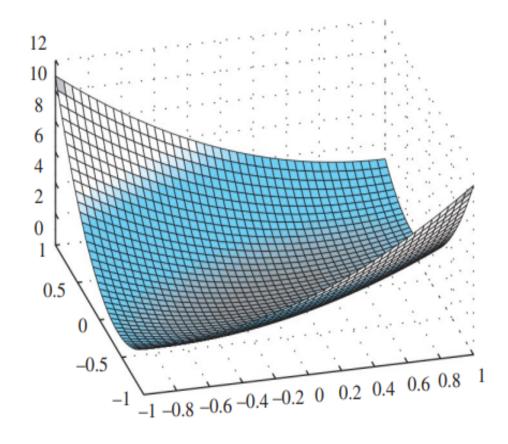
CHAPTER



6.1

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix. A scalar λ is said to be an **eigenvalue** or a **characteristic** value of A if there exists a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is said to be an **eigenvector** or a **characteristic vector** belonging to λ .

EXAMPLE 2 Let

$$A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Since

$$A\mathbf{x} = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 3\mathbf{x}$$

it follows that $\lambda = 3$ is an eigenvalue of A and $\mathbf{x} = (2, 1)^T$ is an eigenvector belonging to λ . Actually, any nonzero multiple of \mathbf{x} will be an eigenvector, because

$$A(\alpha \mathbf{x}) = \alpha A \mathbf{x} = \alpha \lambda \mathbf{x} = \lambda(\alpha \mathbf{x})$$

Let *A* be an $n \times n$ matrix and λ be a scalar. The following statements are equivalent:

- (a) λ is an eigenvalue of A.
- **(b)** $(A \lambda I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
- (c) $N(A \lambda I) \neq \{0\}$ (This is called the eigenspace corresponding to the eigenvalue)
- (d) $A \lambda I$ is singular.
- (e) $det(A \lambda I) = 0$ (This is called the characteristic equation)

We will now use statement (e) to determine the eigenvalues in a number of examples.

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0$$
 (1)
 $\Rightarrow (A - \lambda 1) \text{ singular}$
 $\Rightarrow |A - \lambda 1| = 0$ (2)

EXAMPLE 3 Find the eigenvalues and the corresponding eigenvectors of the matrix

(i)
$$\otimes \lambda_1 = -3$$
:
$$\begin{pmatrix} 6 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 6 & 2 & 0 \\ 3 & 1 & 0 \end{pmatrix}$$

$$R_{z-3}R_1 \begin{pmatrix} 1 & \frac{1}{3} & 0 \\ 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(7) \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\chi_{z=\times} , \chi_{1} = -\frac{1}{3} \times \Longrightarrow \begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \times \\ \times \end{pmatrix} = \times \begin{pmatrix} -\frac{1}{3} \times \\ 1 \end{pmatrix}$

STUDENTS-HUB.com

Uploaded By: Rawan Fares

Solution

The characteristic equation is

$$\begin{vmatrix} 3-\lambda & 2\\ 3 & -2-\lambda \end{vmatrix} = 0 \quad \text{or} \quad \lambda^2 - \lambda - 12 = 0$$

Thus, the eigenvalues of A are $\lambda_1 = 4$ and $\lambda_2 = -3$. To find the eigenvectors belonging to $\lambda_1 = 4$, we must determine the null space of A - 4I.

$$A - 4I = \left[\begin{array}{rr} -1 & 2 \\ 3 & -6 \end{array} \right]$$

Solving $(A - 4I)\mathbf{x} = \mathbf{0}$, we get

$$\mathbf{x} = (2x_2, x_2)^T$$

Hence, any nonzero multiple of $(2,1)^T$ is an eigenvector belonging to λ_1 , and $\{(2,1)^T\}$ is a basis for the eigenspace corresponding to λ_1 . Similarly, to find the eigenvectors for λ_2 , we must solve

$$(A+3I)\mathbf{x}=\mathbf{0}$$

In this case, $\{(-1,3)^T\}$ is a basis for N(A+3I) and any nonzero multiple of $(-1,3)^T$ STISDEN FIGURE belonging to λ_2 .

Uploaded By: Rawan Fares

EXAMPLE 4 Let

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}_{3 \times 3}$$

Find the eigenvalues and the corresponding eigenspaces.

The the eigenvalues and all corresponding eigenspaces.

(1)
$$|A-\lambda I| = 0 \Rightarrow \begin{vmatrix} 2-\lambda & -3 & 1 \\ 1 & -2-\lambda & 1 \\ -3 & 2-\lambda \end{vmatrix} = 0$$

(2-\lambda) $-3 = 2-\lambda + 3 = 0$

(2-\lambda) $-3 = 0$

Uploaded By: Rawan Fares

$$\chi_2 = \alpha$$
, $\chi_3 = \beta$, $\chi_1 = 3 \propto -\beta$

$$\Rightarrow \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} = \begin{pmatrix} 3 \times -B \\ \times \\ B \end{pmatrix} = \alpha \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + B' \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$V_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, V_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Solution

$$\begin{vmatrix} 2 - \lambda & -3 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & -3 & 2 - \lambda \end{vmatrix} = -\lambda(\lambda - 1)^2$$

