
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content
to suit your needs. They obviously represent a lot of work on our part.
In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer: 3-1Uploaded By: anonymousSTUDENTS-HUB.com

Internet protocol stack

Introduction: 1-2

▪ application: supporting network applications
• HTTP, SMTP, IMAP

▪ transport: process-process data transfer
• TCP, UDP

▪ network: routing of datagrams from source to
destination
• IP, routing protocols

▪ link: data transfer between neighboring
network elements
• Ethernet, 802.11 (WiFi), PPP

▪ physical: bits “on the wire”

application

transport

network

link

physical

Uploaded By: anonymousSTUDENTS-HUB.com

Transport layer: overview

Our goal:

▪ understand principles
behind transport layer
services:
• multiplexing,

demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet transport
layer protocols:
• UDP: connectionless transport,

best-effort service

• TCP: reliable, flow- and congestion-
controlled connection-oriented
transport

Transport Layer: 3-3Uploaded By: anonymousSTUDENTS-HUB.com

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-4Uploaded By: anonymousSTUDENTS-HUB.com

Transport services and protocols

▪ provide logical communication
between application processes
running on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪ transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer

• receiver: reassembles segments into
messages, passes to application layer

▪ two transport protocols available to
Internet applications
• TCP, UDP

Transport Layer: 3-5Uploaded By: anonymousSTUDENTS-HUB.com

Transport vs. network layer services and protocols

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:
▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-6Uploaded By: anonymousSTUDENTS-HUB.com

Transport vs. network layer services and protocols

▪network layer: logical
communication between
hosts

household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:
▪ hosts = houses
▪ processes = kids
▪ app messages = letters in

envelopes
▪ transport protocol = Ann and Bill

who demux to in-house siblings
▪ network-layer protocol = postal

service

Transport Layer: 3-7

▪transport layer: logical
communication between
processes
• relies on, enhances, network

layer services

Uploaded By: anonymousSTUDENTS-HUB.com

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg▪ is passed an application-

layer message
▪ determines segment

header fields values
▪ creates segment

▪ passes segment to IP

transport
ThTh app. msg

Transport Layer: 3-8Uploaded By: anonymousSTUDENTS-HUB.com

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg ▪ extracts application-layer
message

▪ checks header values

▪ receives segment from IP

Th app. msg

▪ demultiplexes message up
to application via socket

Transport Layer: 3-9Uploaded By: anonymousSTUDENTS-HUB.com

Two principal Internet transport protocols

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-10Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-11Uploaded By: anonymousSTUDENTS-HUB.com

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing as receiver:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing as sender:

Transport Layer: 3-12Uploaded By: anonymousSTUDENTS-HUB.com

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

HTTP server

client

HTTP msg

Transport Layer: 3-13

HTTP msgHt

HTTP msgHtHn

HTTP msgHtHn

HTTP msgHtHn

Uploaded By: anonymousSTUDENTS-HUB.com

transport

physical

link

network transport

application

physical

link

network

transport

application

physical

link

network

client

HTTP msgHt

HTTP msg

Transport Layer: 3-14

HTTP msg

Q: how did transport layer know to deliver message to Firefox
browser process rather than Netflix process or Skype process?

Uploaded By: anonymousSTUDENTS-HUB.com

?

de-multiplexing

Uploaded By: anonymousSTUDENTS-HUB.com

?

de-multiplexing

transport

application

Uploaded By: anonymousSTUDENTS-HUB.com

Demultiplexing
Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

Uploaded By: anonymousSTUDENTS-HUB.com

multiplexing

Uploaded By: anonymousSTUDENTS-HUB.com

multiplexing

transport

application

Uploaded By: anonymousSTUDENTS-HUB.com

Multiplexing
Uploaded By: anonymousSTUDENTS-HUB.com

How demultiplexing works

▪ host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-23Uploaded By: anonymousSTUDENTS-HUB.com

Connectionless demultiplexing

Recall:

▪ when creating socket, must
specify host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

when receiving host receives
UDP segment:
• checks destination port # in

segment
• directs UDP segment to

socket with that port #

▪ when creating datagram to
send into UDP socket, must
specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

