
Computer Networking: A 
Top-Down Approach 
8th edition 
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students, 
readers). They’re in PowerPoint form so you see the animations; and 
can add, modify, and delete slides  (including this one) and slide content 
to suit your needs. They obviously represent a lot of work on our part. 
In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their 
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are 
adapted from (or perhaps identical to) our slides, and note our 
copyright of this material.

For a revision history, see the slide note for this page. 

Thanks and enjoy!  JFK/KWR

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer: 3-1Uploaded By: anonymousSTUDENTS-HUB.com



Internet protocol stack

Introduction: 1-2

▪ application: supporting network applications
• HTTP, SMTP, IMAP 

▪ transport: process-process data transfer
• TCP, UDP

▪ network: routing of datagrams from source to 
destination
• IP, routing protocols

▪ link: data transfer between neighboring  
network elements
• Ethernet, 802.11 (WiFi), PPP

▪ physical: bits “on the wire”

application

transport

network

link

physical
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Transport layer: overview

Our goal:

▪ understand principles 
behind transport layer 
services:
• multiplexing, 

demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet transport 
layer protocols:
• UDP: connectionless transport, 

best-effort service

• TCP: reliable, flow- and congestion-
controlled connection-oriented 
transport
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Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Transport services and protocols

▪ provide logical communication
between application processes 
running on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or 
regional ISP

datacenter 
network

content 
provider 
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪ transport protocols actions in end 
systems:
• sender: breaks application messages 

into segments, passes to network layer

• receiver: reassembles segments into 
messages, passes to application layer

▪ two transport protocols available to 
Internet applications
• TCP, UDP
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Transport vs. network layer services and protocols

household analogy:

12 kids in Ann’s house sending 
letters to 12 kids in Bill’s 
house:
▪ hosts = houses
▪ processes = kids
▪ app messages = letters in 

envelopes
▪ transport protocol = Ann and Bill 

who demux to in-house siblings
▪ network-layer protocol = postal 

service
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Transport vs. network layer services and protocols

▪network layer: logical
communication between 
hosts

household analogy:

12 kids in Ann’s house sending 
letters to 12 kids in Bill’s 
house:
▪ hosts = houses
▪ processes = kids
▪ app messages = letters in 

envelopes
▪ transport protocol = Ann and Bill 

who demux to in-house siblings
▪ network-layer protocol = postal 

service

Transport Layer: 3-7

▪transport layer: logical 
communication between 
processes
• relies on, enhances, network 

layer services
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physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg▪ is passed an application-

layer message
▪ determines segment 

header fields values
▪ creates segment

▪ passes segment to IP

transport
ThTh app. msg
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physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app.  msg ▪ extracts application-layer 
message

▪ checks header values

▪ receives segment from IP

Th app. msg

▪ demultiplexes message up 
to application via socket
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Two principal Internet transport protocols

mobile network

home network

enterprise
network

national or global ISP

local or 
regional ISP

datacenter 
network

content 
provider 
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control 
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available: 
• delay guarantees
• bandwidth guarantees
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing as receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing as sender:
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transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msg
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HTTP msgHt

HTTP msgHtHn

HTTP msgHtHn

HTTP msgHtHn
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transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

client

HTTP msgHt

HTTP msg
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HTTP msg

Q: how did transport layer know to deliver message to Firefox 
browser process rather than Netflix process or Skype process?
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?

de-multiplexing
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?

de-multiplexing

transport

application
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Demultiplexing
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multiplexing
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multiplexing

transport

application

Uploaded By: anonymousSTUDENTS-HUB.com



Multiplexing
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How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP 

address, destination IP address

• each datagram carries one 
transport-layer segment

• each segment has source, 
destination port number 

▪ host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing

Recall:

▪ when creating socket, must 
specify host-local port #:
DatagramSocket mySocket1        
= new DatagramSocket(12534);

when receiving host receives 
UDP segment:
• checks destination port # in 

segment
• directs UDP segment to 

socket with that port #

▪ when creating datagram to 
send into UDP socket, must 
specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest. 
port #, but different source IP 
addresses and/or source port 

numbers will be directed to same 
socket at receiving host
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transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket mySocket2 = 
new DatagramSocket(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

