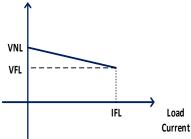


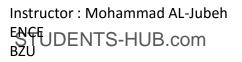
Instructor : Mohammad AL-Jubeh

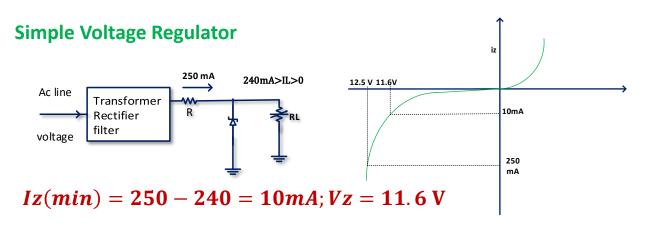
- Transformer: Used to increase or decrease the amplitude of the ac line voltage
- Rectifier: used to convert the ac voltage (zeroaverage value) into either positive and negative pulsating dc.
- 1) Have- Wave Rectifier
- 2) Full-Wave Rectifier
 - a) Center-tapped transformer full-wave Rectifier
 - b) Bridge full-wave rectifier
- Filter : used to smooth out the pulsating dc roduced by the rectifier by removing its ac ripple contents and passing its dc component (average value)

•Regulator: used to maintain a constant DC output voltage under variations in the load current drawn from the supply and under variation in AC line voltage

To determine the effectiveness of the voltage regulator , we define two indicators

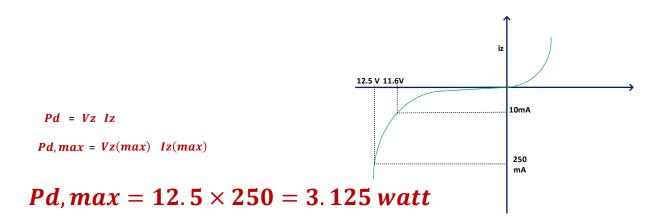

a) Load regulation = $\frac{\Delta V_O}{\Delta I_L}$ assuming V_S constant

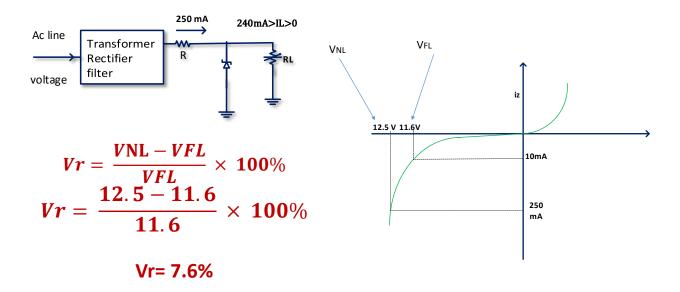

b) Line regulation = $\frac{\Delta v_o}{\Delta v_s}$ assuming R_L fixed


Voltage Regulator

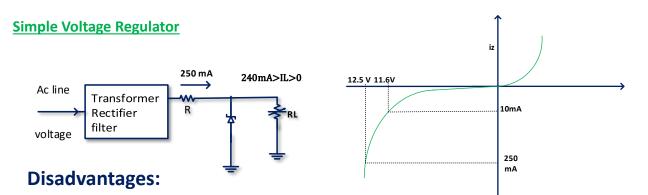
- An ideal power supply maintains a constant voltage at its output terminal , no matter what current it drawn from it .
- The output voltage of a practical power supply changes with load current.
- One measure of power supply performance is called percent voltage regulation.

