s start with the action bar, We’ll get the app to use up to date themes, Set the default
theme in styles.xml, Test drive the app

I

icon attribute, Apply a theme in AndroidManifest.xml, The menu resource file, Test drive the app

icons

adding to action bar, Add a new action item

enabling icon in action bar, Enable the drawer to open and close

using Android action bar icon pack, Add a new action item

id attribute, activity_find_beer.xml has a new button, Positioning views relative to other views, The menu
resource file

id of clicked item, passing, Pass data to an activity using the ListActivity onListItemClick() method

IDEs

building apps using, Then install Android Studio

learning to use, Test drive the changes

ImageButton element, Image Button

images

Uploaded By: anonymousSTUDENTS-HUB.com

3D in Material Design, CardViews and RecyclerViews

adding to buttons, Adding images to buttons

CardView, The full card_captioned_image.xml code, Each card view displays an image and a caption

mipmap, Apply a theme in AndroidManifest.xml

using R.drawable.image.name to add, The Drink class, Your Android Toolbox

ImageView

as GUI component, Image views

in Cardview, Each card view displays an image and a caption

in PizzaDetailActivity, Create PizzaDetailActivity

using contentDescription attribute with, The top-level layout contains an image and a list, Your
Android Toolbox

implicit intents, Create an intent that specifies an action, What happens when the code runs, The intent
filter tells Android which activities can handle which actions, If you have NO matching activities

insert() method, Insert data using the insert() method, Respond to clicks to update the database

int values, retrieving, putExtra() puts extra information in an intent

INTEGER data type, Inside a SQLite database

IntelliJ IDEA, Your development environment

Intent class, Use an intent to start the second activity

Intent.Action_send, Create an intent that specifies an action

intents

Uploaded By: anonymousSTUDENTS-HUB.com

about, An intent is a type of message

adding text to, Update the CreateMessageActivity code

changing to use action, Change the intent to use an action

explicit, The intent filter tells Android which activities can handle which actions, If you have NO
matching activities, Getting your notification to start an activity

filter, The intent filter tells Android which activities can handle which actions, If you have NO matching
activities

implicit, Create an intent that specifies an action, What happens when the code runs, The intent filter
tells Android which activities can handle which actions, If you have NO matching activities

multiple activities and

creating chooser, What if you ALWAYS want your users to choose an activity?

displaying activity chooser dialog, The story continues...

intent filters in, The intent filter tells Android which activities can handle which actions, If you have
NO matching activities

no matching activities, If you have NO matching activities

running app on devices, You need to run your app on a REAL device, If you have NO matching
activities

specifying action, Create an intent that specifies an action

on stopwatch app, What happens when you run the app

passing to Android, Update the text view properties

pending, 3. Get the pending intent from the TaskStackBuilder

putting extra information in, putExtra() puts extra information in an intent

retrieving data from, Retrieve data from the intent

sharing content with, Sharing content on the action bar

specifying content with, Specify the content with an intent

starting activities using, Use an intent to start the second activity, How Android apps work

IntentService class, We’re going to create an IntentService

interactive apps, building

Uploaded By: anonymousSTUDENTS-HUB.com

about, Building Interactive Apps: Apps That Do Something

connect activity, We need to make the button do something

creating project, You’re going to build a Beer Adviser app

default activity and layout, We’ve created a default activity and layout

updating layout, Adding components with the design editor

adding components with design editor, Adding components with the design editor

adding values to spinner, Add values to the spinner

buttons and text in View class, activity_find_beer.xml has a new button

changes to XML, Changes to the XML...

using string resources, Use string resources rather than hardcoding the text

write logic, onClickFindBeer() needs to do something

accessing text view methods, Once you have a View, you can access its methods

building custom Java class, Building the custom Java class

first version of activity, The first version of the activity

referencing text views, onClickFindBeer() needs to do something

retrieving values in spinner, Once you have a View, you can access its methods

second version of activity, Activity code version 2

setting text in TextView, Once you have a View, you can access its methods

invalidateOptionsMenu() method, Modifying action bar items at runtime

isClickable() method, What being a view buys you

isFocused() method, What being a view buys you

item element

attributes in, The menu resource file

modifying properties of theme using, Define styles in style resource files

sharing action using, Add a share action provider to menu_main.xml

itemClicked() method, Then make the activity implement the interface

J

Java

Uploaded By: anonymousSTUDENTS-HUB.com

activities, Welcome to Androidville

files in folder structure in Android Studio project, Android Studio creates a complete folder structure
for you

installing, Install Java

purpose of, Welcome to Androidville

resource files, Welcome to Androidville

source code in APK file, What just happened?

using to develop Android apps, Here’s what we’re going to do

Java classes, building custom, Building the custom Java class

Java Development Kit (JDK), installing, Install Java

java folder, in gradle projects, Useful files in your project

Java Runtime Edition (JRE), installing, Install Java

Java SE, Here’s what we’re going to do

Java Virtual Machine (JVM)

Android Runtime vs., What is the Android runtime (ART)?

emulator vs. physical device, If you have NO matching activities

overhead of, What just happened?

L

label attribute, Apply a theme in AndroidManifest.xml, Test drive the app

layout files

changing

activity_main.xml file, What’s in the layout?

to use string resources, Change the layout to use the string resources

referencing strings in, The layout file contains a reference to a string, not the string itself

layout folder

in gradle projects, Useful files in your project

in interactive apps, We’ve created a default activity and layout

Layout Magnets exercise, center Send Button in grid layout, Row 2: make a view span multiple columns,
Using it in your activity code

Uploaded By: anonymousSTUDENTS-HUB.com

layout manager, A RecyclerView uses a layout manager to arrange its views

layout XML, A layout is really a hierarchy of Views

layout-large folders, Put screen-specific resources in screen-specific folders

layouts

about, Welcome to Androidville, Your Android Toolbox

as hierarchy of views, A layout is really a hierarchy of Views

creating, You’ve just created your first Android app

determining extra space views take up, Adding weight to multiple views

device app

determining which layout device is using, Use layout differences to tell which layout the device is
using

different folder options, The different folder options

layouts for phone, The MainActivity phone layout, The full DetailActivity code

layouts for tablets, Tablets use layouts in the layout-large folder

phone vs. tablet, Phone versus tablet

putting screen-specific resources in folders, Put screen-specific resources in screen-specific folders

running code, Use layout differences to tell which layout the device is using

file code exercise, The design editor

for StopwatchFragment, The StopwatchFragment layout

frame, Don’t update — instead, replace

grid

about, Three key layouts: relative, linear, and grid

adding views to, Adding views to the grid layout

creating new, Let’s create a new grid layout

displaying views in, GridLayout displays views in a grid

full code for, GridLayout: a summary

sketching, We’ll start with a sketch

summary for creating, GridLayout: a summary

GUI components and, The TextView element, Layouts and GUI components have a lot in common

Uploaded By: anonymousSTUDENTS-HUB.com

hint text, Here’s the starting point for the linear layout

in multiple activities app, What just happened?, Pass text to a second activity

interactive app

about, You’re going to build a Beer Adviser app

default, We’ve created a default activity and layout

limitations of design editor in, Let’s take the app for a test drive

linear

about, Three key layouts: relative, linear, and grid

adding weight to views, Make a view streeeeetch by adding weight

changing basic, Let’s change up a basic linear layout

displaying views in order they appear in layout XML, LinearLayout displays views in a single row
or column

displaying views in single row or column, LinearLayout displays views in a single row or column

full code for, The full linear layout code

making stretch by adding weight in, Make a view streeeeetch by adding weight

summary for creating, LinearLayout: a summary

using gravity attribute in view, Use gravity to specify where text appears in a view, More values
you can use with the android:layout-gravity attribute

using layout_gravity attribute in views, Move the button to the right with layout-gravity

relative

about, Three key layouts: relative, linear, and grid

adding padding, Adding padding

displaying views in relative positions, RelativeLayout displays views in relative positions

positioning views relative to other views, Positioning views relative to other views

positioning views relative to parent layout, Positioning views relative to the parent layout

summary for creating, RelativeLayout: a summary

using margins to add distance between views, Use margins to add distance between views

setting width and height, RelativeLayout displays views in relative positions

ViewGroup and

Uploaded By: anonymousSTUDENTS-HUB.com

about, What being a view buys you

layout XML converted to, A layout is really a hierarchy of Views

relative layout as, A layout is really a hierarchy of Views

working with activities, Activities and layouts from 50,000 feet

layout_above attribute, Attributes for positioning views relative to other views

layout_alignBottom attribute, Attributes for positioning views relative to other views

layout_alignLeft attribute, Attributes for positioning views relative to other views

layout_alignParentBottom attribute, Attributes for positioning views relative to the parent layout

layout_alignParentLeft attribute, Attributes for positioning views relative to the parent layout

layout_alignParentRight attribute, Attributes for positioning views relative to the parent layout

layout_alignParentTop attribute, Attributes for positioning views relative to the parent layout

layout_alignRight attribute, Attributes for positioning views relative to other views, Move the button to the
right with layout-gravity

layout_alignTop attribute, Attributes for positioning views relative to other views

layout_below attribute, Attributes for positioning views relative to other views

layout_centerHorizontal attribute, Attributes for positioning views relative to the parent layout

layout_centerInParent attribute, Attributes for positioning views relative to the parent layout

layout_centerVertical attribute, Attributes for positioning views relative to the parent layout

layout_column attribute, Row 0: add views to specific rows and columns, Row 1: make a view span
multiple columns

layout_columnSpan attribute, Row 1: make a view span multiple columns

layout_gravity attribute, Move the button to the right with layout-gravity, Row 0: add views to specific
rows and columns, The full code for activity_main.xml

layout_height attribute, activity_find_beer.xml has a new button, RelativeLayout displays views in relative
positions, LinearLayout displays views in a single row or column, Add the DrawerLayout

layout_marginBottom attribute, Use margins to add distance between views

layout_marginLeft attribute, Use margins to add distance between views

layout_marginRight attribute, Use margins to add distance between views

layout_marginTop attribute, Use margins to add distance between views

layout_row attribute, Row 0: add views to specific rows and columns

Uploaded By: anonymousSTUDENTS-HUB.com

layout_toLeftOf attribute, Attributes for positioning views relative to other views

layout_toRightOf attribute, Attributes for positioning views relative to other views

layout_weight attribute, Make a view streeeeetch by adding weight

layout_width attribute, activity_find_beer.xml has a new button, RelativeLayout displays views in relative
positions, LinearLayout displays views in a single row or column, Add the DrawerLayout

leanback library, v17, The Android support libraries

left value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

libraries

about, The Android platform dissected

CardView v7, Add the support libraries

in folder structure in Android Studio project, Android Studio creates a complete folder structure for
you

RecyclerView v7, Add the support libraries

using support, The Android support libraries

linear layout

about, Three key layouts: relative, linear, and grid

adding weight to views, Make a view streeeeetch by adding weight

changing basic, Let’s change up a basic linear layout

displaying views in

order they appear in layout XML, LinearLayout displays views in a single row or column

single row or column, LinearLayout displays views in a single row or column

full code for, The full linear layout code

making stretch by adding weight in, Make a view streeeeetch by adding weight

using gravity attribute in view, Use gravity to specify where text appears in a view, More values you
can use with the android:layout-gravity attribute

using layout_gravity attribute in views, Move the button to the right with layout-gravity

LinearLayoutManager, A RecyclerView uses a layout manager to arrange its views

Linux kernel, The Android platform dissected

ListActivity class, A ListActivity is an activity that contains only a list

Uploaded By: anonymousSTUDENTS-HUB.com

listAdaper, We’ll use an ArrayAdapter to set the values in the ListView

listener, event

implementing, Get ListViews to respond to clicks with a Listener, Where we’ve got to, How we
handled clicks in TopLevelActivity

set to ListView, Set the listener to the list view

ListFragment class, We need to create a fragment with a list

ListView

advantages of using, A ListActivity is an activity that contains only a list

binding listAdaper to, We’ll use an ArrayAdapter to set the values in the ListView

creating list activity, How to create a list activity

display list of options using, Use a list view to display the list of options

in DrawerLayout, Add the DrawerLayout

navigating to data using, Use ListViews to navigate to data

reading data, A CursorAdapter reads just enough data

RecyclerView vs., Getting a RecyclerView to respond to clicks

replacing array data in, How do we replace the array data in the ListView?

responding to clicks with listener, Get ListViews to respond to clicks with a Listener, Where we’ve
got to, How we handled clicks in TopLevelActivity

set listener to, Set the listener to the list view

using AdapterView class with, Connect list views to arrays with an array adapter, We’ll use an
ArrayAdapter to set the values in the ListView, Initialize the drawer’s list

LocationListener, Location, location, location...

Log.d () method, How to log messages

Log.e() method, How to log messages

Log.i() method, How to log messages

Log.v() method, How to log messages

Log.w() method, How to log messages

Log.wtf() method, How to log messages

logcat, viewing, How to log messages

Uploaded By: anonymousSTUDENTS-HUB.com

logging messages, How to log messages

M

main event thread, Databases can make your app go in sloooo-moooo....

MainActivity.java

controlling what app does, Refining the app

default support library, Your project may include support libraries

implementing WorkoutListFragment interface, Then make the activity implement the interface

in gradle projects, Useful files in your project

in Workout app, Adding a fragment to an activity’s layout

in WorkoutListFragment, Display WorkoutListFragment in the MainActivity layout, The updated
MainActivity code

phone layout, The MainActivity phone layout

maps, embedding, 5. Maps

margins, adding distance between views using, Use margins to add distance between views

match_parent setting, RelativeLayout displays views in relative positions

match_parent value, A linear layout displays views in the order they appear in the layout XML

Material Design

3D in, CardViews and RecyclerViews

about, Material Design: Living in a Material World

card views, CardViews and RecyclerViews

Pizza app using

adding data, Add the pizza data

adding Pizza class, Add the pizza data

adding support libraries, Add the support libraries

changing TopFragment, Bring the content forward, The full code for fragment_top.xml

creating CardView, Create the CardView

PizzaDetailActivity, Create PizzaDetailActivity, Test drive the app, Test drive the app

RecyclerViews (see RecyclerViews)

Material themes, Let’s start with the action bar, We’ll get the app to use up to date themes, Set the default

Uploaded By: anonymousSTUDENTS-HUB.com

theme in styles.xml, Test drive the app

Maven, Then install Android Studio

MAX() functions, Using SQL functions in queries

menu elements, action items described in, The menu resource file

menu resource file

defining action items in, The menu resource file

inflating, Inflate the menu in the activity with the onCreateOptionsMenu() method

meta-data element, Setting an activity’s parent

methods

add(), Using fragment transactions

addToBackStack(), Using fragment transactions

beginTransaction(), Nested fragments need nested transactions

bindService(), Bind to the service when the activity starts

changeCursor(), Change the cursor with changeCursor()

close(), Getting cursor values

closeDrawer(), Closing the navigation drawer

commit(), Using fragment transactions

createChooser(), What if you ALWAYS want your users to choose an activity?, If you have NO
matching activities

delete(), Multiple conditions

delete() method, Respond to clicks to update the database

distanceTo(), Location, location, location...

doInBackground(), AsyncTask performs asynchronous tasks, The doInBackground() method, A
summary of the AsyncTask steps

execSQL(), Renaming tables

execute(), Execute the AsyncTask

findFragmentById(), Get the activity to set the workout ID, Where we’ve got to

findFragmentByTag(), Adding tags to fragments

findViewById(), Once you have a View, you can access its methods, The first version of the activity,
What being a view buys you, Where we’ve got to, Fragments and activities have similar lifecycles...