A

B

C

D

DatagramSocket mySocket1 = 
new DatagramSocket(5775);

DatagramSocket serverSocket = 
new DatagramSocket(6428);

Connectionless demultiplexing: an example
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Connection-oriented demultiplexing

▪ TCP socket identified by 
4-tuple: 
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many 
simultaneous TCP sockets:
• each socket identified by its 

own 4-tuple

• each socket associated with 
a different connecting client

▪ demux: receiver uses all 
four values (4-tuple) to 
direct segment to 
appropriate socket
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Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP 
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets
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Summary

▪ Multiplexing, demultiplexing: based on segment, datagram 
header field values

▪ UDP: demultiplexing using destination port number (only)

▪ TCP: demultiplexing using 4-tuple: source and destination IP 
addresses, and port numbers

▪ Multiplexing/demultiplexing happen at all layers
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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UDP: User Datagram Protocol

▪ “no frills,” “bare bones” 
Internet transport protocol

▪ “best effort” service, UDP 
segments may be:
• lost
• delivered out-of-order to app

▪ no connection 
establishment (which can 
add RTT delay)

▪ simple: no connection state 
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as 

desired!

▪ can function in the face of 
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP 

sender, receiver
• each UDP segment handled 

independently of others
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UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3): 
▪ add needed reliability at application layer

▪ add congestion control at application layer
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UDP: User Datagram Protocol [RFC 768]
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SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application
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SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg▪ is passed an application-

layer message
▪ determines UDP segment 

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh SNMP msg
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SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
▪ extracts application-layer 

message

▪ checks UDP checksum 
header value

▪ receives segment from IP

UDPh SNMP msg
▪ demultiplexes message up 

to application via socket
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UDP segment header

source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

data to/from 
application layer
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UDP checksum

Transmitted:            5               6                11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received:            4               6                11

1st number 2nd number sum

receiver-computed 
checksum

sender-computed 
checksum (as received)

=
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Internet checksum

sender:
▪ treat contents of UDP 

segment (including UDP header 
fields and IP addresses) as 
sequence of 16-bit integers

▪ checksum: addition (one’s 
complement sum) of segment 
content

▪ checksum value put into 
UDP checksum field

receiver:
▪ compute checksum of received 

segment

▪ check if computed checksum equals 
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe 
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment
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Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be 
added to the result

• Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1
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Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 

1 0 

Even though 
numbers have 
changed (bit 
flips), no change 
in checksum!
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Summary: UDP

▪ “no frills” protocol: 

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer 
(e.g., HTTP/3)
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Principles of reliable data transfer 

sending 
process

data

receiving 
process

data

reliable channel

application

transport

reliable service abstraction
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Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol

sending 
process

data

receiving 
process

data

reliable channel

application

transport

reliable service abstraction
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Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol
Complexity of reliable data 

transfer protocol will depend 
(strongly) on characteristics of 

unreliable channel (lose, 
corrupt, reorder data?)
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Principles of reliable data transfer 

sending 
process

data

receiving 
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data 

transfer protocol

receiver-side
of reliable data 

transfer protocol
Sender, receiver do not know 
the “state” of each other, e.g., 
was a message received?
▪ unless communicated via a 

message
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Reliable data transfer protocol (rdt): interfaces

sending 
process

data

receiving 
process

data

unreliable channel

sender-side
implementation of 
rdt reliable data 
transfer protocol

receiver-side
implementation of 
rdt reliable data 
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over 
unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on receiver side of 
channel

deliver_data(): called by rdt 
to deliver data to upper layer

Bi-directional communication over 
unreliable channel

data

packet
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Reliable data transfer: getting started
We will:
▪ incrementally develop sender, receiver sides of reliable data transfer 

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely 
determined by next 

event
event

actions

▪ use finite state machines (FSM) to specify sender, receiver
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rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets (no packets are duplicated or reordered)

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for 

call from 

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for 

call from 

above
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rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

▪ the question: how to recover from errors?