$$Vr = rac{VNL - VFL}{VFL} \times 100\%$$



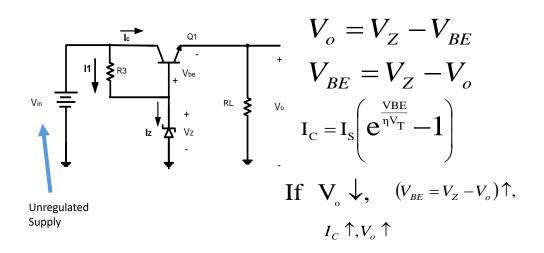

Iz(max) = 250 - 0 = 250mA; Vz = 12.5 V

 $\Delta Vo = \Delta Vz = 12.5 - 11.6 = 0.9 V$

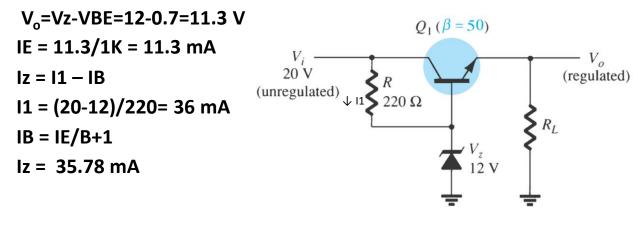


Instructor : Mohammad AL-Jubeh

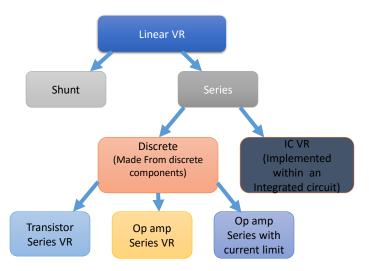
Simple Voltage Regulator



Voltage Regulator

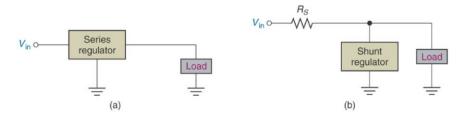

- 1. Variation in IL will cause Iz to vary. This in turns will cause variation in Vz=Vo
- 2. The Zener power dissipation will increase as IL decreases.

Transistorized Voltage regulator

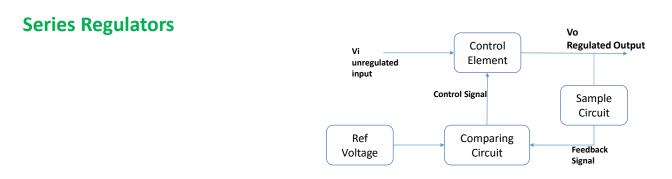

Example

Calculate the output voltage and Zener current for $R_L = 1k\Omega$. Solution:

Types of Regulators Voltage Regulators "VR" Linear VR Switching VR ositive Shunt output Output Negative Output 79XX Discrete IC VR Adjustable Output

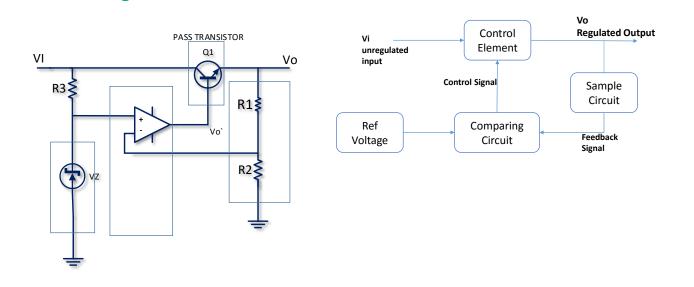

Types of Regulator

Instructor : Mohammad AL-Jubeh


Types of Regulator

- Fundamental classes of voltage regulators are linear regulators and switching regulators.
- Two basic types of linear regulator are the series regulator and the shunt regulator .
- The series regulator is connected in series with the load and the shunt regulator is connected in parallel with the load.

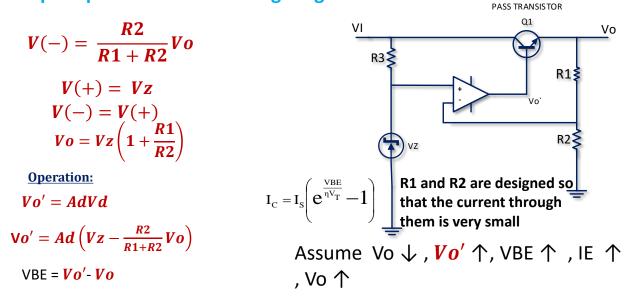
Series and shunt Regulators


- The purpose of a regulator is to eliminate any output voltage variation that might occur because of
- changes in load currents,
- changes in ac line Voltage,
- or changes in temperature.
- It monitors the output voltage and generates feedback signal that automatically Increases or decreases the supply voltage as necessary to compensate for any tendency of the output voltage to change.