Transport Layer: 3-24Uploaded By: anonymousSTUDENTS-HUB.com

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket mySocket2 =
new DatagramSocket(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

A

B

C

D

DatagramSocket mySocket1 =
new DatagramSocket(5775);

DatagramSocket serverSocket =
new DatagramSocket(6428);

Connectionless demultiplexing: an example

Uploaded By: anonymousSTUDENTS-HUB.com

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-26Uploaded By: anonymousSTUDENTS-HUB.com

Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-27Uploaded By: anonymousSTUDENTS-HUB.com

Summary

▪ Multiplexing, demultiplexing: based on segment, datagram
header field values

▪ UDP: demultiplexing using destination port number (only)

▪ TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

▪ Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-28Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-29Uploaded By: anonymousSTUDENTS-HUB.com

UDP: User Datagram Protocol

▪ “no frills,” “bare bones”
Internet transport protocol

▪ “best effort” service, UDP
segments may be:
• lost
• delivered out-of-order to app

▪ no connection
establishment (which can
add RTT delay)

▪ simple: no connection state
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as

desired!

▪ can function in the face of
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-30Uploaded By: anonymousSTUDENTS-HUB.com

UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3):
▪ add needed reliability at application layer

▪ add congestion control at application layer

Transport Layer: 3-31Uploaded By: anonymousSTUDENTS-HUB.com

UDP: User Datagram Protocol [RFC 768]

Transport Layer: 3-32Uploaded By: anonymousSTUDENTS-HUB.com

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application

Transport Layer: 3-33Uploaded By: anonymousSTUDENTS-HUB.com

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg▪ is passed an application-

layer message
▪ determines UDP segment

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh SNMP msg

Transport Layer: 3-34Uploaded By: anonymousSTUDENTS-HUB.com

SNMP serverSNMP client

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
▪ extracts application-layer

message

▪ checks UDP checksum
header value

▪ receives segment from IP

UDPh SNMP msg
▪ demultiplexes message up

to application via socket

Transport Layer: 3-35Uploaded By: anonymousSTUDENTS-HUB.com

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

Transport Layer: 3-36Uploaded By: anonymousSTUDENTS-HUB.com

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Transport Layer: 3-37Uploaded By: anonymousSTUDENTS-HUB.com

Internet checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-38Uploaded By: anonymousSTUDENTS-HUB.com

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

• Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-39Uploaded By: anonymousSTUDENTS-HUB.com

http://gaia.cs.umass.edu/kurose_ross/interactive/

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-40Uploaded By: anonymousSTUDENTS-HUB.com

Summary: UDP

▪ “no frills” protocol:

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-42Uploaded By: anonymousSTUDENTS-HUB.com

Principles of reliable data transfer

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-43Uploaded By: anonymousSTUDENTS-HUB.com

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Transport Layer: 3-44Uploaded By: anonymousSTUDENTS-HUB.com

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

Transport Layer: 3-45Uploaded By: anonymousSTUDENTS-HUB.com

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Sender, receiver do not know
the “state” of each other, e.g.,
was a message received?
▪ unless communicated via a

message

Transport Layer: 3-46Uploaded By: anonymousSTUDENTS-HUB.com

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

Transport Layer: 3-47Uploaded By: anonymousSTUDENTS-HUB.com

Reliable data transfer: getting started
We will:
▪ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)

▪ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event

actions

▪ use finite state machines (FSM) to specify sender, receiver

Transport Layer: 3-48Uploaded By: anonymousSTUDENTS-HUB.com

rdt1.0: reliable transfer over a reliable channel

▪ underlying channel perfectly reliable
• no bit errors

• no loss of packets (no packets are duplicated or reordered)

packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

rdt_rcv(packet)Wait for

call from

below
receiver

▪ separate FSMs for sender, receiver:
• sender sends data into underlying channel

• receiver reads data from underlying channel

sender
Wait for

call from

above

Transport Layer: 3-49Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0: channel with bit errors