Uploaded By: anonymousSTUDENTS-HUB.com

getActionBar(), Adding the Up button

getBrands(), We need to make the button do something, Building the custom Java class, What
happens when you run the code

getChildFragmentManager(), Then display the fragment in Java code

getDescription(), The Workout class

getFragmentManager(), Get the activity to set the workout ID, Adding the stopwatch fragment to
WorkoutDetailFragment, Find the fragment using its tag

getHeight(), What being a view buys you

getId(), What being a view buys you, Make the fragment implement OnClickListener

getInt(), Getting cursor values

getIntent(), putExtra() puts extra information in an intent, Retrieve data from the intent

getIntExtra(), putExtra() puts extra information in an intent

getItemCount(), Create the basic adapter

getListView(), A ListActivity is an activity that contains only a list, A ListFragment is a fragment that
contains only a list

getMiles(), Bound services are more interactive, Tell the activity the distance traveled, Where we’ve
got to, Display the distance traveled, The story continues

getname(), The Workout class

getOdometer(), Define the Binder

getPendingIntent(), 3. Get the pending intent from the TaskStackBuilder

getReadableDatabase(), SQL GROUP BY and HAVING clauses

getSelectedItem(), Once you have a View, you can access its methods, The first version of the activity,
Test drive the changes

getString(), Change the code to create a chooser, Getting cursor values

getStringExtra(), Get ReceiveMessageActivity to use the information in the intent

getSystemService(), Send the notification using the notification service, Registering the
LocationListener

getView(), Set the view’s values in the fragment’s onStart() method

getWidth(), What being a view buys you

getWritableDatabase(), SQL GROUP BY and HAVING clauses

insert(), Insert data using the insert() method, Respond to clicks to update the database

Uploaded By: anonymousSTUDENTS-HUB.com

invalidateOptionsMenu(), Modifying action bar items at runtime

isClickable(), What being a view buys you

isFocused(), What being a view buys you

itemClicked(), Then make the activity implement the interface

Log.d (), How to log messages

Log.e(), How to log messages

Log.i(), How to log messages

Log.v(), How to log messages

Log.w(), How to log messages

Log.wtf(), How to log messages

moveToFirst(), Navigating cursors

moveToLast(), Navigating cursors

moveToNext(), Navigating cursors

moveToPrevious(), Navigating cursors

onActivityCreated(), The fragment lifecycle, Fragments and activities have similar lifecycles...

onAttach(), The fragment lifecycle, We need to decouple the fragment with an interface, Fragments
and activities have similar lifecycles...

onBackStackChanged(), Reacting to changes on the back stack

onBind(), Create a new Odometer project, Define the Binder, The Service class has four key
methods, What happens when you run the code

onBindViewHolder(), Create the basic adapter, Each card view displays an image and a caption, You
can listen to views from the adapter

onClick(), Make the fragment implement OnClickListener, Add a button to activity_main.xml, Add
the interface to the adapter

onClickFindBeer(), Add an onClickFindBeer() method to the activity, Update the activity code, What
the code does, What happens when you run the code

onClickReset(), The stopwatch layout code, Make the fragment implement OnClickListener

onClickStart(), The stopwatch layout code, How the activity code will work, Make the fragment
implement OnClickListener

onClickStop(), The stopwatch layout code, Make the fragment implement OnClickListener

onConfigurationChanged(), Syncing the ActionBarDrawerToggle state

Uploaded By: anonymousSTUDENTS-HUB.com

onCreate()

about, What activity code looks like, Your handy guide to the lifecycle methods

adding new table column, Let’s upgrade the database

as Service class method, The Service class has four key methods, Add the LocationListener to the
service, Display the distance traveled

calling, Test drive the app

calling in creating database, You create tables using Structured Query Language (SQL), What
happens when the code runs

constructor vs., The story continues

enabling icon in action bar, Enable the drawer to open and close

enabling up button, Adding the Up button

fragments layout and, The fragment lifecycle

in activity life cycle, From birth to death: the states of an activity, The activity lifecycle: the visible
lifetime, The activity lifecycle: the foreground lifetime, Fragments and activities have similar
lifecycles...

in adding favorites column, Add a new column to the cursor

in creating fragments, Get the activity to set the workout ID

in multiple activities app, Update strings.xml..., Get ReceiveMessageActivity to use the information
in the intent

in RecyclerView, What happens when the code runs

in SQLite helper, Create the SQLite helper

in stopwatch app, How do activities really work?, The story continues

on rotated device, What just happened?, What happens to the fragment when you rotate the
device

SQLite helper, SQLite databases have a version number

updating action bar, Dealing with configuration changes

onCreateOptionsMenu(), Adding action items to the action bar, Inflate the menu in the activity with the
onCreateOptionsMenu() method, Create OrderActivity

onCreateView(), The fragment lifecycle, How to create a list fragment, Fragments and activities have
similar lifecycles..., Attach the OnClickListener to the buttons, onCreateView() runs AFTER the
transactions have been replayed

onCreateViewHolder(), Create the basic adapter

Uploaded By: anonymousSTUDENTS-HUB.com

onDestroy(), From birth to death: the states of an activity, The activity lifecycle: the visible lifetime, The
activity lifecycle: the foreground lifetime, Your handy guide to the lifecycle methods, The fragment
lifecycle, Fragments and activities have similar lifecycles..., The Service class has four key methods

onDestroyView(), The fragment lifecycle, Fragments and activities have similar lifecycles...

onDetach(), The fragment lifecycle, Fragments and activities have similar lifecycles...

onDowngrade(), What if you need to change the database?, Downgrade your database with
onDowngrade(), What happens when the code runs

onDowngrade() method, The story continues....

onDrawerClosed(), Modifying action bar items at runtime

onDrawerOpened(), Modifying action bar items at runtime

onFavoriteClicked(), Respond to clicks to update the database, What code goes on which thread?,
Execute the AsyncTask

onHandleIntent(), We’re going to create an IntentService, We want to send a message to the screen

onItemClick(), Get ListViews to respond to clicks with a Listener, How we handled clicks in
TopLevelActivity, Use an OnItemClickListener to respond to clicks in the list view

onItemClickListener(), Get ListViews to respond to clicks with a Listener, How we handled clicks in
TopLevelActivity, What happens when you run the app, Use an OnItemClickListener to respond to
clicks in the list view, What changes are needed for TopLevelActivity.java, Getting a RecyclerView to
respond to clicks

onListItemClick(), A ListActivity is an activity that contains only a list, How we handled clicks in
TopLevelActivity, The story continues, A ListFragment is a fragment that contains only a list

onLocationChanged(), Location, location, location...

onOptionsItemSelected(), Adding action items to the action bar, React to action item clicks with the
onOptionsItemSelected() method, Enable the drawer to open and close

onPause(), But what if an app is only partially visible?, Your handy guide to the lifecycle methods, The
fragment lifecycle, Fragments and activities have similar lifecycles...

onpostCreate(), Syncing the ActionBarDrawerToggle state

onPostExecute(), AsyncTask performs asynchronous tasks, The onPostExecute() method, A summary
of the AsyncTask steps

onPreExecute(), AsyncTask performs asynchronous tasks, A summary of the AsyncTask steps

onPrepareOptionsMenu(), Modifying action bar items at runtime

onProgressUpdate(), AsyncTask performs asynchronous tasks, The onProgressUpdate() method,
The AsyncTask class, A summary of the AsyncTask steps

onRestart(), There’s more to an activity’s life than create and destroy, Test drive the app, Your handy

Uploaded By: anonymousSTUDENTS-HUB.com

guide to the lifecycle methods, Fragments and activities have similar lifecycles..., Change the cursor
with changeCursor()

onResume(), But what if an app is only partially visible?, Your handy guide to the lifecycle methods,
The fragment lifecycle, Fragments and activities have similar lifecycles...

onSaveInstanceState(), Or save the current state..., Rotating the device breaks the app, Rotating the
device re-creates the activity, Dealing with configuration changes

onSendMessage(), Update strings.xml..., What happens when you run the app, What happens when
the user clicks the Send Message button, What happens when the code runs, Change the code to
create a chooser

onServiceConnected(), Create a ServiceConnection

onServiceDisconnected(), Create a ServiceConnection

onStart(), There’s more to an activity’s life than create and destroy, What happens when you run the
app, Test drive the app, Your handy guide to the lifecycle methods, The fragment lifecycle, Set the
view’s values in the fragment’s onStart() method, Fragments and activities have similar lifecycles...,
Bind to the service when the activity starts

onStartCommand(), onStartCommand() runs on the main thread, The Service class has four key
methods

onStop(), There’s more to an activity’s life than create and destroy, The updated StopwatchActivity
code, Your handy guide to the lifecycle methods, The fragment lifecycle, Fragments and activities have
similar lifecycles..., Bind to the service when the activity starts

onUpgrade(), Create the SQLite helper, What if you need to change the database?, The story
continues...., What happens when the code runs

post(), Handlers allow you to schedule code, We want to send a message to the screen

postDelayed(), Handlers allow you to schedule code

publishProgress(), The onProgressUpdate() method, A summary of the AsyncTask steps

put(), Insert data using the insert() method

putExtra(), putExtra() puts extra information in an intent

query(), The SQLiteDatabase query() method lets you build SQL using a query builder, SQL GROUP
BY and HAVING clauses

remove(), Using fragment transactions

replace(), Adding tags to fragments

requestFocus(), What being a view buys you

requestLocationUpdates(), Registering the LocationListener

runTimer()

Uploaded By: anonymousSTUDENTS-HUB.com

creating, The runTimer() method

in rotated device, What just happened?

in stopwatch app, The full runTimer() code, The story continues, What happens when you run the
app, What happens when you run the app, What happens when you run the app

updating stopwatch, How the activity code will work

selectItem(), The selectItem() method so far, The updated MainActivity.java code

setActionBarTitle(), Changing the action bar title, Reacting to changes on the back stack

setAdapter(), What happens when you run the code

setContentIntent(), 3. Get the pending intent from the TaskStackBuilder

setContentView(), The story continues, How to create a list activity, What fragment code looks like,
What happens to the fragment when you rotate the device

setDisplayHomeAsUpEnabled(), Adding the Up button

setItemChecked(), Reacting to changes on the back stack

setOnClickListener(), Attach the OnClickListener to the buttons

setShareIntent(), Specify the content with an intent

setText(), Once you have a View, you can access its methods

setTransition(), Using fragment transactions

setVisibility(), What being a view buys you

setWorkout(), Passing the workout ID to the fragment

SQLiteDatabase query(), The SQLiteDatabase query() method lets you build SQL using a query
builder

startActivity(), Use an intent to start the second activity, What happens when the code runs, If you
have NO matching activities, How do activities really work?

startService(), You start a service using startService()

superclass, We need to implement two more lifecycle methods

syncState(), Syncing the ActionBarDrawerToggle state

toString(), What happens when you run the code

tostring(), The Workout class

unbindService(), Bind to the service when the activity starts, The story continues

update(), Update records with the update() method, Respond to clicks to update the database, The

Uploaded By: anonymousSTUDENTS-HUB.com

doInBackground() method

updateMyDatabase(), Let’s upgrade the database

ViewById(), onClickFindBeer() needs to do something

watchMileage(), Display the distance traveled, The story continues

MIN() functions, Using SQL functions in queries

minimum SDK (Software Development Kit)

in API level 17 apps, Your project may include support libraries

in basic apps, 3. Specify the API level

in interactive apps, Create the project

mipmap image, Apply a theme in AndroidManifest.xml

moveToFirst() method, Navigating cursors

moveToLast() method, Navigating cursors

moveToNext() method, Navigating cursors

moveToPrevious() method, Navigating cursors

mplicit intents, What happens when the code runs

multiple activities app

Uploaded By: anonymousSTUDENTS-HUB.com

about, Multiple Activities and Intents: State Your Intent

creating AndroidManifest file, Welcome to the Android manifest file

creating project, Here’s the app structure

intents and

about, How Android apps work

creating chooser, What if you ALWAYS want your users to choose an activity?

displaying activity chooser dialog, The story continues...

intent filters, The intent filter tells Android which activities can handle which actions, If you have
NO matching activities

no matching activities, If you have NO matching activities

running app on devices, You need to run your app on a REAL device, If you have NO matching
activities

specifying action, Create an intent that specifies an action

second activity

AndroidManifest file, Create the second activity and layout

calling second, An intent is a type of message

creating, Create the second activity and layout

declaring activities in, Every activity needs to be declared

passing data to, Pass text to a second activity

N

name attribute, Define styles in style resource files, You declare services in AndroidManifest.xml

navigation drawers

Uploaded By: anonymousSTUDENTS-HUB.com

about, Navigation Drawers: Going Places, Put important information in the top-level activity

ActionBarDrawerToggle, Get the drawer to open and close

adding

DrawerLayout, Add the DrawerLayout

fragments, Navigation drawers deconstructed

tags to fragments, Adding tags to fragments

closing, Closing the navigation drawer

code for, The full MainActivity.java code

creating, The full code for activity_main.xml

dealing with configuration changes, Dealing with configuration changes

finding fragments using tags, Find the fragment using its tag

reacting to changes in back stack, Reacting to changes on the back stack

responding to clicks in list view, Use an OnItemClickListener to respond to clicks in the list view

title and fragment getting out of sync, The title and fragment are getting out of sync

nested fragments

about, Nested Fragments: Dealing with Children

adding StopwatchFragment to WorkoutDetailFragment, Adding the stopwatch fragment to
WorkoutDetailFragment

attaching onClickListener to buttons, Attach the OnClickListener to the buttons

code for, The StopwatchFragment code, The StopwatchFragment code, The WorkoutDetailFragment
code

creating, Creating nested fragments

error output for buttons in, Why does the app crash if you press a button?

implementing onClickListener, Make the fragment implement OnClickListener

implementing StopwatchFragment onClick() method, Make the fragment implement OnClickListener

needing nested transactions, Nested fragments need nested transactions

onClick attribute and, The onClick attribute calls methods in the activity, not the fragment

rotating device containing, Rotating the device re-creates the activity

nested transactions, Nested fragments need nested transactions

Uploaded By: anonymousSTUDENTS-HUB.com

New Project Screen (Android Studio), 2. Configure the project

NinePatch graphics, 9. NinePatch graphics

non-static data, array for, android:entries works for static array data held in strings.xml

notification service, Can we improve on using Toasts?

about, The started service app, Can we improve on using Toasts?

code for, The full code for DelayedMessageService.java

creating, You create notifications using a notification builder

sending notification using, Send the notification using the notification service

starting activity using, Getting your notification to start an activity

nullColumnHack String value, Insert data using the insert() method

NUMERIC data type, Inside a SQLite database

O

odometer app

about, Bound services are more interactive

binding to bound service, How binding works

binding to service, Update MainActivity’s layout

creating project, Bound services are more interactive

displaying distance traveled, Display the distance traveled

getting distance device travels, Get the service to do something

getting miles for distance, Tell the activity the distance traveled

OdometerService, The steps needed to create the OdometerService, The full OdometerService.java
code, What happens when you run the code

onActivityCreated() method, The fragment lifecycle, Fragments and activities have similar lifecycles...

