Aqgile Software
Development

Birzeit University, Computer Science Dept, Saad Mansour, 2024

STUDENTS-HUB.com Uploaded By: anonymous

Agile software development

® Rapid software development and delivery is the most critical requirement for most
business systems.

® Rapid software development became known as agile development or agile methods.

® Common characteristics of all the agile methods:

® The processes of specification, design and implementation are interleaved.

® The system is developed in a series of increments

¢ Extensive tool support is used to support the development process

® Agile methods are incremental development methods in which the increments are
small. They involve customers in the development process and minimize
documentation.

STU DE IMBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|0aded By anonymOUS

Agile software development

® Agile methods do not have a separate requirements engineering activity.
Rather, they integrate requirements elicitation with development.

® Agile methods have been particularly successful for two kinds of system
development:

® Product development where a software company is developing a small or medium-sized
product for sale.

® Custom system development within an organization, where there is a clear commitment
from the customer to become involved in the development process.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U plOaded By anOnymOUS

Scrum Method

® Agile development has to be managed so that the best use is made of the time
and resources available to the team.

® Scrum agile method was developed (Schwaber and Beedle 2001; Rubin 2013)
to provide a framework for organizing agile projects

® Scrum has emerged as the most widely used agile method.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U plOaded By anOnymOUS

User stories

® Requirements are expressed as a scenario of use that might be experienced by
a system user, called user stories.

® Break down stories to tasks.
® Estimates the effort and resources required for implementing each task.

® The customer then prioritizes the stories for implementation, to identify useful
functionality that can be implemented in about two weeks.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U plOaded By anOnymOUS

User stories

® The User Story can take the form:

AS a < type of user >, T want < some goal > so that < some reason .

® Examples:

® As a manager, | want to be able to generate progress report, so that | can understand my
employees’ progress.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oad ed By anonymOUS

User stories

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
look up the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Figure 3.6 Examples of
task cards for prescribing
medication

STU D E IMBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oad ed By anOnymOUS

Test Case

Test 4: Dose checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too
high.

2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Figure 3.7 Test case
description for dose
checking

Output:
OK or error message indicating that the dose is outside the safe range.

STU D E MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|0ad ed By anOnymOUS

Scrum terminology

Development team A self-organizing group of software developers, which should be no
more than seven people. They are responsible for developing the
software and other essential project documents.

Potentially shippable product The software increment that is delivered from a sprint. The idea is that

increment this should be “potentially shippable,” which means that it isin a
finished state and no further work, such as testing, is needed to
incorporate it into the final product. In practice, this is not always
achievable.

Product backlog This is a list of "to do” items that the Scrum team must tackle. They
may be feature definitions for the software, software requirements, user
stories, or descriptions of supplementary tasks that are needed, such as
architecture definition or user documentation.

Product owner An individual (or possibly a small group) whose job is to identify
product features or requirements, prioritize these for development, and
continuously review the product backlog to ensure that the project
continues to meet critical business needs. The Product Owner can be a
customer but might also be a product manager in a software company
or other stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes
work to be done that day. Ideally, this should be a short face-to-face
meeting that includes the whole team.

Uploaded By: anonyimous

Birzeit University, Computer Science Dept, Saad Mansour, 2024

Scrum terminology

ScrumMaster The ScrumMaster is responsible for ensuring that the Scrum process is
followed and guides the team in the effective use of Scrum. He or she
is responsible for interfacing with the rest of the company and for
ensuring that the Scrum team is not diverted by outside interference.
The Scrum developers are adamant that the ScrumMaster should not
be thought of as a project manager. Others, however, may not always
find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2 to 4 weeks long.

Velocity An estimate of how much product backlog effort a team can cover in a
single sprint. Understanding a team’s velocity helps them estimate what
can be covered in a sprint and provides a basis for measuring
improving performance.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oad ed By anOnymOUS

Presto: The Scrum Framework!

Daily Scrum Meeting

* Done since last meeting
* Plan for today

* Obstacles? 24 hours

Sprint Planning Meeting

) Reulfiew Prod '."Ct Backlog Backlog tasks 2 weeks Sprint Review Meeting
. Eanrna_te Sprint Backlog expanded «Bermo features to all
+ Commit to 2 weeks of work by team * Retrospective on the Sprint
Product Backlog: _ _
Prioritized Features Potentially Shippable

desired by Customer Sprint Backlog Product Increment
Features assigned to Sprint
Estimated by team

()

. Llolo
! IBirzeit University, Computer Science Dept, Saad Mansour, 2024 =N =) :I = :I E S —an Dnymous

Scrum

® At the beginning of each cycle, the Product Owner prioritizes the items on the
product backlog to define which are the most important items to be developed in that
cycle.

