Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

NETWORKING

A TOP-DOWN APPROACH

@ = Eighth Ediition —

— = I

= If you use these slides (e.g., in a class) that you mention their
source (after all, we'd like people to use our book!)

= If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our

ST q*w”

copyright of this material. Computer Networking: A
For a revision history, see the slide note for this page. TO,D-DO wh AppI’OGCh
Thanks and enjoy! JFK/KWR 8th edition

All material copyright 1996-2023 Jim Kurose, Keith Ross
J.F Kurose and K.W. Ross, All Rights Reserved Pearson, 2020

STUDENTS-HUB.com Uploaded By: anenymous

Internet protocol stack

" application: supporting network applications
e HTTP, SMTP, IMAP

" transport: process-process data transfer
* TCP, UDP

= network: routing of datagrams from source to
destination

* |IP, routing protocols

" [ink: data transfer between neighboring
network elements
* Ethernet, 802.11 (WiFi), PPP

" physical: bits “on the wire”

STUDENTS-HUB.com

application

transport

network

link

physical

Uploaded By: anonymous

Transport layer: overview

Our goal:
" understand principles " learn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport,
* multiplexing, best-effort service
demultiplexing * TCP: reliable, flow- and congestion-
e reliable data transfer controlled connection-oriented

* flow control transport

e congestion control

STUDENTS-HUB.com Uploaded By: anenymous

Transport layer: roadmap

" Transport-layer services

=" Multiplexing and demultiplexing

= Connectionless transport: UDP

" Principles of reliable data transfer

= Connection-oriented transport: TCP
" Principles of congestion control

= TCP congestion control

" Evolution of transport-layer
functionality

STUDENTS-HUB.com Uploaded By: anenymous

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

" transport protocols actions in end
systems:

* sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

= two transport protocols available to
Internet applications

* TCP, UDP
STUDENTS-HUB.com

application

transport

Uploaded By: anenymous

Transport vs. network layer services and protocols

—— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

" hosts = houses
" processes = kids

" app messages = letters in
envelopes

THERE was an old woman who lived in a shee,
She had so many children, she didn’t know whl.!‘io do.

* She gave them some milk and nice butter bread,
She kissed them all round and put them to bed.

-

STUDENTS-HUB.com | Uploaded By: anenymous

Transport vs. network layer services and protocols

—— household analogy:

O . I
transport layer: logical 12 kids in Ann’s house sending

communication between letters to 12 kids in Bill’s
processes house:
* relies on, enhances, network " hosts = houses
layer services " processes = kids
" app messages = letters in
envelopes

= network layer: logical
communication between
hosts

STUDENTS-HUB.com Uploaded By: anenymous

Transport Layer Actions

Sender:
= js passed an application- app. msg
layer message
= determines segment T, |app. msg

header fields values
" creates segment

= passes segment to IP

STUDENTS-HUB.com Uploaded By: anenymous

Transport Layer Actions

Receiver:
= receives segment from IP
- = checks header values
C)!pp- msg = extracts application-layer

message

= demultiplexes message up
to application via socket

T, |app. msg

STUDENTS-HUB.com Uploaded By: anenymous

Two principal Internet transport protocols

application

transport

networ
data lin

" TCP: Transmission Control Protocol
* reliable, in-order delivery
e congestion control
* flow control
* connection setup
= UDP: User Datagram Protocol
* unreliable, unordered delivery
* no-frills extension of “best-effort” IP
" services not available:

e delay guarantees
* bandwidth guarantees

| data link
{ physical

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 3: roadmap

" Multiplexing and demultiplexing

STUDENTS-HUB.com Uploaded By: anonymous

Multiplexing/demultiplexing

— multiplexing as sender: ——

— demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

application application [&] socket
| = Q process
netwark trandport
7K net\jork
- physital ik w
v T physical p

STUDENTS-HUB.com Uploaded By: anonymous

HTTP server

client

application

tra nsport‘

HTTP msg

H, HTTP msg

H,H, HTTP msg |

H,H; HTTP msg |
link
physical

«— |H H, HTTP msg

STUDENTS-HUB.com

application

e

transport

network

link

physical

Uploaded By: anonymous

Q: how did transport layer know to deliver message to Firefox
browser process rather than Netflix process or Skype process?

client
S application ‘ ‘ application
NETFLIX <)
- transport
network
‘ link '
g physical u

STUDENTS-HUB.com Uploaded By: anonymous

NP4
@

|

de-multiplexing

STUDENTS-HUB.com Uploaded By: anonymous

NETFLIX

de-multiplexing

STUDENTS-HUB.com Uploaded By: anonymous

wnhtown ' S yis

--III.”“ .h-i

STUDENTS-HUB.com Uploaded By: anonymous

IvVicil |

“heckpoil

.9;‘~ y

d By: anonymous

N4
O

|

multiplexing

STUDENTS-HUB.com Uploaded By: anonymous

NETFLIX

multiplexing

STUDENTS-HUB.com Uploaded By: anonymous

Multiplexing

How demultiplexing works

" host receives IP datagrams

e each datagram has source IP
address, destination IP address

e each datagram carries one
transport-layer segment

e each segment has source,
destination port number

" host uses IP addresses & port
numbers to direct segment to
appropriate socket

STUDENTS-HUB.com

32 bits

source port dest port #

—

other header fields

application
data

(payload)

TCP/UDP segment format

Uploaded By: anonymous

Connectionless demultiplexing

Recall:

= when creating socket, must
specify host-local port #:

= when creating datagram to
send into UDP socket, must
specify
e destination IP address
 destination port #

STUDENTS-HUB.com

when receiving host receives
UDP segment:

* checks destination port # in
segment

 directs UDP segment to
socket with that port #

!

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same

socket at receiving host

Uploaded By: anonymous

Connectionless demultiplexing: an example

DatagramSocket serverSocket =
new DatagramSocket (6428) ;

DatagramSocket mySocket2 =

DatagramSocket mySocketl =
new DatagramSocket (9157) ;

new DatagramSocket (5775) ;

application
application <:E;i:> application
£ 4]
N tramsport v
tranmgport Aetwork trangport
nefwork link network
link , link
- : physicgl :
phydical phygical \
~ +» =
source port: 6428 source port: ?
. dest port: 9157 ! dest port: ?
> le =
source port: 9157 source port: ?
dest port: 6428 dest port: ?