▪ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

▪ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

Transport Layer: 3-50Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0: channel with bit errors
▪ underlying channel may flip bits in packet
• checksum to detect bit errors

▪ the question: how to recover from errors?
• acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK

• negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

• sender retransmits pkt on receipt of NAK

stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-51Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0: FSM specifications

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

Transport Layer: 3-52Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0: FSM specification

Wait for

call from

above
udt_send(sndpkt)

Wait for

ACK or

NAK
udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for

call from

below

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

Note: “state” of receiver (did the receiver get my
message correctly?) isn’t known to sender unless
somehow communicated from receiver to sender
▪ that’s why we need a protocol!

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)isNAK(rcvpkt)

isACK(rcvpkt)

Transport Layer: 3-53Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0: operation with no errors

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

udt_send(NAK)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

sender

receiver

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

Transport Layer: 3-54Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0: corrupted packet scenario

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

Transport Layer: 3-55Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.0 has a fatal flaw!

what happens if ACK/NAK
corrupted?

▪ sender doesn’t know what
happened at receiver!

▪ can’t just retransmit: possible
duplicate

handling duplicates:
▪ sender retransmits current pkt

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

Transport Layer: 3-56Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.1: sender, handling garbled ACK/NAKs

Wait for

call 0 from

above

Wait for

ACK or

NAK 0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt)

&& (corrupt(rcvpkt) ||

isNAK(rcvpkt))

Wait for

call 1 from

above

Wait for

ACK or

NAK 1

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

L

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) &&

isACK(rcvpkt)

L

Transport Layer: 3-57Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.1: receiver, handling garbled ACK/NAKs

Wait for

0 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) &&

has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt) &&

has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

Transport Layer: 3-58Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.1: discussion

sender:

▪ seq # added to pkt

▪ two seq. #s (0,1) will suffice.
Why?

▪must check if received ACK/NAK
corrupted

▪ twice as many states
• state must “remember” whether

“expected” pkt should have seq #
of 0 or 1

receiver:

▪must check if received packet
is duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

▪ note: receiver can not know if
its last ACK/NAK received OK
at sender

Transport Layer: 3-59Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.2: a NAK-free protocol

▪ same functionality as rdt2.1, using ACKs only

▪ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-60Uploaded By: anonymousSTUDENTS-HUB.com

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0

sender FSM
fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Wait for

0 from

below

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

Transport Layer: 3-61Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-62Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount
of time

Transport Layer: 3-63Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0 sender

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

Wait for

call 0 from

above

Wait

for

ACK1

Transport Layer: 3-64Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0 sender

Wait

for

ACK0

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

stop_timer

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

udt_send(sndpkt)

start_timer

timeoutWait for

call 0 from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Lrdt_rcv(rcvpkt)

L

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

L

Transport Layer: 3-65Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0 receiver

Wait for

0 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(1, ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(0, ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq0(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

Transport Layer: 3-66Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0 in action

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Transport Layer: 3-67Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Transport Layer: 3-68Uploaded By: anonymousSTUDENTS-HUB.com

Performance of rdt3.0 (stop-and-wait)

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:

Transport Layer: 3-69Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT
first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

Transport Layer: 3-70Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0: stop-and-wait operation

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ rdt 3.0 protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-71Uploaded By: anonymousSTUDENTS-HUB.com

rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver

Transport Layer: 3-72Uploaded By: anonymousSTUDENTS-HUB.com

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

utilization by a factor of 3!

U
sender =

0.024

30.008
= 0.0008

3L / R

RTT + L / R
=

Transport Layer: 3-73Uploaded By: anonymousSTUDENTS-HUB.com

Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
Transport Layer: 3-74Uploaded By: anonymousSTUDENTS-HUB.com

Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Transport Layer: 3-75Uploaded By: anonymousSTUDENTS-HUB.com

Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0 (rcv_base = 1)
receive pkt1, send ack1 (rcv_base = 2)

receive pkt3, discard,
(re)send ack1 (rcv_base = 2)