onAttach() method, The fragment lifecycle, We need to decouple the fragment with an interface,
Fragments and activities have similar lifecycles...

onBackStackChanged() method, Reacting to changes on the back stack

OnBackStackChangedListener, Reacting to changes on the back stack

OnBackStackListener, Find the fragment using its tag

onBind() method, Create a new Odometer project, Define the Binder, The Service class has four key
methods, What happens when you run the code

Uploaded By: anonymousSTUDENTS-HUB.com

onBindViewHolder() method, Create the basic adapter, Each card view displays an image and a caption,
You can listen to views from the adapter

onclick attribute, Make the button call a method

onClick attribute, The onClick attribute calls methods in the activity, not the fragment, Test drive the app,
Add favorites to DrinkActivity, Respond to clicks to update the database

onClick() method, Make the fragment implement OnClickListener, Add a button to activity_main.xml,
Add the interface to the adapter

onClickFindBeer() method, Add an onClickFindBeer() method to the activity, Update the activity code,
What the code does, What happens when you run the code

onClickListener, Make the fragment implement OnClickListener, Attach the OnClickListener to the
buttons, Test drive the app

onClickReset() method, The stopwatch layout code, Make the fragment implement OnClickListener

onClickStart() method, The stopwatch layout code, How the activity code will work, Make the fragment
implement OnClickListener

onClickStop() method, The stopwatch layout code, Make the fragment implement OnClickListener

onConfigurationChanged() method, Syncing the ActionBarDrawerToggle state

oncreate() method, What activity code looks like

onCreate() method

Uploaded By: anonymousSTUDENTS-HUB.com

about, Your handy guide to the lifecycle methods

adding new table column, Let’s upgrade the database

as Service class method, The Service class has four key methods, Add the LocationListener to the
service, Display the distance traveled

calling, Test drive the app

calling in creating database, You create tables using Structured Query Language (SQL), What
happens when the code runs

constructor vs., The story continues

enabling icon in action bar, Enable the drawer to open and close

enabling up button, Adding the Up button

fragments layout and, The fragment lifecycle

in activity life cycle, From birth to death: the states of an activity, Or save the current state..., The
activity lifecycle: the visible lifetime, The activity lifecycle: the foreground lifetime, Fragments and
activities have similar lifecycles...

in adding favorites column, Add a new column to the cursor

in creating fragments, Get the activity to set the workout ID

in multiple activities app, Update strings.xml..., Get ReceiveMessageActivity to use the information in
the intent

in RecyclerView, What happens when the code runs

in SQLite helper, Create the SQLite helper

in stopwatch app, How do activities really work?, The story continues

on rotated device, What just happened?, What happens to the fragment when you rotate the device

SQLite helper, SQLite databases have a version number

updating action bar, Dealing with configuration changes

onCreateOptionsMenu() method, Adding action items to the action bar, Inflate the menu in the activity
with the onCreateOptionsMenu() method, Create OrderActivity

onCreateView() method, The fragment lifecycle, How to create a list fragment, Fragments and activities
have similar lifecycles..., Attach the OnClickListener to the buttons, onCreateView() runs AFTER the
transactions have been replayed

onCreateViewHolder() method, Create the basic adapter

onDestroy() method, From birth to death: the states of an activity, The activity lifecycle: the visible
lifetime, The activity lifecycle: the foreground lifetime, Your handy guide to the lifecycle methods, The

Uploaded By: anonymousSTUDENTS-HUB.com

fragment lifecycle, Fragments and activities have similar lifecycles..., The Service class has four key
methods

onDestroyView() method, The fragment lifecycle, Fragments and activities have similar lifecycles...

onDetach() method, The fragment lifecycle, Fragments and activities have similar lifecycles...

onDowngrade() method, What if you need to change the database?, The story continues...., Downgrade
your database with onDowngrade(), What happens when the code runs

onDrawerClosed() methods, Modifying action bar items at runtime

onDrawerOpened() method, Modifying action bar items at runtime

onFavoriteClicked() method, Respond to clicks to update the database, What code goes on which
thread?, Execute the AsyncTask

onHandleIntent() method, We’re going to create an IntentService, We want to send a message to the
screen

onItemClick() method, Get ListViews to respond to clicks with a Listener, How we handled clicks in
TopLevelActivity, Use an OnItemClickListener to respond to clicks in the list view

onItemClickListener() method, Get ListViews to respond to clicks with a Listener, How we handled
clicks in TopLevelActivity, What happens when you run the app, Use an OnItemClickListener to respond
to clicks in the list view, What changes are needed for TopLevelActivity.java

OnItemClickListener() method, Getting a RecyclerView to respond to clicks

onListItemClick() method, A ListActivity is an activity that contains only a list, How we handled clicks in
TopLevelActivity, The story continues, A ListFragment is a fragment that contains only a list

onLocationChanged() method, Location, location, location...

onOptionsItemSelected() method, Adding action items to the action bar, React to action item clicks with
the onOptionsItemSelected() method, Enable the drawer to open and close

onPause() method, But what if an app is only partially visible?, Your handy guide to the lifecycle methods,
The fragment lifecycle, Fragments and activities have similar lifecycles...

onpostCreate() method, Syncing the ActionBarDrawerToggle state

onPostExecute() method, AsyncTask performs asynchronous tasks, The onPostExecute() method, A
summary of the AsyncTask steps

onPreExecute() method, AsyncTask performs asynchronous tasks, The onPostExecute() method, A
summary of the AsyncTask steps

onPrepareOptionsMenu() method, Modifying action bar items at runtime

onProgressUpdate() method, AsyncTask performs asynchronous tasks, The onProgressUpdate()
method, The AsyncTask class, A summary of the AsyncTask steps

onRestart() method, There’s more to an activity’s life than create and destroy, Test drive the app, Your

Uploaded By: anonymousSTUDENTS-HUB.com

handy guide to the lifecycle methods, Fragments and activities have similar lifecycles..., Change the cursor
with changeCursor()

onResume() method, But what if an app is only partially visible?, Your handy guide to the lifecycle
methods, The fragment lifecycle, Fragments and activities have similar lifecycles...

onSaveInstanceState() method, Or save the current state..., Rotating the device breaks the app, Rotating
the device re-creates the activity, Dealing with configuration changes

onSendMessage() method, Update strings.xml..., What happens when you run the app, What happens
when the user clicks the Send Message button, What happens when the code runs, Change the code to
create a chooser

onServiceConnected() method, Create a ServiceConnection

onServiceDisconnected() method, Create a ServiceConnection

onStart() method, There’s more to an activity’s life than create and destroy, What happens when you run
the app, Test drive the app, Your handy guide to the lifecycle methods, The fragment lifecycle, Set the
view’s values in the fragment’s onStart() method, Fragments and activities have similar lifecycles..., Bind
to the service when the activity starts

onStartCommand() method, onStartCommand() runs on the main thread, The Service class has four key
methods

onStop() method, There’s more to an activity’s life than create and destroy, The updated
StopwatchActivity code, Your handy guide to the lifecycle methods, The fragment lifecycle, Fragments
and activities have similar lifecycles..., Bind to the service when the activity starts

onUpgrade() method, Create the SQLite helper, The story continues...., Let’s upgrade the database,
What happens when the code runs

onUpgrade() methods, What if you need to change the database?

orderInCategory attribute, The menu resource file

ordering data, using queries for, Order data in your query

organizing ideas, We’re going to build part of the Starbuzz app

(see also Starbuzz app)

about, Every app starts with ideas

types of activity categories

about, Categorize your ideas: top-level, category, and detail/edit activities

navigating through, Navigating through the activities

using ListViews to navigate to data, Use ListViews to navigate to data

orientation attribute, LinearLayout displays views in a single row or column

P

Uploaded By: anonymousSTUDENTS-HUB.com

packages

naming, 2. Configure the project

wizard forming, 2. Configure the project

padding, adding to layout, Adding padding

Params parameter, AsyncTask defined by, AsyncTask performs asynchronous tasks, The AsyncTask
class

parent attribute, style inheriting properties from, Define styles in style resource files

parent layout

about, Three key layouts: relative, linear, and grid

positioning views relative to, Positioning views relative to the parent layout

parentActivityName attribute, Setting an activity’s parent

pending intents, 3. Get the pending intent from the TaskStackBuilder

phones, device app layouts for

about, Phone versus tablet

determining which layout device is using, Use layout differences to tell which layout the device is using

layouts for, The MainActivity phone layout, The full DetailActivity code

putting screen-specific resources in folders

about, Put screen-specific resources in screen-specific folders

different folder options, The different folder options

running code, Use layout differences to tell which layout the device is using

pixels, density independent, RelativeLayout displays views in relative positions

Pizza app

adding action items to action bar

defining action items, The menu resource file, Inflate the menu in the activity with the
onCreateOptionsMenu() method

reacting to item clicks, React to action item clicks with the onOptionsItemSelected() method

adding DrawerLayout, Add the DrawerLayout

bringing content forward, Bring the content forward

changing MainActivity to use Activity class, We’ll get the app to use up to date themes

Uploaded By: anonymousSTUDENTS-HUB.com

code for, The full MainActivity.java code, The full code for activity_main.xml

creating

DrawerLayout, The full code for activity_main.xml

order activity, Create OrderActivity, Test drive the app

PastaFragment, Create PastaFragment

PizzaFrament, Create TopFragment

StoresFragment, Create StoresFragment

TopFragment, Create TopFragment

defining styles in style resource files, Define styles in style resource files

enabling up navigation, Enabling Up navigation

Material Design in

3D in, CardViews and RecyclerViews

about, Material Design: Living in a Material World

adding data, Add the pizza data

adding Pizza class, Add the pizza data

adding support libraries, Add the support libraries

card views, CardViews and RecyclerViews

changing TopFragment, Bring the content forward, The full code for fragment_top.xml

creating CardView, Create the CardView

PizzaDetailActivity, Create PizzaDetailActivity, Test drive the app, Test drive the app

RecyclerViews (see RecyclerViews)

navigating, Great apps have a clear structure

navigation drawers

Uploaded By: anonymousSTUDENTS-HUB.com

about, The Pizza app revisited

ActionBarDrawerToggle, Get the drawer to open and close

adding DrawerLayout, Add the DrawerLayout

adding fragments, Navigation drawers deconstructed

adding tags to fragments, Adding tags to fragments

closing, Closing the navigation drawer

code for, The full MainActivity.java code, The full MainActivity.java code

creating, The full code for activity_main.xml

dealing with configuration changes, Dealing with configuration changes

finding fragments using tags, Find the fragment using its tag

reacting to changes in back stack, Reacting to changes on the back stack

responding to clicks in list view, Use an OnItemClickListener to respond to clicks in the list view

title and fragment getting out of sync, The title and fragment are getting out of sync

running, What happens when you run the app

setting background color, The full code for activity_main.xml

sharing content on action bars, Sharing content on the action bar

structure of, The Pizza app structure

support libraries in, Your project may include support libraries

themes used in, We’ll get the app to use up to date themes

PizzaDetailActivity, Create PizzaDetailActivity, Test drive the app, Test drive the app

PizzaMaterialFragment, Implement the listener in PizzaMaterialFragment.java

Pool Puzzle exercises

creating activity that binds Java array to spinner, App review: where we’ve got to, Test drive the app

populating list view from DrinkCategoryActivity, Closing the cursor and database

putting code in

CreateMessageActivity, How to retrieve extra information from an intent

DetailActivity.java, Phones will use DetailActivity to display details of the workout

pop-up messages, Toasts

Uploaded By: anonymousSTUDENTS-HUB.com

post() method, Handlers allow you to schedule code, We want to send a message to the screen

postDelayed() method, Handlers allow you to schedule code

primary key columns, Inside a SQLite database

Progress parameter, AsyncTask defined by, AsyncTask performs asynchronous tasks, The AsyncTask
class

public, making button, Add an onClickFindBeer() method to the activity

publishProgress() method, The onProgressUpdate() method, A summary of the AsyncTask steps

put() method, Insert data using the insert() method

putExtra() method, putExtra() puts extra information in an intent

Q

QEMU (Quick Emulator), Why the emulator is so slow

queries, database

about, A query lets you say what records you want from the database

applying conditions to, Specifying table and columns

creating, The SQLiteDatabase query() method lets you build SQL using a query builder

sorting data in, Order data in your query

specifying conditions as Strings, Applying multiple conditions to your query

specifying table and columns, Specifying table and columns

using cursor loaders in, 5. Maps

using SQL functions in, Using SQL functions in queries

query() method, The SQLiteDatabase query() method lets you build SQL using a query builder, SQL
GROUP BY and HAVING clauses, The code for getting a cursor

R

R.drawable.image.name, The Drink class, Your Android Toolbox

R.java, Useful files in your project, onClickFindBeer() needs to do something, Test drive the changes,
Change the code to create a chooser

RadioButton, as GUI component, Radio buttons

RadioGroup element, Radio buttons

REAL data type, Inside a SQLite database

ReceiveMessageActivity

Uploaded By: anonymousSTUDENTS-HUB.com

about, Create the second activity and layout

putting information in, putExtra() puts extra information in an intent

using information in intent using, Get ReceiveMessageActivity to use the information in the intent

recyclerview library, v7, The Android support libraries

RecyclerView Magnets exercise, creating RecyclerView, Test drive the app

RecyclerViews

about, CardViews and RecyclerViews

adapter

about, RecyclerViews use RecyclerView.Adapters

adding interface to, Add the interface to the adapter

code for CaptionedImagesAdapter, Create the recycler view

creating, Create the basic adapter

creating constructor, Each card view displays an image and a caption

decoupling with interface, Keep your adapters reusable

keeping reusable, Keep your adapters reusable

ViewHolder for, Define the adapter’s ViewHolder

adding to layout, Add the RecyclerView to the layout

arranging views, A RecyclerView uses a layout manager to arrange its views

creating, Create the recycler view

fragment for, Create the recycler view, The full PizzaMaterialFragment.java code, Implement the
listener in PizzaMaterialFragment.java

implementing listener, Implement the listener in PizzaMaterialFragment.java

ListView vs., Getting a RecyclerView to respond to clicks

responding to clicks, Getting a RecyclerView to respond to clicks

summary of code, What happens when the code runs

support libraries for, Add the support libraries

refining apps, Refining the app

Relative Layout element, A closer look at the layout code

relative layout, as ViewGroup, A layout is really a hierarchy of Views

Uploaded By: anonymousSTUDENTS-HUB.com

relative layouts

about, Three key layouts: relative, linear, and grid

adding padding, Adding padding

displaying views in relative positions, RelativeLayout displays views in relative positions

positioning views relative

to other views, Positioning views relative to other views

to parent layout, Positioning views relative to the parent layout

summary for creating, RelativeLayout: a summary

using margins to add distance between views, Use margins to add distance between views

RelativeLayout element, in activity_main.xml, activity_main.xml has two elements, Your Android Toolbox

remove() method, Using fragment transactions

renaming tables, SQLite databases, Renaming tables

render thread, Databases can make your app go in sloooo-moooo....