Control element: is a device whose operating state adjusts as necessary to maintain a constant Vo.

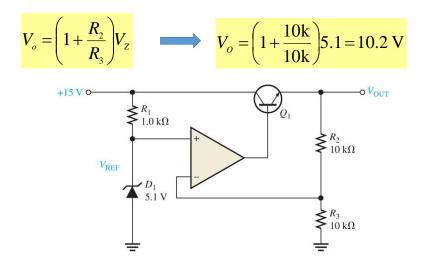
It is in series path between Vi and Vo

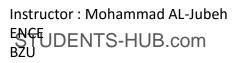
Voltage Regulator


Instructor : Mohammad AL-Jubeh

Series Regulators

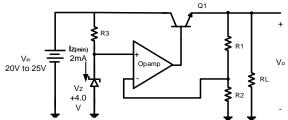
Series Regulators


Voltage Regulator


An Op-amp used in series voltage regulators

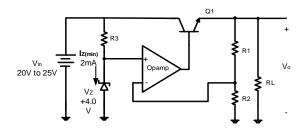
Example

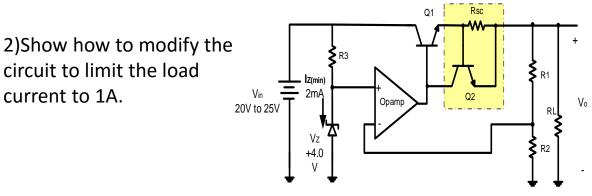
Determine the output voltage for the regulator below.



Voltage Regulator An Op-amp used in series voltage regulators **Current Limiting:** 0.7 PASS TRANSISTOR $Rsc = \frac{1}{IL(max)}$ Q1 VI Vo Rsc R3 2 - In normal operation R1 RI Q2 is off (VBE2<0.7V) IB1=Io; IL=IE=β.Io R2 -when IL=IL(max) VBE2 = 0.7VQ2 turns on; $I_0 = IB1 + IC2$ Q1 will conduct less current

Voltage Regulators example


- Given the following series voltage regulator
- 1) Complete the design of the following voltage regulator (Find of R1, R2 and R3) assuming that the voltage across the load resistor R_L is equal to 12V. Assume lz(min) = 2mA.
- 2)Show how to modify the circuit to limit the load current to 1A.
- 3)Find the output voltage for the modified circuit of part 2) when the load resistor $R_L = 100\Omega$ and when $R_L = 8\Omega$.
- 4) Choose a transistor with suitable power rating


Instructor : Mohammad AL-Jubeh

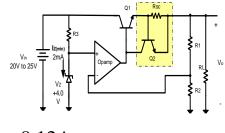
1) Complete the design of the following voltage regulator (Find of R1, R2 and R3) assuming that the voltage across the load resistor R_L is equal to 12V. Assume Iz(min) = 2mA.

$$V_o = \left(1 + \frac{R_1}{R_2}\right) V_z = 12 \text{ V}$$

$$\therefore \frac{R1}{R2} = \frac{V_o}{V_z} - 1 = \frac{12}{4} - 1 = 2$$

$$\implies \text{choose } R_1 = 20 \text{ k}\Omega$$

$$\therefore R_2 = 10 \text{ k}\Omega$$


Voltage Regulators

The change for current limit is done by adding Q2 and Rsc as shown

& R_{SC} =
$$\frac{V_{BE}}{I_{L(Max)}} = \frac{0.7 \text{ V}}{1 \text{ A}} = 0.7 \Omega$$

3)Find the output voltage for the modified circuit of part 2) when the load resistor R_1 =100Ω and when $R_1 = 8\Omega$.

