Def: An infinite series is the sum of an  
infinite sequence of numbers:  

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$
  
where  $a_n$  is the nth term of the series.  
Sequence of Partial sums:  
the sequence  $\{S_n\}$  defined by:  
 $S_1 = a_1$ , (1st partial sum).  
 $S_2 = a_1 + a_2$ , (and partial sum).  
:  
Supervise Hubbard By Rawan Riverse

Remark:  
1) If 
$$\lim_{n \to \infty} S_n = L$$
 (converges), we say  
that the series converges and its sum is L,  
that is,  $a_1 + a_2 + a_3 + \dots + a_n + \dots = L$   
2) If the sequence of partial sums  $\{S_n\}$  does  
not converge, we say that the series diverges.  
Notation:  $\sum_{n=1}^{\infty} a_n$ ,  $\sum_{k=1}^{\infty} a_k$  or simply  $\sum a_n$ .  
Examples: (Using n-th partial Sum).  
0)  $\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + \dots + n + \dots$   
 $S_1 = 1$   
STUDENTS HUB cond + 2 = 3  
Uploaded By: Rawan AlFares  
 $S_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ .

So, the sequence of partial sum is

(21)

(3) 
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) + \dots$$

$$S_{1} = 1 - \frac{1}{2}$$

$$S_{2} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

$$S_{3} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 - \frac{1}{4}$$

$$\vdots$$

$$S_{n} = 1 - \frac{1}{n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\therefore \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

(23)

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \overbrace{=}^{w} \\ = 1 \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \left( \begin{array}{c} \tan^{-1} \\ \left( n \right) \end{array} \\ = \left( \tan^{-1} \\ \left( 1 \right) - \tan^{-1} \\ \left( 2 \right) \end{array} \right) + \left( \tan^{-1} \\ \left( 2 \right) - \tan^{-1} \\ \left( 2 \right) \end{array} \right) + \left( \tan^{-1} \\ \left( 2 \right) + \left( \tan^{-1} \\ \left( 2 \right) \right) + \left( \tan^{-1} \\ \left( 2 \right) \right) + \left( \tan^{-1} \\ \left( 1 \right) + \left( 1 \right) \\ \left( 1 \right) + \left( 1 \right) + \left( 1 \right) \\ \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) \\ \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) \\ \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) \\ \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) \\ \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + \left( 1 \right) \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array}{l} \\ \\ \end{array}{l} \\$$
{l} \\ \end{array}{l}

$$O = \sum_{n=1}^{\infty} \int_{m} \left(\frac{n}{n+1}\right) = \sum_{n=1}^{\infty} \int_{m} n - \int_{m} (n+1)$$

$$S_{1} = \left(\int_{m} 1 - \int_{m} 2\right) = -\int_{m} 2$$

$$S_{2} = \left(\int_{m} 1 - \int_{m} 2\right) + \left(\int_{m} 2 - \int_{m} 3\right) = -\int_{m} 3$$

$$\vdots$$

$$S_{n} = -\int_{m} (n+1)$$

$$\int_{m \to \infty} \int_{n} (n+1) = -\infty$$

$$\sum_{n \to \infty} \int_{m \to \infty} \int_{m \to \infty} (n+1) = -\infty$$

$$\sum_{n \to \infty} \int_{m \to \infty} \int_{m \to \infty} \int_{m \to \infty} (n+1) = -\infty$$

$$S_{n \to \infty} = -\int_{m \to \infty} \int_{m \to \infty} \int_{m$$

-

Example: (1) 
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + (\frac{1}{2})^{n-1} + \dots$$
  
is a geometric series with  $a=1$ ,  $r = \frac{1}{2}$   
(2)  $1 - \frac{1}{3} + \frac{1}{9} + \dots + (-\frac{1}{3})^{n-1} + \dots$   
is a geometric series with  $a=1$  and  $r = -\frac{1}{3}$ .  
To determine the Convergence or divergence  
 $\frac{1}{3}$  a geometric series, we have the following Coss:  
1)  $If(r=1)$ , then the G.S. has the form:  
 $\sum_{n=1}^{\infty} a r^{n-1} = a + a + a + \dots + a + \dots$   
so, the nth partial sum of the G.S.  
 $S_1 = a$ .  
STUDENTS-HUB.com  
 $S_2 = a + a = 2a$   
 $S_3 = a + a + a = 3a$   
 $S_n = na$   $\Rightarrow \lim_{n \to \infty} S_n = \infty$  (Diverges)  
 $\Rightarrow$  Geometric series divergency  $\gamma(r=1)$  (26)

Using the neth partial sum of the G.S:  

$$S_1 = a$$
  
 $S_2 = a \pm ar$   
 $S_3 = a \pm ar \pm ar^2 \pm ar^{n-1}$   
 $Mdeiply by r$ :  
 $(r \leq n = ar \pm ar^2 \pm ar^3 \pm ar^{n-1})$   
 $Mou, \leq n-r \leq n = a - ar^n = a(1-r^n)$   
 $(1-r) \leq n = a(1-r^n)$ .  
 $S_n = \frac{a(1-r^n)}{1-r}$ .  $Irl \pm 1$   
 $STUDENTS + UDE com < 1$ , then  $r^n \to 0$  as uploaded By: Rawan AlFares  
and  $\lim_{n\to\infty} S_n = \frac{a}{1-r}$ .  
 $I \neq (1rl \geq 1)$ , then  $r^n \to 0$  as  $n \to \infty$   
and  $\lim_{n\to\infty} S_n = \frac{a}{1-r}$ .  
 $(28)$ 

Conclusion: Consider the Geometric series  

$$a + ar + ar^2 + \dots + ar^{n-1} + \dots$$
  
(1) If  $|r| < 1$ , then  $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$   
(2) If  $|r| > 1$ , then  $\sum_{n=1}^{\infty} ar^{n-1}$  diverges.  
 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + a \quad G.S.$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = \frac{1}{1-r} = \frac{1}{1-\frac{1}{2}} = \frac{1}{2}$   
 $\lim_{n=1}^{\infty} \frac{1}{2^{n-1}} = 5 + -\frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \dots$   
STUDENTS-HUB.com  
 $\lim_{n=0}^{\infty} a \quad G.S.$  with  $a = 5$ , and  $r = -\frac{1}{4}$ 

$$\sum_{n=0}^{\infty} \frac{(-1)^{n} 5}{4^{n}} = \frac{a}{1-r} = \frac{5}{1+\frac{1}{4}} =$$

$$(c) \sum_{n=1}^{\infty} \frac{1}{q} \left(\frac{1}{3}\right)^{n-1} = \frac{1}{q} + \frac{1}{27} + \frac{1}{81} + \cdots$$

$$with a = \frac{1}{q} \text{ and } r = \frac{1}{3} \cdot$$

$$\text{Since } \left|\frac{1}{3}\right| < 1 \text{ i then} \\ \sum_{n=1}^{\infty} \frac{1}{q} \left(\frac{1}{3}\right)^{n-1} = \frac{\alpha}{1-r} = \frac{1}{q} = \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} = \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} = \frac{1}{1+\frac{1}{3}} + \frac{1}{1+\frac{1}{3}} + \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} = \frac{1}{1+\frac{1}{3}} + \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} = \frac{1}{1+\frac{1}{3}} + \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} = \frac{1}{1+\frac{1}{3}} + \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} = \frac{1}{1+\frac{1}{3}} + \frac{1}{1-\frac{1}{3}} = \frac{1}{6}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{q} + \frac{1}{1+\frac{1}{3}} + \frac{1}{1+\frac{1}{3}} + \frac{1}{6} +$$