replace() method, Adding tags to fragments

requestFocus() method, What being a view buys you

requestLocationUpdates() method, Registering the LocationListener

res folder

in gradle projects, Useful files in your project

in interactive apps, We’ve created a default activity and layout

Reset button

attaching onClickListener to, Attach the OnClickListener to the buttons

in nested fragment code, Let’s look at the StopwatchFragment layout code

in stopwatch app, The stopwatch layout code, The full StopwatchActivity code

in StopwatchFragment, The StopwatchFragment layout uses String values

resource files

about, Welcome to Androidville

in folder structure in Android Studio project, Android Studio creates a complete folder structure for
you

Results parameter, AsyncTask defined by, AsyncTask performs asynchronous tasks, The AsyncTask

Uploaded By: anonymousSTUDENTS-HUB.com

class

right value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

root folder, in gradle projects, Useful files in your project

running app, in Android emulator, Run the app in the Android emulator

runTimer() method

creating, The runTimer() method

in rotated device, What just happened?

in stopwatch app, The full runTimer() code, The story continues, What happens when you run the app,
What happens when you run the app, What happens when you run the app

updating stopwatch, How the activity code will work

S

Safari Books Online, Safari® Books Online

ScrollView, as GUI component, Scroll views

SDK (Software Development Kit), Your development environment

SELECT statements, The SQLiteDatabase query() method lets you build SQL using a query builder,
What we’ve done so far

selectItem() method, The selectItem() method so far, The updated MainActivity.java code

Service class, We’re going to create an IntentService, Create a new Odometer project, The Service class
has four key methods, Add the LocationListener to the service

service element, You declare services in AndroidManifest.xml

Service Magnets exercises

creating bound service, Update AndroidManifest.xml

creating started service, Test drive the app

services

about, Services work behind the scenes

bound (see bound services app)

started (see started services app)

setActionBarTitle() method, Changing the action bar title, Reacting to changes on the back stack

setAdapter() method, What happens when you run the code

Uploaded By: anonymousSTUDENTS-HUB.com

setContentIntent() method, 3. Get the pending intent from the TaskStackBuilder

setContentView() method, The story continues, How to create a list activity, What fragment code looks
like, What happens to the fragment when you rotate the device

setDisplayHomeAsUpEnabled() method, Adding the Up button

setDrawerListener() method, Using an ActionBarDrawerToggle

setItemChecked() method, Reacting to changes on the back stack

setOnClickListener() method, Attach the OnClickListener to the buttons

setShareIntent() method, Specify the content with an intent

setText() method, Once you have a View, you can access its methods

setTransition() method, Using fragment transactions

setVisibility() method, What being a view buys you

setWorkout() method, Passing the workout ID to the fragment

ShareActionProvider, Specify the content with an intent

Sharpen your pencil

calling custom Java class, Enhance the activity to call the custom Java class so that we can get REAL
advice

changing app to linear layout, Use layout-gravity to specify where a view appears in its enclosing
space

choosing type of thread for block of code to run on, Life is better when threads work together

converting code to fragment, ... but the methods are slightly different

determining results of onCreate() method, What the SQLite helper code does

restoring state of activity in activity life cycle, Implement onStop() to stop the timer

writing code for TopFragment, Bring the content forward, Bring the content forward

shortcuts, app, Great apps have a clear structure

showAsAction attribute, The menu showAsAction attribute

Sierra, Kathy Head First Java, Here’s what we’re going to do

SimpleCursorAdapter, A SimpleCursorAdapter maps data to views

Software Development Kit (SDK), Your development environment

sorting data, using queries for, Order data in your query

Uploaded By: anonymousSTUDENTS-HUB.com

Spinner element

about, Changes to the XML...

adding values to, Add values to the spinner

as GUI component, Spinner

attributes of, ...are reflected in the design editor

spinners

accessing methods with, Once you have a View, you can access its methods

as type of view, GUI components are a type of View

using AdapterView class with, Connect list views to arrays with an array adapter

SQL (Structured Query Language)

creating tables using, You create tables using Structured Query Language (SQL)

functions, Using SQL functions in queries

GROUP BY clauses, SQL GROUP BY and HAVING clauses

HAVING clauses, SQL GROUP BY and HAVING clauses

SELECT statements, The SQLiteDatabase query() method lets you build SQL using a query builder,
What we’ve done so far

using execSQL() commands, Renaming tables

SQL functions, using in queries, Using SQL functions in queries

SQLite database, Inside a SQLite database

(see also tables, SQLite)

about, SQLite Databases: Fire Up the Database

accessing other databases, Android comes with SQLite classes

apps running slow on

about, Test drive the app, A summary of the AsyncTask steps

AsyncTask performing asynchronous tasks, AsyncTask performs asynchronous tasks

changing, What if you need to change the database?

changing Starbuzz app to use, We’ll change the app to use the database

code for DrinkActivity, The current DrinkActivity code, The DrinkActivity code

creating, The story so far...

Uploaded By: anonymousSTUDENTS-HUB.com

creating database, We’ll change the app to use a database

creating tables, Inside a SQLite database

CursorAdapters

about, How do we replace the array data in the ListView?

closing database and, Closing the cursor and database

mapping data using SimpleCursorAdapter to views, A SimpleCursorAdapter maps data to views

reading data, A CursorAdapter reads just enough data

cursors

close database and, Getting cursor values

code for getting, The code for getting a cursor

get database data with cursor, Get data from the database with a cursor

getting values, Getting cursor values

navigating, To read a record from a cursor, you first need to navigate to it

downgrading, Downgrade your database with onDowngrade()

Drink table

adding new column, Let’s upgrade the database, Upgrading an existing database

applying multiple conditions, Multiple conditions

creating, You create tables using Structured Query Language (SQL)

deleting, Renaming tables

deleting records, Multiple conditions

inserting data, Insert data using the insert() method

renaming, Renaming tables

updating records, Update records with the update() method

DrinkActivity (see DrinkActivity)

DrinkCategoryActivity, The current DrinkCategoryActivity code

getting reference to database, SQL GROUP BY and HAVING clauses

JDBC and, Android comes with SQLite classes

location of, Android uses SQLite databases to persist data

Uploaded By: anonymousSTUDENTS-HUB.com

location of directory, Android comes with SQLite classes

queries

about, A query lets you say what records you want from the database

applying conditions to, Specifying table and columns

creating, The SQLiteDatabase query() method lets you build SQL using a query builder

sorting data in, Order data in your query

specifying conditions as Strings, Applying multiple conditions to your query

specifying table and columns, Specifying table and columns

using SQL functions in, Using SQL functions in queries

replacing array data in ListView, How do we replace the array data in the ListView?

SQLite helper decision tree on, How the SQLite helper makes decisions

StarbuzzDatabaseHelper code, The StarbuzzDatabaseHelper code

structure of Starbuzz app, The current Starbuzz app structure

upgrading

about, Upgrading the database: an overview

adding new table column, Let’s upgrade the database, Upgrading an existing database

code for, The full SQLite helper code

deleting tables, Renaming tables

existing database, Upgrading an existing database

renaming tables, Renaming tables

usernames and passwords, Android comes with SQLite classes

version numbers, SQLite databases have a version number

SQLite helper

Uploaded By: anonymousSTUDENTS-HUB.com

about, SQLite Databases: Fire Up the Database, The SQLite helper manages your database

creating, Create the SQLite helper

creating database, Upgrading the database: an overview

decision tree, How the SQLite helper makes decisions

for upgrading database, The full SQLite helper code

onCreate() method, SQLite databases have a version number

StarbuzzDatabaseHelper code, The StarbuzzDatabaseHelper code

SQLite helper class, Android comes with SQLite classes, Create the SQLite helper

SQLiteDatabase class

about, Android comes with SQLite classes

accessing database using, You create tables using Structured Query Language (SQL)

as subclass of object, Insert data using the insert() method

query() method defined in, SQL GROUP BY and HAVING clauses

SQLiteDatabase query() method, The SQLiteDatabase query() method lets you build SQL using a query
builder

SQLiteExceptions, getReadableDatabase() versus getWritableDatabase(), What we’ve done so far

SQLiteOpenHelper class, SQL GROUP BY and HAVING clauses

SQLiteOpenHelper superclass, Create the SQLite helper, Upgrade your database with onUpgrade()

src folder, in gradle projects, Useful files in your project

StaggeredGrid LayoutManager, A RecyclerView uses a layout manager to arrange its views

Starbuzz app

about building, We’re going to build part of the Starbuzz app

adding Drink class, The Drink class

adding resources, Here are the steps

app structure and steps, The Starbuzz app structure

creating project, Here are the steps

drink detail activity

Uploaded By: anonymousSTUDENTS-HUB.com

about, The drink detail activity

code for, The DrinkActivity code

creating DrinkActivity, Here are the steps

displaying data for single record, A detail activity displays data for a single record

in app structure, The Starbuzz app structure

launching DrinkActivity, The story continues

retrieving data from intent, Retrieve data from the intent

updating views with data, Update the views with the data

Drink table

applying multiple conditions, Multiple conditions

creating, You create tables using Structured Query Language (SQL)

deleting records, Multiple conditions

inserting data, Insert data using the insert() method

updating records, Update records with the update() method

DrinkActivity (see DrinkActivity)

DrinkCategoryActivity, The current DrinkCategoryActivity code

drinks category activity

about, We’re going to build part of the Starbuzz app, A category activity displays the data for a
single category

adding array adapter, Add the array adapter to DrinkCategoryActivity

creating DrinkCategoryActivity, Here are the steps, How to create a list activity

full code for, The full DrinkCategoryActivity code

in app structure, The Starbuzz app structure

responding to clicks with listener, How we handled clicks in TopLevelActivity

starting DrinkCategoryActivity, Get ListViews to respond to clicks with a Listener, Pass data to an
activity using the ListActivity onListItemClick() method

working with data, android:entries works for static array data held in strings.xml

image files for, The image files

navigating through, The drink detail activity

Uploaded By: anonymousSTUDENTS-HUB.com

SQLite database (see SQLite database)

top level activity

about, We’re going to build part of the Starbuzz app

adding favorites to (see top level activity)

creating TopLevelActivity, Here are the steps

full code for, The full TopLevelActivity code

in app structure, The Starbuzz app structure

layout contents, The top-level layout contains an image and a list, The full top-level layout code

responding to clicks with listener, Get ListViews to respond to clicks with a Listener, Where we’ve
got to, How we handled clicks in TopLevelActivity

set listener to ListView, Set the listener to the list view

using wtih list views and spinners, Connect list views to arrays with an array adapter

StarbuzzDatabaseHelper class, Create the SQLite helper

Start button

attaching onClickListener to, Attach the OnClickListener to the buttons

in nested fragment code, Let’s look at the StopwatchFragment layout code

in stopwatch app, The stopwatch layout code

in StopwatchFragment, The StopwatchFragment layout

start value, More values you can use with the android:layout-gravity attribute

startActivity() method, Use an intent to start the second activity, What happens when the code runs, If
you have NO matching activities, How do activities really work?

started services app

Uploaded By: anonymousSTUDENTS-HUB.com

about, Services work behind the scenes

creating, The started service app

displaying message in log, The started service app

about, The started service app

adding buttons, Add a button to activity_main.xml

ceatiing IntentService, We’re going to create an IntentService

code for DelayedMessageService, The full DelayedMessageService code

declaring services in AndroidManifest.xml, You declare services in AndroidManifest.xml

logging messages, How to log messages

starting service, You start a service using startService()

displaying message in notification, Can we improve on using Toasts?

about, The started service app, Can we improve on using Toasts?

code for, The full code for DelayedMessageService.java

creating notification, You create notifications using a notification builder

sending notification, Send the notification using the notification service

starting activity, Getting your notification to start an activity

displaying message in Toast, The started service app, We want to send a message to the screen

startService() method, You start a service using startService()

static data, array for, android:entries works for static array data held in strings.xml

Stop button

attaching onClickListener to, Attach the OnClickListener to the buttons

in nested fragment code, Let’s look at the StopwatchFragment layout code

in stopwatch app, The stopwatch layout code

in StopwatchFragment, The StopwatchFragment layout

stopwatch app

Uploaded By: anonymousSTUDENTS-HUB.com

about, The Stopwatch app

activity code of, How the activity code will work

adding code for buttons, Add code for the buttons

building, The Stopwatch app

complete activity code, The complete activity code

converting code to fragment, ... but the methods are slightly different

creating runTimer() method, The runTimer() method

dealing with configuration changes, How do we deal with configuration changes?

formatting time on stopwatch app, The full StopwatchActivity code

implementing onStop() method, We need to implement two more lifecycle methods

layout code for, The stopwatch layout code

pausing and resuming, The activity lifecycle: the foreground lifetime

reset, The full StopwatchActivity code

restoring state of activity, The updated StopwatchActivity code

rotating device, What just happened?

scheduling code, Handlers allow you to schedule code

working with activity code, How the activity code will work

StopwatchFragment

adding to WorkoutDetailFragment, Adding the stopwatch fragment to WorkoutDetailFragment

code for, The StopwatchFragment code, The StopwatchFragment code

error output for buttons in, Why does the app crash if you press a button?

layout for, The StopwatchFragment layout

onClick attribute and, The onClick attribute calls methods in the activity, not the fragment

onClick() method, Make the fragment implement OnClickListener

onCreateView() method, Attach the OnClickListener to the buttons

Strings

data type, Getting cursor values

specifying conditions in queries as, Applying multiple conditions to your query

Uploaded By: anonymousSTUDENTS-HUB.com

strings.xml

adding

chooser to, Change the code to create a chooser

code for ActionBarDrawerToggle, Using an ActionBarDrawerToggle

code for TopFragment, Create TopFragment

String resource to, Add favorites to DrinkActivity

defining string-arrays, Add values to the spinner, Test drive the changes, Your Android Toolbox, Use
a list view to display the list of options, Create PizzaFragment, Initialize the drawer’s list

in gradle projects, Useful files in your project

in interactive apps, You’re going to build a Beer Adviser app, Use string resources rather than
hardcoding the text, Use string resources rather than hardcoding the text

in multiple activities app, Update strings.xml...

in stopwatch app, The stopwatch layout code

in StopwatchFragment, The StopwatchFragment layout uses String values

putting string values in, The layout file contains a reference to a string, not the string itself, Take the app
for a test drive

setting default theme in, Set the default theme in styles.xml

static array in, android:entries works for static array data held in strings.xml

up close, Update strings.xml to change the text

Structured Query Language (SQL)

creating tables using, You create tables using Structured Query Language (SQL)

functions, Using SQL functions in queries

GROUP BY clauses, SQL GROUP BY and HAVING clauses

HAVING clauses, SQL GROUP BY and HAVING clauses

SELECT statements, The SQLiteDatabase query() method lets you build SQL using a query builder,
What we’ve done so far

style element, defining styles in, Define styles in style resource files

SUM() functions, Using SQL functions in queries

superclass methods, We need to implement two more lifecycle methods, Your fragment inherits the
lifecycle methods, How to create a list fragment

