Red Sol.

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Probability and Statistical Engineering, ENEE2307

Dr. Mohammad K. Jubran *Quiz#1*

Date: Name:

Time: 25 minutes Student #:

Problem 1 (10 pts):

Suppose we roll two dice; a red dice and a blue dice. The red dice is fair. However, the probability of observing an even number is double the probability of observing an odd number in the blue dice. Let A = "The numbers observed on both dice are the same". Compute P(A).

Problem 2 (5+5 pts):

Students travel to Birzeit University by either taxi or busses. The probability that a student who travels by taxi arrives late is 4%. And the probability that a student who travels by a bus arrives late is 10%. From previous experience, the probability students arrive late to university is 6%. Determine the following:

a) The probability a student travels to university by busses? $\rho(T) + \rho(B) = 1 \rightarrow \rho(T) = 1 - \rho(B) \qquad T \qquad D(L/T) + \rho(B) \qquad P(T) \qquad P(T)$ $\rho(L) = \rho(T) \rho(L/T) + \rho(B) \rho(L/B) \qquad P(T) \qquad P(T)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(L/B) \qquad P(D)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(L/B) \qquad P(D)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(B) \qquad P(D)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(B) \qquad P(D)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(B) \qquad P(D)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(B) \qquad P(D)$ $\rho(L) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(L/T) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} -\rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} \rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} \rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} \rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} \rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} \rho(B) \int_{a}^{b} \rho(B) + \rho(B) \rho(B)$ $\rho(B) = \sum_{i=1}^{n} \rho(B) \int_{a}^{b} \rho(B) \rho(B)$ $\rho(B) = \sum_{$

b) If a student is late, what is the probability that the student traveled through Busses?

$$p(B/L) = p(L/B) p(D)$$

$$= 0.1 \pm \frac{1}{3} = \frac{10}{18} = \frac{5}{9}$$