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Preface

General Approach and Mathematical Level

Our emphasis in creating the ninth edition is less on adding new material and more
on providing clarity and deeper understanding. This objective was accomplished in
part by including new end-of-chapter material that adds connective tissue between
chapters. We affectionately call these comments at the end of the chapter “Pot
Holes.” They are very useful to remind students of the big picture and how each
chapter fits into that picture, and they aid the student in learning about limitations
and pitfalls that may result if procedures are misused. A deeper understanding
of real-world use of statistics is made available through class projects, which were
added in several chapters. These projects provide the opportunity for students
alone, or in groups, to gather their own experimental data and draw inferences. In
some cases, the work involves a problem whose solution will illustrate the meaning
of a concept or provide an empirical understanding of an important statistical
result. Some existing examples were expanded and new ones were introduced to
create “case studies,” in which commentary is provided to give the student a clear
understanding of a statistical concept in the context of a practical situation.

In this edition, we continue to emphasize a balance between theory and appli-
cations. Calculus and other types of mathematical support (e.g., linear algebra)
are used at about the same level as in previous editions. The coverage of an-
alytical tools in statistics is enhanced with the use of calculus when discussion
centers on rules and concepts in probability. Probability distributions and sta-
tistical inference are highlighted in Chapters 2 through 10. Linear algebra and
matrices are very lightly applied in Chapters 11 through 15, where linear regres-
sion and analysis of variance are covered. Students using this text should have
had the equivalent of one semester of differential and integral calculus. Linear
algebra is helpful but not necessary so long as the section in Chapter 12 on mul-
tiple linear regression using matrix algebra is not covered by the instructor. As
in previous editions, a large number of exercises that deal with real-life scientific
and engineering applications are available to challenge the student. The many
data sets associated with the exercises are available for download from the website
http://www.pearsonhighered.com/datasets.

xv
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xvi Preface

Summary of the Changes in the Ninth Edition

• Class projects were added in several chapters to provide a deeper understand-
ing of the real-world use of statistics. Students are asked to produce or gather
their own experimental data and draw inferences from these data.

• More case studies were added and others expanded to help students under-
stand the statistical methods being presented in the context of a real-life situ-
ation. For example, the interpretation of confidence limits, prediction limits,
and tolerance limits is given using a real-life situation.

• “Pot Holes” were added at the end of some chapters and expanded in others.
These comments are intended to present each chapter in the context of the
big picture and discuss how the chapters relate to one another. They also
provide cautions about the possible misuse of statistical techniques presented
in the chapter.

• Chapter 1 has been enhanced to include more on single-number statistics as
well as graphical techniques. New fundamental material on sampling and
experimental design is presented.

• Examples added to Chapter 8 on sampling distributions are intended to moti-
vate P -values and hypothesis testing. This prepares the student for the more
challenging material on these topics that will be presented in Chapter 10.

• Chapter 12 contains additional development regarding the effect of a single
regression variable in a model in which collinearity with other variables is
severe.

• Chapter 15 now introduces material on the important topic of response surface
methodology (RSM). The use of noise variables in RSM allows the illustration
of mean and variance (dual response surface) modeling.

• The central composite design (CCD) is introduced in Chapter 15.

• More examples are given in Chapter 18, and the discussion of using Bayesian
methods for statistical decision making has been enhanced.

Content and Course Planning

This text is designed for either a one- or a two-semester course. A reasonable
plan for a one-semester course might include Chapters 1 through 10. This would
result in a curriculum that concluded with the fundamentals of both estimation
and hypothesis testing. Instructors who desire that students be exposed to simple
linear regression may wish to include a portion of Chapter 11. For instructors
who desire to have analysis of variance included rather than regression, the one-
semester course may include Chapter 13 rather than Chapters 11 and 12. Chapter
13 features one-factor analysis of variance. Another option is to eliminate portions
of Chapters 5 and/or 6 as well as Chapter 7. With this option, one or more of
the discrete or continuous distributions in Chapters 5 and 6 may be eliminated.
These distributions include the negative binomial, geometric, gamma, Weibull,
beta, and log normal distributions. Other features that one might consider re-
moving from a one-semester curriculum include maximum likelihood estimation,
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Preface xvii

prediction, and/or tolerance limits in Chapter 9. A one-semester curriculum has
built-in flexibility, depending on the relative interest of the instructor in regression,
analysis of variance, experimental design, and response surface methods (Chapter
15). There are several discrete and continuous distributions (Chapters 5 and 6)
that have applications in a variety of engineering and scientific areas.