Uploaded By: anonymousSTUDENTS-HUB.com

Swing, Here’s what we’re going to do

Switch element, as GUI component, Switch

syncState() method, Syncing the ActionBarDrawerToggle state

T

tables, SQLite

creating, Inside a SQLite database

data types, Inside a SQLite database

Drink table

adding new column, Let’s upgrade the database, Upgrading an existing database

applying multiple conditions, Multiple conditions

creating, You create tables using Structured Query Language (SQL)

deleting, Renaming tables

deleting records, Multiple conditions

inserting data, Insert data using the insert() method

renaming, Renaming tables

updating records, Update records with the update() method

primary key columns in, Inside a SQLite database

queries for

about, The SQLiteDatabase query() method lets you build SQL using a query builder

applying conditions to, Specifying table and columns

creating, The SQLiteDatabase query() method lets you build SQL using a query builder

sorting data in, Order data in your query

specifying conditions as Strings, Applying multiple conditions to your query

specifying table and columns, Specifying table and columns

using SQL functions in, Using SQL functions in queries

StarbuzzDatabaseHelper code, The StarbuzzDatabaseHelper code

using queries in, A query lets you say what records you want from the database

tablets, device app layouts for

Uploaded By: anonymousSTUDENTS-HUB.com

about, Phone versus tablet

determining which layout device is using, Use layout differences to tell which layout the device is using

layouts for, Tablets use layouts in the layout-large folder

putting screen-specific resources in folders

about, Put screen-specific resources in screen-specific folders

different folder options, The different folder options

running code, Use layout differences to tell which layout the device is using

TaskStackBuilder, Getting your notification to start an activity

testing, apps, 10. Testing

text attribute, activity_find_beer.xml has a new button, The TextView element, Add favorites to
DrinkActivity

TEXT data type, Inside a SQLite database

text views

about, activity_find_beer.xml has a new button

attributes of, ...are reflected in the design editor

referencing, onClickFindBeer() needs to do something

TextView

as GUI component, Playing with views

as subclass of View class, GUI components are a type of View

in activity_main.xml, activity_main.xml has two elements

in Cardview, Each card view displays an image and a caption

in PizzaDetailActivity, Create PizzaDetailActivity

in Relative Layout element, The TextView element

updating, Pass text to a second activity

TextView class

about, activity_find_beer.xml has a new button

referencing, onClickFindBeer() needs to do something

setting text in, Once you have a View, you can access its methods

theme attribute, Apply a theme in AndroidManifest.xml

Uploaded By: anonymousSTUDENTS-HUB.com

themes, action bar

about, Let’s start with the action bar

AppCompat, Your project may include support libraries

applying in AndroidManifest.xml, Apply a theme in AndroidManifest.xml

customizing, Define styles in style resource files

Holo, Let’s start with the action bar, We’ll get the app to use up to date themes, Set the default theme
in styles.xml, Test drive the app

Material, Let’s start with the action bar, We’ll get the app to use up to date themes, Set the default
theme in styles.xml, Test drive the app

modifying properties of, Define styles in style resource files

using on different levels different, Test drive the app

threads

code running on which, What code goes on which thread?

main event, Databases can make your app go in sloooo-moooo....

render, Databases can make your app go in sloooo-moooo....

types of, Databases can make your app go in sloooo-moooo....

time on stopwatch app, formatting, The full StopwatchActivity code

title attribute, The menu resource file

Toast element

as GUI component, Toasts

displaying message in, The started service app, We want to send a message to the screen

ToggleButton element, as GUI component, Toggle button

top level activity

Uploaded By: anonymousSTUDENTS-HUB.com

about, Categorize your ideas: top-level, category, and detail/edit activities

adding favorites to, Put important information in the top-level activity

about, Add favorites to DrinkActivity

adding column to cursor, Add a new column to the cursor

code for, The DrinkActivity code

displaying favorites in, Display favorites in TopLevelActivity

putting important information in, Put important information in the top-level activity

refreshing cursors automatically, Cursors don’t automatically refresh

updating database by responding to clicks, Respond to clicks to update the database

creating, Here are the steps

full code for, The full TopLevelActivity code

in app structure, The Starbuzz app structure

in building Starbuzz app, We’re going to build part of the Starbuzz app

layout contents, The top-level layout contains an image and a list, The full top-level layout code

navigating through, Navigating through the activities

Pizza app

about, Great apps have a clear structure

changing top screen, Bring the content forward

responding to clicks with listener, Get ListViews to respond to clicks with a Listener, Where we’ve
got to, How we handled clicks in TopLevelActivity

set listener to ListView, Set the listener to the list view

structure of apps and, Great apps have a clear structure

top value, Using the android:gravity attribute: a list of values, More values you can use with the
android:layout-gravity attribute

TopFragment

changing, Bring the content forward, The full code for fragment_top.xml

creating, Create TopFragment

toString() method, What happens when you run the code

tostring() method, The Workout class

Uploaded By: anonymousSTUDENTS-HUB.com

U

unbindService() method, Bind to the service when the activity starts, The story continues

Up button, Enabling Up navigation, Enable the drawer to open and close

update() method, Update records with the update() method, Respond to clicks to update the database,
The doInBackground() method

updateMyDatabase() method, Let’s upgrade the database

USB debugging, enabling, You need to run your app on a REAL device

using Android action bar icon pack, Add a new action item

V

v17 leanback library, The Android support libraries

v4 support library, The Android support libraries

v7 appcompat library, The Android support libraries, The menu showAsAction attribute

v7 cardview library, The Android support libraries

v7 gridlayout library, The Android support libraries

v7 recyclerview library, The Android support libraries

version numbers, SQLite database, SQLite databases have a version number

versions, Android, 3. Specify the API level

View class

buttons and text in, activity_find_beer.xml has a new button

GUI components as subclass of, GUI components are a type of View

TextView as subclass of, GUI components are a type of View

View methods used in, What being a view buys you

ViewById() method, onClickFindBeer() needs to do something

ViewGroup class, GUI components are a type of View

ViewGroup layouts, What being a view buys you

ViewHolders

creating, Create the ViewHolders

defining RecyclerView adapters, Define the adapter’s ViewHolder

displaying image and caption, Each card view displays an image and a caption

Uploaded By: anonymousSTUDENTS-HUB.com

views

adding weight to, Make a view streeeeetch by adding weight

advantages of being in a view, What being a view buys you

determining extra space taken up by, Adding weight to multiple views

displaying in grid layout, GridLayout displays views in a grid, Row 0: add views to specific rows and
columns

displaying in order they appear in layout XML, LinearLayout displays views in a single row or column

displaying in relative positions, RelativeLayout displays views in relative positions

displaying in single row or column, LinearLayout displays views in a single row or column

layouts as hierarchy of, A layout is really a hierarchy of Views

mapping data to, A SimpleCursorAdapter maps data to views

populating with data, Update the views with the data

positioning relative to parent layout, Positioning views relative to the parent layout

positioning views relative to other, Positioning views relative to other views

setting values in fragment, Set the view’s values in the fragment’s onStart() method

text

about, activity_find_beer.xml has a new button

attributes of, ...are reflected in the design editor

referencing, onClickFindBeer() needs to do something

using gravity attribute in view, Use gravity to specify where text appears in a view, More values you
can use with the android:layout-gravity attribute

using layout_gravity attribute, Move the button to the right with layout-gravity

using margins to add distance between, Use margins to add distance between views

ViewGroup as type of, What being a view buys you

void return type, for buttons, Add an onClickFindBeer() method to the activity

W

watchMileage() method, Display the distance traveled, The story continues

WebView class, 3. The WebView class

Welcome Screen (Android Studio), Install Java, Let’s build the basic app

Uploaded By: anonymousSTUDENTS-HUB.com

What’s My Purpose

activity file code exercise, The design editor

layout file code exercise, The design editor

widget app, 8. App widgets

Workout app

about, The Workout app structure

activity vs. fragment, Activity states revisited

back stacks, You want fragments to work with the back button, Nested fragments need nested
transactions

creating project, Here are the steps

device layouts for

determining which layout device is using, Use layout differences to tell which layout the device is
using

different folder options, The different folder options

layouts for phone, The MainActivity phone layout, The full DetailActivity code

layouts for tablets, Tablets use layouts in the layout-large folder

phone vs. tablet, Phone versus tablet

putting screen-specific resources in folders, Put screen-specific resources in screen-specific folders

running code, Use layout differences to tell which layout the device is using

fragment lifecycle, The fragment lifecycle

fragments in

about, Here are the steps

adding to project, How to add a fragment to your project

layout code, Fragment layout code looks just like activity layout code, Adding a fragment to an
activity’s layout

passing workout id to, Passing the workout ID to the fragment

linking fragments, Wiring up the list to the detail

Uploaded By: anonymousSTUDENTS-HUB.com

about, Wiring up the list to the detail

code for, Phone versus tablet

interface for decoupling fragment, We need to decouple the fragment with an interface

replacing instances of WorkoutListFragment, Don’t update — instead, replace

rotating device, Rotating the device breaks the app

updating MainActivity.java, The updated MainActivity code

working with back button, You want fragments to work with the back button

nested fragments

about, Nested Fragments: Dealing with Children

adding StopwatchFragment to WorkoutDetailFragment, Adding the stopwatch fragment to
WorkoutDetailFragment

attaching onClickListener to buttons, Attach the OnClickListener to the buttons

code for, The StopwatchFragment code, The StopwatchFragment code, The
WorkoutDetailFragment code

creating, Creating nested fragments

error output for buttons in, Why does the app crash if you press a button?

implementing onClickListener, Make the fragment implement OnClickListener

implementing StopwatchFragment onClick() method, Make the fragment implement
OnClickListener

needing nested transactions, Nested fragments need nested transactions

onClick attribute and, The onClick attribute calls methods in the activity, not the fragment

rotating device containing, Rotating the device re-creates the activity

running, Test drive the app

StopwatchFragment in

Uploaded By: anonymousSTUDENTS-HUB.com

adding to WorkoutDetailFragment, Adding the stopwatch fragment to WorkoutDetailFragment

code for, The StopwatchFragment code, The StopwatchFragment code

error output for buttons in, Why does the app crash if you press a button?

layout for, The StopwatchFragment layout

onClick attribute and, The onClick attribute calls methods in the activity, not the fragment

onClick() method, Make the fragment implement OnClickListener

onCreateView() method, Attach the OnClickListener to the buttons

workout class, The Workout class

WorkoutDetailFragment

about, Here are the steps

adding stopwatch fragment to, Creating nested fragments

adding StopwatchFragment to, Adding the stopwatch fragment to WorkoutDetailFragment

creating, How to add a fragment to your project

running, Test drive the app

setting views values, Set the view’s values in the fragment’s onStart() method

WorkoutListFragment

about, Here are the steps

adding to WorkoutListFragment, First, add the interface to the list fragment

code for, Display WorkoutListFragment in the MainActivity layout

creating, We need to create a fragment with a list

replacing instances of, Don’t update — instead, replace

running, Test drive the app

updating code, The updated WorkoutListFragment code

WorkoutListListener

creating interface called, We need to decouple the fragment with an interface

implementing interface, Then make the activity implement the interface

wrap_content

Uploaded By: anonymousSTUDENTS-HUB.com

setting, RelativeLayout displays views in relative positions

value, A linear layout displays views in the order they appear in the layout XML, Adding weight to one
view

X

XML

Android Studio creating, Take the app for a test drive

source files in folder structure in Android Studio project, Android Studio creates a complete folder
structure for you

Y

Your Virtual Devices screen (Android Studio), Creating an Android Virtual Device

YourActivity class, Your activity inherits the lifecycle methods

Uploaded By: anonymousSTUDENTS-HUB.com

About the Authors
Dawn Griffiths started life as a mathematician at a top UK university where she was awarded a First-
Class Honours degree in Mathematics. She went on to pursue a career in software development, and has
over 15 years experience working in the IT industry. Dawn has written several books, including Head
First C, Head First Statistics and Head First 2D Geometry.

David Griffiths began programming at age 12, after being inspired by a documentary on the work of
Seymour Papert. At age 15 he wrote an implementation of Papert's computer language LOGO. After
studying Pure Mathematics at University, he began writing code for computers and magazine articles for
humans and he is currently an agile coach with Exoftware in the UK, helping people to create simpler,
more valuable software. He spends his free time traveling and time with his lovely wife, Dawn.

Uploaded By: anonymousSTUDENTS-HUB.com

Special Upgrade Offer
If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at
oreilly.com by clicking here.

Uploaded By: anonymousSTUDENTS-HUB.com

http://opds.oreilly.com/buy/9781449362133.EBOOK?source=kindle

Head First: Android Development
Dawn Griffiths

David Griffiths

Editor
Courtney Nash

Editor
Meghan Blanchette

Copyright © 2015 Dawn Griffiths and David Griffiths
Head First Android Development

by Dawn Griffiths and David Griffiths

All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Meghan Blanchette

Cover Designer: Karen Montgomery

Production Editor: Melanie Yarbrough

Production Services: Jasmine Kwityn

Indexer: Bob Pfahler

Page Viewers: Mum and Dad, Carl

Printing History:

June 2015: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First
Android Development, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No kittens were harmed in the making of this book, but several pizzas were eaten.

[M]

[2015-06-09]

O’Reilly Media

Uploaded By: anonymousSTUDENTS-HUB.com

http://safaribooksonline.com
mailto:corporate@oreilly.com

1005 Gravenstein Highway North
Sebastopol, CA 95472

2015-06-16T14:15:36-07:00

Uploaded By: anonymousSTUDENTS-HUB.com

Head First: Android Development
Table of Contents

Dedication
Special Upgrade Offer
Authors of Head First Android Development
How to Use This Book: Intro

Who is this book for?
Who should probably back away from this book?

We know what you’re thinking
We know what your brain is thinking
Metacognition: thinking about thinking
Here’s what WE did:
Here’s what YOU can do to bend your brain into submission
Read me
The technical review team
Acknowledgments
Safari® Books Online

1. Getting Started: Diving In
Welcome to Androidville

Layouts define what each screen looks like
Java code defines what the app should do
Sometimes extra resources are needed too

The Android platform dissected
Here’s what we’re going to do
Your development environment

The Android SDK
Android Studio is a special version of IntelliJ IDEA

Install Java
Then install Android Studio

Build a basic app
Let’s build the basic app

1. Create a new project
2. Configure the project
3. Specify the API level

Activities and layouts from 50,000 feet
Building a basic app (continued)

4. Create an activity
Building a basic app (continued)

5. Configure the activity
You’ve just created your first Android app

Uploaded By: anonymousSTUDENTS-HUB.com

Android Studio creates a complete folder structure for you
The folder structure includes different types of files

Useful files in your project
Edit code with the Android Studio editors

The code editor
The design editor

Run the app in the Android emulator
So what does the emulator look like?