For $R_{L} = 100 \text{ ohm}$, Vo = 12V, then $I_{L} = \frac{12V}{100\Omega} = 0.12A$

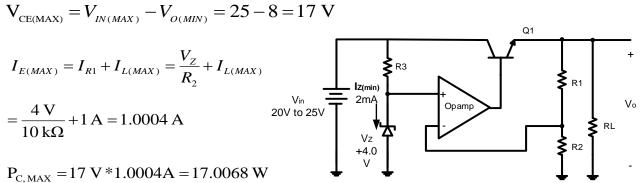
which is smaller than $I_{L(max)}$,

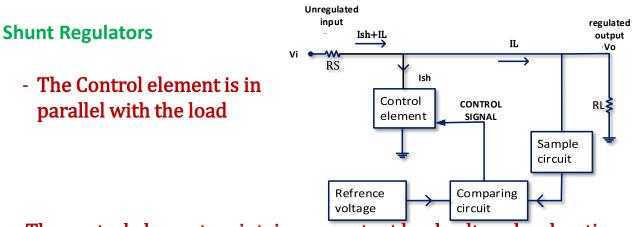
 \therefore V_o = 12 V and is not affected by the current limit circuit 12V

For
$$R_L = 8 \text{ ohm}$$
, $Vo = 12V$, then $I_L = \frac{12V}{8\Omega} = 1.5A$

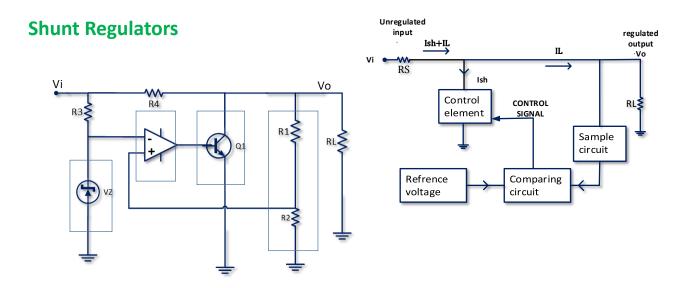
which is bigger than $I_{L(max)}$, and the current limit circuit

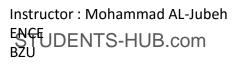
limits the current to the maximum allowable value which is 1 A

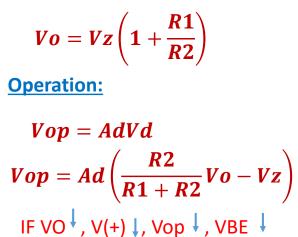

$$\therefore \mathbf{V}_{\mathrm{O}} = I_{L(Max)} * R_{L} = 1A * 8\Omega = 8 \mathrm{V}$$

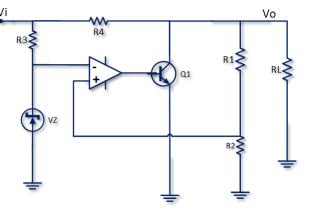

4) Choose a transistor with suitable power rating

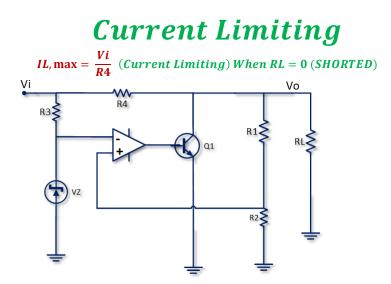
$$I_C \approx I_E$$

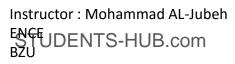

 $P_{C,MAX} = V_{CE(MAX)} * I_{C(MAX)}$

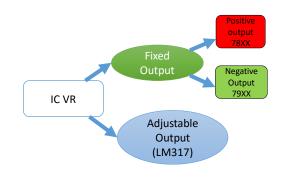

$$V_{CE(MAX)} = V_{IN(MAX)} - V_{O(MIN)} = 25 - 8 = 17 \text{ V}$$

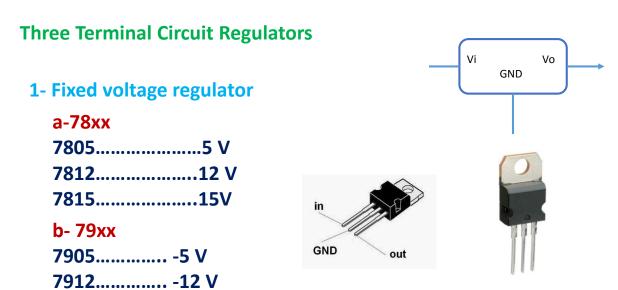



- The control element maintains a constant load voltage by shunting more or less current from the load
- When the load voltage decrease, the control element shunt less current