STUDENTS-HUB.com Uploaded By: anonymous

Connection-oriented demultiplexing

= TCP socket identified by
4-tuple:
e source |IP address
* source port number
 dest IP address
e dest port number

" demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

STUDENTS-HUB.com

" server may support many
simultaneous TCP sockets:

e each socket identified by its
owhn 4-tuple

e each socket associated with
a different connecting client

Uploaded By: anonymous

Connection-oriented demultiplexing: example

-/

APACHE

HTTP SERVER
application application
4 randport
traanort rHetwnork _‘_Qmmspo_rtA_
netyork . lidk network
.
5 ‘{ Phypical I server: P physical '! ’)
e address B o
host: IP source IP,port: B,80 host: IP
address A dest IP,port: A,9157 address C

source IP,popt-#7¢
dest IP{port: B,80

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

STUDENTS-HUB.com

source IPpert 915/

dest If,port: B,80

Uploaded By: anonymous

Summary

= Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

" TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 3: roadmap

= Connectionless transport: UDP

STUDENTS-HUB.com Uploaded By: anonymous

UDP: User Datagram Protocol

= “no frills,” “bare bones”
Internet transport protocol

= “best effort” service, UDP
segments may be:

* |ost
* delivered out-of-order to app

®m connectionless:

* no handshaking between UDP
sender, receiver

e each UDP segment handled
independently of others

STUDENTS-HUB.com

- Why is there a UDP?

no connection
establishment (which can
add RTT delay)

simple: no connection state
at sender, receiver

small header size

no congestion control

= UDP can blast away as fast as
desired!

= can function in the face of
congestion

Uploaded By: anonymous

UDP: User Datagram Protocol

= UDP use:
" streaming multimedia apps (loss tolerant, rate sensitive)
= DNS
= SNMP
= HTTP/3

= if reliable transfer needed over UDP (e.g., HTTP/3):
" add needed reliability at application layer
= add congestion control at application layer

STUDENTS-HUB.com Uploaded By: anonymous

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768 J. Postel
ISI
28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1l] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. The
protocol 1is transaction oriented, and delivery and duplicate protection
are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) [2].

0 7 8 15 16 23 24 31

Fem e ——— Femm e ———— Femm e ———— Femm e ———— +

Source Destination
Port Port

Fmm e ——— Femm e ———— R Femm e ———— +
Length | Checksum |

Fmm e ——— Femm e ———— R Femm e ———— +

data octets ...

STUDENTS-HUB.com #ommommooomoomooo Uploaded By: anonymoss

UDP: Transport Layer Actions

SNMP client

application

transport
(UDP)

network (IP)
link
physical

= —

STUDENTS-HUB.com

SNMP server

application

transport
(UDP)

network (IP)

link

physical

/

Uploaded By: anonymosts

UDP: Transport Layer Actions

SNMP server
UDP sender actions:

= js passed an application- SNMP msg
layer message
= determines UDP segment UDP, [SNMP msg

header fields values
= creates UDP segment

= passes segment to IP

— /

STUDENTS-HUB.com Uploaded By: anonymoues

UDP: Transport Layer Actions

- SNMP server
SNMP client UDP receiver actions:

= receives segment from IP
= checks UDP checksum

C;NMP e header value
= extracts application-layer

message
= demultiplexes message up
to application via socket

= — _—

UDP, | SNMP msg

STUDENTS-HUB.com Uploaded By: anonymosrs

UDP segment header

32 blts

M

application
data

\Iength, in bytes of
UDP segment,

including header

\ data to/from

UDP segment format application layer

STUDENTS-HUB.com Uploaded By: anonymous

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

15t number 2nd number sum

Transmitted: 5 6 11

h 4

Received: 4 6 11
\ ¥) l_'_l
receiver-computed sender-computed
checksum checksum (as received)

0,

STUDENTS-HUB.com Uploaded By: anonymous

Internet checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender: receiver:

" treat contents of UDP = compute checksum of received
segment (including UDP header segment

fields and IP addresses) as
sequence of 16-bit integers " check if computed checksum equals

= checksum: addition (one’s checksum field value:
complement sum) of segment * not equal - error detected
content e equal - no error detected. But maybe

. ?
= checksum value out into errors nonetheless? More later

UDP checksum field

STUDENTS-HUB.com Uploaded By: anonymoes

Internet checksum: an example

example: add two 16-bit integers

111001100

1100110
1101010101010101

wraparound (1)1 01 1101110111011

sum 1 0111011101111 00
checksum 0100010001 000O0O1I1

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

STUDENTS-HUB.com Uploaded By: anonymoues

http://gaia.cs.umass.edu/kurose_ross/interactive/

Internet checksum: weak protection!

example: add two 16-bit integers

111001100 1 2 (1)
110101010 1
wraparound @1 01110111 011 71 Even though
' > numbers have
sum 101110111 1 00 [Cchanged (bit
checksum 010001000 011 flips), no change

STUDENTS-HUB.com

in checksum!

Uploaded By: anonymous

Summary: UDP

" “no frills” protocol:

e segments may be lost, delivered out of order

e best effort service: “send and hope for the best”
= UDP has its plusses:

* no setup/handshaking needed (no RTT incurred)
e can function when network service is compromised

* helps with reliability (checksum)

" build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

STUDENTS-HUB.com Uploaded By: anonymous

Chapter 3: roadmap

" Principles of reliable data transfer

STUDENTS-HUB.com Uploaded By: anonymous

Principles of reliable data transfer

" |
' sending receiving |
" process process

application data jpy

reliable service abstraction

STUDENTS-HUB.com Uploaded By: anonymous

Principles of reliable data transfer

STUDENTS-HUB.com

transport

i‘v‘ .
=, sending
process
application l

sender-side of
reliable data
transfer protocol

receiving B
process

data T

receiver-side
of reliable data
transfer protocol

transport
network

reliable service implementation

Uploaded By: anonymous

Principles of reliable data transfer

5 — &
B~ Sending recelvmg |
process Process
application l

data
transport T

receiver-side
of reliable data
transfer protocol

sender-side of
reliable data
transfer protocol

Complexity of reliable data
transfer protocol will depend
(strongly) on characteristics of

/
transport
. work
unreliable channel (lose, netwer 4_]

corrupt, reorder data?)

reliable service implementation

STUDENTS-HUB.com Uploaded By: anonymous

Principles of reliable data transfer

Sender, receiver do not know

the “state” of each other, e.g,,

was a message received?

= unless communicated via a
message

STUDENTS-HUB.com

2= sending
process
application
transport l

sender-side of
reliable data
transfer protocol

transport

network

reliable service implementation

Uploaded By: anonymous

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver_data(): called by rdt
to deliver data to upper layer

receiving Bl
process

T deliver data()

data

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

udt_ send ()] rdt rcv ()
udt_send(): called by rdt \/ rdt_rcv(): called when packet

transfer packet over TR o ' ' '
to transter packet over Bi-directional communication over arrives on receiver side of
unreliable channel to receiver unreliable channel channel

STUDENTS-HUB.com Uploaded By: anenymous

packet

Reliable data transfer: getting started

We will:

" incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow in both directions!

= use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

\

STUDENTS-HUB.com Uploaded By: anonymous

state: when in this “state”
next state uniquely
determined by next

event

rdt1.0: reliable transfer over a reliable channel

= underlying channel perfectly reliable
* no bit errors
* no loss of packets (no packets are duplicated or reordered)

= separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

7 Wait for rdt_send(data) _ rdt_rcv(packet)
sender ng:)r\?em packet = make_pkt(data) receiver extract (packet,data)

udt_send(packet) deliver_data(data)

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.0: channel with bit errors

= underlying channel may flip bits in packet
e checksum (e.g., Internet checksum) to detect bit errors

" the question: how to recover from errors?