Creating an Android Virtual Device
Open the Android Virtual Device Manager
Select the hardware
Select a system image
Verify the AVD configuration

Run the app in the emulator
Compile, package, deploy and run

You can watch progress in the console
Test drive
What just happened?
Refining the app

The app has one activity and one layout
The activity controls what the app does
The layout controls the app appearance

What’s in the layout?
The design editor
The code editor

activity_main.xml has two elements
The layout file contains a reference to a string, not the string itself
Let’s look in the strings.xml file

Update strings.xml to change the text
Take the app for a test drive
Your Android Toolbox

2. Building Interactive Apps: Apps That Do Something
You’re going to build a Beer Adviser app
Here’s what you need to do
Create the project
We’ve created a default activity and layout
Adding components with the design editor

Changes in the design editor are reflected in the XML

Uploaded By: anonymousSTUDENTS-HUB.com

activity_find_beer.xml has a new button
Buttons and text views are subclasses of the same Android View class
android:id
android:text
android:layout_width, android:layout_height

A closer look at the layout code
The RelativeLayout element
The TextView element
The Button element

Changes to the XML...
...are reflected in the design editor
Use string resources rather than hardcoding the text
Change the layout to use the string resources
Let’s take the app for a test drive

Here’s what we’ve done so far
Add values to the spinner

Adding an array resource is similar to adding a string
Get the spinner to reference a string-array
Test drive the spinner
We need to make the button do something
Make the button call a method

Use onClick to say which method the button calls
What activity code looks like
Add an onClickFindBeer() method to the activity
onClickFindBeer() needs to do something

Use findViewById() to get a reference to a view
Once you have a View, you can access its methods

Setting the text in a TextView
Retrieving the selected value in a spinner

Update the activity code
The first version of the activity
What the code does
Test drive the changes
Building the custom Java class

Custom Java class spec
Build and test the Java class

Enhance the activity to call the custom Java class so that we can get REAL advice
Activity code version 2
What happens when you run the code
Test drive your app

Uploaded By: anonymousSTUDENTS-HUB.com

Your Android Toolbox
3. Multiple Activities and Intents: State Your Intent

Apps can contain more than one activity
Here are the steps

Here’s the app structure
Create the project
Update the layout
Update strings.xml...

... and add the method to the activity
Create the second activity and layout
What just happened?
Welcome to the Android manifest file
Every activity needs to be declared
An intent is a type of message
Use an intent to start the second activity
What happens when you run the app
The story continues...
Test drive the app
Pass text to a second activity

Let’s start with the layout
Update the text view properties
putExtra() puts extra information in an intent

How to retrieve extra information from an intent
Update the CreateMessageActivity code
Get ReceiveMessageActivity to use the information in the intent
What happens when the user clicks the Send Message button
Test drive the app
We can change the app to send messages to other people
How Android apps work

Intents can start activities in other apps
But we don’t know what apps are on the device

Here’s what you’re going to do
Create an intent that specifies an action

How to create the intent
Adding extra information

Change the intent to use an action
What happens when the code runs
The story continues...
The intent filter tells Android which activities can handle which actions
How Android uses the intent filter

Uploaded By: anonymousSTUDENTS-HUB.com

You need to run your app on a REAL device
1. Enable USB debugging on your device
2. Set up your system to detect your device
3. Plug your device into your computer with a USB cable
4. Run your app in Android Studio as normal
And here’s the app running on the physical device

Test drive the app
If you have one activity
If you have more than one activity

What if you ALWAYS want your users to choose an activity?
Intent.createChooser() displays a chooser dialog

What happens when you call createChooser()
The story continues...
Change the code to create a chooser

Update strings.xml...
... and update the onSendMessage() method

Test drive the app
If you have one activity
If you have more than one activity

If you have NO matching activities
Your Android Toolbox

4. The Activity Lifecycle: Being an Activity
How do activities really work?
The Stopwatch app

Build the app
The stopwatch layout code

The stopwatch strings.xml file
How the activity code will work
Add code for the buttons
The runTimer() method
Handlers allow you to schedule code

The post() method
The postDelayed() method

The full runTimer() code
The full StopwatchActivity code
What happens when you run the app
The story continues
Test drive the app

But there’s just one problem...
What just happened?

Uploaded By: anonymousSTUDENTS-HUB.com

Rotating the screen changes the device configuration
From birth to death: the states of an activity
The activity lifecycle: from create to destroy
Your activity inherits the lifecycle methods
How do we deal with configuration changes?

Bypass re-creating the activity
Or save the current state...
...then restore the state in onCreate()
What happens when you run the app
The story continues
Test drive the app
There’s more to an activity’s life than create and destroy

Start, stop, and restart
The activity lifecycle: the visible lifetime
We need to implement two more lifecycle methods

Implement onStop() to stop the timer
The updated StopwatchActivity code
What happens when you run the app
Test drive the app
But what if an app is only partially visible?
The activity lifecycle: the foreground lifetime
Stop the stopwatch if the activity’s paused
What happens when you run the app
Test drive the app
The complete activity code
Your handy guide to the lifecycle methods
Your Android Toolbox

5. The User Interface: Enjoy the View
Your user interface is made up of layouts and GUI components
Three key layouts: relative, linear, and grid

RelativeLayout
LinearLayout
GridLayout

RelativeLayout displays views in relative positions
You MUST set the layout width and height

Adding padding
Positioning views relative to the parent layout
Attributes for positioning views relative to the parent layout
Positioning views relative to other views
Attributes for positioning views relative to other views

Uploaded By: anonymousSTUDENTS-HUB.com

Use margins to add distance between views
RelativeLayout: a summary

How you specify a relative layout
You can position views relative to the layout of another view
You can add margins to views to increase the space around them

LinearLayout displays views in a single row or column
How you define a linear layout

A linear layout displays views in the order they appear in the layout XML
Let’s change up a basic linear layout
Here’s the starting point for the linear layout
Make a view streeeeetch by adding weight
Adding weight to one view
Adding weight to multiple views
Use gravity to specify where text appears in a view
Test drive
Using the android:gravity attribute: a list of values
Move the button to the right with layout-gravity
More values you can use with the android:layout-gravity attribute
The full linear layout code
LinearLayout: a summary

How you specify a linear layout
Views get displayed in the order they appear
Stretch views using weight
Use gravity to specify where a view’s contents appear in a view
Use layout-gravity to specify where a view appears in its enclosing space

GridLayout displays views in a grid
How you define a grid layout

Adding views to the grid layout
Let’s create a new grid layout

Here’s what we’re going to do
We’ll start with a sketch

The grid layout needs two columns
Row 0: add views to specific rows and columns
Row 1: make a view span multiple columns
Row 2: make a view span multiple columns
The full code for the grid layout
GridLayout: a summary

How you specify a grid layout
Specify which row and column each view should start in
Specify how many columns each view should span

Uploaded By: anonymousSTUDENTS-HUB.com

Layouts and GUI components have a lot in common
GUI components are a type of View

Layouts are a type of View called a ViewGroup
What being a view buys you

Getting and setting properties
Size and position
Focus handling
Event handling and listeners

A layout is really a hierarchy of Views
Playing with views
Text view

Defining it in XML
Using it in your activity code

Edit Text
Defining it in XML
Using it in your activity code

Button
Defining it in XML
Using it in your activity code

Toggle button
Defining it in XML
Using it in your activity code

Switch
Defining it in XML
Using it in your activity code

Check boxes
Defining them in XML
Using them in your activity code

Radio buttons
Defining them in XML
Using them in your activity code

Spinner
Defining it in XML
Using it in your activity code

Image views
Adding an image to your project

Images: the layout XML
Using it in your activity code

Adding images to buttons
Displaying text and an image on a button

Uploaded By: anonymousSTUDENTS-HUB.com

Image Button
Defining it in XML
Using it in your activity code

Scroll views
Toasts

Using it in your activity code
Your Android Toolbox

6. List Views and Adapters: Getting Organized
Every app starts with ideas
Categorize your ideas: top-level, category, and detail/edit activities

Top-level activities
Category activities
Detail/edit activities

Navigating through the activities
Top-level activities go at the top
Category activities go between top-level and detail/edit activities
Detail/edit activities

Use ListViews to navigate to data
We’re going to build part of the Starbuzz app

The top-level activity
The drinks category activity

The drink detail activity
How the user navigates through the app

The Starbuzz app structure
Here are the steps

Create the project
The Drink class
The image files
The top-level layout contains an image and a list
Use a list view to display the list of options

How to define a list view in XML
The full top-level layout code
Test drive
Get ListViews to respond to clicks with a Listener

OnItemClickListener listens for item clicks
Set the listener to the list view

What happens when you run the code
The full TopLevelActivity code
Where we’ve got to
A category activity displays the data for a single category

Uploaded By: anonymousSTUDENTS-HUB.com

A ListActivity is an activity that contains only a list
How to create a list activity
android:entries works for static array data held in strings.xml

For nonstatic data, use an adapter
Connect list views to arrays with an array adapter
Add the array adapter to DrinkCategoryActivity
What happens when you run the code
Test drive the app
App review: where we’ve got to
How we handled clicks in TopLevelActivity

ListActivity implements an item click listener by default
Pass data to an activity using the ListActivity onListItemClick() method
The full DrinkCategoryActivity code
A detail activity displays data for a single record
Retrieve data from the intent
Update the views with the data
The DrinkActivity code
What happens when you run the app
The story continues
Test drive the app
Your Android Toolbox

7. Fragments: Make it Modular
Your app needs to look great on all devices

On a phone:
On a tablet:

Your app may need to behave differently too
On a phone:
On a tablet:
But that means you might duplicate code

Fragments allow you to reuse code
A fragment has a layout

The Workout app structure
Here are the steps

Create the project
The Workout class
How to add a fragment to your project
Fragment layout code looks just like activity layout code
What fragment code looks like
Adding a fragment to an activity’s layout
Passing the workout ID to the fragment

Uploaded By: anonymousSTUDENTS-HUB.com

Get the activity to set the workout ID
Activity states revisited
The fragment lifecycle
Your fragment inherits the lifecycle methods
Set the view’s values in the fragment’s onStart() method
Test drive the app

What happens when you run the app
Where we’ve got to
We need to create a fragment with a list
A ListFragment is a fragment that contains only a list
How to create a list fragment
We’ll use an ArrayAdapter to set the values in the ListView

A Fragment isn’t a type of Context
The updated WorkoutListFragment code
Display WorkoutListFragment in the MainActivity layout
Test drive the app

We need to get WorkoutDetailFragment to respond to clicks in WorkoutListFragment
Wiring up the list to the detail
We need to decouple the fragment with an interface

But when will the activity say that it’s listening?
First, add the interface to the list fragment
Then make the activity implement the interface

But how do we update the workout details?
You want fragments to work with the back button

Welcome to the back stack
Don’t update — instead, replace
Using fragment transactions
The updated MainActivity code
Test drive the app
Rotating the device breaks the app
The WorkoutDetailFragment code
Phone versus tablet

On a tablet
On a phone

The phone and tablet app structures
On a tablet
On a phone

Put screen-specific resources in screen-specific folders
The different folder options
Tablets use layouts in the layout-large folder

Uploaded By: anonymousSTUDENTS-HUB.com

The MainActivity phone layout
Phones will use DetailActivity to display details of the workout
The full DetailActivity code
Use layout differences to tell which layout the device is using
The revised MainActivity code
Test drive the app
Your Android Toolbox

Fragment Lifecycle Methods

Uploaded By: anonymousSTUDENTS-HUB.com

8. Nested Fragments: Dealing with Children
Creating nested fragments

We’ll add a new stopwatch fragment
Fragments and activities have similar lifecycles...

... but the methods are slightly different
The StopwatchFragment code
The StopwatchFragment layout

The StopwatchFragment layout uses String values
Adding the stopwatch fragment to WorkoutDetailFragment

We need to add it programmatically
Add a FrameLayout where the fragment should appear
Then display the fragment in Java code
getFragmentManager() creates transactions at the activity lavel

Beware the back button
Nested fragments need nested transactions
Display the fragment in its parent’s onCreateView() method
The full WorkoutDetailFragment code
Test drive the app

But there’s a problem if you try to interact with the stopwatch
Why does the app crash if you press a button?
Let’s look at the StopwatchFragment layout code
The onClick attribute calls methods in the activity, not the fragment

How to make button clicks call methods in the fragment
First, remove the onClick attributes from the fragment’s layout
Make the fragment implement OnClickListener

The StopwatchFragment onClick() method
Attach the OnClickListener to the buttons
The StopwatchFragment code
Test drive the app

But there’s a problem when you rotate the device
Rotating the device re-creates the activity

What happens to the fragment when you rotate the device
onCreateView() runs AFTER the transactions have been replayed
The WorkoutDetailFragment code
Test drive the app
Your Android Toolbox

9. Action Bars: Taking Shortcuts

Uploaded By: anonymousSTUDENTS-HUB.com

Great apps have a clear structure
Top-level screens
Category screens
Detail/edit screens
They also have great shortcuts

Different types of navigation
Using actions for navigation

Let’s start with the action bar
API level 11 and above
API level 7 or above

The Android support libraries
Your project may include support libraries
We’ll get the app to use up to date themes

Change MainActivity to use an Activity
Apply a theme in AndroidManifest.xml
Define styles in style resource files
Set the default theme in styles.xml

Use a Material theme on newer devices
What happens when you run the app
Test drive the app
Adding action items to the action bar
The menu resource file
The menu showAsAction attribute
Add a new action item
Inflate the menu in the activity with the onCreateOptionsMenu() method
React to action item clicks with the onOptionsItemSelected() method
Create OrderActivity
Start OrderActivity with the Create Order action item
The full MainActivity.java code
Test drive the app
Sharing content on the action bar

You share the content with an intent
Add a share action provider to menu_main.xml
Specify the content with an intent
The full MainActivity.java code
Test drive the app
Enabling Up navigation
Setting an activity’s parent
Adding the Up button
Test drive the app

Uploaded By: anonymousSTUDENTS-HUB.com

Your Android Toolbox
10. Navigation Drawers: Going Places

The Pizza app revisited
Navigation drawers deconstructed
The Pizza app structure
Create TopFragment
Create PizzaFragment
Create PastaFragment
Create StoresFragment
Add the DrawerLayout
The full code for activity_main.xml
Initialize the drawer’s list
Use an OnItemClickListener to respond to clicks in the list view
The selectItem() method so far
Changing the action bar title
Closing the navigation drawer
The updated MainActivity.java code
Get the drawer to open and close
Using an ActionBarDrawerToggle
Modifying action bar items at runtime
The updated MainActivity.java code
Enable the drawer to open and close
Syncing the ActionBarDrawerToggle state
The updated MainActivity.java code
Test drive the app
The title and fragment are getting out of sync
Dealing with configuration changes
Reacting to changes on the back stack
Adding tags to fragments
Find the fragment using its tag
The full MainActivity.java code
Test drive the app
Your Android Toolbox

Uploaded By: anonymousSTUDENTS-HUB.com

11. SQLite Databases: Fire Up the Database
Back to Starbuzz
Android uses SQLite databases to persist data

Where’s the database stored?
Android comes with SQLite classes

The SQLite Helper
Cursors
The SQLite Database

The current Starbuzz app structure
We’ll change the app to use a database
The SQLite helper manages your database
Create the SQLite helper
1. Specify the database
Inside a SQLite database

Storage classes and data-types
You create tables using Structured Query Language (SQL)

The onCreate() method is called when the database is created
Insert data using the insert() method
Update records with the update() method
Multiple conditions

Delete records with the delete() method
The StarbuzzDatabaseHelper code
What the SQLite helper code does
What if you need to change the database?
SQLite databases have a version number
Upgrading the database: an overview
The story continues....
How the SQLite helper makes decisions
Upgrade your database with onUpgrade()
Downgrade your database with onDowngrade()
Let’s upgrade the database
Upgrading an existing database

Add new columns to tables using SQL
Renaming tables

Delete tables by dropping them
Execute the SQL using execSQL()

The full SQLite helper code
The SQLite helper code (continued)
What happens when the code runs
Your Android Toolbox

Uploaded By: anonymousSTUDENTS-HUB.com

12. Cursors and Asynctasks: Connecting to Databases
The story so far...
We’ll change the app to use the database
The current DrinkActivity code
Get data from the database with a cursor

Cursors give you access to database data
A query lets you say what records you want from the database

Specify the table and columns
Declare any conditions that restrict your selection
Other stuff you can use queries for

The SQLiteDatabase query() method lets you build SQL using a query builder
Specifying table and columns

Restrict your query by applying conditions
Applying multiple conditions to your query

You specify conditions as String values
Order data in your query
Using SQL functions in queries
SQL GROUP BY and HAVING clauses
Get a reference to the database
getReadableDatabase() versus getWritableDatabase()
getReadableDatabase()
getWritableDatabase()
The code for getting a cursor

What the code does
To read a record from a cursor, you first need to navigate to it
Navigating cursors
Getting cursor values

Finally, close the cursor and database
The DrinkActivity code
What we’ve done so far
The current DrinkCategoryActivity code
How do we replace the array data in the ListView?
A CursorAdapter reads just enough data
The story continues
A SimpleCursorAdapter maps data to views

First, create the cursor
Creating the SimpleCursorAdapter
Closing the cursor and database
The revised code for DrinkCategoryActivity

Uploaded By: anonymousSTUDENTS-HUB.com

Test drive the app
Where we’ve got to

Put important information in the top-level activity
Add favorites to DrinkActivity
Add a new column to the cursor
Respond to clicks to update the database
The DrinkActivity code
Display favorites in TopLevelActivity
Display the favorite drinks in activity_top_level.xml
What changes are needed for TopLevelActivity.java
The new top-level activity code
Test drive the app
Cursors don’t automatically refresh
Change the cursor with changeCursor()
The revised TopLevelActivity.java code
Test drive the app
Databases can make your app go in sloooo-moooo....