Example : Express the repeating decimal 0.07  
as a ratio of two integers.  
$$0.07 = 0.06166... = \frac{6}{100} + \frac{6}{1000} + \frac{6}{10000} + \frac{6}{1000} + \frac{6}{100$$

Uploaded By: Rawan AlFares

STUDENTS-HUB.com  $5 + \frac{1}{2} + \frac{3}{3}$ = 10 + 3 = 2 23

The neth term test for a divergent services.  
Theorem: If 
$$\sum_{n=1}^{\infty} a_n$$
 converges, then  $a_n \rightarrow 0$   
Remark : The converse of the theorem is not  
true, i.e., If  $a_n \rightarrow 0$   $\Rightarrow \sum_{n=1}^{\infty} a_n$  convergent  
Example:  $\sum_{n=1}^{\infty} \frac{1}{n}$  (Harmonic services)  
Notice that  $\lim_{n\to\infty} \frac{1}{n} = 0$ , but the services  
diverges. (We will see Later). (10-3)  
The neth term test for divergent services Theorem:  
If  $\lim_{n\to\infty} a_n \neq 0$  or fails to extist, then  
students: HUB constant is in the services.  
 $n = 1$  uploaded By: Rawan AlFares  
 $1 + (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}) + \dots + (\frac{1}{2^n} + \dots + \frac{1}{2^n}) + \dots$   
 $= 1 + 1 + 1 + \dots$  which is diverges. (32)

Examples: (Using nth term test for divergent).  

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

Combining Series:  
Theorem: 
$$I \neq \sum_{n=1}^{\infty} a_n = A$$
 and  $\sum_{n=1}^{\infty} b_n = B$   
are convergent series, then: (K constant).  
1)  $\sum_{k=1}^{\infty} (a_k \pm b_k) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = A \pm B$   
2)  $\sum_{n=1}^{\infty} K a_n = K \sum_{n=1}^{\infty} a_n = K A$   
Collories:  
II Every nonzero constant multiple of a divergent  
series is divergent.  
 $E I \neq \sum_{n=1}^{\infty} a_n$  (converges) and  $\sum_{n=1}^{\infty} b_n$  (divergent), then  
students: Hubboom(a\_n + b\_n) and  $\sum_{n=1}^{\infty} (a_n - b_n)$  loods with Readen with press  
Californies: If  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  both diverge  
then  $\sum_{n=1}^{\infty} (a_n + b_n)$  Can be (converge or diverge.

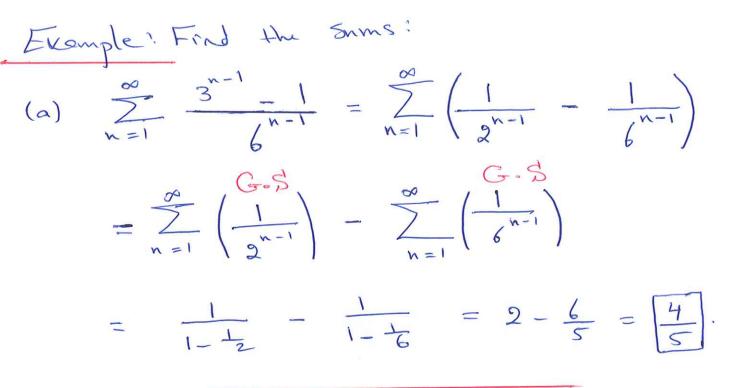
-

-

\_

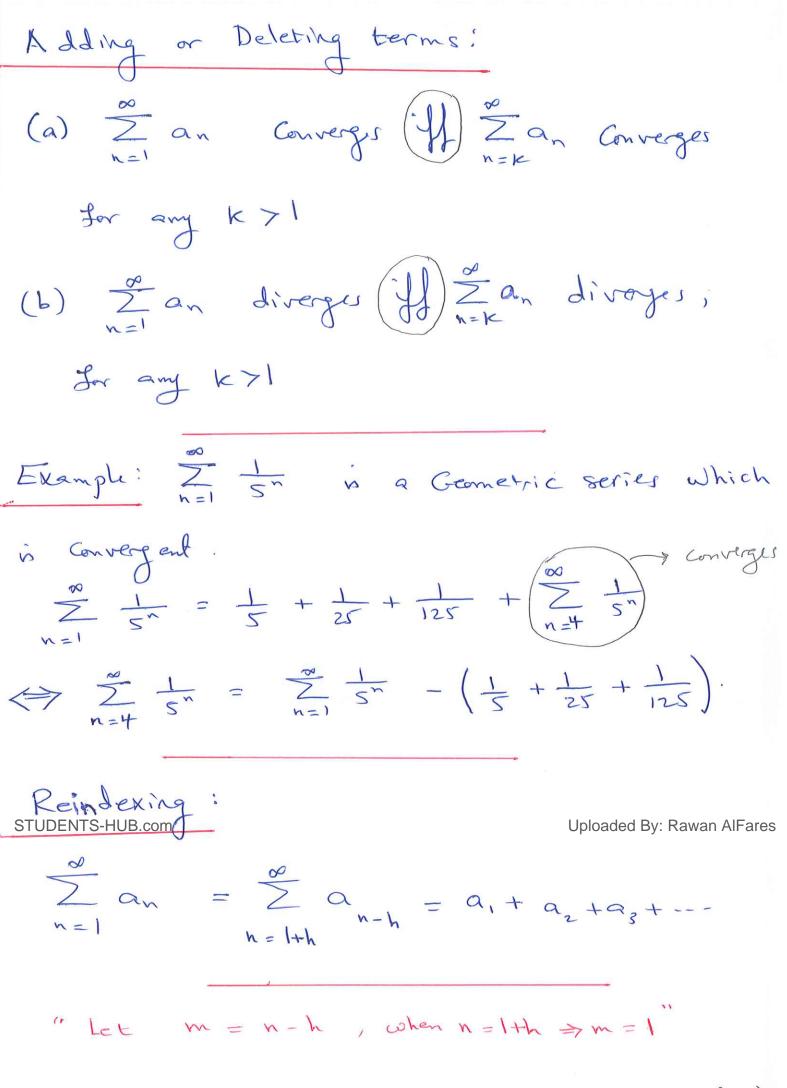
(34)