How do humans recover from “errors” during conversation?
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rdt2.0: channel with bit errors
▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt 

received OK

• negative acknowledgements (NAKs): receiver explicitly tells sender 
that pkt had errors

• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-51Uploaded By: anonymousSTUDENTS-HUB.com



rdt2.0: FSM specifications

Wait for 

call from 

above
udt_send(sndpkt)

Wait for 

ACK or 

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for 

call from 

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
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rdt2.0: FSM specification

Wait for 

call from 

above
udt_send(sndpkt)

Wait for 

ACK or 

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for 

call from 

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

Note: “state” of receiver (did the receiver get my 
message correctly?) isn’t known to sender unless 
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)
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rdt2.0: operation with no errors

Wait for 

call from 

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
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rdt2.0: corrupted packet scenario

Wait for 

call from 

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)Wait for 

ACK or 

NAK

Wait for 

call from 

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&  notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver
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rdt2.0 has a fatal flaw!

what happens if ACK/NAK 
corrupted?

▪ sender doesn’t know what 
happened at receiver!

▪ can’t just retransmit: possible 
duplicate

handling duplicates: 
▪ sender retransmits current pkt 

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t 
deliver up) duplicate pkt

stop and wait
sender sends one packet, then 
waits for receiver response
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rdt2.1: sender, handling garbled ACK/NAKs

Wait for 

call 0 from 

above

Wait for 

ACK or 

NAK 0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

(corrupt(rcvpkt) || 

isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) 

&& (corrupt(rcvpkt) ||

isNAK(rcvpkt) )

Wait for

call 1 from 

above

Wait for 

ACK or 

NAK 1

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt) 

L

rdt_rcv(rcvpkt)  

&& notcorrupt(rcvpkt) && 

isACK(rcvpkt)

L
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rdt2.1: receiver, handling garbled ACK/NAKs

Wait for 

0 from 

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for 

1 from 

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq0(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

rdt_rcv(rcvpkt) && 

not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt) &&

has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)
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rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #s (0,1) will suffice.  
Why?

▪must check if received ACK/NAK 
corrupted 

▪ twice as many states
• state must “remember” whether 

“expected” pkt should have seq # 
of 0 or 1 

receiver:

▪must check if received packet 
is duplicate
• state indicates whether 0 or 1 is 

expected pkt seq #

▪ note: receiver can not know if 
its last ACK/NAK received OK 
at sender
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rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed 

▪ duplicate ACK at sender results in same action as NAK: 
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free
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rdt2.2: sender, receiver fragments

Wait for 

call 0 from 

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

Wait for 

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for 

0 from 

below

rdt_rcv(rcvpkt) && 

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L
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rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help … 

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?
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rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK 

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount 
of time
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rdt3.0 sender

Wait 

for 

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for 

call 1 from 

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,1)

stop_timer

Wait for 

call 0 from 

above

Wait 

for 

ACK1
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rdt3.0 sender

Wait 

for 

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for 

call 1 from 

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)   

&& notcorrupt(rcvpkt) 

&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for 

call 0 from 

above

Wait 

for 

ACK1

L

rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

Lrdt_rcv(rcvpkt)

L

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt) &&  

( corrupt(rcvpkt) ||

isACK(rcvpkt,0) )

L
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rdt3.0 receiver

Wait for 

0 from 

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(1, ACK, chksum)

udt_send(sndpkt)

Wait for 

1 from 

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq0(rcvpkt) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(0, ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

(corrupt(rcvpkt) ||

has_seq0(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
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rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1
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rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1
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Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT
first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R
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rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)
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rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged 

packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

utilization by a factor of 3!