How do humans recover from “errors” during conversation?

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.0: channel with bit errors

" underlying channel may flip bits in packet
* checksum to detect bit errors

" the question: how to recover from errors?

* acknowledgements (ACKs): receiver explicitly tells sender that pkt
received OK

* negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

* sender retransmits pkt on receipt of NAK

— stop and wait
sender sends one packet, then waits for receiver response

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.0: FSM specifications

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

STUDENTS-HUB.com Uploaded By: anonymots

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Note: “state” of receiver (did the receiver get my

message correctly?) isn’t known to sender unless

somehow communicated from receiver to sender
= that’s why we need a protocol!

STUDENTS-HUB.com

ploaded By:ano

rdt2.0: operation with no errors

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

dt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt)
udt_send(NAK)

D

Wait for
call from
below

call from
above

< rdt_rcv(rcvpkt) && isACK(rcvpkt)

A receiver

rdt_rcv(rcvpkt) &&’notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

STUDENTS-HUB.com Uploaded By: anonymots

rdt2.0: corrupted packet scenario

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt send(sndpkt)

is_NAK(rcvp R ‘
udt_send(sndpkt)

Wait for
call from
above

rdt_rcv(rcvpld) && corrupt(rcvpkt)
dt send(NAK
rdt_rcv(rcvpkt) && iISACK(rcvpkt) RN ()
-—= :

A Wait for

call from
below

receiver

>
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.0 has a fatal flaw!

what happens if ACK/NAK handling duplicates:
corrupted? = sender retransmits current pkt
= sender doesn’t know what if ACK/NAK corrupted
happened at receiver! = sender adds sequence number
" can’t just retransmit: possible to each pkt
duplicate = receiver discards (doesn’t

deliver up) duplicate pkt

— stop and wait

sender sends one packet, then
waits for receiver response

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.1: sender, handling garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
Wait fOI‘ ISNAK(rcvpkt))
ACK or

NAK O

Wait for
call 0 from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) &&
ISACK(rcvpkt)

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A
Wait for Wait for
rdt_rcv(rcvpkt) '?VC,:J(K Olr Caelllbt \treom
&& (corrupt(rcvpkt) ||
iISNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.1: receiver, handling garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt) && <
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

STUDENTS-HUB.com Uploaded By: anonymotus

rdt2.1: discussion

sender:
= seq # added to pkt

= two seq. #s (0,1) will suffice.
Why?

= must check if received ACK/NAK
corrupted

= twice as many states

* state must “remember” whether
“expected” pkt should have seq #
ofOor1l

STUDENTS-HUB.com

receiver:

=" must check if received packet
is duplicate
 state indicates whetherOor1is
expected pkt seq #

= note: receiver can not know if
its last ACK/NAK received OK
at sender

Uploaded By: anonymous

rdt2.2: a NAK-free protocol

" same functionality as rdt2.1, using ACKs only

= instead of NAK, receiver sends ACK for last pkt received OK
 receiver must explicitly include seq # of pkt being ACKed

= duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

STUDENTS-HUB.com Uploaded By: anonymous

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

\\\ —_ T~
= o fo (corrupt(revpkt) ||
...................... call 0 from ACK SACR{evprLd))
..................................... above 0 udt_send(sndpkt)
.. sender FSM

... fragment rdt_rcv(rcvpkt)
...................................... && notcorrupt(rcvpkt)
dovionky g T && iISACK(rcvpkt,0)

(Corrupt(rcvpkt) ” A
s eq(reupko) receiver FSM

T T— fragment ..

e e

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_ pkt(ACK1, chksum)

STUDENTS-HUB.com udt_send(sndpkt) Uploaded By: anenymaous

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)

e checksum, sequence #s, ACKs, retransmissions will be of help ...
but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

STUDENTS-HUB.com Uploaded By: anonymous

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

* retransmission will be duplicate, but seq #s already handles this!

e receiver must specify seq # of packet being ACKed

" use countdown timer to interrupt after “reasonable” amount
of time

N [imeout

STUDENTS-HUB.com Uploaded By: anonymous

rdt3.0 sender

rdt_send(data)
\ sndpkt = make_pkt(0, data, checksum)

\ udt_sendishepids
start_timer
Wait
for
ACKO
rdt_rcv(rcvpkt)
&& _notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& ISACK(rcvpkt,1) && notcorrupt(rcvpkt)

&& iIsACK(rcvpkt,0)
op_timer

stop_timer

Wait for

call 1 from
above

dt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

STUDENTS-HUB.com Uploaded By: anonymous

rdt3.0 sender

rat_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_se_nd(sndpkt) ISACK(rcvpkt,1))

rdt_rcv(rcvpkt) Start_timer A

—

A Wait for timeout
Cagt?o];rgm udt_send(sndpkt)

start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt,1)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer
stop_timer
. Wait for
timeout call 1 from
udt_send(sndpkt) above
start_timer rdt_rcv(rcvpkt)

rdt_send(data) A

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || sndpkt = make_pkt(1, data, checksum)
iSACK (rcvpkt,0)) udt_send(sndpki)
N start_timer

STUDENTS-HUB.com Uploaded By: anonymous

rdt3.0 receiver

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seql(rcvpkt))

udt_send(sndpkt)

STUDENTS-HUB.com

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(0, ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(1, ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has seqO(rcvpkt))

udt_send(sndpkt)

Uploaded By: anonymous

rdt3.0 in action

sender receiver
send pktO ktO
\\ FCv pkto
ack send ackO
rcv ackO
send pktl \K
rcv pktl
}/ send ackl
rcv ackl
send pkt0 \NO\A
rcv pkt0
ack send ackO

(a) no loss

STUDENTS-HUB.com

sender receiver
send pkt0 ktO
\ rcv pkto
ack send ackO
rcv ackO

send pkt1 \Q{x

6 t/meout_
resend pktl ktl
A}k/ send ackl
rcv ackl
send pkt0 \Eto\‘
rcv pkt0
A)Ck’/ send ack0

(b) packet loss
Uploaded By: anonymous

rdt3.0 in action

sender receliver
send pktO ktO
\\ Frcv pkto
ack send ackO
rcv ackO
send pktl_\K
rcv pktl
yoskl—" send ack1
- loss
@ timeout.
resend pktl \Ml\‘ rcv pktl
(detect duplicate)
rev ackl A}k/ send ackl
send pkt0 \MO\‘
rcv pktO
ack send ackO

(c) ACK loss
STUDENTS-HUB.com

sender recejver

send pkt0 — okt0

rcv pktO
> sendp ackO

rev ackQ — 2°KO
send pktl_~— pki1

~ rcv pktl
7 send ackl

ackl

t/éne(k)ilzjlt_
resen
P pktl _ rcv pktl

rcv ackl (detect duplicate)
send pkt0 PKi0 send ackl

ackl rcv pkt0

rcv ackl «
(oo acko — send ack0

\

pktl —

(d) premature timeout/ delayed ACK
Uploaded By: anonymous

Performance of rdt3.0 (stop-and-wait)