Chapters 11 through 18 contain substantial material that can be added for the
second semester of a two-semester course. The material on simple and multiple
linear regression is in Chapters 11 and 12, respectively. Chapter 12 alone offers a
substantial amount of flexibility. Multiple linear regression includes such “special
topics” as categorical or indicator variables, sequential methods of model selection
such as stepwise regression, the study of residuals for the detection of violations
of assumptions, cross validation and the use of the PRESS statistic as well as
Cp, and logistic regression. The use of orthogonal regressors, a precursor to the
experimental design in Chapter 15, is highlighted. Chapters 13 and 14 offer a
relatively large amount of material on analysis of variance (ANOVA) with fixed,
random, and mixed models. Chapter 15 highlights the application of two-level
designs in the context of full and fractional factorial experiments (2k). Special
screening designs are illustrated. Chapter 15 also features a new section on response
surface methodology (RSM) to illustrate the use of experimental design for finding
optimal process conditions. The fitting of a second order model through the use of
a central composite design is discussed. RSM is expanded to cover the analysis of
robust parameter design type problems. Noise variables are used to accommodate
dual response surface models. Chapters 16, 17, and 18 contain a moderate amount
of material on nonparametric statistics, quality control, and Bayesian inference.

Chapter 1 is an overview of statistical inference presented on a mathematically
simple level. It has been expanded from the eighth edition to more thoroughly
cover single-number statistics and graphical techniques. It is designed to give
students a preliminary presentation of elementary concepts that will allow them to
understand more involved details that follow. Elementary concepts in sampling,
data collection, and experimental design are presented, and rudimentary aspects
of graphical tools are introduced, as well as a sense of what is garnered from a
data set. Stem-and-leaf plots and box-and-whisker plots have been added. Graphs
are better organized and labeled. The discussion of uncertainty and variation in
a system is thorough and well illustrated. There are examples of how to sort
out the important characteristics of a scientific process or system, and these ideas
are illustrated in practical settings such as manufacturing processes, biomedical
studies, and studies of biological and other scientific systems. A contrast is made
between the use of discrete and continuous data. Emphasis is placed on the use
of models and the information concerning statistical models that can be obtained
from graphical tools.

Chapters 2, 3, and 4 deal with basic probability as well as discrete and contin-
uous random variables. Chapters 5 and 6 focus on specific discrete and continuous
distributions as well as relationships among them. These chapters also highlight
examples of applications of the distributions in real-life scientific and engineering
studies. Examples, case studies, and a large number of exercises edify the student
concerning the use of these distributions. Projects bring the practical use of these
distributions to life through group work. Chapter 7 is the most theoretical chapter
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xviii Preface

in the text. It deals with transformation of random variables and will likely not be
used unless the instructor wishes to teach a relatively theoretical course. Chapter
8 contains graphical material, expanding on the more elementary set of graphi-
cal tools presented and illustrated in Chapter 1. Probability plotting is discussed
and illustrated with examples. The very important concept of sampling distribu-
tions is presented thoroughly, and illustrations are given that involve the central
limit theorem and the distribution of a sample variance under normal, independent
(i.i.d.) sampling. The t and F distributions are introduced to motivate their use
in chapters to follow. New material in Chapter 8 helps the student to visualize the
importance of hypothesis testing, motivating the concept of a P -value.