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
(re)send ack1 (rcv_base = 2)

receive pkt5, discard,
(re)send ack1 (rcv_base = 2)

rcv pkt2, deliver, send ack2 (rcv_base = 3)
rcv pkt3, deliver, send ack3 (rcv_base = 4)
rcv pkt4, deliver, send ack4 (rcv_base = 5)
rcv pkt5, deliver, send ack5 (rcv_base = 6)

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Transport Layer: 3-76

rcv_base = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-77Uploaded By: anonymousSTUDENTS-HUB.com

Selective repeat: sender, receiver windows

Transport Layer: 3-78Uploaded By: anonymousSTUDENTS-HUB.com

Selective repeat: sender and receiver

data from above:

▪ if next available seq # in
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [send_base,send_base+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet,
advance window base to next
unACKed seq #

sender
packet n in [rcv_base, rcv_base+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcv_base-N,rcv_base-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Transport Layer: 3-79Uploaded By: anonymousSTUDENTS-HUB.com

Selective Repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3

record ack3 arrived

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Transport Layer: 3-80

0 1 2 3 4 5 6 7 8

Uploaded By: anonymousSTUDENTS-HUB.com

Selective repeat:
a dilemma!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size=3

Transport Layer: 3-81Uploaded By: anonymousSTUDENTS-HUB.com

Selective repeat:
a dilemma!

Q: what relationship is needed
between sequence # size and
window size to avoid problem
in scenario (b)?

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
▪ seq #s: 0, 1, 2, 3 (base 4 counting)

▪ window size = 3

▪ receiver can’t
see sender side
▪ receiver

behavior
identical in both
cases!
▪ something’s

(very) wrong!

Transport Layer: 3-82

sequence # size >= 2 * window size

Uploaded By: anonymousSTUDENTS-HUB.com

Selective repeat:
a dilemma!

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

pkt0

pkt1

pkt2

0 1 2 3 4 5 0 pkt0

timeout
retransmit pkt0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

0 1 2 3 4 5 0

X
X
X

will not accept packet
with seq number 0
it will know that this packet is
an old packet

receiver window
(after receipt)

sender window
(after receipt)

example:
▪ window size = 3

▪ seq #s: 0, 1, 2, 3, 4, 5

Transport Layer: 3-83

sequence # size >= 2 * window size

Example:
➢ if window size is 16 ➔ SQN = 32

(0,…, 31). So, we need 5 bits for the SQN
➢ if window size is 28

➔ we need 9 bits for
the SQN = 512 (0,…, 511).

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-84Uploaded By: anonymousSTUDENTS-HUB.com

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-85Uploaded By: anonymousSTUDENTS-HUB.com

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length) data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options (used when a sender
and receiver negotiate the MSS)

head
len4-bit header length (in 32-bit Words)

checksumInternet checksum

RST, SYN, FIN: connection
management (used for

connection setup and teardown)

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-86

PSH: indicates that the receiver should pass
the data to the upper layer immediately

URG: indicate that there is data in
this segment that the sending-side
upper- layer entity has marked as
“urgent.” The location of the last byte
of this urgent data is indicated by the
16-bit urgent data pointer field.

Uploaded By: anonymousSTUDENTS-HUB.com

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments?

• A: TCP spec doesn’t say, - up to
implementor (discards out-of-order
segments or keeps the out-of-order bytes and
waits for the missing bytes to fill in the gaps) Transport Layer: 3-87Uploaded By: anonymousSTUDENTS-HUB.com

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host B
(assume nextSeqNum is 79)

Host A
(assume nextSeqNum is 42)

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-88Uploaded By: anonymousSTUDENTS-HUB.com

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

Transport Layer: 3-89Uploaded By: anonymousSTUDENTS-HUB.com

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

TCP round trip time, timeout
EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value: = 0.125

Transport Layer: 3-90

Assume old EstimatedRTT = 25 ms,

what is the new EstimatedRTT if the

SampleRTT = 100 ms?

0.875*25 + 0.125*100 = 34.375 ms

Assume old EstimatedRTT = 25 ms,

what is the new EstimatedRTT if the

SampleRTT = 26 ms?