" U ...~ Utilization — fraction of time sender busy sending

= example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

* time to transmit packet into channel:

D = L = 800_0 bits = 8 microsecs
trans R 10° bits/sec

STUDENTS-HUB.com Uploaded By: anonymous

rdt3.0: stop-and-wait operation

STUDENTS-HUB.com

sender

first packet bit transmitted, t =0

RTT

ACK arrives, send next,

*

<«

packet, t =RTT+L/R

receiver

first packet bit arrives
last packet bit arrives, send ACK

Uploaded By: anonymous

rdt3.0: stop-and-wait operation

sender receiver
_ L/R 11 L/fg
Usender_ RTT+ L/ R
_.008 RTT
~30.008
= 0.00027 -

= rdt 3.0 protocol performance stinks!
= Protocol limits performance of underlying infrastructure (channel)

STUDENTS-HUB.com Uploaded By: anonymous

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pqcke’r—»
|||

g T

(a) a stop-and-wait protocol in operation

STUDENTS-HUB.com Uploaded By: anonymous

Pipelining: increased utilization

sender

first packet bit transmitted, t = 0
last bit transmitted, t=L/R

Al

RTT

ACK arrives, send next|
packet, t=RTT+L/R

_ 3LI/R
sender RTT+L/R

STUDENTS-HUB.com

U

receiver

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2nd packet arrives, send ACK

last bit of 3 packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

|

0.0008

Uploaded By: anonymous

Go-Back-N: sender

" sender: “window” of up to N, consecutive transmitted but unACKed pkts
* k-bit seq #in pkt header

send_base nexfsegnum dlready P—
i i ack’ed yet sent
[RRCELEELERRRRDO00000 | semoere) oo
t _ window size —4
N

» cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
e on receiving ACK(n): move window forward to begin at n+1
= timer for oldest in-flight packet

" timeout(n): retransmit packet n and all higher seq # packets in window
STUDENTS-HUB.com Uploaded By: anonymous

Go-Back-N: receiver

= ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
* may generate duplicate ACKs
* need only remember rcv base

" on receipt of out-of-order packet:
e can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq #

Receiver view of sequence number space:

IIIIIQIIIHHHHH |
bev base H

I received and ACKed
Out-of-order: received but not ACKed

Not received

STUDENTS-HUB.com Uploaded By: anonymous

Go-Back-N in action

sender window (N=4) sender

(R4 5678
(el 5678
1 5678
(el 56 7 8

O Ky 678
N2 345 S

N2 34 5 SHAe
VN2 34 5 SHES

VL2 345 SHES
VN2 34 5 SHES

STUDENTS-HUB.com

send pkt0
send pktl
send pkt2-
send pkt3

(wait)

rcv ack0, send pkt4
rcv ackl, send pkt5

ignore duplicate ACK

Pkt 2 timeout |
send pkt2
send pkt3
send pkt4
send pkt5

"

receiver rcv base = 0

receive pkt0, send ack0 (rcv base = 1)
receive pktl, send ackl (rcv base = 2)

receive pkt3, discard,
(re)send ackl (rcv base = 2)

receive pkt4, discard,

(re)send ackl (rcv base = 2)
receive pkt5, discard,

(re)send ackl (rcv base = 2)

rcv pkt2, deliver, send ack2 (rcv base
rcv pkt3, deliver, send ack3 (rcv base
rcv pkt4, deliver, send ack4 (rcv base
rcv pkt5, deliver, send ack5 (rcv base

Uploaded By: anonymons

Selective repeat: the approach

" pipelining: multiple packets in flight

mreceiver individually ACKs all correctly received packets
* buffers packets, as needed, for in-order delivery to upper layer

=sender:
* maintains (conceptually) a timer for each unACKed pkt
* timeout: retransmits single unACKed packet associated with timeout

* maintains (conceptually) “window” over N consecutive seq #s
* [imits pipelined, “in flight” packets to be within this window

STUDENTS-HUB.com Uploaded By: anonymous

Selective repeat: sender, receiver windows

send _base nextsegnhum

| sy | e
T T I

+ wEndow size —24
PN

(a) sender view of sequence numbers
1

STUDENTS-HUB.com Uploaded By: anonymous

Selective repeat: sender and receiver

— sender —receiver
data from above: packet n in [rcv_base, rev_base+N-1]
= if next available seq #in = send ACK(n)
window, send packet = out-of-order: buffer
timeout(n): = in-order: deliver (also deliver

buffered, in-order packets),

" resend packet n, restart timer advance window to next not-yet-

ACK(n) in [send_base,send_base+N-1]: received packet
» mark packet n as received packet n in [rcv_base-N,rcv_base-1]
= if n smallest unACKed packet, " ACK(n)
advance window base to next otherwise:
UnACKed se(H] ignore

STUDENTS-HUB.com Uploaded By: anonymous

Selective Repeat in action

sender window (N=4) sender receiver

012 3 "X NE: send pkt0

FE): 5678 send pktl \ _

0123 ENE send pktz-\ receive pkt0, send ackO

EBEY: 5678 send pkt3 X /oss receive pktl, send ackl
(wait)

receive pkt3, buffer,
oFXEE- 678 rcv ackO, send pkt4 send ack3

O 1EEEER 78 rev ackl, send pktS receive pkt4, buffer

O 1SN0 7 8 record ack3 arrived send ack4

o receive pkt5, buffer,
Pkt 2 timeout send ack5
0 1 AERYY6 7 8 send pkt2
01p 36 7 8 (bUt not 31415) \
0 1Rk 7 o rcv pkt2; deliver pkt2,
/ pkt3, pkt4, pkt5; send ack2

Q. what happens when ack2 arrives?
STUDENTS-HUB.com Uploaded By: anonymoues

Selective repeat:
a dilemmal

example:
= seq #s:0, 1, 2, 3 (base 4 counting)
= window size=3

STUDENTS-HUB.com

sender window receiver window

(after receipt) (after receipt)

F¥Jz012
0 1 2 YU ofiEZEJo 12
[F¥)z012 01 2 3 0 [
0 1 2EJH 2

oo 12

0l 2 3 O

pkt0 will accept packet

with seq number 0
(@) no problem

FHs 0 1 2 —Pkt0

FEs 012 —Dbktl 81 2 3 [
A3 012 kt2 X 0 1pXeNol1 2

0 1 2EXER 2
timeout

retransmit pktO

R 012 —RKO ,
will accept packet

(b) Oopsl with seq number 0
Uploaded By: anonymods

sender window receiver window

S e | e Ct i Ve re p e at : (after receipt) (after receipt)

a dilemma!
0112
example: \’0122

= seq #s: 0, 1, 2, 3 (base 4 counting) " receiver can’t s Wil accent packet
. . see sender side with seq number 0
u WlndOW Size = 3] receiver
behavior
identical in both
Q: what relationship is needed cases!