Example: 
$$\sum_{n=1}^{\infty} a_n = 1 + 1 + 1 + \dots$$
, and  
 $\sum_{n=1}^{\infty} b_n = (-1) + (-1) + (-1) + \dots$ , both series  
 $a_{n=1}$  divergent series , but:  
 $\sum_{n=1}^{\infty} (a_n + b_n) = 0 + 0 + 0 + \dots = 0.$  (Converges)



$$(\texttt{TUBENTSHUB.com}_{n=0}^{\infty} = 4 \sum_{n=0}^{\infty} \frac{1}{2^n} \qquad \text{Uploaded By: Rawan AlFares}$$
$$= 4 \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\right)$$
$$= 4 \left(\frac{1}{1 - \frac{1}{2}}\right) = 4 \cdot 2 = \boxed{8}$$

(32)



(36)

Example: For the series 
$$\sum_{n=2}^{\infty} n 2^{n-1}$$
.  
(a) start the index of  $n=0$ .  
Let  $m = n-2$ , then when  $n=2 \Rightarrow m=0$   
 $\sum_{n=2}^{\infty} n 2^{n-1} = \sum_{m=0}^{\infty} (m+2) 2 = \sum_{n=0}^{\infty} (n+2) 2$ .  
(b) Write the power of 2 in the form  $n+6$   
Let  $m+6 = n-1 \Rightarrow n = m+7$   
and when  $n = 2 \Rightarrow m = -5$   
 $\sum_{n=2}^{\infty} n 2^{n-1} = \sum_{m=-5}^{\infty} (m+7) 2 = \sum_{n=-5}^{\infty} (n+7) 2$   
Example: For which value is of a does the series  
 $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot a \cdot 2 = (a+7) 2$   
STUDENTS-HUB.com  $2^{3/4} = n^{-1}$  converges?  
 $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot a \cdot 2 = (a+7) - (a+7) -$ 

-

-

The Gametric series Convoyes 
$$\frac{1}{2} |r| < 1$$
  

$$\frac{1-\frac{2}{a}}{2} < 1 \iff \frac{2}{2} > 1$$

$$\frac{\alpha}{2} > 1 \qquad \text{or} \qquad \frac{\alpha}{2} < -1$$

$$\frac{\alpha}{2} > 1 \qquad \text{or} \qquad \alpha < -2$$

$$\frac{\alpha}{2} > 1 \qquad \text{or} \qquad \alpha < -2$$

$$\frac{\alpha}{2} < -1$$

$$\frac{\alpha}{2} > 1 \qquad \text{or} \qquad \alpha < -2$$

$$\frac{\alpha}{2} < -1$$

$$\frac{\alpha}{2} = (-\infty, -2) \cup (2, \infty).$$
Example: Find  $\frac{\pi}{2} = \frac{6}{(2n-1)(2n+1)}$ 
Using partial fraction:  

$$\frac{\pi}{2} = \frac{6}{(2n-1)(2n+1)} = \frac{\pi}{2} \left( \frac{3}{(2n-1)} - \frac{3}{(2n+1)} \right) (1e |example|$$

$$\frac{5}{1} = 3 - \frac{3}{3}$$

$$\frac{5}{2} = (3-1) + (1 - \frac{3}{5}) = 3 - \frac{3}{5}$$
Students HUB.com  

$$\frac{5}{n} = 3 - \frac{3}{2n+1}$$

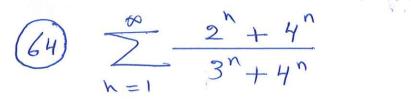
$$\lim_{n \to \infty} 5n = \lim_{n \to \infty} (3 - \frac{3}{2n+1}) = 3 - 0 = [3]$$

$$\frac{\pi}{2n} = \frac{6}{(2n-1)(2n+1)} = [3] (converge).$$

(38)

Lecture Problems:

(37) Use with partial sum to determine 
$$\frac{1}{2}$$
 the  
series  $\sum_{n=1}^{\infty} (\ln \sqrt{n+1} - \ln \sqrt{n})$  (enverger or  $\frac{1}{2}\sqrt{n}$ ;  
 $S_{1} = \ln \sqrt{2} - \ln 1 = \ln \sqrt{2}$   
 $S_{2} = (\ln \sqrt{2} - \ln 1) + (\ln \sqrt{3} - \ln \sqrt{2}) = \ln \sqrt{3}$   
 $\vdots$   
 $S_{n} = \ln (\sqrt{n+1})$   
 $\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \ln (\sqrt{n+1}) = +\infty$  (diverger).  
(5) Find  $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{3}{2^{n}} = \frac{3}{2} - \frac{3}{4} + \frac{3}{8} + -$   
The Series is Geometric series, with  
 $a = \frac{3}{2^{n}} = -\frac{1}{2}$   
 $\lim_{n \to \infty} \lim_{n \to \infty} \ln \sqrt{n} = -\frac{1}{2}$   
 $\lim_{n \to \infty} \lim_{n \to \infty} \ln \sqrt{n} = -\frac{1}{2} = \frac{3}{2^{n}} = \frac{3}{2^{n}} = \frac{3}{2} = \frac{3}{2$ 





 $= \lim_{n \to \infty} \frac{(\frac{1}{2})^{n} + 1}{(\frac{3}{4})^{n} + 1} = \frac{0+1}{0+1} = 1 \pm 0.$ 

So, by the nth term test, the Series diverges.

(75) Find the Values of 
$$xe$$
 for which the geometric  
series converges for  $\sum_{n=0}^{\infty} (-1)^n (x+1)^n$ 

$$\sum_{k=0}^{\infty} (-1)'(x+1)' = 1 - (x+1) + (x+1)' - (x+1) + \cdots$$

$$a = 1$$
 and  $v = -(x+1)$ .

STUDENTS-HUB.com

Uploaded By: Rawan AlFares

The Geometric Series Converges & Irl XI [-(x+1)] = |x+1| < | $\iff -1 < x + 1 < 1 \iff (-2 < x < 0)$ 

10.3 The Juleg rol Test.  
Recall : Theorem (6) (section 10.1):  
The monotonic sequence Theorem:  
If a sequence [an] is both bounded and  
monotonic, then the sequence Converges.  
Corollary of Theorem (6):  
A series 
$$\sum_{n=1}^{\infty} a_n$$
 of nonnegative terms converges  
if and only if its partial sums are bounded from above.  
Example:  $\sum_{n=1}^{\infty} \frac{1}{n}$  (Harmonic series).  
 $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$   
(whith term terms)  
students: holdomanic series is divergent. (Mitheory Limit = 0  
 $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{7} + \frac{1}{8}) + \dots$   
 $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{7} + \frac{1}{8}) + \dots$   
The sequence of the partial sums is not bounded  
from above  $\Rightarrow$  The hormonic series diverges  
The divergence is very slow. (41)

Theorem: The integral Test:  
Let 
$$\{a_n\}$$
 be a sequence of positive) terms.  
Suppose that  $a_n = f(n)$ , where  $f$  is a Continuous,  
<sup>(2)</sup>positive, decreasing function  $f \times , \forall \times \ge N$   
(where N is a positive integer). Then the series  
 $\sum_{n=N}^{\infty} a_n$  and the integral  $\iint f(x) dx$  both  
converge or both diverge.  
Example: Do the following series Converge? diverge?  
 $O = \sum_{n=1}^{\infty} \frac{1}{n}$   
Let  $f(x) = \frac{1}{2}$ ,  $x \ge 1$ .  $f$  is continuous, positive  
stypentstudenessing for  $x \ge 1$ .  $[f(x) = \lim_{n \ge 1} \lim_{n \ge 1} \frac{1}{n}$   
 $Now$ ,  $\iint \frac{1}{2} dx = \lim_{n \ge \infty} \iint \frac{1}{2} dx = \lim_{n \ge 0} \lim_{n \ge 1} \lim_{n \ge \infty} (\operatorname{Diverges})$   
Therefore, Using the Tudegral Test  $\sum_{n=1}^{\infty} \frac{1}{n}$  diverges.