0.875*25 + 0.125*26 = 25.1255 ms

Uploaded By: anonymousSTUDENTS-HUB.com

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

• Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-91Uploaded By: anonymousSTUDENTS-HUB.com

http://gaia.cs.umass.edu/kurose_ross/interactive/

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

Transport Layer: 3-92Uploaded By: anonymousSTUDENTS-HUB.com

TCP sender (simplified)

Transport Layer: 3-93

wait
for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {

SendBase = y

/* SendBase–1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)

start timer

else stop timer

}

ACK received, with ACK field value y

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)

NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

start timer

data received from application above

Uploaded By: anonymousSTUDENTS-HUB.com

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-94Uploaded By: anonymousSTUDENTS-HUB.com

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-95Uploaded By: anonymousSTUDENTS-HUB.com

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-96Uploaded By: anonymousSTUDENTS-HUB.com

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-97Uploaded By: anonymousSTUDENTS-HUB.com

Example

Transport Layer: 3-98

190

202

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-99Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-100Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-101Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-102Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-103Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control

▪ TCP receiver “advertises” free buffer
space in the receive window (rwnd)
field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-104Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control

▪ TCP receiver “advertises” free buffer
space in the receive window (rwnd)
field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-105Uploaded By: anonymousSTUDENTS-HUB.com

TCP flow control

▪At Receiver:
• LastByteRead (by the application)

• LastByteRcvd (arrived from the network)

• LastByteRcvd – LastByteRead <=

RcvBuffer

• rwnd = RcvBuffer - (LastByteRcvd

- LastByteRead)

▪At Sender:
• LastByteSent

• LastByteAcked

• LastByteSent - LastByteAcked <=

rwnd

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-106Uploaded By: anonymousSTUDENTS-HUB.com

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =

newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer: 3-107Uploaded By: anonymousSTUDENTS-HUB.com

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?
▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-108Uploaded By: anonymousSTUDENTS-HUB.com

2-way handshake scenarios

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

ACK(x+1)

No problem!

Transport Layer: 3-109Uploaded By: anonymousSTUDENTS-HUB.com

2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open
connection! (no client)

Transport Layer: 3-110Uploaded By: anonymousSTUDENTS-HUB.com

2-way handshake scenarios

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

Uploaded By: anonymousSTUDENTS-HUB.com

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-112

LISTEN

Uploaded By: anonymousSTUDENTS-HUB.com

TCP 3-way handshake FSM

Transport Layer: 3-113

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

newSocket("hostname","port number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for communication

back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

Uploaded By: anonymousSTUDENTS-HUB.com

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

Transport Layer: 3-114Uploaded By: anonymousSTUDENTS-HUB.com

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN (FINACK)

• Waits around a bit (to respond to any retransmitted FIN messages
before timing out) and then closes the connection

▪ simultaneous FIN exchanges can be handled

Transport Layer: 3-115Uploaded By: anonymousSTUDENTS-HUB.com

Transport Layer: 3-116

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control (This topic will not be covered)

▪ TCP congestion control

▪ Evolution of transport-layer functionality

Transport Layer: 3-117Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer functionality

Transport Layer: 3-118Uploaded By: anonymousSTUDENTS-HUB.com

TCP congestion control: AIMD
▪ approach: senders can increase sending rate until packet loss

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1
maximum segment size (MSS)
every RTT until loss detected

Additive Increase

cut sending rate in half at
each loss event

Multiplicative Decrease

Transport Layer: 3-119Uploaded By: anonymousSTUDENTS-HUB.com

TCP AIMD: more

Multiplicative decrease detail: sending rate is

▪ Cut in half on loss detected by triple duplicate ACK

▪ Cut to 1 MSS (maximum segment size) when loss detected by
timeout

Why AIMD?

▪ AIMD – a distributed, asynchronous-optimization algorithm –
has been shown to:

• optimize congested flow rates network wide!