 

U 
sender = 

0.024 

30.008 
= 0.0008  

3L / R 

RTT + L / R 
= 
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Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts 

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
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Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with 
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet: 
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not  ACKed

Not received

Receiver view of sequence number space:

… …
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Go-Back-N in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0 (rcv_base = 1)
receive pkt1, send ack1 (rcv_base = 2)

receive pkt3, discard, 
(re)send ack1 (rcv_base = 2)

send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

pkt 2 timeout

receive pkt4, discard, 
(re)send ack1 (rcv_base = 2)

receive pkt5, discard, 
(re)send ack1 (rcv_base = 2)

rcv pkt2, deliver, send ack2 (rcv_base = 3)
rcv pkt3, deliver, send ack3 (rcv_base = 4)
rcv pkt4, deliver, send ack4 (rcv_base = 5)
rcv pkt5, deliver, send ack5 (rcv_base = 6)

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

rcv ack0, send pkt40 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5
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rcv_base = 0
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Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window
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Selective repeat: sender, receiver windows
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Selective repeat: sender and receiver

data from above:

▪ if next available seq # in 
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [send_base,send_base+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet, 
advance window base to next 
unACKed seq # 

sender
packet n in [rcv_base, rcv_base+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver 
buffered, in-order packets), 
advance window to next not-yet-
received packet

packet n in [rcv_base-N,rcv_base-1]

▪ ACK(n)

otherwise:
▪ ignore 

receiver
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Selective Repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

send  pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

rcv ack0, send pkt40 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, 
send ack3

record ack3 arrived

receive pkt4, buffer, 
send ack4

receive pkt5, buffer, 
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?
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Selective repeat: 
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 
▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3
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Selective repeat: 
a dilemma!

Q: what relationship is needed 
between sequence # size and 
window size to avoid problem 
in scenario (b)?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example: 
▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size = 3

▪ receiver can’t 
see sender side
▪ receiver 

behavior 
identical in both 
cases!
▪ something’s 

(very) wrong!
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sequence # size >= 2 * window size
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Selective repeat: 
a dilemma!

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

pkt0

pkt1

pkt2

0 1 2 3 4 5 0 pkt0

timeout
retransmit pkt0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

X
X
X

will not accept packet
with seq number 0
it will know that this packet is 
an old packet

receiver window
(after receipt)

sender window
(after receipt)

example: 
▪ window size = 3

▪ seq #s: 0, 1, 2, 3, 4, 5
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sequence # size >= 2 * window size

Example: 
➢ if window size is 16 ➔ SQN = 32        

(0,…, 31). So, we need 5 bits for the SQN
➢ if window size is 28

➔ we need 9 bits for 
the SQN = 512 (0,…, 511).
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Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
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TCP: overview  RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control 

set window size

▪ connection-oriented: 
• handshaking (exchange of control 

messages) initializes sender, 
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte 
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in 

same connection
• MSS: maximum segment size
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TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes 

receiver willing to accept

sequence number

segment seq #: counting 

bytes of data into bytestream
(not segments!)

application

data 

(variable length) data sent by 
application into 
TCP socket

A

acknowledgement number

ACK: seq # of next expected 
byte; A bit: this is an ACK

options (variable length)

TCP options (used when a sender 
and receiver negotiate the MSS)

head
len4-bit header length (in 32-bit Words)

checksumInternet checksum

RST, SYN, FIN: connection 
management (used for 

connection setup and teardown)

FSR

Urg data pointer

PUC E

C, E: congestion notification
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PSH: indicates that the receiver should pass 
the data to the upper layer immediately

URG: indicate that there is data in 
this segment that the sending-side 
upper- layer entity has marked as 
“urgent.” The location of the last byte 
of this urgent data is indicated by the 
16-bit urgent data pointer field.
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TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of 
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent 
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected 
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments?

• A: TCP spec doesn’t say, - up to 
implementor (discards out-of-order 
segments or keeps the out-of-order bytes and 
waits for the missing bytes to fill in the gaps) Transport Layer: 3-87Uploaded By: anonymousSTUDENTS-HUB.com



TCP sequence numbers, ACKs

host ACKs receipt 
of echoed ‘C’

host ACKs receipt 
of‘C’, echoes back ‘C’

simple telnet scenario

Host B
(assume nextSeqNum is 79)

Host A
(assume nextSeqNum is 42)

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP round trip time, timeout

Q: how to set TCP timeout 
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout, 
unnecessary retransmissions

▪ too long: slow reaction to 
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time 

from segment transmission until 
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want 
estimated RTT “smoother”

• average several recent
measurements, not just current 
SampleRTT
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

TCP round trip time, timeout
EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 0.125
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Assume old EstimatedRTT = 25 ms,

what is the new EstimatedRTT if the

SampleRTT = 100 ms?