Thus, the characteristic polynomial has roots $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 1$. The eigenspace corresponding to $\lambda_1 = 0$ is N(A), which we determine in the usual manner:

$$\begin{bmatrix} 2 & -3 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -3 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Setting $x_3 = \alpha$, we find that $x_1 = x_2 = x_3 = \alpha$. Consequently, the eigenspace corresponding to $\lambda_1 = 0$ consists of all vectors of the form $\alpha(1, 1, 1)^T$. To find the eigenspace corresponding to $\lambda = 1$, we solve the system $(A - I)\mathbf{x} = \mathbf{0}$:

$$\left(\begin{array}{ccc|c}
1 & -3 & 1 & 0 \\
1 & -3 & 1 & 0 \\
1 & -3 & 1 & 0
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & -3 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Setting $x_2 = \alpha$ and $x_3 = \beta$, we get $x_1 = 3\alpha - \beta$. Thus, the eigenspace corresponding to $\lambda = 1$ consists of all vectors of the form

$$\begin{bmatrix} 3\alpha - \beta \\ \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Complex Eigenvalues

Not only do the complex eigenvalues of a real matrix occur in conjugate pairs, but so do the eigenvectors. Indeed, if λ is a complex eigenvalue of a real $n \times n$ matrix A and \mathbf{z} is an eigenvector belonging to λ , then

$$A\overline{z} = \overline{A}\overline{z} = \overline{Az} = \overline{\lambda z} = \overline{\lambda}\overline{z}$$

Thus, $\bar{\mathbf{z}}$ is an eigenvector of A belonging to $\bar{\lambda}$. In Example 5, the eigenvector computed for the eigenvalue $\bar{\lambda} = 1 + 2i$ was $\bar{\mathbf{z}} = (1, i)^T$, and the eigenvector computed for $\bar{\lambda} = 1 - 2i$ was $\bar{\mathbf{z}} = (1, -i)^T$.

$$\lambda = 1 + 2i \implies Z = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

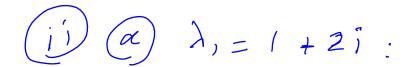
$$\overline{\lambda} = 1 - 2i \implies \overline{Z} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

EXAMPLE 5 Let

$$A = \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array} \right]$$

Compute the eigenvalues of A and find bases for the corresponding eigenspaces.

$$\Rightarrow \lambda_{1}=1+2i, \lambda_{2}=\overline{\lambda}_{1}=1-2i$$



$$\begin{pmatrix}
1-\lambda_{1} & 2 \\
-2 & 1-\lambda_{1}
\end{pmatrix} = \begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2 \\
-2i & 2
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2 \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2 \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2 \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2 \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i & 2i \\
-2i & 2i
\end{pmatrix}$$

$$\begin{pmatrix}
-2i & 2i &$$

Solution

$$\begin{vmatrix} 1-\lambda & 2 \\ -2 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 + 4$$

The roots of the characteristic polynomial are $\lambda_1 = 1 + 2i$, $\lambda_2 = 1 - 2i$.

$$A - \lambda_1 I = \left(\begin{array}{cc} -2i & 2 \\ -2 & -2i \end{array} \right) = -2 \left(\begin{array}{cc} i & -1 \\ 1 & i \end{array} \right)$$

It follows that $\{(1,i)^T\}$ is a basis for the eigenspace corresponding to $\lambda_1 = 1 + 2i$. Similarly,

$$A - \lambda_2 I = \left(\begin{array}{cc} 2i & 2 \\ -2 & 2i \end{array}\right) = 2 \left(\begin{array}{cc} i & 1 \\ -1 & i \end{array}\right)$$

and $\{(1, -i)^T\}$ is a basis for $N(A - \lambda_2 I)$.

The Product and Sum of the Eigenvalues

It is easy to determine the product and sum of the eigenvalues of an $n \times n$ matrix A. If $p(\lambda)$ is the characteristic polynomial of A, then

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & a_{nn} - \lambda \end{vmatrix}$$
(4)

Thus, the lead coefficient of $p(\lambda)$ is $(-1)^n$, and hence if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

= $(\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$ (6)

It follows from (4) and (6) that

 $\lambda_1 \cdot \lambda_2 \cdots \lambda_n = p(0) = \det(A)$ STUDENTS-HUB.com Uploaded By: Rawan Fare:

we also see that the coefficient of $(-\lambda)^{n-1}$ is $\sum_{i=1}^{n} a_{ii}$. If we use (6) to

determine this same coefficient, we obtain $\sum_{i=1}^{\infty} \lambda_i$. It follows that

$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}$$

The sum of the diagonal elements of A is called the *trace* of A and is denoted by tr(A).