(3) 
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
  
Let  $f(x) = \frac{1}{x^2}$ ,  $x \ge 1$ .  $f$  is Continuous, positive  
and decreasing on  $x \ge 1$ .  $[f(x) = \frac{1}{x^2} < 0, \forall x \ge 1]$   
Now,  $\int_{1}^{\infty} \frac{1}{x^2} dx$  Converges to  $L$  (Using P-test  
section 8.7)  
There fore,  $\sum_{n=1}^{\infty} \frac{1}{x^2}$  also converges by Integral Test.  
Note:  $\sum_{n=1}^{\infty} \frac{1}{x^2}$  need not equal  $L$  (we don't know).  
(3)  $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$   
 $f(x) = \frac{1}{x^2+1}$ ,  $x \ge 1$ .  $f$  is Continuous, positive and  
decreasing on  $x \ge 1$ .  $[f(x) = \frac{-2x}{(x^2+1)^2} < 0, \forall x \ge 1]$   
SUPENTS Hilf cont.  
 $f(x) = \frac{1}{x^2+1} dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^2+1} dx$  Uples of the result of  $x \ge \frac{1}{x}$   
 $f(x) = \frac{1}{x^2+1} dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^2+1} dx$  Uples of the result of  $x \ge \frac{1}{x}$   
 $f(x) = \frac{1}{x} - \frac{1}{x} = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^2+1} dx$  Uples of the result of  $x \ge \frac{1}{x}$   
 $f(x) = \frac{1}{x} - \frac{1}{x} = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^2+1} dx$  Uples of the result of  $x \ge \frac{1}{x}$   
 $f(x) = \frac{1}{x} - \frac{1}{x} = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^2+1} dx$  Uples of the result of  $x \ge \frac{1}{x}$   
 $f(x) = \frac{1}{x} - \frac{1}{x} = \lim_{n \to \infty} \int_{1}^{\infty} \frac{1}{x^2+1} dx$  Uples of the result of  $x \ge \frac{1}{x}$   
 $f(x) = \frac{1}{x} - \frac{1}{x} = \lim_{n \to \infty} \int_{1}^{\infty} \frac{1}{x^2+1} dx$   $x \ge \frac{1}{x} + \frac{1}{x} + \frac{1}{x}$   $f(x) \ge \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x}$   $f(x) \ge \frac{1}{x} + \frac{1}{x} +$ 

(i) 
$$\sum_{n=1}^{\infty} \frac{1}{n^{p}} \left( P - Series \right) = \begin{cases} Converges, P > 1 \\ Diverges, P < 1 \end{cases}$$
  
. If  $(P,T)$ , Let  $f(x) = \frac{1}{x^{p}}$ ,  $x > 1$ .  
If is Continuous, positive, decreasing on  $x > 1$ .  
Now,  $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{h \to \infty} \int_{1}^{h} \frac{1}{x^{T}} dx = \lim_{h \to \infty} \int_{1}^{h} \frac{x^{-P}}{x^{-P}} dx$   
 $= \lim_{h \to \infty} \left( \frac{x - P + 1}{1 - P} \right) = \lim_{h \to \infty} \left( \frac{1 - P}{1 - P} - \frac{1}{1 - P} \right)$   
 $= \left( 0 - \frac{1}{1 - P} \right) = \frac{1}{P - 1} \quad (Converge)$   
 $\therefore$  By Integral Test  $\sum_{n=1}^{\infty} \frac{1}{n^{T}}$  Converges for  $P > 1$ .  
Note: The sum of the series is Not  $\frac{1}{P - 1}$ .  
STUDENTSFILLEDOD, then  $1 - P > 0$ , then Uploaded By: Rawan AlFares  
 $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{h \to \infty} \left( \frac{A}{1 - P} - \frac{1}{1 - P} \right) = \infty$  (diverge)  
 $\therefore$  If  $(P = 1)$ , then the series becomes Harmonic series which is divergent.  
(44)

(s) 
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$
 Converges  
(P-series with  $P = \frac{3}{2} > 1$ ).  
(c)  $\sum_{n=1}^{\infty} \frac{1}{n^{n-e}}$  diverges. (P-series,  $P = TT-e < 1$ )  
(f)  $\sum_{n=1}^{\infty} n \sin(\frac{1}{n})$ , diverges by the nth  
term Lest for divergence.  
 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sin(\frac{1}{n})}{1} = \lim_{n \to \infty} \frac{\sinh x}{x} = 1 \neq 0$ .  
(g)  $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ ,  $(a_n \to 0 \ a_1 \ n \to 0$ ) (It may convergence)  
Let  $f(x) = \frac{1}{2x-1}$ ,  $x \ge 1$ . I is Continuous, positive  
STUDENTS-HUB.com  
 $a_n$  decreasing on  $x \ge 1$ .  
Now,  $\int_{1}^{\infty} \frac{1}{2x+1} dx = \lim_{n \to \infty} \frac{1}{2} \ln [2x-1] = \lim_{n \to \infty} \frac{1}{2} \ln [2x-1] = 0$   
Therefore,  $\sum_{n=1}^{\infty} \frac{1}{2n-1}$  diverges by the Tudegred Test.  
(45)

$$(9) \sum_{n=1}^{\infty} n^{2} \sum_{n=1}^{n^{3}} (a_{n\rightarrow0}, n\text{ the test } f_{ai}|_{s}).$$

$$Let f(x) = \frac{x^{2}}{2^{x^{3}}}, x \ge 1.$$

$$f \quad contributors and positive and decreating  $\forall x \ge 1$ 

$$(Decreasing): f(x) = \frac{2x 2}{2} - (x^{2})(f_{n} 2) \frac{x^{2}}{2} \cdot (3x^{2})$$

$$f(x) = \frac{x x^{3}}{2} (2 - 3 \ln 2 x^{3}) - (2^{x^{3}})^{2}$$

$$f(x) = \frac{x x^{3}}{2^{x^{3}}} dx, \quad (Let \quad u = -x^{3} \Rightarrow du = -3x^{2} dx$$

$$uhen \quad x = 1 \Rightarrow u = -h.$$

$$F = \int_{1}^{h} \frac{1}{x^{2}} \frac{2}{2} dx$$

$$= \int_{1}^{h} \frac{1}{x^{2}} \left[ \frac{2}{\ln 2} - \frac{2}{2} \right] = -\frac{1}{3} \left( \frac{2}{\frac{1}{2}} \right) = \frac{1}{(hn2}}$$

$$Uhich \quad v \quad Converged, \quad so \quad hy \quad Tulegral \ test:$$

$$\sum_{n=1}^{\infty} n^{2} 2^{-n^{3}} \quad vi \quad Convergent.$$

$$(46)$$$$

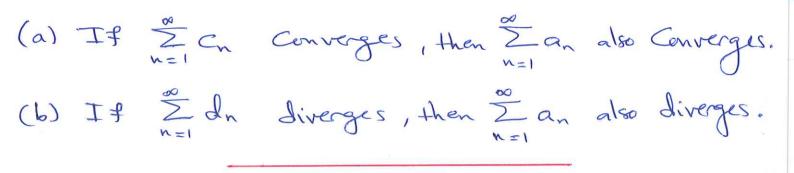
Lecture Problems:  
(B) 
$$\sum_{N=2}^{\infty} \frac{\ln(n^2)}{n}$$
  