0.875*25 + 0.125*100 = 34.375 ms

Assume old EstimatedRTT = 25 ms,

what is the new EstimatedRTT if the

SampleRTT = 26 ms?

0.875*25 + 0.125*26 = 25.1255 ms
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TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in  EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

• Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT: 
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TCP Sender (simplified)

event: data received from 
application

▪ create segment with seq #

▪ seq # is byte-stream number 
of first data byte in segment

▪ start timer if not already 
running 
• think of timer as for oldest 

unACKed segment

• expiration interval: 
TimeOutInterval

event: timeout
▪ retransmit segment that 

caused timeout
▪ restart timer

event: ACK received 

▪ if ACK acknowledges 
previously unACKed segments
• update what is known to be 

ACKed

• start timer if there are still 
unACKed segments
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TCP sender (simplified)

Transport Layer: 3-93

wait
for 

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

retransmit not-yet-acked segment         
with smallest seq. #

start timer

timeout

if (y > SendBase) { 

SendBase = y 

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer 

} 

ACK received, with ACK field value y 

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data) 

if (timer currently not running)

start timer

data received from application above
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TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap
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TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92,  8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative 
ACK for 120
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TCP: retransmission scenarios

cumulative ACK covers 
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120,  15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120
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TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs 
indicates 3 segments received 
after a missing segment – lost 

segment is likely. So retransmit!

if sender receives 3 additional 
ACKs for same data (“triple 
duplicate ACKs”), resend unACKed 
segment with smallest seq #
▪ likely that unACKed segment lost, 

so don’t wait for timeout

TCP fast retransmit
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Example

Transport Layer: 3-98

190

202
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Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

Network layer 
delivering IP datagram 

payload into TCP 
socket buffers

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

Network layer 
delivering IP datagram 

payload into TCP 
socket buffers

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

from sender

Application removing 
data from TCP socket 

buffers

receive window flow control: # bytes 
receiver willing to accept
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by 
transmitting too much, too fast

flow control

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control

▪ TCP receiver “advertises” free buffer 
space in the receive window (rwnd) 
field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)

• many operating systems auto-adjust 
RcvBuffer

▪ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering
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TCP flow control

▪ TCP receiver “advertises” free buffer 
space in the receive window (rwnd) 
field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)

• many operating systems auto-adjust 
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not 
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format
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TCP flow control

▪At Receiver:
• LastByteRead (by the application)

• LastByteRcvd (arrived from the network)

• LastByteRcvd – LastByteRead <= 

RcvBuffer

• rwnd = RcvBuffer - (LastByteRcvd

- LastByteRead)

▪At Sender:
• LastByteSent

• LastByteAcked

• LastByteSent - LastByteAcked <= 

rwnd

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering
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TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client 

application

network

Socket clientSocket =   

newSocket("hostname","port number");

Socket connectionSocket = 

welcomeSocket.accept();
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Agreeing to establish a connection

Q: will 2-way handshake always 
work in network?
▪ variable delays

▪ retransmitted messages (e.g. 
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)
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2-way handshake scenarios

connection 
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

ACK(x+1)

No problem!
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2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client 
terminates

server
forgets x

connection 
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open 
connection! (no client)
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2-way handshake scenarios

client 
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection 
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)
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TCP 3-way handshake 

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))
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TCP 3-way handshake FSM

Transport Layer: 3-113

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   

newSocket("hostname","port number");

SYN(seq=x)

Socket connectionSocket = 

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for communication 

back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L
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A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.
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Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN (FINACK)

• Waits around a bit (to respond to any retransmitted FIN messages 
before timing out) and then closes the connection

▪ simultaneous FIN exchanges can be handled
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Transport Layer: 3-116