® They then estimate the time required to complete these items. To make these
estimates, they use the velocity attained in previous sprints

® This leads to the creation of a sprint backlog—the work to be done during that sprint.
The team self-organizes to decide who will work on what, and the sprint begins.

® During the sprint, the team holds short daily meetings (Scrums or Stand-up
meetings) to review progress and, where necessary, to re-prioritize work. During the
Scrum, all team members share information, describe their progress since the last
meeting, bring up problems that have arisen, and state what is planned for the
following day.

® At the end of each sprint, there is a review meeting, which involves the whole team.
This meeting has two purposes. First, it is a means of process improvement. Second,
It provides input on the product and the product state for the product backlog review
that precedes the next sprint.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oaded By anonymOUS

STUDE

Core Practices - lterations

Requirements

Design

Implementation &
Test & Integration
& Mare Design

Final Integration
& System Test

A

o
x'- i
§

3 weeks (for example)

- ITERATIVE, EVOLUTIONARY, AND AGILE

Requirements

Time Design ‘

Implementation &

Tesl & Integralion
& More Design

Final Integration
& System Test

N S O

A

lterations are fixed in
length, or timeboxed.

MBirzeit University, Computer Science Dept, Saad Mansour, 2024

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

The system grows L
incrementally.

Uploaded By: anonymous

Early iterations are farther from the “true L
path” of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

NN I
J U\ T

/
J o

L
one iteration of design,

implement, integrate, and test

MBirzeit University, Computer Science Dept, Saad Mansour, 2024

Uploaded By: anonymous

\ TGS
A e e
hY e o
\'\ requirements workshops -—--——._.____ e i
N v i .. i el T
\‘ I..-' l’ \.\._11- ‘-‘\1'.'\. — e
—a T | e P 5
8 @ @ i | :
& g 5 8 |!
= E | & £ : . '
= 2 = a9 : i
3 - i i
3 g : :
, | 90% :| 90%
: || 50% :
| ape : ’ E
20% [l — | 20%
2% 5% | i 8% | | i
teraton1 | leraion2 | lteration3 | lteration4 | lteration 5
7 a3-weekiteration ~ = _ _ '
ff “‘5‘__
s -
P Mg
s 'week 1 _ ~ week 2 _ week 3 S
[M o w ‘ Th F ‘ M T ‘ W | Th ‘ F ‘ M T W | Th F

MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oad ed By anOnymOUS

Extreme programming-XP

® Small releases: very small increments of functionality (often no longer than two weeks).
® Collective ownership: anyone can change anything.

® Continuous integration: as soon as the work on a task is complete, it is integrated into the
whole system. After any such integration, all the unit tests in the system must pass.

® Incremental planning.

® On-site customer: a representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming process, the
customer i1s a member of the development team.

® Pair programming: a Coder and a Reviewer work together.
® Refactoring.
® Simple design.

Test first Development: an automated unit test framework is used to write tests for a new
piece of functionality before that functionality itself is implemented.

STU DE IMBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oaded By anOnymOUS

Extreme programming-XP

simple design spike solutions
CRC cards profolypes
user stories
valves
acceptance fest criteria
iteration plan

refactoring
pair programming
Release

software increment
project velocity computed

acceptance testing
MBirzeit University, Computer Science Dept, Saad Mansour, 2024 U p|Oad ed By anOnymOUS

unit test
continuous integration

	Slide 1: Agile Software Development
	Slide 2: Agile software development
	Slide 3: Agile software development
	Slide 4: Scrum Method
	Slide 5: User stories
	Slide 6: User stories
	Slide 7: User stories
	Slide 8: Test Case
	Slide 9: Scrum terminology
	Slide 10: Scrum terminology
	Slide 11
	Slide 12: Scrum
	Slide 13: Core Practices - Iterations
	Slide 14
	Slide 15
	Slide 16: Extreme programming-XP
	Slide 17: Extreme programming-XP