Let  $f(x) = \frac{\ln(x^2)}{x}$ ,  $x \ge 2$ .  
I is Contribution, positive and decreasing in  $x \ge 2$   
(Decreasing :  $f'(x) = \frac{x}{x^2}(2x) - \ln(x^2) = \frac{2 - \ln(x^2)}{x^2} = \frac{2}{x^2} - \ln(x^2) = \frac{2}{x^2} + \frac{1}{x^2} = \frac{2}{x^2} + \frac{1}{x^2} = \frac{2}{x^2} + \frac{1}{x^2} = \frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2} =$ 

$$\begin{split} & (\bigcirc 2d) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (n+1)} \\ & \text{Let } \exists (x) = \frac{1}{\sqrt{x} (\sqrt{x}+1)} \quad i \neq \ge 1 \\ & \exists \text{ is positive, continuous and decreasing on } x \ge 1. \\ & \text{check III} \\ & \text{Now, } \int_{1}^{\infty} \frac{1}{\sqrt{x} (\sqrt{x}+1)} \quad dx = \lim_{h \to \infty} \int_{1}^{\infty} \frac{1}{\sqrt{x} (\sqrt{x}+1)} \, dx \\ & = \lim_{h \to \infty} 2\ln(\sqrt{x}+1) \int_{1}^{h} = \lim_{h \to \infty} 2\ln(\sqrt{h}+1) - 2\ln 2 \\ & = \infty , \quad \text{diverges.} \\ & \Rightarrow \text{The series diverges by The Totegral Test.} \\ & (\bigcirc_{3}^{0}) \int_{n=1}^{\infty} n \tan(\frac{1}{n}) \quad \text{diverges} \\ & \text{stbodyntswhellscohlarm test for divergence } \int_{1}^{ijh} \frac{1}{\sqrt{n}} (\frac{1}{n+1}) \\ & = \lim_{n \to \infty} \frac{\sec^2(\frac{1}{n}) \cdot (-\frac{1}{n^2})}{(\frac{1}{n^2})} = 1 \pm 0 \Rightarrow \text{Series diverges.} \end{split}$$

10.4 Comparison Test.

Theorem: The Comparison Test. (D.C.T)  
Let 
$$\sum_{n=1}^{\infty} a_n$$
,  $\sum_{n=1}^{\infty} c_n$  and  $\sum_{n=1}^{\infty} d_n$  be series  
with (nonnegative) terms. Suppose that for some  
integer N

$$d_n \leqslant a_n \leqslant c_n$$
,  $\forall n > N$ 



STUDENTS-HUB.com Notrice that  $5n 7 5n - 1 \iff \frac{1}{5n} < \frac{1}{5n - 1}$   $\iff \frac{5}{5n} < \frac{5}{5n - 1} \iff \frac{1}{n} < \frac{5}{5n - 1}$ ,  $\forall n \neq 1$   $dn \qquad \frac{5}{4n} < \frac{5}{5n - 1}$ ,  $\forall n \neq 1$  $dn \qquad \frac{5}{4n} < \frac{5}{4n} <$ 

(2) 
$$\sum_{n=1}^{\infty} \frac{1+\cos n}{n^2} \leq \sum_{n=1}^{\infty} \frac{2}{n^2}$$
  
But:  $2\sum_{n=1}^{\infty} \frac{1}{n^2}$  is a Convergent  $p$ -series  $(p-2)$   
 $\Rightarrow \sum_{n=1}^{\infty} \frac{1+\cos n}{n^2}$  Converges.  
(3)  $\sum_{n=1}^{\infty} \frac{2n}{3n-1}$  diverges by noth term test  
since  $\lim_{n\to\infty} \frac{2n}{3n-1} = \frac{2}{3} \pm 0$   
(4)  $\sum_{n=1}^{\infty} \frac{\sqrt{n}+11}{n+3}$   
Notrice Had  $\sqrt{n}+1 > \sqrt{n}$  and  $n+3 < n+n \sqrt{n} > 3$   
 $\sqrt{n+1} > \sqrt{n}$  and  $\frac{1}{n+3} > \frac{1}{2n} = \sqrt{\sqrt{n}} > 3$   
STUDENTS.HUBBOOR  $3 > \frac{1}{2\sqrt{n}} = \frac{1}{2\sqrt{n}} + \sqrt{\sqrt{n}} > 3$   
But  $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}}$  diverges  $(p$ -series with  $p=\frac{1}{2})$ .  
Here By D.C.T:  $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+3}$  diverges  $(adding 3 terms)$   
 $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+3}$  diverges  $(adding 3 terms)$   
 $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+3}$  diverges  $(adding 3 terms)$   
 $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+3}$  diverges  $(adding 3 terms)$ 

