Birzeit University Mathematics Department

HW

Math 234

2017/2018

Name	Number	Section
(Q1) [60 points] Fill the blanks with true (Γ) or false (F).	
] (1) If E an elementary matrix of type	II, then it is both nonsingula	r and symmetric.
] (2) If A and B are $n \times n$ symmetric n	natrices, then the matrix AB -	+ BA is also symmetric.
] (3) If A is an $n \times n$ singular matrix, t	hen the system $Ax = b$ has in	finitely many solutions.
] (4) If E is an elementary matrix of typ	pe III, then $E^{-1} = E$.	
] (5) If A and B are symmetric matrice	s, then AB is also symmetric.	
] (6) If $A^2 = I$, then $A^{-1} = A$.		
] (7) The product of two elementary matrix (7)	atrices is an elementary matrix	Х.
] (8) Any $m \times n$ linear system $Ax = 0$ l	has a nontrivial solution if m	> n.
] (9) If A is a nonsingular matrix, then	A^T is nonsingular.	
] (10) The sum of two triangular matrices $[10]$	ces is a triangular matrix.	
] (11) If E is an elementary matrix, the	en E^T is also elementary of the	e same type.
] (12) If A is a singular matrix, then the	e system $Ax = 0$ has infinite r	number of solutions.
] (13) If A is a singular matrix and U is	s the $RREF$ of A , then U mu	st have al least one zero row.
] (14) Any invertible matrix is a produc	et of elementary matrices.	
] (15) If A is symmetric and nonsingula	r, then A^{-1} is symmetric.	
] (16) All 5×5 nonsingular matrices ar	e row equivalent.	
] (17) If A is a square matrix and the s		l solution, then A is nonsingular.
] (18) If A is an $n \times n$ nonsingular matrix	rix, then A^3 is nonsingular.	
] (19) If A is a nonsingular matrix and	α a nonzero scalar, then (αA)	$e^{-1} = \alpha A^{-1}.$
] (20) If A and B are $n \times n$ diagonal m	,	
] (21) If A is a 3×3 matrix with $a_1 = a_1$		
] (22) If A and B are nonsingular $n \times n$		-
] (23) If A is both symmetric and skew-	•	
] (24) If the system $Ax = b$ is consistent	,	
] (25) A square matrix A is nonsingular	-	
] (26) If b can be written as a linear combined $Ax = b$ has infinitely many solution		ngular matrix A , then the system

-] (27) If A, B, C are $n \times n$ nonsingular matrices, then $A^2 B^2 = (A B)(A + B)$.
-] (28) If b is any column of the matrix A, then the system Ax = b is consistent.
-] (29) The sum of a symmetric and skew-symmetric matrices is skew-symmetric.

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

- [] (30) Let A be nonsingular. If A is skew-symmetric, then A^{-1} is skew-symmetric.
 -] (31) Let A be nonsingular. If A is upper triangular, then A^{-1} is upper triangular.
 -] (32) Let A be nonsingular. If A is diagonal, then A^{-1} is diagonal.
- [33] If A is a 3×3 matrix and $(2, 3, -1)^T$ is a solution to Ax = 0, then $(-6, -9, 3)^T$ is also a solution.
-] (34) If the square system Ax = b has more than one solution, then A is singular.
-] (35) If A is a 4×4 nonsingular matrix, then AA^T is both symmetric and nonsingular.
-] (36) If A is a 4×4 matrix and Ax = 0 has only the zero solution, then A is row equivalent to I.
-] (37) If A is a nonsingular matrix, then $(A^T)^T = (A^{-1})^{-1}$.
-] (38) Every linear system with eight unknowns in three equations is consistent.
- (39) If the augmented matrix of a 3×2 system is row equivalent to I, then this system is inconsistent.
- [] (40) The identity matrix is row equivalent to any elementary matrix of the same size.