• have desirable stability properties

Transport Layer: 3-120Uploaded By: anonymousSTUDENTS-HUB.com

TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed network
congestion (implementing TCP congestion control)

LastByteSent-LastByteAcked min(cwnd, rwnd)<

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:

▪ roughly: send cwnd bytes,
wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed
(“in-flight”)

Transport Layer: 3-121Uploaded By: anonymousSTUDENTS-HUB.com

TCP slow start

▪when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is
slow, but ramps up
exponentially fast

Transport Layer: 3-122Uploaded By: anonymousSTUDENTS-HUB.com

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
▪ variable ssthresh (slow start

threshold)

▪ on loss event, ssthresh is set to 1/2
of cwnd just before loss event

• Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Transport Layer: 3-123Uploaded By: anonymousSTUDENTS-HUB.com

http://gaia.cs.umass.edu/kurose_ross/interactive/

Summary: TCP congestion control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + (MSS/cwnd) MSS
dupACKcount = 0

transmit new segment(s), as allowed

new ACK .

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment
ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

cwnd = cwnd + MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer: 3-124

i.e., increases the value of
cwnd by just a single

MSS every RTT

Uploaded By: anonymousSTUDENTS-HUB.com

Evolution of TCP’s congestion window

Fast recovery is a recommended, but not required, component of TCP

▪ TCP Tahoe (an early version of TCP) unconditionally cut its
congestion window to 1 MSS and entered the slow-start phase
after either a timeout-indicated or triple-duplicate-ACK-indicated
loss event

▪ TCP Reno (newer version of TCP) incorporated fast recovery

Transport Layer: 3-125Uploaded By: anonymousSTUDENTS-HUB.com

Example
▪ Identify the intervals of time when TCP slow start is operating?

• [1,4] and [24,27]

▪ Identify the intervals of time when TCP congestion avoidance is operating?

• [4,8], [9,17], [18,23], and [27,29]

▪ After the 17th transmission round, is segment loss detected by a triple
duplicate ACK or by timeout?

• Triple duplicate ACK

▪ After the 23rd transmission round, is segment loss detected by a triple
duplicate ACK or by timeout?

• Timeout

▪ What is the initial value of Threshold at the first transmission round?

• 8

▪ What is the value of Threshold at the 18th transmission round?

• 14/2=7

▪ What is the value of Threshold at the 26th transmission round?

• 12/2=6

▪ Assuming a packet loss is detected after the 29th round by a timeout, what
will be the values of the congestion-window size and of Threshold?

• cwnd=1 and ssthreshold= 8/2=4

▪ During what transmission round is the 40th segment sent?
Transport Layer: 3-126

TCP Reno

Uploaded By: anonymousSTUDENTS-HUB.com

TCP CUBIC
▪ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher
throughput in this
example

▪ Insight/intuition:
• Wmax: sending rate at which congestion loss was detected

• congestion state of bottleneck link probably (?) hasn’t changed much

• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then
approach Wmax more slowly

Transport Layer: 3-127Uploaded By: anonymousSTUDENTS-HUB.com

TCP throughput
▪ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume there is always data to send

▪W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W

• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Uploaded By: anonymousSTUDENTS-HUB.com

TCP CUBIC
▪ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4

▪ TCP CUBIC default
in Linux, most
popular TCP for
popular Web
servers

▪ increase W as a function of the cube of the distance between current
time and K

Transport Layer: 3-129Uploaded By: anonymousSTUDENTS-HUB.com

TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

bottleneck link (almost always busy)

packet queue almost
never empty, sometimes

overflows packet (loss)

Transport Layer: 3-130Uploaded By: anonymousSTUDENTS-HUB.com

TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

▪understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
not increase end-end throughout
with congested bottleneck

insight: increasing TCP
sending rate will

increase measured RTT

RTT
Goal: “keep the end-end pipe just full, but not fuller”

Transport Layer: 3-131Uploaded By: anonymousSTUDENTS-HUB.com

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:

▪ RTTmin - minimum observed RTT (uncongested path)

▪ uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to uncongested throughput
increase cwnd linearly /* since path not congested */

else if measured throughput “far below” uncongested throughout
decrease cwnd linearly /* since path is congested */