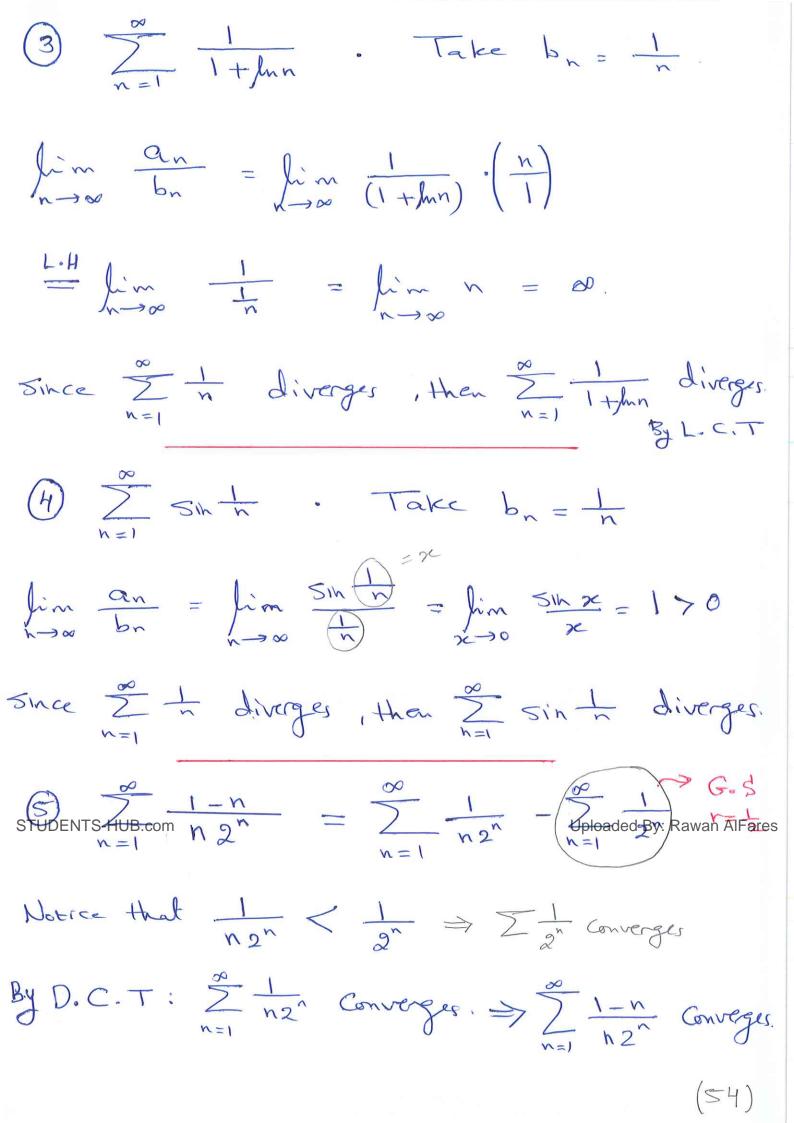
$$\begin{split} & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{Notrice that } n+n+n \neq 0+n+\sqrt{n} \\ & \Leftrightarrow \quad 3n \neq n+\sqrt{n} \iff n \neq \frac{n+\sqrt{n}}{3} \\ & \Leftrightarrow \quad \frac{1}{n} \leq \frac{3}{n+\sqrt{n}} \\ & \text{Notrice that } \underbrace{\bigcirc}_{n=1}^{\infty} + diverges , then by D.C.T \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{Notrice that } \underbrace{\bigcirc}_{n=1}^{\infty} + diverges , \\ & \text{Notrice that } \underbrace{\bigcirc}_{n=1}^{\infty} + diverges , \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{diverges } , \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{diverges } , \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{diverges } , \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{diverges } , \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{3}{n+\sqrt{n}} \\ & \text{diverges } , \\ & \underbrace{\bigcirc}_{n=1}^{\infty} \frac{1}{(\frac{1}{3})^{n}} = \frac{1}{1-\frac{1}{3}} = \frac{3}{2} \\ & \text{Convergetypointer AFares } \\ & \underbrace{\frown}_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{1\sqrt{n}} + \frac{1}{2\sqrt{n}} + \cdots \\ & \underbrace{\frown}_{n=0}^{\infty} \frac{1}{1-\frac{1}{2}} = \frac{1}{2} \\ & \underbrace{\bigcirc}_{n=0}^{\infty} \frac{1}{n} = 1 + \frac{1}{1\sqrt{n}} + \frac{1}{2\sqrt{n}} + \cdots \\ & \underbrace{\frown}_{n=0}^{\infty} \frac{1}{n} = 1 + \frac{1}{1\sqrt{n}} + \frac{1}{2\sqrt{n}} + \cdots \\ & \underbrace{\frown}_{n=0}^{\infty} \frac{1}{n+\sqrt{n}} \\ & \underbrace{\frown}_{n=0}^{\infty} \frac{1}{n} \\ & \underbrace{\frown}_$$

| Theorem: Limit Comparison Test. (L.C.T)                                                        |
|------------------------------------------------------------------------------------------------|
| Suppose that a >0 and b >0, Vn > N                                                             |
| where N is an integer.                                                                         |
| 1) If $\lim_{n \to \infty} \frac{a_n}{b_n} = C \ 70$ , then $\mathbb{Z}_{a_n}$ and             |
| Zbn both Converge or both diverge.                                                             |
| 2) If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then                 |
| Zan Converges.                                                                                 |
| 3) If fim an = 00 and Zbn diverges, then<br>Zan diverges.                                      |
| STUDENTS-HUB.com Discuss the Convergence of HUPloged HoRN; Reavaged Trades.<br>Vm + 1<br>n = 1 |
| We showed that the series diverger Using D.C.T                                                 |

(52)

Now, Using L.C.T:  
Let 
$$a_n = \frac{\sqrt{n+1}}{n+3}$$
 and  $b_n = \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$   
Notice that  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$  diverges  $(p - x(ies_n, p = \frac{1}{2}))$   
 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n+1}}{\frac{1}{n+3}} = \lim_{n \to \infty} \frac{n+\sqrt{n}}{n+3} = 1$   
 $\exists v, by L.C.T, \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n+3}$  diverges.  
(a)  $\sum_{n=1}^{\infty} \frac{n-2}{n^3-n^2+3}$  (we expect to be have like  $\frac{n}{n^2}$ )  
Let  $a_n = \frac{n-2}{n^3-n^2+3}$  and  $b_n = \frac{1}{n^2}$ .  
 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{n-2}{n^3-n^2+3} \cdot \left(\frac{n^2}{1}\right) = \lim_{n \to \infty} \frac{n^2-2n^2}{n^2-n^2+3} = \prod$   
STUDENTS-HUB.com  
 $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{1}{n^2}$  Converges  $(p - series, p = 2)$   
 $i_n = \sum_{n=1}^{\infty} \frac{n-2}{n^3-n^2+3}$  Converges. by L.C.T.

(53)



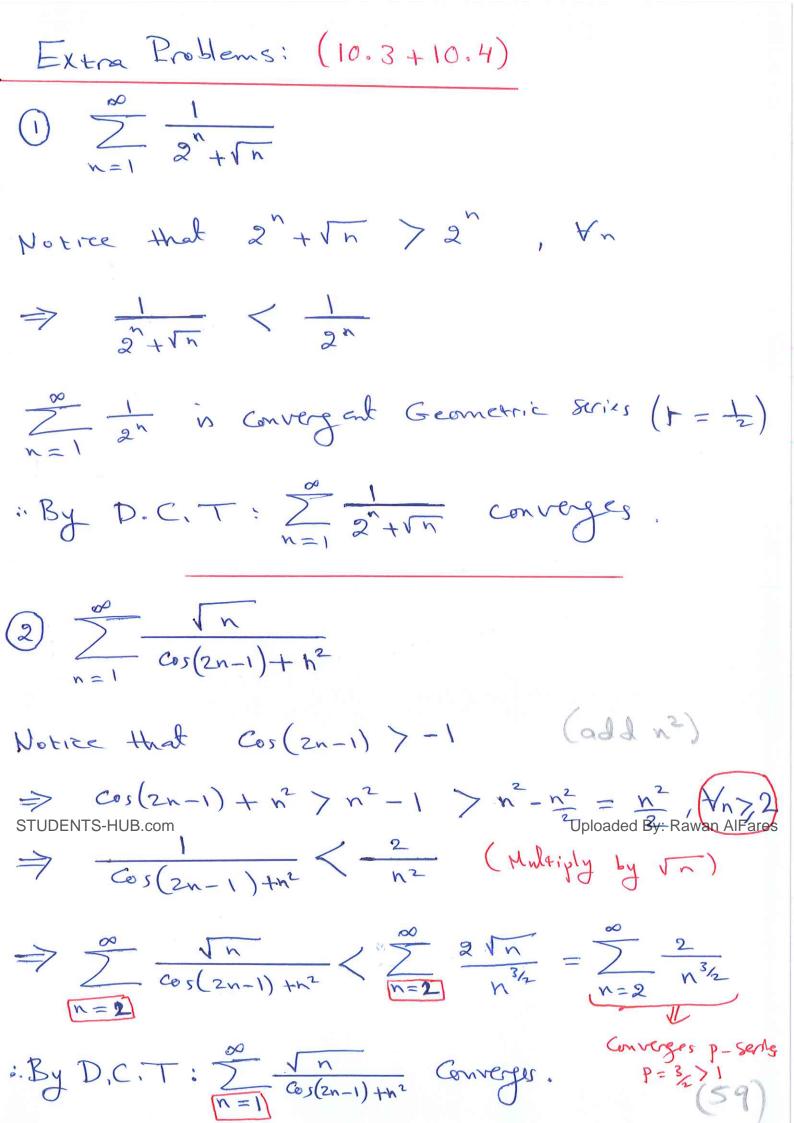
Lecture Problems:  
(QI) Use L.C.T to determine whether the  
following series converges or diverges.  