An Op-amp used in Shunt voltage regulators






 $\therefore \textit{ The transistor conduct Less, Ic \downarrow, IL \uparrow \textit{Vo} \uparrow^{I_{C}} = I_{s} \left(e^{\frac{VBE}{\eta V_{T}}} - 1 \right)$

Voltage Regulator

7915..... -15V

Fixed Voltage Regulator

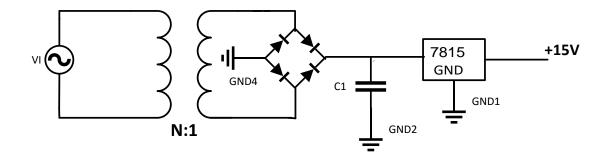
Positive-Voltage Regulators in the 78XX Series

IC Part	Output Voltage (V)	Minimum V _i (V)
7805	+5	+7.3
7806	+6	+8.3
7808	+8	+10.5
7810	+10	+12.5
7812	+12	+14.5
7815	+15	+17.7
7818	+18	+21.0
7824	+24	+27.1

Vin must be higher than Vo by at least 2V for proper operation of the voltage regulator

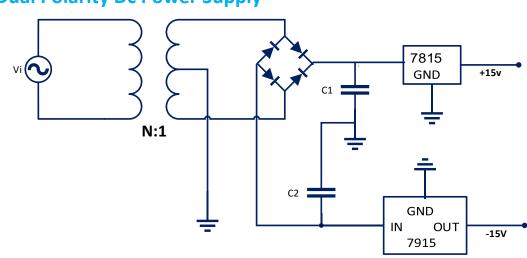
Fixed Voltage Regulator

Negative-Voltage Regulators in the 79XX Series


IC Part	Output Voltage (V)	Minimum V _i (V)
7905	-5	-7.3
7906	-6	-8.4
7908	-8	-10.5
7909	-9	-11.5
7912	-12	-14.6
7915	-15	-17.7
7918	-18	-20.8
7924	-24	-27.1

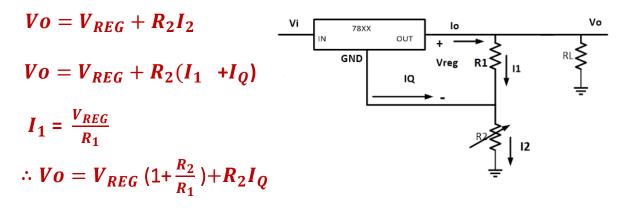
12/5/2016

Voltage Regulator


Three Terminal Circuit Regulators

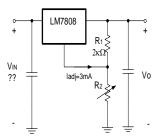
Dc Power Supply

Voltage Regulator

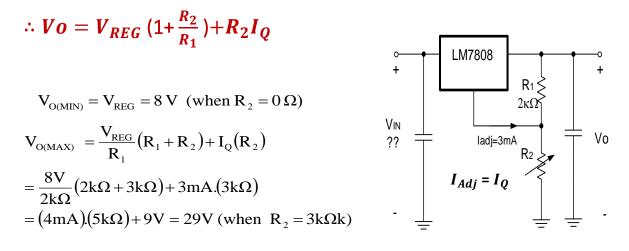

Three Terminal Circuit Regulators

Dual Polarity Dc Power Supply

Instructor : Mohammad AL-Jubeh


Changing the fixed Voltage Regulator to adjustable

 I_Q is in milliampere and change with temperature


Example

- Find the minimum and maximum output voltage (Vo) for the following IC voltage regulator. Note that R2 is a variable resistor that can be varied from 0 to $3k\Omega$
- What is the range of values of V_{IN} required for proper operation of the circuit
- What is the power dissipation of the LM7808 when Vo=Vo(min) and Vin=Vin(max) and load current =0.25A

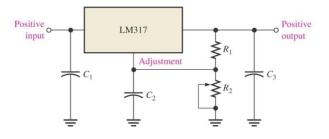
ENEE3304 Electronics 2

Find the minimum and maximum output voltage (Vo) for the following IC voltage regulator. Note that R2 is a variable resistor that can be varied from 0 to $3k\Omega$

What is the range of values of VIN required for proper operation of the circuit ?