RTTmeasured

measured
throughput =

bytes sent in
last RTT interval

Transport Layer: 3-132Uploaded By: anonymousSTUDENTS-HUB.com

Delay-based TCP congestion control

▪ congestion control without inducing/forcing loss

▪ maximizing throughout (“keeping the just pipe full… ”) while keeping
delay low (“…but not fuller”)

▪ a number of deployed TCPs take a delay-based approach
▪ Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control

algorithm deployed on Google’s (internal) backbone network

Transport Layer: 3-133Uploaded By: anonymousSTUDENTS-HUB.com

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion
• policy to determine marking chosen by network operator

▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header E (a.k.a., ECE - ECN-Echo) and C

(a.k.a., CWR - Congestion Window Reduced) bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer: 3-134Uploaded By: anonymousSTUDENTS-HUB.com

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2

Transport Layer: 3-135Uploaded By: anonymousSTUDENTS-HUB.com

Q: is TCP Fair?
Example: two competing TCP sessions:

▪ additive increase gives slope of 1, as throughout increases

▪multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized
assumptions:
▪ same RTT
▪ fixed number of sessions

only in congestion
avoidance

Is TCP fair?

Transport Layer: 3-136Uploaded By: anonymousSTUDENTS-HUB.com

Fairness: must all network apps be “fair”?
Fairness and UDP
▪multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control

▪ instead use UDP:
• send audio/video at constant rate,

tolerate packet loss

▪ there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections

▪ application can open multiple
parallel connections between two
hosts

▪web browsers do this , e.g., link of
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets ≈ R/2

Transport Layer: 3-137Uploaded By: anonymousSTUDENTS-HUB.com

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer functionality

Transport Layer: 3-138Uploaded By: anonymousSTUDENTS-HUB.com

▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data
transfers)

Many packets “in flight”; loss shuts down
pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows

Transport Layer: 3-139Uploaded By: anonymousSTUDENTS-HUB.com

TCP over “long, fat pipes”

Transport Layer: 3-140

▪ example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2.14·10-10

– a very small loss rate!

▪ versions of TCP for long, high-speed scenarios

TCP throughput =
1.22 . MSS

RTT L

Uploaded By: anonymousSTUDENTS-HUB.com

▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app)

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP

Transport Layer: 3-141Uploaded By: anonymousSTUDENTS-HUB.com

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

Transport Layer: 3-142Uploaded By: anonymousSTUDENTS-HUB.com

QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control

state) + TLS (authentication, crypto
state)

▪2 serial handshakes

data

QUIC handshake

data

QUIC: reliability, congestion control,
authentication, crypto state

▪ 1 handshake

Transport Layer: 3-143Uploaded By: anonymousSTUDENTS-HUB.com

QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a

n
sp

o
rt

a
p

p
lic

a
ti

o
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

error!

HTTP
GET HTTP

GET
HTTP
GET

Transport Layer: 3-144Uploaded By: anonymousSTUDENTS-HUB.com

Chapter 3: summary

Transport Layer: 3-145

▪ principles behind transport
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network
“edge” (application,
transport layers)

▪ into the network “core”

▪ two network-layer
chapters:

• data plane

• control plane

Uploaded By: anonymousSTUDENTS-HUB.com

Additional Chapter 3 slides

Transport Layer: 3-146Uploaded By: anonymousSTUDENTS-HUB.com

Go-Back-N: sender extended FSM

Transport Layer: 3-147

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)

L

Uploaded By: anonymousSTUDENTS-HUB.com

Go-Back-N: receiver extended FSM

Transport Layer: 3-148

Wait

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

udt_send(sndpkt)

any other event

expectedseqnum=1

sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

L

ACK-only: always send ACK for correctly-received packet with highest
in-order seq #
• may generate duplicate ACKs
• need only remember expectedseqnum

▪ out-of-order packet:
• discard (don’t buffer): no receiver buffering!
• re-ACK pkt with highest in-order seq #

Uploaded By: anonymousSTUDENTS-HUB.com