Life is better when threads work together
What code goes on which thread?
AsyncTask performs asynchronous tasks
The onPreExecute() method
The doInBackground() method
The onProgressUpdate() method
The onPostExecute() method
The AsyncTask class
Execute the AsyncTask
The DrinkActivity.java code
A summary of the AsyncTask steps
Your Android Toolbox

13. Services: At Your Service
Services work behind the scenes

There are two types of service
The started service app

Create the project
We’re going to create an IntentService
The IntentService from 50,000 feet
How to log messages
The full DelayedMessageService code
You declare services in AndroidManifest.xml
Add a button to activity_main.xml

Uploaded By: anonymousSTUDENTS-HUB.com

You start a service using startService()
Test drive the app
We want to send a message to the screen

Screen updates require the main thread
onStartCommand() runs on the main thread
The full DelayedMessageService.java code
The application context
Test drive the app
Can we improve on using Toasts?
How you use the notification service
You create notifications using a notification builder
Getting your notification to start an activity

1. Create an explicit intent
2. Pass the intent to the TaskStackBuilder
3. Get the pending intent from the TaskStackBuilder
4. Add the intent to the notification

Send the notification using the notification service
The full code for DelayedMessageService.java
What happens when you run the code
The story continues
Test drive the app
Bound services are more interactive

How the odometer app will work
The steps needed to create the OdometerService
Create a new Odometer project
How binding works
Define the Binder
Get the service to do something
The Service class has four key methods
Location, location, location...
Add the LocationListener to the service
Registering the LocationListener
Tell the activity the distance traveled
The full OdometerService.java code
Update AndroidManifest.xml
Where we’ve got to
Update MainActivity’s layout
Create a ServiceConnection
Bind to the service when the activity starts

Unbind from the service when the activity stops

Uploaded By: anonymousSTUDENTS-HUB.com

Display the distance traveled
The full MainActivity.java code
What happens when you run the code
The story continues
Test drive the app
Your Android Toolbox

14. Material Design: Living in a Material World
Welcome to Material Design
CardViews and RecyclerViews

from this:
to this:

The Pizza app structure
Add the pizza data

Add the Pizza class
Add the support libraries
Create the CardView
The full card_captioned_image.xml code
RecyclerViews use RecyclerView.Adapters
Create the basic adapter
Define the adapter’s ViewHolder
Create the ViewHolders
Each card view displays an image and a caption

Create the constructor
Add the data to the card views
The full code for CaptionedImagesAdapter.java
Create the recycler view
Add the RecyclerView to the layout

Using the adapter
The PizzaMaterialFragment.java code
A RecyclerView uses a layout manager to arrange its views
Specifying the layout manager
The full PizzaMaterialFragment.java code
Get MainActivity to use the new PizzaMaterialFragment
What happens when the code runs
The story continues
Test drive the app
Where we’ve got to
Create PizzaDetailActivity
What PizzaDetailActivity.java needs to do

Update AndroidManifest.xml

Uploaded By: anonymousSTUDENTS-HUB.com

The code for PizzaDetailActivity.java
Getting a RecyclerView to respond to clicks
You can listen to views from the adapter
Keep your adapters reusable

Decouple your adapter with an interface
Add the interface to the adapter
Implement the listener in PizzaMaterialFragment.java
Test drive the app
Bring the content forward
The full code for fragment_top.xml
The full code for TopFragment.java
Test drive the app
Your Android Toolbox

Uploaded By: anonymousSTUDENTS-HUB.com

I. Leaving town...
A. ART: The Android Runtime

What is the Android runtime (ART)?
ART is very different from the JVM
How Android runs an APK file

Performance and size
Security

B. ADB: The Android Debug Bridge
adb: your command-line pal
Running a shell
Get the output from logcat

Copying files to/from your device
And much, much more...

C. The Emulator: The Android Emulator
Why the emulator is so slow
How to speed up your Android development

1. Use a real device
2. Use an emulator snapshot
3. Use hardware acceleration

D. Leftovers: The Top Ten Things (we didn’t cover)
1. Distributing your app

Preparing your app for release
Releasing your app

2. Content providers
3. The WebView class
4. Animation

Property animation
View animations
Activity transitions

5. Maps
6. Cursor loaders
7. Broadcast receivers
8. App widgets
9. NinePatch graphics
10. Testing

E. O’reilly®: Android Development
What will you learn from this book?
Why does this book look so different?

Index
About the Authors

Uploaded By: anonymousSTUDENTS-HUB.com

Special Upgrade Offer
Copyright

Uploaded By: anonymousSTUDENTS-HUB.com

	Head First: Android Development
	Dedication
	Authors of Head First Android Development
	How to Use This Book: Intro
	Who is this book for?
	Who should probably back away from this book?

	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read me
	The technical review team
	Acknowledgments
	Safari® Books Online

	1. Getting Started: Diving In
	Welcome to Androidville
	Layouts define what each screen looks like
	Java code defines what the app should do
	Sometimes extra resources are needed too

	The Android platform dissected
	Here’s what we’re going to do
	Your development environment
	The Android SDK
	Android Studio is a special version of IntelliJ IDEA

	Install Java
	Then install Android Studio

	Build a basic app
	Let’s build the basic app
	1. Create a new project
	2. Configure the project
	3. Specify the API level

	Activities and layouts from 50,000 feet
	Building a basic app (continued)
	4. Create an activity

	Building a basic app (continued)
	5. Configure the activity

	You’ve just created your first Android app
	Android Studio creates a complete folder structure for you
	The folder structure includes different types of files

	Useful files in your project
	Edit code with the Android Studio editors
	The code editor
	The design editor

	Run the app in the Android emulator
	So what does the emulator look like?

	Creating an Android Virtual Device
	Open the Android Virtual Device Manager
	Select the hardware
	Select a system image
	Verify the AVD configuration

	Run the app in the emulator
	Compile, package, deploy and run

	You can watch progress in the console
	Test drive
	What just happened?
	Refining the app
	The app has one activity and one layout
	The activity controls what the app does
	The layout controls the app appearance

	What’s in the layout?
	The design editor
	The code editor

	activity_main.xml has two elements
	The layout file contains a reference to a string, not the string itself
	Let’s look in the strings.xml file
	Update strings.xml to change the text

	Take the app for a test drive
	Your Android Toolbox

	2. Building Interactive Apps: Apps That Do Something
	You’re going to build a Beer Adviser app
	Here’s what you need to do
	Create the project
	We’ve created a default activity and layout
	Adding components with the design editor
	Changes in the design editor are reflected in the XML

	activity_find_beer.xml has a new button
	Buttons and text views are subclasses of the same Android View class
	android:id
	android:text
	android:layout_width, android:layout_height

	A closer look at the layout code
	The RelativeLayout element
	The TextView element
	The Button element

	Changes to the XML...
	...are reflected in the design editor
	Use string resources rather than hardcoding the text
	Change the layout to use the string resources
	Let’s take the app for a test drive
	Here’s what we’ve done so far

	Add values to the spinner
	Adding an array resource is similar to adding a string

	Get the spinner to reference a string-array
	Test drive the spinner
	We need to make the button do something
	Make the button call a method
	Use onClick to say which method the button calls

	What activity code looks like
	Add an onClickFindBeer() method to the activity
	onClickFindBeer() needs to do something
	Use findViewById() to get a reference to a view

	Once you have a View, you can access its methods
	Setting the text in a TextView
	Retrieving the selected value in a spinner

	Update the activity code
	The first version of the activity
	What the code does
	Test drive the changes
	Building the custom Java class
	Custom Java class spec
	Build and test the Java class

	Enhance the activity to call the custom Java class so that we can get REAL advice
	Activity code version 2
	What happens when you run the code
	Test drive your app
	Your Android Toolbox

	3. Multiple Activities and Intents: State Your Intent
	Apps can contain more than one activity
	Here are the steps

	Here’s the app structure
	Create the project
	Update the layout
	Update strings.xml...
	... and add the method to the activity

	Create the second activity and layout
	What just happened?
	Welcome to the Android manifest file
	Every activity needs to be declared
	An intent is a type of message
	Use an intent to start the second activity
	What happens when you run the app
	The story continues...
	Test drive the app
	Pass text to a second activity
	Let’s start with the layout

	Update the text view properties
	putExtra() puts extra information in an intent
	How to retrieve extra information from an intent

	Update the CreateMessageActivity code
	Get ReceiveMessageActivity to use the information in the intent
	What happens when the user clicks the Send Message button
	Test drive the app
	We can change the app to send messages to other people
	How Android apps work
	Intents can start activities in other apps

	But we don’t know what apps are on the device
	Here’s what you’re going to do

	Create an intent that specifies an action
	How to create the intent
	Adding extra information

	Change the intent to use an action
	What happens when the code runs
	The story continues...
	The intent filter tells Android which activities can handle which actions
	How Android uses the intent filter
	You need to run your app on a REAL device
	1. Enable USB debugging on your device
	2. Set up your system to detect your device
	3. Plug your device into your computer with a USB cable
	4. Run your app in Android Studio as normal
	And here’s the app running on the physical device

	Test drive the app
	If you have one activity
	If you have more than one activity

	What if you ALWAYS want your users to choose an activity?
	Intent.createChooser() displays a chooser dialog

	What happens when you call createChooser()
	The story continues...
	Change the code to create a chooser
	Update strings.xml...
	... and update the onSendMessage() method

	Test drive the app
	If you have one activity
	If you have more than one activity

	If you have NO matching activities
	Your Android Toolbox

	4. The Activity Lifecycle: Being an Activity
	How do activities really work?
	The Stopwatch app
	Build the app

	The stopwatch layout code
	The stopwatch strings.xml file

	How the activity code will work
	Add code for the buttons
	The runTimer() method
	Handlers allow you to schedule code
	The post() method
	The postDelayed() method

	The full runTimer() code
	The full StopwatchActivity code
	What happens when you run the app
	The story continues
	Test drive the app
	But there’s just one problem...

	What just happened?
	Rotating the screen changes the device configuration
	From birth to death: the states of an activity
	The activity lifecycle: from create to destroy
	Your activity inherits the lifecycle methods
	How do we deal with configuration changes?
	Bypass re-creating the activity

	Or save the current state...
	...then restore the state in onCreate()
	What happens when you run the app
	The story continues
	Test drive the app
	There’s more to an activity’s life than create and destroy
	Start, stop, and restart

	The activity lifecycle: the visible lifetime
	We need to implement two more lifecycle methods
	Implement onStop() to stop the timer

	The updated StopwatchActivity code
	What happens when you run the app
	Test drive the app
	But what if an app is only partially visible?
	The activity lifecycle: the foreground lifetime
	Stop the stopwatch if the activity’s paused
	What happens when you run the app
	Test drive the app
	The complete activity code
	Your handy guide to the lifecycle methods
	Your Android Toolbox

	5. The User Interface: Enjoy the View
	Your user interface is made up of layouts and GUI components
	Three key layouts: relative, linear, and grid
	RelativeLayout
	LinearLayout
	GridLayout

	RelativeLayout displays views in relative positions
	You MUST set the layout width and height

	Adding padding
	Positioning views relative to the parent layout
	Attributes for positioning views relative to the parent layout
	Positioning views relative to other views
	Attributes for positioning views relative to other views
	Use margins to add distance between views
	RelativeLayout: a summary
	How you specify a relative layout
	You can position views relative to the layout of another view
	You can add margins to views to increase the space around them

	LinearLayout displays views in a single row or column
	How you define a linear layout

	A linear layout displays views in the order they appear in the layout XML
	Let’s change up a basic linear layout
	Here’s the starting point for the linear layout
	Make a view streeeeetch by adding weight
	Adding weight to one view
	Adding weight to multiple views
	Use gravity to specify where text appears in a view
	Test drive
	Using the android:gravity attribute: a list of values
	Move the button to the right with layout-gravity
	More values you can use with the android:layout-gravity attribute
	The full linear layout code
	LinearLayout: a summary
	How you specify a linear layout
	Views get displayed in the order they appear
	Stretch views using weight
	Use gravity to specify where a view’s contents appear in a view
	Use layout-gravity to specify where a view appears in its enclosing space

	GridLayout displays views in a grid
	How you define a grid layout

	Adding views to the grid layout
	Let’s create a new grid layout
	Here’s what we’re going to do

	We’ll start with a sketch
	The grid layout needs two columns

	Row 0: add views to specific rows and columns
	Row 1: make a view span multiple columns
	Row 2: make a view span multiple columns
	The full code for the grid layout
	GridLayout: a summary
	How you specify a grid layout
	Specify which row and column each view should start in
	Specify how many columns each view should span

	Layouts and GUI components have a lot in common
	GUI components are a type of View
	Layouts are a type of View called a ViewGroup

	What being a view buys you
	Getting and setting properties
	Size and position
	Focus handling
	Event handling and listeners

	A layout is really a hierarchy of Views
	Playing with views
	Text view
	Defining it in XML
	Using it in your activity code