$$\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^2+2}} \cdot \sqrt{\frac{n}{n^2}}$$
Let  $a_n = \sqrt{\frac{n+1}{n^2+2}}$  and  $b_n = \frac{1}{\sqrt{n}}$   
Notice that  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$  is diverged p-series  $(P = \frac{1}{2} < 1)$   
 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} (\sqrt{\frac{n+1}{n^2+2}} - (\sqrt{\frac{n}{1}}))$   
 $= \lim_{n \to \infty} \sqrt{\frac{n^2 + n}{n^2 + 2}} = 1$  uploaded By: Rawan AlFares  
 $\Rightarrow By L.C.T : \sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^2+2}} = diverges.$ 

(56)

STUDENTS-HUB.com

Uploaded By: Rawan AlFares



(3) 
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
  
(3)  $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$   
(4) If we take  $a_n = \frac{1}{n \ln n}$  and  $b_n = \frac{1}{n}$   
then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{(n \ln n)} = \lim_{n \to \infty} \frac{1}{\ln n} = 0$ .  
Since  $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$  diverges, then L.C.T Gails.  
(4) If we take  $a_n = \frac{1}{n \ln n}$  and  $b_n = \frac{1}{n \sqrt{4}}$   
then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$  (check []]).  
Since  $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{4}}$  converges, then L.C.T Gails.  
(4) Using Indegral Test: Let  $f(x) = \frac{1}{n \ln n}$  ( $n \sqrt{2}$ ).  
Stopents HUB.com  
 $2 \frac{1}{n \ln x}$   $\frac{1}{2 \ln x}$   $\frac{1}{2 \ln x}$   $\frac{1}{n \sqrt{2}}$ , then  
 $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$   $\frac{1}{n \ln (\ln A)} - \ln(\ln 2) = \infty$   
 $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$  diverges,  
(60)

10.5 The ratio and Root tests.  
Theorem: The Ratio Test:  
Let Z an be a series with positive terms and  
suppose that 
$$\int_{n\to\infty}^{\infty} \frac{a_{n+1}}{a_n} = p$$
. Then:  
(a) The series Converges  $J p < 1$ .  
(b) The series diverges  $J p > 1$  or  $p$  is influite  
(c) The test is inconclusive  $J p = 1$ .  
Example: Investigade the Convergence of the following:  
(i)  $\sum_{n=1}^{\infty} \frac{n^2}{e^n}$ .  
Let  $a = \frac{n^2}{e^n}$   $a_{n+1} = \frac{(n+1)^2}{e^{n+1}} \frac{e^n}{n^2} = \lim_{h\to\infty} (\frac{n+1}{a_n} \frac{e^n}{e^n})^2$   
 $p = \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{h\to\infty} \frac{(n+1)^2}{e^n} = \lim_{h\to\infty} (\frac{1}{e^n} \frac{e^n}{n^2})^2$   
(b) The test , the series Converges.  
(c) The dest is the series Converges.  
(c) The test of test is the series Converges.  
(c)  $\sum_{n=1}^{\infty} \frac{1}{e^n} \frac{e^n}{n^2}$ 

(2) 
$$\sum_{n=1}^{\infty} \frac{n!}{e^n}$$
  
 $P = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left( \frac{(n+1)!}{e^{n+1}} \right) \cdot \left( \frac{e^n}{n!} \right) = \frac{1}{e} \lim_{n \to \infty} (n+1)$   
 $\Rightarrow P = \infty$ . Hence the series diverger by Ratro  
Teste  
Remark : When  $P = 1$ , then the series Could be  
converge or diverge.  
(3)  $\sum_{n=1}^{\infty} \frac{1}{n}$  (Harmonic series).  
 $P = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left( \frac{1}{n+1} \right) \left( \frac{n}{1} \right) = 1$ , (Inconclusive)  
But we know that the series diverges.  
(4)  $\sum_{n=1}^{\infty} \frac{1}{n}$  (P-series)

v ≈ \ STUDENTS-HUB.com

Uploaded By: Rawan AlFares

$$V = \lim_{n \to \infty} \frac{q_{n+1}}{q_n} = \lim_{n \to \infty} \left( \frac{1}{(n+1)^2} \right) \left( \frac{n^2}{1} \right) = 1. \text{ (Inconclusive)}.$$

But the series Converges (P-series, P=2),

(62)

$$(5) \sum_{n=0}^{\infty} \frac{2^{n} + 5}{3^{n}}$$

$$P = \lim_{n \to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n \to \infty} \left(\frac{2+5}{3^{n+1}}\right) \cdot \left(\frac{3^{n}}{2+5}\right) = \lim_{n \to \infty} \frac{2^{n+1}}{3(2^{n}+5)}$$

$$L_{n+1} = \frac{1}{3} \lim_{n \to \infty} \frac{2^{n+1}}{2^{n}} \frac{\ln 2}{\ln 2} = \frac{1}{3} \lim_{n \to \infty} 2 = \frac{2}{3} < 1.$$

$$P = \lim_{n \to \infty} \frac{2^{n}}{\ln 2^{n}} \frac{2^{n+1}}{2^{n}} \frac{\ln 2}{\ln 2} = \frac{1}{3} \lim_{n \to \infty} 2 = \frac{2}{3} < 1.$$

$$P = \lim_{n \to \infty} \frac{(n+3)!}{3! (n+1)! 3^{n+1}} \cdot \left(\frac{3! n! 3^{n}}{(n+3)!}\right)$$