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control (This topic will not be covered)

▪ TCP congestion control

▪ Evolution of transport-layer functionality
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer functionality
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TCP congestion control: AIMD
▪ approach: senders can increase sending rate until packet loss 

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r 
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1 
maximum segment size (MSS) 
every RTT until loss detected

Additive Increase

cut sending rate in half at 
each loss event

Multiplicative Decrease
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TCP AIMD: more

Multiplicative decrease detail:  sending rate is 

▪ Cut in half on loss detected by triple duplicate ACK

▪ Cut to 1 MSS (maximum segment size) when loss detected by 
timeout

Why AIMD?

▪ AIMD – a distributed, asynchronous-optimization algorithm –
has been shown to:

• optimize congested flow rates network wide!

• have desirable stability properties
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TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed network 
congestion (implementing TCP congestion control)

LastByteSent-LastByteAcked min(cwnd, rwnd)<

last byte
ACKed

last byte sent

cwnd

sender sequence number space 

available but 
not used

TCP sending behavior:

▪ roughly: send cwnd bytes, 
wait RTT for ACKS, then 
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed 
(“in-flight”)
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TCP slow start 

▪when connection begins, 
increase rate exponentially 
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is 
slow, but ramps up 
exponentially fast
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TCP: from slow start to congestion avoidance

Q: when should the exponential 
increase switch to linear? 

A: when cwnd gets to 1/2 of its 
value before timeout.

Implementation:
▪ variable ssthresh (slow start 

threshold)

▪ on loss event, ssthresh is set to 1/2 
of cwnd just before loss event

• Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X
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Summary: TCP congestion control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance 

cwnd = cwnd + (MSS/cwnd)   MSS
dupACKcount = 0

transmit new segment(s), as allowed

new ACK .

dupACKcount++

duplicate ACK

fast

recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment
ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 

start

timeout

ssthresh = cwnd/2 
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

cwnd = cwnd + MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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i.e., increases the value of 
cwnd by just a single 

MSS every RTT
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Evolution of TCP’s congestion window

Fast recovery is a recommended, but not required, component of TCP

▪ TCP Tahoe (an early version of TCP) unconditionally cut its 
congestion window to 1 MSS and entered the slow-start phase 
after either a timeout-indicated or triple-duplicate-ACK-indicated 
loss event 

▪ TCP Reno (newer version of TCP) incorporated fast recovery
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Example
▪ Identify the intervals of time when TCP slow start is operating?

• [1,4] and [24,27]

▪ Identify the intervals of time when TCP congestion avoidance is operating?

• [4,8], [9,17], [18,23], and [27,29]

▪ After the 17th transmission round, is segment loss detected by a triple 
duplicate ACK or by timeout?

• Triple duplicate ACK

▪ After the 23rd transmission round, is segment loss detected by a triple 
duplicate ACK or by timeout?

• Timeout

▪ What is the initial value of Threshold at the first transmission round?

• 8

▪ What is the value of Threshold at the 18th transmission round?

• 14/2=7

▪ What is the value of Threshold at the 26th transmission round?

• 12/2=6

▪ Assuming a packet loss is detected after the 29th round by a timeout, what 
will be the values of the congestion-window size and of Threshold?

• cwnd=1  and  ssthreshold= 8/2=4

▪ During what transmission round is the 40th segment sent?
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TCP CUBIC
▪ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher 
throughput in this 
example

▪ Insight/intuition: 
• Wmax: sending rate at which congestion loss was detected

• congestion state of bottleneck link probably (?) hasn’t changed much

• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then 
approach Wmax more slowly
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TCP throughput
▪ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume there is always data to send

▪W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W

• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 
3
4

W
RTT

bytes/sec
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TCP CUBIC
▪ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending 

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4 

▪ TCP CUBIC default 
in Linux, most 
popular TCP for 
popular Web 
servers

▪ increase W as a function of the cube of the distance between current 
time and K

Transport Layer: 3-129Uploaded By: anonymousSTUDENTS-HUB.com



TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

bottleneck link (almost always busy)

packet queue almost 
never empty, sometimes 

overflows packet (loss)
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TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