= something’s

between sequence # size and
(very) wrong!

window size to avoid problem
in scenario (b)?

ofiEEJo12

0l 2 3 0 i
s 3 0 1 p

sequence # size >= 2 * window size

will accept packet
with seq number 0

STUDENTS-HUB.com Uploaded By: anonymogs

Selective repeat:
a d i | e m m a ! sender window receiver window

(after receipt) (after receipt)

sequence # size >= 2 * window size
example:

E¥3 4 5 0 —DRKt0

FH: 4 5 0 —pktl o4 5 0
" window size = 3 ¥z 450 kt2 X 010
01 2E¥¥0
"seq#s:0,1,2,3,4,5 Gmaout
retransmit pkt0
3 450 Wl:// not accept packet
Exa m p I e. Z‘Wff//f /fgolllv/%[ﬁ‘rtgls packet is

an old packet

» if window size is 16 = SQN = 32
(0,..., 31). So, we need 5 bits for the SON

» if window size is 28 = we need 9 bits for
the SQN =512 (0,..., 511).

STUDENTS-HUB.com Uploaded By: anonymogs

Chapter 3: roadmap

" Connection-oriented transport: TCP
¢ Segment structure
* reliable data transfer
* flow control
* connection management

STUDENTS-HUB.com Uploaded By: anonymow&s

TCP: overview RrCs: 793,1122, 2018, 5681, 7323

" point-to-point: = cumulative ACKs
* one sender, one receiver = pipelining:
" reliable, in-order byte * TCP congestion and flow control
steam: set window size
* no “message boundaries” = connection-oriented:
" full duplex data: * handshaking (exchange of control
e bi-directional data flow in messages) initializes sender,
same connection receiver state before data exchange

* MSS: maximum segment size ® flow controlled:
e sender will not overwhelm receiver

STUDENTS-HUB.com Uploaded By: anonymoes

TCP segment structure

32 hits

v

<
<«

source port # dest port #

ACK: seq # of next expected

sequence number

byte; A bit: this is an ACK ~~~——_

——acknowledgement number

4-bit header length (in 32-bit Words)

head| not

\~

Internet checksum

en |used|C|E|U|AIP|RIS|F| receive window
< checksdm

C, E: congestion notification

- tions (variable length)

TCP options (used when a sender /
and receiver negotiate the MSS)
RST, SYN, FIN: connection
management (used for

connection setup and teardown)

PSH: indicates that the receiver should pass

/

the data to the upper layer immediately

application
data
(variable length)

STUDENTS-HUB.com

segment seq #: counting

bytes of data into bytestream
(not segments!)

flow control: # bytes
receiver willing to accept

URG: indicate that there is data in

this segment that the sending-side
upper- layer entity has marked as
“urgent.” The location of the last byte
of this urgent data is indicated by the
16-bit urgent data pointer field.

data sent by
application into
TCP socket

Uploaded By: anonymoues

TCP sequence numbers, ACKs

Sequence numbers:

* byte stream “number” of
first byte in segment’s data

Acknowledgements:

e seq # of next byte expected
from other side

e cumulative ACK

Q: how receiver handles out-of-
order segments?

 A: TCP spec doesn’t say, - up to
implementor (discards out-of-order

segments or keeps the out-of-order bytes and

STU DENTgai_tﬂjBr_Elbgﬁnissing bytes to fill in the gaps)

outgoing segment from sender

source port #

dest port #

seguence number

acknowledgement number

rwnd

checksum

urg pointer

window size

N

sender sequence number space

sent
ACKed

sent not- usable not
yet ACKed but not usable
(Min-flight”) yet sent

putgoing segment from receiver

source port #

dest port #

sequence number

o acknowledgement number

A

rwnd

checksum

urg pointer

Uploaded By: anonymoues

TCP sequence numbers, ACKs

Host B

Host A - |
(assume nextSeqNum is 42) q E' | (assume nextSeqNum is 79)

User types ‘C’

ecCa2, NCK=79, data = ‘C
dk host ACKs receipt

of ‘C’, echoes back ‘C’
Seq ACK data= ‘C’
host ACKs receipt
of echoed ‘C’
\Seq=43, AC

simple telnet scenario

STUDENTS-HUB.com Uploaded By: anonymoes

TCP round trip time, timeout

Q: how to set TCP timeout

value?

= longer than RTT, but RTT varies!

" too short: premature timeout,
unnecessary retransmissions

" too long: slow reaction to
segment loss

STUDENTS-HUB.com

Q: how to estimate RTT?

" SampleRTT : measured time
from segment transmission until
ACK receipt

* ignore retransmissions

" SampleRTT will vary, want
estimated RTT “smoother”

¢ average several recent

measurements, not just current
SampleRTT

Uploaded By: anonymoes

TCP round trip time, timeout

EstimatedRTT

(1-a) *EstimatedRTT + a*SampleRTT

= exponential weighted moving average (EWMA)
" influence of past sample decreases exponentially fast

= typical value: a =0.125

Assume old EstimatedRTT = 25 ms,
what is the new EstimatedRTT if the
SampleRTT = 100 ms?

0.875*%25 + 0.125*%100 = 34.375 ms

Assume old EstimatedRTT = 25 ms,
what is the new EstimatedRTT if the
SampleRTT = 26 ms?

0.875*25 + 0.125*%26 = 25.1255 ms

STUDENTS-HUB.com

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

1 o N\{Tm

& sampleRTT

EstimatedRTT

time (seconds)
Uploaded By: anonymous

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

eStimaIted RTT “SafetyIm argin”

" DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f) *DevRTT + [*|SampleRTT-EstimatedRTT |

(typically, B =0.25)

CIEIijE[he online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/mteracll\ze/

STUDEN%‘%e Uploaded By: anonymous

http://gaia.cs.umass.edu/kurose_ross/interactive/

TCP Sender (simplified)

event: data received from
application

= create segment with seq #

= seq # is byte-stream number
of first data byte in segment

= start timer if not already
running

e think of timer as for oldest
unACKed segment

e expiration interval:
TimeOutlInterval

STUDENTS-HUB.com

event: timeout

" retransmit segment that
caused timeout

= restart timer

event: ACK received

= if ACK acknowledges
previously unACKed segments

e update what is known to be
ACKed

e start timer if there are still
unACKed segments

Uploaded By: anonymours

TCP sender (simplified)

data received from application above
create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
N if (timer currently not running)
A - - start timer
NextSegNum = InitialSegNum
SendBase = InitialSegNum

event timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}
STUDENTS-HUB.com

Uploaded By: anonymous

TCP Receiver: ACK generation irecses)