EXAMPLE 6 If

$$A = \left[\begin{array}{cc} 5 & -18 \\ 1 & -1 \end{array} \right]$$

then

$$det(A) = -5 + 18 = 13$$
 and $tr(A) = 5 - 1 = 4$

The characteristic polynomial of A is given by

$$\begin{vmatrix} 5 - \lambda & -18 \\ 1 & -1 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 13$$

and hence the eigenvalues of A are $\lambda_1 = 2 + 3i$ and $\lambda_2 = 2 - 3i$. Note that

$$\lambda_1 + \lambda_2 = 4 = \operatorname{tr}(A)$$

and

$$\lambda_1 \lambda_2 = 13 = \det(A)$$

Similar Matrices

We close this section with an important result about the eigenvalues of similar matrices. Recall that a matrix B is said to be *similar* to a matrix A if there exists a nonsingular matrix S such that $B = S^{-1}AS$.

- **Theorem 6.1.1** Let A and B be $n \times n$ matrices. If B is similar to A, then the two matrices have the same characteristic polynomial and, consequently, the same eigenvalues.
 - **Proof** Let $p_A(x)$ and $p_B(x)$ denote the characteristic polynomials of A and B, respectively. If B is similar to A, then there exists a nonsingular matrix S such that $B = S^{-1}AS$. Thus,

$$p_B(\lambda) = \det(B - \lambda I)$$

$$= \det(S^{-1}AS - \lambda I)$$

$$= \det(S^{-1}(A - \lambda I)S)$$

$$= \det(S^{-1}) \det(A - \lambda I) \det(S)$$

$$= p_A(\lambda)$$

The eigenvalues of a matrix are the roots of the characteristic polynomial. Since the two matrices have the same characteristic polynomial, they must have the same eigenvalues.

Uploaded By: Rawan Fares

STUDENTS-HUB.com

EXAMPLE 7 Given

$$T = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

It is easily seen that the eigenvalues of T are $\lambda_1 = 2$ and $\lambda_2 = 3$. If we set $A = S^{-1}TS$, then the eigenvalues of A should be the same as those of T.

$$A = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 6 & 6 \end{bmatrix}$$

We leave it to the reader to verify that the eigenvalues of this matrix are $\lambda_1 = 2$ and $\lambda_2 = 3$.

SECTION 6.1 EXERCISES

- 1. Find the eigenvalues and the corresponding eigenspaces for each of the following matrices:
 - (a) $\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$
- **(b)** $\begin{bmatrix} 6 & -4 \\ 3 & -1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -8 \\ 2 & 3 \end{bmatrix}$

- (e) $\begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$ (f) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- **3.** Let A be an $n \times n$ matrix. Prove that A is singular if and only if $\lambda = 0$ is an eigenvalue of A.
- **4.** Let A be a nonsingular matrix and let λ be an eigenvalue of A. Show that $1/\lambda$ is an eigenvalue of A^{-1} .

4. If A is a nonsingular matrix and λ is an eigenvalue of A, then there exists a nonzero vector \mathbf{x} such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$A^{-1}A\mathbf{x} = \lambda A^{-1}\mathbf{x}$$

It follows from Exercise 3 that $\lambda \neq 0$. Therefore

$$A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$$

and hence $1/\lambda$ is an eigenvalue of A^{-1} .

- **6.** Let λ be an eigenvalue of A and let \mathbf{x} be an eigenvector belonging to λ . Use mathematical induction to show that, for $m \geq 1$, λ^m is an eigenvalue of A^m and \mathbf{x} is an eigenvector of A^m belonging to λ^m .
- 8. An $n \times n$ matrix A is said to be *idempotent* if $A^2 = A$. Show that if λ is an eigenvalue of an idempotent matrix, then λ must be either 0 or 1.
- **9.** An $n \times n$ matrix is said to be *nilpotent* if $A^k = O$ for some positive integer k. Show that all eigenvalues of a nilpotent matrix are 0.
- 12. Show that A and A^T have the same eigenvalues. Do they necessarily have the same eigenvectors? Explain.
 - **14.** Let A be a 2×2 matrix. If tr(A) = 8 and det(A) = 12, what are the eigenvalues of A?

8. If A is idempotent and λ is an eigenvalue of A with eigenvector \mathbf{x} , then

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$A^2 \mathbf{x} = \lambda A \mathbf{x} = \lambda^2 \mathbf{x}$$

and

$$A^2\mathbf{x} = A\mathbf{x} = \lambda\mathbf{x}$$

Therefore

$$(\lambda^2 - \lambda)\mathbf{x} = \mathbf{0}$$

Since $\mathbf{x} \neq \mathbf{0}$ it follows that

$$\lambda^2 - \lambda = 0$$
$$\lambda = 0 \quad \text{or} \quad \lambda = 1$$

9. If λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k (Exercise 6). If $A^k = O$, then all of its eigenvalues are 0. Thus $\lambda^k = 0$ and hence $\lambda = 0$.

12. $\det(A-\lambda I) = \det((A-\lambda I)^T) = \det(A^T-\lambda I)$. Thus A and A^T have the same characteristic polynomials and consequently must have the same eigenvalues. The eigenspaces however will not be the same. For example if

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

then the eigenvalues of A and A^T are both given by

$$\lambda_1 = \lambda_2 = 1$$

The eigenspace of A corresponding to $\lambda = 1$ is spanned by $(1, 0)^T$ while the eigenspace of A^T is spanned by $(0, 1)^T$.

