Homework 7 (chapter 8)

Abistact

2. Show that Z2 @ Z2 @ Z2 has I subgroups of order 2.

$$Q = (x, y, Z) \text{ in } Z_2 \oplus Z_2 \oplus Z_2$$

$$Q^2 = (x, y, Z)(x, y, Z) = (x + y, y + y, Z + Z) = (0, 0, 0) \text{ identify of } Z_2 \oplus Z_2 \oplus Z_2.$$

So There are seven elements of $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ of order 2 (except e=(0,0,0,1)) and for each such a there is a subgroup of order 2: $\{e,a\}^2$ this gives $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

4. Show that G @ H is Abelian if G and H are Abelian.

 \Rightarrow suppose that G and H are Abelian and $(g_1, h_1), (g_2, h_2) \in G \otimes H$, Then $(g_1, h_1)(g_2, h_2) = (g_1, g_2, h_1, h_2)$

=
$$(g_1, h_2)(g_1, h_1)$$
 since G and H are Abelian
= $(g_1, h_2)(g_1, h_1)$.

Thus, G @ H is Abelian.

Thus, $g_1g_2 = g_2g_1$ and G_1 Abelian and $h_1h_2 = h_1h_1$ So H is Abelian

6. Prove, By comparing orders of elements, that $Z_8 \oplus Z_2$ is not isomorphic to $Z_4 + Z_4$.

The element (1,0) $\in Z_8 \oplus Z_2$ with order 8

But $Z_4 \oplus Z_9$ doesn't have element of order 8.

So $Z_8 \oplus Z_2 \not\equiv Z_4 \oplus Z_9$.

8. IS $Z_3 \oplus Z_9$ isomorphic to Z_{21} ?

No, Since $Z_3 \oplus Z_9$ doesn't contains an element of order 27.

But Z_{27} does have.

To. How many elements of order 9 does $Z_3 \oplus Z_9$ have? Z_9 contains 6 elements of order 9: $\{1, 2, 4, 5, 7, 8\}$ and any of there with any element of Z_3 give an element of order 9.

So We have $6 \times 3 = 18$ elements of order 9.

14. suppose that $G_1 \approx G_{12}$ and $H_1 \approx H_2$. Prove that $G_1 \otimes H_1 \approx G_2 \otimes H_2$.

** Assume $\times: G_1 \to G_2$ and $g: H_1 \to H_2$ are isomorphisms.

** Define a function $g: G_1 \otimes H_1 \to G_2 \otimes H_2 \otimes g \otimes (g,h) = (\times(g), \beta(h))$ ** $g: G_1 \to G_2 \otimes G_1 \otimes G_2 \otimes G$

* ϕ is onto \sim * ϕ is isomorphism: $\phi((g,h)(\bar{g},\bar{h})) = \phi(g\bar{g},h\bar{h})$ $\Rightarrow (\approx (g\bar{g}), \beta(h\bar{h}))$ $= (\approx (g), \beta(h))(\approx (\bar{g}), \beta(\bar{h}))$ $= \phi(g,h) \phi(\bar{g},\bar{h})$

15. If G ⊕ H is cyclic prove that G and H are cyclic.

 \Rightarrow $G_1 \cong G_1 + \{e\}$ which is a subgroup of $G_1 \oplus H$ and $G_1 + \{e\}$ is cyclic. (A subgroup of cyclic is cyclic).

Hence, G is cyclic.

~ For H the same above.

16. In Z40 @ Z30, Find two subgroups of order 12.

 \rightarrow lo \in Z4, and |lo| = 4 $|lo| \in$ Z3, and |b| = 3

So (10,10) E Z40 @ Z30 and | (10,10) = L.C.m (4,3) = 12.

 \rightarrow 10 \in Z40 and |10| = 45 \in Z30 and |5| = 6

So (10,5) & Zyo @ Z30 and (10,5) = L.C.M (4,6) = 12

18. Find a subgroup of Z12 @ Z18 isomorphic to Z9 @ Zy.

Zq ⊕ Zq ≈ Zq ⊕ Zq ≈ <37 ⊕ <27

L→ in Z12 @ Z18

20. Determine the number of elements of older 15 and the number of cyclic gloup of older 15 in Z30 @ Z20.

Number of elements of order 15 is 48

Number of cyclic subgroups of order 15 is $\frac{48}{8} = 6$ $\phi(15)$