Event at receiver ‘ TCP receiver action

STUDENTS-HUB.com Uploaded By: anonymous

TCP: retransmission scenarios

Host A

g

2

—— timeout —*

\
Seq=92, 8 bytes of data

Host B

S

ACK=100

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

STUDENTS-HUB.com

Host A Host B
g L

SendBase=92

——timeout —

SendBase=100
SendBase=120

SendBase=120

\

Seq=92, 8 bytes of data
\
Seq=100, 20 bytes of dat

/

ACKzlo/

send cumulative
ACK for 120

premature timeout

Uploaded By: anonymous

TCP: retransmission scenarios

Host A Host B

g -

/

Seq=92, 8 bytes of data

Seq=100, 20 bytes%fdz

ACK=100
X
ACK=120

/

A

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

STUDENTS-HUB.com Uploaded By: anonymous

TCP fast retransmit

) Host A Host B
— JCP fast retransmit / v{ \

if sender receives 3 additional
ACKs for same data (“triple T 22992, 8 by

. B Se :100 Sofdata
duplicate ACKs”), resend unACKed \q\%%
X

segment with smallest seq #
= |ikely that unACKed segment lost,

) : : =100 ~ ‘
so don’t wait for timeout pokz1 < =

A00

pCEE

'/ - 00
Receipt of three duplicate ACKs PO

indicates 3 segments received Seq=100, 20 bytes of data
after a missing segment — lost
segment is likely. So retransmit!

timeout

\

~

vy v v

STUDENTS-HUB.com Uploaded By: anonymous

Example

time
STUDENTS-HUB.com

Ack = 102

Ack =102

Ack = 102

Ack =102

Ack =190

Ack =190

time

Ack =102

Ack =102

Ack =102

Ack = 160

Ack=XX 190

Ack=YY 202

Uploaded By: anonymous

Chapter 3: roadmap

" Connection-oriented transport: TCP

* flow control
e connection management

STUDENTS-HUB.com Uploaded By: anonymous

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

STUDENTS-HUB.com

Application removing
data from TCP socket
buffers

Network layer
delivering IP datagram

payload into TCP |

socket buffers

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Uploaded Byranonymous

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

STUDENTS-HUB.com

Application removing
data from TCP socket
buffers

Network layer

delivering IP datagram

payload into TCP
socket buffers

application

TCP socket
receiver buffers

from sender |

receiver protocol stack

Uploaded Byranonymoaus

TCP flow control

application
proces

Q: What happens if network

Application removing

layer delivers data faster than data from TCP socket

: : buffers
application layer removes TomA
data from socket buffers? receiver buffers

receive window flow control: # bytes

receiver willing to accept

from sender |

receiver protocol stack

STUDENTS-HUB.com Uploaded Byranonymous

TCP flow control

I
|
QWhatOhappens if network Application removing proces
layer delivers data faster than data from TCP socket
. . buffers
application layer removes TCP soeket
data from socket buffers? receiver buffers
—flow control

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

: I
from sender |

receiver protocol stack

STUDENTS-HUB.com Uploaded By ranonymous

TCP flow control

= TCP receiver “advertises” free buffer

space in the receive window (rwnd)
field in TCP header

* RevBuffer size set via socket
options (typical default is 4096 bytes)
* many operating systems auto-adjust
RcvBuffer
= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

STUDENTS-HUB.com

to application process

RcvBuffer buffered data

T

rwnd

l free buffer space

|

TCP segment payloads

TCP receiver-side buffering

Uploaded Byranonymoas

TCP flow control

= TCP receiver “advertises” free buffer
space in the receive window (rwnd)
field in TCP header

* RevBuffer size set via socket
options (typical default is 4096 bytes)

* many operating systems auto-adjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

STUDENTS-HUB.com

flow control: # bytes receiver willing to accept

N\

N\ . .
receive window

TCP segment format

Uploaded Byranonymous

TCP flow control

= At Receiver:

 LastByteRead (by the application)
 LastByteRcvd (arrived from the network)

* LastByteRcvd - LastByteRead <=
RcvBuffer

* rwnd = RcvBuffer - (LastByteRcvd
- LastByteRead)
= At Sender:
* LastByteSent
* LastByteAcked

* LastByteSent - LastByteAcked <=
rwnd

STUDENTS-HUB.com

to application process

RcvBuffer buffered data

T

mj_ free buffer space

|

TCP segment payloads

TCP receiver-side buffering

Uploaded Byranonymouas

TCP connection management

before exchanging data, sender/receiver “handshake”:
= agree to establish connection (each knowing the other willing to establish connection)
" agree on connection parameters (e.g., starting seq #s)

application

———

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

*!
application

[T 1

‘{ network
R

Socket clientSocket =

newSocket ("hostname" , "port number") ;

STUDENTS-HUB.com

Lol |
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer Size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept () ;

Uploaded Byranonymous

Agreeing to establish a connection

2-way handshake:

T .
B oy Q: will 2-way handshake always
T letstalk ___ work in network?
__——® ESTAB L
st e— OK variable o.lelays
* retransmitted messages (e.g.
req_conn(x)) due to message loss
f‘ .
g E " message reordering
choose x Teq_conn(x)___ = can’t “see” other side

ESTAB &

STUDENTS-HUB.com Uploaded Byranonymous

2-way handshake scenarios
g

T J
choose x
\req_conn(>_<L‘

A ESTAB

acc_conn(x)

ESTAB ‘{

data(x+1)
+
"/ACK(X 1)
| _ connection o
X completes

No iroblem!

STUDENTS-HUB.com Uploaded Byranonymous

2-way handshake scenarios

STUDENTS-HUB.com

o
3

N a

choose x

retransmit
req_conn(x)

ESTAB

client
terminates

\req_conn(>_<L‘

acc_conn(x)

et

reg_conn(x)

_ connection
X completes

R ESTAB

server
forgets x

ESTAB

Problem: half open

m connection! (no client)

Uploaded Byranonymous

2-way handshake scenarios

STUDENTS-HUB.com

e\
reg_conn(x)

server
forgets x

\ S—s EsTAB

data(x+1)

accept
data(x+1)

Problem: dup data
asgeptedbnymous

TCP 3-way handshake

Server state

serverSocket = socket (AF INET, SOCK STREAM)

Cllent State serverSocket.bind((', serverPort))
serverSocket.listen (1)
clientSocket = socket (AF_INET, SOCK_STREAM) connectionSocket, addr = serverSocket.accept ()
LISTEN -
clientSocket.connect ((serverName, serverPort)) ‘ H LISTEN

choose init seq num, x

N
! send TCP SYN msg | —~_
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

" | msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1: ACKnum=x+1

v received SYNACK(x)
indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain ACKbit=1, ACKnum=y+1

lient-to- t
client-to-server data ~ | received ACK(y)
indicates client is live M
ESTAB

/\

STUDENTS-HUB.com Uploaded By ranonymous

TCP 3-way handshake FSM

Socket connectionSocket =
welcomeSocket.accept() ;

A Socket clientSocket =
newSocket ("hostname" , "port number") ;

SYN(X)
SYNACK(seq=y,ACKnum=x+1) v SYN(seq=x)

create new socket for communication
back to client)
l listen v
| : ‘ | SYNACK(seg=y,ACKnum=x+1)
ACK(ACKnum=y-+1) ACK(ACKnum=y+1)

A

STUDENTS-HUB.com Uploaded Byranonymous

A human 3-way handshake protocol

~

1. On belay?

i A7
b, g

~N

““.r"'t

A3
w‘éﬂ
’ -
o ~'y.