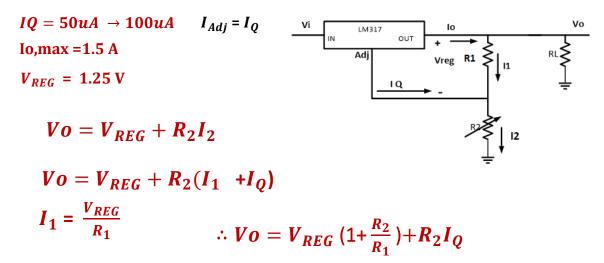
Vin must be higher than Vo by at least 2V

when
$$Vo = 8V$$
, $V_{IN(MIN)} = 8 + 2 = 10 V$
when $Vo = 29V$, $V_{IN(MAX)} = 29 + 2 = 31 V$
What is the power dissipation of the LM7808 when
Vo=Vo(min) and Vin=Vin(max) and load current =0.25A ?
Io = IL +I1 = 0.25A+4mA = 0.254A
Power Dissipation of LM7808:
 $P_{(LM7808)} = (V_{IN} - V_O) * I_O = (31 - 8) * 0.254 = 5.842 W$

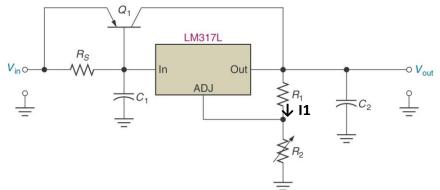

Instructor : Mohammad AL-Jubeh

12/5/2016

Adjustable-Voltage Regulator

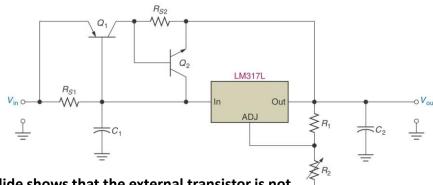

Adjustable-Voltage Regulator

- Voltage regulators are also available in circuit configurations that allow to set the output voltage to a desired regulated value.
- The LM317 is an example of an adjustable-voltage regulator, can be operated over the range of voltage from 1.25 to 35 V.



Voltage Regulator

2- Adjustable Voltage regulator


IC REGULATOR WITH BOOSTER CURRENT

IC regulators are limited to a maximum allowable current before shutting down. The circuit shown uses an external pass transistor to increase the maximum available load current

When I_0 is less than I_0 , max , VEB1 < 0.7 V So that the Q1 is OFF

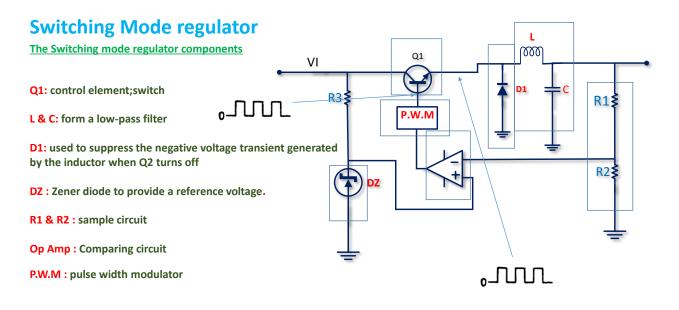
When I_0 is equal to I_0 ,max , VEB1 = 0.7 V So that the Q1 is on and $I_L = I_0$,max + $I_{C1} - I_1$

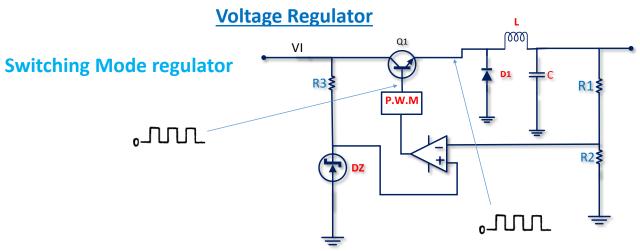
Previous slide shows that the external transistor is not protected from excessive current, such as would result

from shorted output. An additional current-limiting circuit (Q2 and Rs2) can be added to protect Q1 from excessive current and possible burn out.