▪understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will 
not increase end-end throughout 
with congested bottleneck

insight: increasing TCP 
sending rate will

increase measured RTT

RTT
Goal: “keep the end-end pipe just full, but not fuller”
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Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep 
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:

▪ RTTmin - minimum observed RTT (uncongested path)

▪ uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to  uncongested throughput
increase cwnd linearly                /* since path not congested */ 

else if measured throughput “far below” uncongested throughout
decrease cwnd linearly /* since path is congested */

RTTmeasured

measured 
throughput =

# bytes sent in 
last RTT interval
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Delay-based TCP congestion control

▪ congestion control without inducing/forcing loss

▪ maximizing throughout (“keeping the just pipe full… ”) while keeping 
delay low (“…but not fuller”)

▪ a number of deployed TCPs take a delay-based approach
▪ Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control 

algorithm deployed on Google’s (internal) backbone network
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source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion
• policy to determine marking chosen by network operator

▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header E (a.k.a., ECE - ECN-Echo) and C 

(a.k.a., CWR - Congestion Window Reduced) bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment
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TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of 
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2
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Q: is TCP Fair?
Example: two competing TCP sessions:

▪ additive increase gives slope of 1, as throughout increases

▪multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized 
assumptions:
▪ same RTT
▪ fixed number of sessions 

only in congestion 
avoidance 

Is TCP fair?
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Fairness: must all network apps be “fair”?
Fairness and UDP
▪multimedia apps often do not 

use TCP
• do not want rate throttled by 

congestion control

▪ instead use UDP:
• send audio/video at constant rate, 

tolerate packet loss

▪ there is no “Internet police” 
policing use of congestion 
control

Fairness, parallel TCP 
connections

▪ application can open multiple
parallel connections between two 
hosts

▪web browsers do this , e.g., link of 
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets ≈ R/2 
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Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer functionality
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▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data 
transfers)

Many packets “in flight”; loss shuts down 
pipeline

Wireless networks Loss due to noisy wireless links, mobility; 
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows 
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TCP over “long, fat pipes”

Transport Layer: 3-140

▪ example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2.14·10-10  

– a very small loss rate!

▪ versions of TCP for long, high-speed scenarios

TCP throughput = 
1.22 . MSS

RTT L
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▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app) 

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP
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QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for 
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC 
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss 
detection and congestion control will find algorithms here that parallel 
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control, 
authentication, encryption, state established in one RTT
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QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control 

state) + TLS (authentication, crypto 
state)

▪2 serial handshakes

data

QUIC handshake

data

QUIC:  reliability, congestion control, 
authentication, crypto state

▪ 1 handshake
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QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a

n
sp

o
rt

a
p

p
lic

a
ti

o
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP 
GET 

HTTP 
GET 

HTTP 
GET 

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC 
encrypt

QUIC 
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC 
encrypt

QUIC 
encrypt

error!

HTTP 
GET HTTP 

GET 
HTTP 
GET 
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Chapter 3: summary

Transport Layer: 3-145

▪ principles behind transport 
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation 
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network 
“edge” (application, 
transport layers)

▪ into the network “core”

▪ two network-layer 
chapters:

• data plane

• control plane
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Additional Chapter 3 slides
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Go-Back-N: sender extended FSM

Transport Layer: 3-147

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) && 

notcorrupt(rcvpkt) 

base=1

nextseqnum=1

rdt_rcv(rcvpkt) 

&& corrupt(rcvpkt)

L
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Go-Back-N: receiver extended FSM

Transport Layer: 3-148

Wait

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

udt_send(sndpkt)

any other event 

expectedseqnum=1

sndpkt =    

make_pkt(expectedseqnum,ACK,chksum)

L

ACK-only: always send ACK for correctly-received packet with highest 
in-order seq #
• may generate duplicate ACKs
• need only remember expectedseqnum

▪ out-of-order packet: 
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Uploaded By: anonymousSTUDENTS-HUB.com