STUDENTS-HUB.com Uploaded Byranonymous

Closing a TCP connection

= client, server each close their side of connection
e send TCP segment with FIN bit=1

= respond to received FIN with ACK
* on receiving FIN, ACK can be combined with own FIN (FINACK)

* Waits around a bit (to respond to any retransmitted FIN messages
before timing out) and then closes the connection

= simultaneous FIN exchanges can be handled

STUDENTS-HUB.com Uploaded Byranonymous

Closing a TCP connection

client state
ESTAB
clientSocket.close ()
FIN WAIT 1 can no longer
send but can
receive data
FIN"WAIT p) wait for server
n - close
TIMED_WAIT —\
timed wait
for 2*max
segment lifetime
CLOSED l

STUDENTS-HUB.com

g

4

D

T Hibit=1
it=1, Seq=X\’

/
ACKbit=1; ACKnum=x+1
—

/
‘)Nbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

server state

can still
send data

can no longer
send data

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Uploaded By ranonymous

Chapter 3: roadmap

STUDENTS-HUB.com Uploaded Byranonymous

Chapter 3: roadmap

= TCP congestion control

STUDENTS-HUB.com Uploaded Byranonymous

TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease —
increase sending rate by 1 cut sending rate in half at
maximum segment size (MSS) each loss event
every RTT until loss detected

g /7%/ AIMD sawtooth
; // g y behavior: probing
S for bandwidth

STUDENTS-HUB.com time : Uploaded Byranonymous

TCP AIMD: more

Multiplicative decrease detail: sending rate is
= Cutin half on loss detected by triple duplicate ACK

= Cutto 1 MSS (maximum segment size) when loss detected by
timeout

Why AIMD?

= AIMD - a distributed, asynchronous-optimization algorithm —
has been shown to:

* optimize congested flow rates network wide!
* have desirable stability properties

STUDENTS-HUB.com Uploaded Byranonymoes

TCP congestion control: details

sender sequence number space

TCP sending behavior:

cwnd
" roughly: send cwnd bytes,
wait RTT for ACKS, then

J send more bytes
last byte cwnd
ACKed sent, but not- ava"ab'e but TCP rate = bytes/sec

yet ACKed not used RTT

(“in-flight”) — |last byte sent

= TCP sender limits transmission: LastByteSent-LastByteAcked < min(cwnd, rwnd)

= cwnd is dynamically adjusted in response to observed network
congestion (implementing TCP congestion control)

STUDENTS-HUB.com Uploaded Byranonymoas

TCP slow start

Host A Host B
" when connection begins, N =
increase rate exponentially s "
until first loss event: L[—Sneseament
« initially cwnd = 1 MSS }

two se ments
* double cwnd every RTT <

e done by incrementing cwnd
for every ACK received Ur segments

" summary: initial rate is
slow, but ramps up
exponentially fast

time

STUDENTS-HUB.com Uploaded Byranonymoers

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

14—
A: when cwnd gets to 1/2 of its . 27
value before timeout. £2 12:_@@ ____________
c &
.% g 6
Implementation: £ a-
= variable ssthresh (slow start 7]
threshold) SRR R EEE LR
= on loss event, ssthresh is setto 1/2 Transmission round

of cwnd just before loss event

Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

STUDENTS-HUB.com Uploaded Byranonymoes

http://gaia.cs.umass.edu/kurose_ross/interactive/

Summary: TCP congestion control
duplicate ACK %

dupACKcount++ hew ACK

m cwnd = cwnd + MSS

cwnd = cwnd + (MSS/cwnd) * MSS
dupACKcount=0
transmit new segment(s), as allowed

dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

cwnd =1 MSS
ssthresh = 64 KB

dupACKcount = 0 A
- /9’,;) timeout
(¢ £) ssthresh = cwnd/2
’p’-'\o\ cwnd =1 MSS
((: up D timeout dupACKcount =0
4" ssthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount=0 i) ,
retransmit missing segment . (¢ 7)
timeout* }
ssthresh = cwnd/2
cwnd = 1 MSS New ACK
dupACKcount=0 —
cwnd = ssthresh —=
dupACKcount == retransmit missing segment dupACKcount = 0 dupACKceount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS cwnd = ssthresh + 3 MSS
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

new ACK

duplicate ACK
dupACKcount++

I.e., increases the value of
cwnd Dby just asingle
MSS every RTT

Uploaded Byranonymous

STUDENTS-HUB.com

Evolution of TCP’s congestion window

Fast recovery is a recommended, but not required, component of TCP

= TCP Tahoe (an early version of TCP) unconditionally cut its
congestion window to 1 MSS and entered the slow-start phase

after either a timeout-indicated or triple-duplicate-ACK-indicated
loss event

= TCP Reno (newer version of TCP) incorporated fast recovery

STUDENTS-HUB.com Uploaded Byranonymoes

Example

= |dentify the intervals of time when TCP slow start is operating?
« [1,4] and [24,27]

= |dentify the intervals of time when TCP congestion avoidance is operating?
* [4,8],9,17], [18,23], and [27,29]
= After the 17th transmission round, is segment loss detected by a triple
duplicate ACK or by timeout?
* Triple duplicate ACK
= After the 23rd transmission round, is segment loss detected by a triple
duplicate ACK or by timeout?
* Timeout

= What is the initial value of Threshold at the first transmission round?
e 8

= What is the value of Threshold at the 18th transmission round?
e 14/2=7

= What is the value of Threshold at the 26th transmission round?
e 12/2=6

= Assuming a packet loss is detected after the 29th round by a timeout, what
will be the values of the congestion-window size and of Threshold?

e cwnd=1 and ssthreshold= 8/2=4

= During what transmission round is the 40th segment sent?

STUDENTS-HUB.com

TCP Reno

Congestion Window Size (segment)

1 2 3 4 6 7 B8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Transmission round
Round | Segments | Total Segments
1 1 1
2 2 3
3 4 7
4 8 15
5 9 24
6 10 34
7 11 45

ploaded Byranenymouas

TCP CUBIC

= |s there a better way than AIMD to “probe” for usable bandwidth?

= |nsight/intuition:
* W, .,: sending rate at which congestion loss was detected
e congestion state of bottleneck link probably (?) hasn’t changed much

* after cutting rate/window in half on loss, initially ramp to to W, _, faster, but then
approach W __ more slowly

Winax classic TCP
== == = = TCP CUBIC - higher
W, ../2 throughput in this
example

STUDENTS-HUB.com Uploaded By ranonymoes

TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume there is always data to send

= \W: window Size (measured in bytes) Where 10Ss occurs
e avg. window size (# in-flight bytes) is %4 W
 avg. thruput is 3/4W per RTT

W/2 —

W

avg TCP thruput = % RTT bytes/sec

12%

14%

STUDENTS-HUB.com

Uploaded By: anonymous

TCP CUBIC

= K: point in time when TCP window size will reach W__,
* Kitselfis tunable

= increase W as a function of the cube of the distance between current
time and K

* larger increases when further away from K
* smaller increases (cautious) when nearer K

I
I
|
I

I
I

= TCP CUBIC default o]
in Linux, most =7 T’C_P -
popular TCP for TCP CUBIC
popular Web ndt
servers rate
time‘