When I_{C1} is equal to I_{C1} , max , VBE2 = 0.7V So that the Q2 is on and $I_L = I_{C1}$, max + I_{01} , max + $I_{E2} - I_1$

Instructor : Mohammad AL-Jubeh

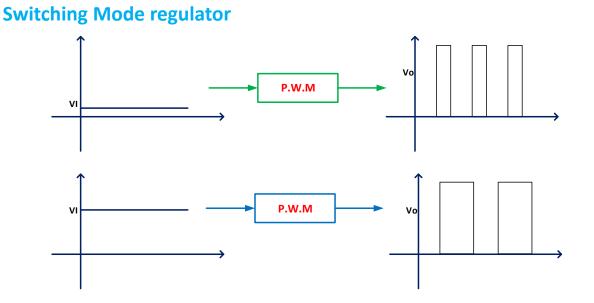

Uploaded By: anonymous


43

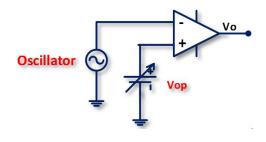
Types of Voltage Regulators

- Linear Power Supply.
 - Used power devices that operated at linear/active region.
 - Dissipates more power.
- Non-Linear Power Supply.
 - Used power devices that operated at saturation and cutoff alternately.
 - Dissipates less power.
 - Also named as switching power supply or switching regulator.

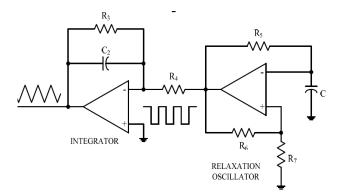
Voltage Regulator



The fundamental component of a switching regulator is a pulse width modulator: P.W.M


P.W.M produces a train of rectangular pulses having width that are proportional to the Device's input.

Voltage Regulator

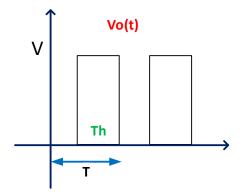


Instructor : Mohammad AL-Jubeh

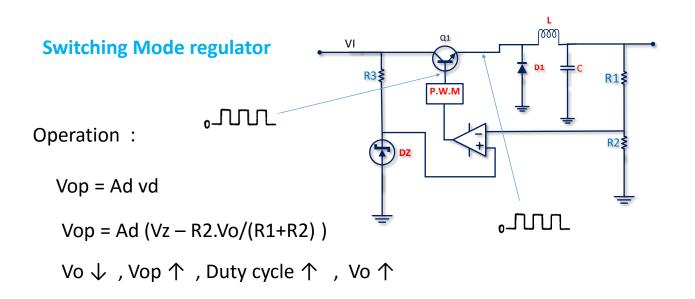
Oscillator

When V(+) > V(-) ;Vo(t) = Vsat =V

When V(+) < V(-) ;Vo(t) = -Vsat = 0

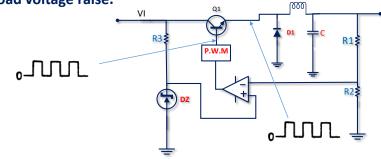


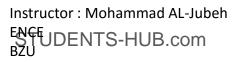
Pulse width Modulator Circuit (P.W.M)


$$Vo, dc = \frac{1}{T} \int_0^T Vo(t) dt$$
$$Vo, dc = \frac{1}{T} (V.Th)$$

$$Vo, dc = \frac{Th}{T}.V$$

$$Vo, dc = D.V$$


∴ The dc value of a pulse train is directly proportional to its duty cycle



Pulse width Modulator Circuit (P.W.M)

- A switching mode regulator uses a pulse width modulator to produce a pulse train whose duty cycle is automatically adjusted as necessary to increase or decrease the dc values of the train

- If the load voltage Vo tends to fall, then the output of the Op Amp increases and a larger voltage is applied to the pulse width modulator
- It therefore produces a pulse train having a larger duty cycle.
- The pulse train switches Q1 on and off with a greater duty cycle, so the dc values of the load voltage raise.