	Edit Text
	Defining it in XML
	Using it in your activity code

	Button
	Defining it in XML
	Using it in your activity code

	Toggle button
	Defining it in XML
	Using it in your activity code

	Switch
	Defining it in XML
	Using it in your activity code

	Check boxes
	Defining them in XML
	Using them in your activity code

	Radio buttons
	Defining them in XML
	Using them in your activity code

	Spinner
	Defining it in XML
	Using it in your activity code

	Image views
	Adding an image to your project

	Images: the layout XML
	Using it in your activity code

	Adding images to buttons
	Displaying text and an image on a button

	Image Button
	Defining it in XML
	Using it in your activity code

	Scroll views
	Toasts
	Using it in your activity code

	Your Android Toolbox

	6. List Views and Adapters: Getting Organized
	Every app starts with ideas
	Categorize your ideas: top-level, category, and detail/edit activities
	Top-level activities
	Category activities
	Detail/edit activities

	Navigating through the activities
	Top-level activities go at the top
	Category activities go between top-level and detail/edit activities
	Detail/edit activities

	Use ListViews to navigate to data
	We’re going to build part of the Starbuzz app
	The top-level activity
	The drinks category activity

	The drink detail activity
	How the user navigates through the app

	The Starbuzz app structure
	Here are the steps
	Create the project

	The Drink class
	The image files
	The top-level layout contains an image and a list
	Use a list view to display the list of options
	How to define a list view in XML

	The full top-level layout code
	Test drive
	Get ListViews to respond to clicks with a Listener
	OnItemClickListener listens for item clicks

	Set the listener to the list view
	What happens when you run the code

	The full TopLevelActivity code
	Where we’ve got to
	A category activity displays the data for a single category
	A ListActivity is an activity that contains only a list
	How to create a list activity
	android:entries works for static array data held in strings.xml
	For nonstatic data, use an adapter

	Connect list views to arrays with an array adapter
	Add the array adapter to DrinkCategoryActivity
	What happens when you run the code
	Test drive the app
	App review: where we’ve got to
	How we handled clicks in TopLevelActivity
	ListActivity implements an item click listener by default

	Pass data to an activity using the ListActivity onListItemClick() method
	The full DrinkCategoryActivity code
	A detail activity displays data for a single record
	Retrieve data from the intent
	Update the views with the data
	The DrinkActivity code
	What happens when you run the app
	The story continues
	Test drive the app
	Your Android Toolbox

	7. Fragments: Make it Modular
	Your app needs to look great on all devices
	On a phone:
	On a tablet:

	Your app may need to behave differently too
	On a phone:
	On a tablet:
	But that means you might duplicate code

	Fragments allow you to reuse code
	A fragment has a layout

	The Workout app structure
	Here are the steps
	Create the project

	The Workout class
	How to add a fragment to your project
	Fragment layout code looks just like activity layout code
	What fragment code looks like
	Adding a fragment to an activity’s layout
	Passing the workout ID to the fragment
	Get the activity to set the workout ID
	Activity states revisited
	The fragment lifecycle
	Your fragment inherits the lifecycle methods
	Set the view’s values in the fragment’s onStart() method
	Test drive the app
	What happens when you run the app

	Where we’ve got to
	We need to create a fragment with a list
	A ListFragment is a fragment that contains only a list
	How to create a list fragment
	We’ll use an ArrayAdapter to set the values in the ListView
	A Fragment isn’t a type of Context

	The updated WorkoutListFragment code
	Display WorkoutListFragment in the MainActivity layout
	Test drive the app
	We need to get WorkoutDetailFragment to respond to clicks in WorkoutListFragment

	Wiring up the list to the detail
	We need to decouple the fragment with an interface
	But when will the activity say that it’s listening?

	First, add the interface to the list fragment
	Then make the activity implement the interface
	But how do we update the workout details?

	You want fragments to work with the back button
	Welcome to the back stack

	Don’t update—instead, replace
	Using fragment transactions
	The updated MainActivity code
	Test drive the app
	Rotating the device breaks the app
	The WorkoutDetailFragment code
	Phone versus tablet
	On a tablet
	On a phone

	The phone and tablet app structures
	On a tablet
	On a phone

	Put screen-specific resources in screen-specific folders
	The different folder options
	Tablets use layouts in the layout-large folder
	The MainActivity phone layout
	Phones will use DetailActivity to display details of the workout
	The full DetailActivity code
	Use layout differences to tell which layout the device is using
	The revised MainActivity code
	Test drive the app
	Your Android Toolbox
	Fragment Lifecycle Methods

	8. Nested Fragments: Dealing with Children
	Creating nested fragments
	We’ll add a new stopwatch fragment

	Fragments and activities have similar lifecycles...
	... but the methods are slightly different

	The StopwatchFragment code
	The StopwatchFragment layout
	The StopwatchFragment layout uses String values

	Adding the stopwatch fragment to WorkoutDetailFragment
	We need to add it programmatically

	Add a FrameLayout where the fragment should appear
	Then display the fragment in Java code
	getFragmentManager() creates transactions at the activity lavel
	Beware the back button

	Nested fragments need nested transactions
	Display the fragment in its parent’s onCreateView() method
	The full WorkoutDetailFragment code
	Test drive the app
	But there’s a problem if you try to interact with the stopwatch

	Why does the app crash if you press a button?
	Let’s look at the StopwatchFragment layout code
	The onClick attribute calls methods in the activity, not the fragment
	How to make button clicks call methods in the fragment

	First, remove the onClick attributes from the fragment’s layout
	Make the fragment implement OnClickListener
	The StopwatchFragment onClick() method

	Attach the OnClickListener to the buttons
	The StopwatchFragment code
	Test drive the app
	But there’s a problem when you rotate the device

	Rotating the device re-creates the activity
	What happens to the fragment when you rotate the device

	onCreateView() runs AFTER the transactions have been replayed
	The WorkoutDetailFragment code
	Test drive the app
	Your Android Toolbox

	9. Action Bars: Taking Shortcuts
	Great apps have a clear structure
	Top-level screens
	Category screens
	Detail/edit screens
	They also have great shortcuts

	Different types of navigation
	Using actions for navigation

	Let’s start with the action bar
	API level 11 and above
	API level 7 or above

	The Android support libraries
	Your project may include support libraries
	We’ll get the app to use up to date themes
	Change MainActivity to use an Activity

	Apply a theme in AndroidManifest.xml
	Define styles in style resource files
	Set the default theme in styles.xml
	Use a Material theme on newer devices

	What happens when you run the app
	Test drive the app
	Adding action items to the action bar
	The menu resource file
	The menu showAsAction attribute
	Add a new action item
	Inflate the menu in the activity with the onCreateOptionsMenu() method
	React to action item clicks with the onOptionsItemSelected() method
	Create OrderActivity
	Start OrderActivity with the Create Order action item
	The full MainActivity.java code
	Test drive the app
	Sharing content on the action bar
	You share the content with an intent

	Add a share action provider to menu_main.xml
	Specify the content with an intent
	The full MainActivity.java code
	Test drive the app
	Enabling Up navigation
	Setting an activity’s parent
	Adding the Up button
	Test drive the app
	Your Android Toolbox

	10. Navigation Drawers: Going Places
	The Pizza app revisited
	Navigation drawers deconstructed
	The Pizza app structure
	Create TopFragment
	Create PizzaFragment
	Create PastaFragment
	Create StoresFragment
	Add the DrawerLayout
	The full code for activity_main.xml
	Initialize the drawer’s list
	Use an OnItemClickListener to respond to clicks in the list view
	The selectItem() method so far
	Changing the action bar title
	Closing the navigation drawer
	The updated MainActivity.java code
	Get the drawer to open and close
	Using an ActionBarDrawerToggle
	Modifying action bar items at runtime
	The updated MainActivity.java code
	Enable the drawer to open and close
	Syncing the ActionBarDrawerToggle state
	The updated MainActivity.java code
	Test drive the app
	The title and fragment are getting out of sync
	Dealing with configuration changes
	Reacting to changes on the back stack
	Adding tags to fragments
	Find the fragment using its tag
	The full MainActivity.java code
	Test drive the app
	Your Android Toolbox

	11. SQLite Databases: Fire Up the Database
	Back to Starbuzz
	Android uses SQLite databases to persist data
	Where’s the database stored?

	Android comes with SQLite classes
	The SQLite Helper
	Cursors
	The SQLite Database

	The current Starbuzz app structure
	We’ll change the app to use a database
	The SQLite helper manages your database
	Create the SQLite helper
	1. Specify the database
	Inside a SQLite database
	Storage classes and data-types

	You create tables using Structured Query Language (SQL)
	The onCreate() method is called when the database is created

	Insert data using the insert() method
	Update records with the update() method
	Multiple conditions
	Delete records with the delete() method

	The StarbuzzDatabaseHelper code
	What the SQLite helper code does
	What if you need to change the database?
	SQLite databases have a version number
	Upgrading the database: an overview
	The story continues....
	How the SQLite helper makes decisions
	Upgrade your database with onUpgrade()
	Downgrade your database with onDowngrade()
	Let’s upgrade the database
	Upgrading an existing database
	Add new columns to tables using SQL

	Renaming tables
	Delete tables by dropping them
	Execute the SQL using execSQL()

	The full SQLite helper code
	The SQLite helper code (continued)
	What happens when the code runs
	Your Android Toolbox

	12. Cursors and Asynctasks: Connecting to Databases
	The story so far...
	We’ll change the app to use the database
	The current DrinkActivity code
	Get data from the database with a cursor
	Cursors give you access to database data

	A query lets you say what records you want from the database
	Specify the table and columns
	Declare any conditions that restrict your selection
	Other stuff you can use queries for

	The SQLiteDatabase query() method lets you build SQL using a query builder
	Specifying table and columns
	Restrict your query by applying conditions

	Applying multiple conditions to your query
	You specify conditions as String values

	Order data in your query
	Using SQL functions in queries
	SQL GROUP BY and HAVING clauses
	Get a reference to the database
	getReadableDatabase() versus getWritableDatabase()
	getReadableDatabase()
	getWritableDatabase()
	The code for getting a cursor
	What the code does

	To read a record from a cursor, you first need to navigate to it
	Navigating cursors
	Getting cursor values
	Finally, close the cursor and database

	The DrinkActivity code
	What we’ve done so far
	The current DrinkCategoryActivity code
	How do we replace the array data in the ListView?
	A CursorAdapter reads just enough data
	The story continues
	A SimpleCursorAdapter maps data to views
	First, create the cursor

	Creating the SimpleCursorAdapter
	Closing the cursor and database
	The revised code for DrinkCategoryActivity
	Test drive the app
	Where we’ve got to

	Put important information in the top-level activity
	Add favorites to DrinkActivity
	Add a new column to the cursor
	Respond to clicks to update the database
	The DrinkActivity code
	Display favorites in TopLevelActivity
	Display the favorite drinks in activity_top_level.xml
	What changes are needed for TopLevelActivity.java
	The new top-level activity code
	Test drive the app
	Cursors don’t automatically refresh
	Change the cursor with changeCursor()
	The revised TopLevelActivity.java code
	Test drive the app
	Databases can make your app go in sloooo-moooo....
	Life is better when threads work together

	What code goes on which thread?
	AsyncTask performs asynchronous tasks
	The onPreExecute() method
	The doInBackground() method
	The onProgressUpdate() method
	The onPostExecute() method
	The AsyncTask class
	Execute the AsyncTask
	The DrinkActivity.java code
	A summary of the AsyncTask steps
	Your Android Toolbox

	13. Services: At Your Service
	Services work behind the scenes
	There are two types of service

	The started service app
	Create the project

	We’re going to create an IntentService
	The IntentService from 50,000 feet
	How to log messages
	The full DelayedMessageService code
	You declare services in AndroidManifest.xml
	Add a button to activity_main.xml
	You start a service using startService()
	Test drive the app
	We want to send a message to the screen
	Screen updates require the main thread

	onStartCommand() runs on the main thread
	The full DelayedMessageService.java code
	The application context
	Test drive the app
	Can we improve on using Toasts?
	How you use the notification service
	You create notifications using a notification builder
	Getting your notification to start an activity
	1. Create an explicit intent
	2. Pass the intent to the TaskStackBuilder
	3. Get the pending intent from the TaskStackBuilder
	4. Add the intent to the notification

	Send the notification using the notification service
	The full code for DelayedMessageService.java
	What happens when you run the code
	The story continues
	Test drive the app
	Bound services are more interactive
	How the odometer app will work

	The steps needed to create the OdometerService
	Create a new Odometer project
	How binding works
	Define the Binder
	Get the service to do something
	The Service class has four key methods
	Location, location, location...
	Add the LocationListener to the service
	Registering the LocationListener
	Tell the activity the distance traveled
	The full OdometerService.java code
	Update AndroidManifest.xml
	Where we’ve got to
	Update MainActivity’s layout
	Create a ServiceConnection
	Bind to the service when the activity starts
	Unbind from the service when the activity stops

	Display the distance traveled
	The full MainActivity.java code
	What happens when you run the code
	The story continues
	Test drive the app
	Your Android Toolbox

	14. Material Design: Living in a Material World
	Welcome to Material Design
	CardViews and RecyclerViews
	from this:
	to this:

	The Pizza app structure
	Add the pizza data
	Add the Pizza class

	Add the support libraries
	Create the CardView
	The full card_captioned_image.xml code
	RecyclerViews use RecyclerView.Adapters
	Create the basic adapter
	Define the adapter’s ViewHolder
	Create the ViewHolders
	Each card view displays an image and a caption
	Create the constructor

	Add the data to the card views
	The full code for CaptionedImagesAdapter.java
	Create the recycler view
	Add the RecyclerView to the layout
	Using the adapter

	The PizzaMaterialFragment.java code
	A RecyclerView uses a layout manager to arrange its views
	Specifying the layout manager
	The full PizzaMaterialFragment.java code
	Get MainActivity to use the new PizzaMaterialFragment
	What happens when the code runs
	The story continues
	Test drive the app
	Where we’ve got to
	Create PizzaDetailActivity
	What PizzaDetailActivity.java needs to do
	Update AndroidManifest.xml

	The code for PizzaDetailActivity.java
	Getting a RecyclerView to respond to clicks
	You can listen to views from the adapter
	Keep your adapters reusable
	Decouple your adapter with an interface

	Add the interface to the adapter
	Implement the listener in PizzaMaterialFragment.java
	Test drive the app
	Bring the content forward
	The full code for fragment_top.xml
	The full code for TopFragment.java
	Test drive the app
	Your Android Toolbox

	I. Leaving town...
	A. ART: The Android Runtime
	What is the Android runtime (ART)?
	ART is very different from the JVM
	How Android runs an APK file

	Performance and size
	Security

	B. ADB: The Android Debug Bridge
	adb: your command-line pal
	Running a shell
	Get the output from logcat
	Copying files to/from your device

	And much, much more...

	C. The Emulator: The Android Emulator
	Why the emulator is so slow
	How to speed up your Android development
	1. Use a real device
	2. Use an emulator snapshot
	3. Use hardware acceleration

	D. Leftovers: The Top Ten Things (we didn’t cover)
	1. Distributing your app
	Preparing your app for release
	Releasing your app

	2. Content providers
	3. The WebView class
	4. Animation
	Property animation
	View animations
	Activity transitions

	5. Maps
	6. Cursor loaders
	7. Broadcast receivers
	8. App widgets
	9. NinePatch graphics
	10. Testing

	E. O’reilly®: Android Development
	What will you learn from this book?
	Why does this book look so different?

	Index
	About the Authors
	Copyright