»

t,

STUDENTS-HUB.com Uploaded Byranonymoes

TCP and the congested “bottleneck link”

= TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source destination

TCP E ‘
\ ' ‘\‘ TC P ' \“‘

—

packet queue almost =) ‘/
never empty, sometimes \ _ ;
overflows packet (loss) o
Hp =— D=
=

bottleneck link (almost always busy)

STUDENTS-HUB.com Uploaded Byranonymoes

1

TCP and the congested “bottleneck link”

» TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

= understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
source not increase end-end throughout
with congested bottleneck

TCP TCP \
E i

-

destination

insight: increasing TCP
sending rate will
increase measured RTT

Goal: “keep the end-end pipe just full, but not fuller”
STUDENTS-HUB.com Uploaded Byranonymous

A

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

b _‘ & # bytes sent in
— s Lfﬁ’ measured last RTT interval

¥ «—RTT,

easured throughput RTT
measured

Delay-based approach:

= RTT,,, - minimum observed RTT (uncongested path)

= uncongested throughput with congestion window cwnd is cwnd/RTT_ .

if measured throughput “very close” to uncongested throughput

increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout
decrease cwnd linearly /* since path is congested */

STUDENTS-HUB.com Uploaded By ranonymoes

Delay-based TCP congestion control

= congestion control without inducing/forcing loss
" maximizing throughout (“keeping the just pipe full... ”) while keeping
delay low (“...but not fuller”)

= 3 number of deployed TCPs take a delay-based approach

= Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control
algorithm deployed on Google’s (internal) backbone network

STUDENTS-HUB.com Uploaded By ranonymoes

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
" two bits in IP header (ToS field) marked by network router to indicate congestion
* policy to determine marking chosen by network operator
" congestion indication carried to destination
= destination sets ECE bit on ACK segment to notify sender of congestion

= involves both IP (IP header ECN bit marking) and TCP (TCP header E (a.k.a., ECE - ECN-Echo) and C
(a.k.a., CWR - Congestion Window Reduced) bit marking)

TCP ACK t . .
source >egmen destination

TCP g

TCP

E
—

=

IP datagram
STUDENTS-HUB.com Uploaded Byranonymoes

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection

!‘
"l
!‘
. bottleneck
e
TCP connection 2 rout-er
capacity R

STUDENTS-HUB.com Uploaded By ranonymoes

Q: is TCP Fair?

Example: two competing TCP sessions:

= additive increase gives slope of 1, as throughout increases

" multiplicative decrease decreases throughput proportionally

Connection 2 throughput 0

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

STUDENTS-HUB.com

— Is TCP fair?

A: Yes, under idealized

assumptions:
= same RTT
= fixed number of sessions
only in congestion
avoidance

Uploaded Byranonymoes

Fairness: must all network apps be “fair”?

Fairness and UDP Fairness, parallel TCP
* multimedia apps often do not connections
use TCP

= application can open multiple

do not want rate throttled by parallel connections between two

congestion control

= instead use UDP: hosts
* send audio/video at constant rate, = web browsers do this, e.g., link of
tolerate packet loss rate R with 9 existing connections:
= there is no “Internet police” * new app asks for 1 TCP, gets rate R/10
policing use of congestion * new app asks for 11 TCPs, gets ~ R/2

control

STUDENTS-HUB.com Uploaded By ranonymoes

Transport layer: roadmap

" Evolution of transport-layer functionality

STUDENTS-HUB.com Uploaded Byranonymoes

Evolving transport-layer functionality

= TCP, UDP: principal transport protocols for 40 years
= different “flavors” of TCP developed, for specific scenarios:

Long, fat pipes (large data Many packets “in flight”; loss shuts down

transfers) pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs

Data center networks Latency sensitive

Background traffic flows Low priority, “background” TCP flows

" moving transport—layer functions to application layer, on top of UDP
 HTTP/3: QUIC

STUDENTS-HUB.com Uploaded Byranonymoes

TCP over “long, fat pipes”

= example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput
= requires W = 83,333 in-flight segments
= throughput in terms of segment loss probability, L [Mathis 1997]:

_1.22-MSS
TCP throughput = RTTJf

-» to achieve 10 Gbps throughput, need a loss rate of L =2.14"1010
—a very small loss rate!

= versions of TCP for long, high-speed scenarios

STUDENTS-HUB.com Uploaded Byranonymous

QUIC: Quick UDP Internet Connections

= application-layer protocol, on top of UDP
* increase performance of HTTP
* deployed on many Google servers, apps (Chrome, mobile YouTube app)

HTTP/2
Application
TLS
Transport TCP
Network IP

HTTP/2 over TCP

STUDENTS-HUB.com Uploaded Byranonymous

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

* error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

* connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

" multiple application-level “streams” multiplexed over single QUIC
connection

* separate reliable data transfer, security
e common congestion control

STUDENTS-HUB.com Uploaded By ranonymous

QUIC: Connection establishment

o
3

N a

TCP handshake \

(transport layer) < QUIC handshake /
—~——

TLS handshake data ~—

(security) /

T data -
TCP (reliability, congestion control QUIC: reliability, congestion control,
state) + TLS (authentication, crypto authentication, crypto state

state)

= 1 handshak
=) serial handshakes andshake

STUDENTS-HUB.com Uploaded Byranonymous

application

transport

QUIC: streams: parallelism, no HOL blocking

. /

STUDENTS-HUB.com

HTTP
GET
HTTP
GET o
HTTP
GET
TLY ehcryption TLS encryption
TAP(RDOT error] IOT
TCP tohdl Contr. T(QP|ddng. Eontr.
(a) HTTP 1.1

Uploaded By ranonymous

Chapter 3: summary

" principles behind transport Up next:
layer services: = leaving the network
* multiplexing, demultiplexing “edge” (application,
* reliable data transfer transport layers)
* tlow control = into the network “core”

e congestion control
= two network-layer

" instantiation, implementation chapters:
in the Internet + data plane
* UDP e control plane
* TCP

STUDENTS-HUB.com Uploaded By ranonymous

Additional Chapter 3 slides

STUDENTS-HUB.com Uploaded Byranonymous

Go-Back-N: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)
start_timer
nextsegnum-++
~~~~~ }
A else
—_— refuse_data(data)

.
-
.
.
.
.
.
.
‘e
o

. timeout
start_timer
udt_send(sndpkt[base])
G udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)
udt_send(sndpkt[nextsegnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer

STUDENTS-HUB.com Uploaded By ranonymous



Go-Back-N: receiver extended FSM

any other event
udt_send(sndpkt) rdt_rcv(rcvpkt)
-~ C ) && notcorrupt(rcvpkt)

A Te~o_ && hassegnum(rcvpkt,expectedseqgnum)
=~ >

expectedsegnum=1 AGextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received packet with highest
in-order seq #
* may generate duplicate ACKs
* need only remember expectedsegnum

" out-of-order packet:
 discard (don’t buffer): no receiver buffering!

* re-ACK pkt with highest in-order seq #
STUDENTS-HUB.com Uploaded Byranonymous