$$STUDENTS + First com (n+4) = \frac{1}{3} < 1.$$

$$Uploaded By: Rawan AlFares$$

$$Then the series converges by Rative Test.$$

$$Remork: Usually, when we have factorial part use Rative Ratio (5)$$

$$(\mp) \sum_{n=1}^{\infty} \frac{(2n)!}{n! (n!)}$$

$$\mathcal{P} = \lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n \to \infty} \left( \frac{(2n+2)!}{(n+1)!(n+1)!} \right) \cdot \left( \frac{n! (n!)}{(2n)!} \right)$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)(2n)!}{(n+1)!n! (n+1)!n! (2n)!} \cdot \frac{n!}{(2n)!}$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)!n! (n+1)!} = \lim_{n \to \infty} \frac{4n+2}{n+1} = 471$$
By Rahio Test, the strike diverges,
$$(8) \sum_{n=1}^{\infty} \frac{4^n n!}{(2n+2)!} \cdot \frac{4^n n!}{(2n)!} \cdot \frac{\alpha_{n+1}}{\alpha_n}$$
STUDENTS:HUB.com
$$= \lim_{n \to \infty} \frac{4^n ! (n+1)!n! (n+1)!}{(2n+2)!} \cdot \frac{\alpha_{n+1}}{\alpha_n}$$

$$= \lim_{n \to \infty} \frac{4^n ! (n+1)!n! (n+1)!}{(2n+2)!} \cdot \frac{\alpha_{n+1}}{\alpha_n}$$

$$= \lim_{n \to \infty} \frac{4^n ! (n+1)!n! (n+1)!}{(2n+2)!} \cdot \frac{\alpha_{n+1}}{\alpha_n}$$

$$= \lim_{n \to \infty} \frac{4^n ! (n+1)!n!}{(2n+2)!} \cdot \frac{\alpha_{n+1}}{\alpha_n}$$

$$= \lim_{n \to \infty} \frac{4^n ! ! (n+1)!n!}{(2n+2)!} \cdot \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n \to \infty} \frac{2n+2}{\alpha_{n+1}} = 1$$

$$(64)$$

Since 
$$\lim_{n \to \infty} \frac{q_{n+1}}{q_n} = 1 \implies \text{Ratio test is inconclusive.}$$
  
But we neuron that  
 $\frac{q_{n+1}}{q_n} = \frac{2n+2}{2n+1} > 1$  (why?)  
 $\Rightarrow \qquad q_{n+1} ? q_n \quad , \forall n$   
(i-e)  $q_1 ? q_1 \quad \text{and} \quad q_3 ? q_2 ? q_1 \quad \dots$   
 $\Rightarrow \qquad q_n ? q_1 = 2 \quad , \forall n.$   
 $\Rightarrow \qquad \lim_{n \to \infty} q_n \quad \pm 0$   
So by the null term test, the series diverges.  
(A)  $q_1 = 1$ ,  $q_{n+1} = \left(\frac{1 + \tan^2 n}{n}\right) q_n$   
Studentscheißton  $\frac{q_{n+1}}{n} = 1$ ,  $\frac{1 + \tan^2 n}{n} = 0$  (65)

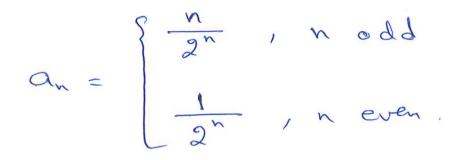
Theorems The Rock Test.  
Let Zan be a series with 
$$a_n \ge 0$$
,  $\forall n \ge N$   
and suppose that fim  $Na_n = P$ , then  
(a) The series converges if  $P < 1$ .  
(b) The series diverges if  $P > 1$ .  
(c) The series diverges if  $P > 1$ .  
(b) The test is inconclusive if  $P = 1$ .  
Example: which of the following series converges  
and which diverges?  
II  $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ .  
By Root Test, the series converges, since:  
 $P = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{n^2} = \lim_{n \to \infty} (\sqrt[n]{n})^2 = 1 < 1$   
STUDENTSHUB.com  
By Root Test, the series converges is ince:  
 $P = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{n^2} = \lim_{n \to \infty} (\sqrt[n]{n})^2 = 1 < 1$ .  
Remark : Notrice that if we can so live Using  
Root test & Ratio test, then Pisare equal. (66)

| Example: Consider the following Recurssive Sequence                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $a_1 = 2$ , $a_{n+1} = \frac{2}{n} a_n$ .                                                                                                         |
| Does Zan Converge?<br>n=1                                                                                                                         |
| Sol: $a_1 = 2$ , $a_2 = \frac{2}{1}a_1 = (\frac{2}{1})(2) = \frac{2^2}{11}$                                                                       |
| $a_3 = \frac{2}{2} a_2 = (\frac{2}{2})(2)(2) = \frac{2^3}{2!}$                                                                                    |
| $a_{4} = \frac{2}{3} a_{3} = \frac{2}{3} (\frac{2}{2})(2)(2) = \frac{2^{4}}{31}$                                                                  |
| $a_5 = \frac{2}{4} a_4 = \frac{2}{4} \cdot \frac{2}{3!} = \frac{2}{4!}$                                                                           |
| $\alpha_n = \frac{2^n}{(n-1)!}  n \ge 1$                                                                                                          |
| STUDENTS-HUB.comercies is $\sum_{n=1}^{\infty} \frac{2^n}{(n-1)!}$ Uploaded By: Rawan AlFares                                                     |
| $\mathcal{P} = \lim_{n \to \infty} \left( \frac{2^{n+1}}{n!} \right) \left( \frac{(n-1)!}{2^n} \right) = \lim_{n \to \infty} \frac{2}{n} = 0 < 1$ |
| i. By Ratio Test, the striks Converges.                                                                                                           |

(68)

es Zan, where

(69)

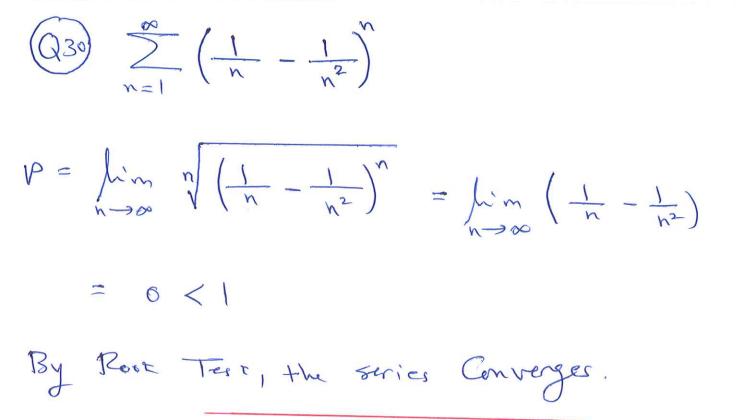


 $\Rightarrow \sum_{n=1}^{\infty} a_n = \frac{1}{2} + \frac{1}{2^2} + \frac{3}{2^3} + \frac{1}{2^4} + \frac{5}{2^5} + \cdots$ 

Notice that: 
$$\sqrt{a_n} = \begin{cases} \sqrt{n} \\ \frac{1}{2} \end{cases}$$
, nodd  $\frac{1}{2}$ , neven

$$\Rightarrow log(n) < n \cdot \frac{hn}{hn} = n$$

$$\Rightarrow \frac{\log(n!)}{n^3} \leq \frac{1}{n^2} - But \sum_{n=2}^{\infty} \frac{1}{n} Converges$$



STUDENTS-HUB.com

Uploaded By: Rawan AlFares

(7)