$\begin{array}{c} {\rm Birzeit\ University}\\ {\rm Mathematics\ Department}\\ {\rm Math3331}\\ {\rm Quiz}\#1 \end{array}$

Instructor: Dr. Ala Talahmeh Name:..... Time: 70 minutes First Semester 2020/2021 Number:..... Date: 1/10/2020

Exercise#1 [5 marks]. Solve the inequality

 $1 < x^2 < 4.$

Exercise#2 [5 marks]. Let x, y, a, and b be positive real numbers not equal to 0. Assume that $\frac{x}{y} < \frac{a}{b}$.

Show that

$$\frac{x}{y} < \frac{x+a}{y+b} < \frac{a}{b}.$$

Exercise#3 [5 marks]. Suppose that $\beta = \inf A < \infty$. Let $\varepsilon > 0$ be given. Prove that there is an $x \in A$ such that $\beta + \varepsilon > x$.

Exercise#4[5 marks]. For each $n \in \mathbb{N}$, let $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$. Show that

$$\bigcap_{n=1}^{\infty} I_n = \{0\}.$$

Exercise #5 [10 marks]. Consider the set

$$A = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}.$$

a. Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A?

b. Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A?

Good Luck

STUDENTS-HUB.com

Exercise #= Solve
$$| < x^2 < 4$$
.
Solution: $| < x^2 < 4 = \{x : x^2 > 1\} \land \{x : x^2 < 4\}$
 $= \{x : |x| > 1\} \land \{x : |x| < 2\}$
 $= \{x : |x| > 1\} \land \{x : |x| < 2\}$
 $= \{x : |x| > 1\} \land \{x : |x| < 2\}$
 $= \{-\infty, -1\} \cup (1, \infty) \land (-2, 2)$
 $= (-2, -1) \cup (1, 2)$
STUDENTS-HUB.com

Evenine #2. First, let us prove
$$\frac{X}{Y} \leq \frac{X+\alpha}{Y+b}$$
.
We have $X(Y+b) - Y(X+\alpha) = Xb - Y\alpha = Yb(\frac{X}{Y} - \frac{\alpha}{b}) < 0$
Since $\frac{X}{Y} \leq \frac{\alpha}{b}$ and all numbers are positive. So,
 $X(Y+b) \leq Y(X+\alpha)$ or $\frac{X}{Y} \leq \frac{X+\alpha}{Y+b}$.
The other inequality fillows from the same ideas.

STUDENTS-HUB.com

Exercise #3. Suppose not. That is,
$$\beta + \epsilon \leq \chi$$
, $\forall x \in A$.
In this case, $\beta + \epsilon$ is a lower bound of A . Thus,
we must have $\beta + \epsilon \leq \beta$ (since $\beta = \inf A$ is the greatest
lower bound). Thus, $\epsilon \leq 0$ which is impossible.

Uploaded By: anonymous

$$X \pm 0.$$

Cosel. X>0. by Archimedean Principle 3 a positive
integer n such that $X > \frac{1}{n}$. But this implies
 $X \notin (-\frac{1}{n}, \frac{1}{n})$ and therefore $X \notin \bigcap_{n=1}^{\infty} I_n$.

STUDENTS-HUB.com

Cose
$$x < 0$$
, then $-x > 0$ and by Archimedean Principle,
 $\exists a \text{ positive integer } n \text{ such that } -x > \frac{1}{n} \text{ so that}$
 $x < -\frac{1}{n}$. Again this implies that $x \notin \bigwedge_{n=1}^{\infty} \text{In}$.
Hence $\bigwedge_{n=1}^{\infty} \text{In} = \frac{2}{n} \circ \frac{1}{n}$

Exercise #5.
$$A = \{ \underbrace{-1}_{n}, n \in \mathbb{N} \}$$
.
(a) clearly, $\pm is an upper bound of A. (if M>0)
be an upper bound of A. we will show that $\pm \leq M$.
Suppose the contrary, i.e, $M < \pm \cdot$ Since M is an
upper bound of A, we have $\underbrace{-1}_{n} \leq M$, $\forall n \in \mathbb{N}$.
In particular, letting $n = 2$, we obtain $\pm \leq M < \pm$
which is impossible. thus, $\pm \leq M$ so that $\sup A = \pm \cdot$.
STUDENTS-HUB.com$

Since -IEA, then -I= minA. B

STUDENTS-HUB.com