Chapter 9 contains material on one- and two-sample point and interval esti-
mation. A thorough discussion with examples points out the contrast between the
different types of intervals—confidence intervals, prediction intervals, and toler-
ance intervals. A case study illustrates the three types of statistical intervals in the
context of a manufacturing situation. This case study highlights the differences
among the intervals, their sources, and the assumptions made in their develop-
ment, as well as what type of scientific study or question requires the use of each
one. A new approximation method has been added for the inference concerning a
proportion. Chapter 10 begins with a basic presentation on the pragmatic mean-
ing of hypothesis testing, with emphasis on such fundamental concepts as null and
alternative hypotheses, the role of probability and the P -value, and the power of
a test. Following this, illustrations are given of tests concerning one and two sam-
ples under standard conditions. The two-sample t-test with paired observations
is also described. A case study helps the student to develop a clear picture of
what interaction among factors really means as well as the dangers that can arise
when interaction between treatments and experimental units exists. At the end of
Chapter 10 is a very important section that relates Chapters 9 and 10 (estimation
and hypothesis testing) to Chapters 11 through 16, where statistical modeling is
prominent. It is important that the student be aware of the strong connection.

Chapters 11 and 12 contain material on simple and multiple linear regression,
respectively. Considerably more attention is given in this edition to the effect that
collinearity among the regression variables plays. A situation is presented that
shows how the role of a single regression variable can depend in large part on what
regressors are in the model with it. The sequential model selection procedures (for-
ward, backward, stepwise, etc.) are then revisited in regard to this concept, and
the rationale for using certain P -values with these procedures is provided. Chap-
ter 12 offers material on nonlinear modeling with a special presentation of logistic
regression, which has applications in engineering and the biological sciences. The
material on multiple regression is quite extensive and thus provides considerable
flexibility for the instructor, as indicated earlier. At the end of Chapter 12 is com-
mentary relating that chapter to Chapters 14 and 15. Several features were added
that provide a better understanding of the material in general. For example, the
end-of-chapter material deals with cautions and difficulties one might encounter.
It is pointed out that there are types of responses that occur naturally in practice
(e.g. proportion responses, count responses, and several others) with which stan-
dard least squares regression should not be used because standard assumptions do
not hold and violation of assumptions may induce serious errors. The suggestion is
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made that data transformation on the response may alleviate the problem in some
cases. Flexibility is again available in Chapters 13 and 14, on the topic of analysis
of variance. Chapter 13 covers one-factor ANOVA in the context of a completely
randomized design. Complementary topics include tests on variances and multiple
comparisons. Comparisons of treatments in blocks are highlighted, along with the
topic of randomized complete blocks. Graphical methods are extended to ANOVA
to aid the student in supplementing the formal inference with a pictorial type of in-
ference that can aid scientists and engineers in presenting material. A new project
is given in which students incorporate the appropriate randomization into each
plan and use graphical techniques and P -values in reporting the results. Chapter
14 extends the material in Chapter 13 to accommodate two or more factors that
are in a factorial structure. The ANOVA presentation in Chapter 14 includes work
in both random and fixed effects models. Chapter 15 offers material associated
with 2k factorial designs; examples and case studies present the use of screening
designs and special higher fractions of the 2k. Two new and special features are
the presentations of response surface methodology (RSM) and robust parameter
design. These topics are linked in a case study that describes and illustrates a
dual response surface design and analysis featuring the use of process mean and
variance response surfaces.

Computer Software

Case studies, beginning in Chapter 8, feature computer printout and graphical
material generated using both SAS and MINITAB. The inclusion of the computer
reflects our belief that students should have the experience of reading and inter-
preting computer printout and graphics, even if the software in the text is not that
which is used by the instructor. Exposure to more than one type of software can
broaden the experience base for the student. There is no reason to believe that
the software used in the course will be that which the student will be called upon
to use in practice following graduation. Examples and case studies in the text are
supplemented, where appropriate, by various types of residual plots, quantile plots,
normal probability plots, and other plots. Such plots are particularly prevalent in
Chapters 11 through 15.

Supplements

Instructor’s Solutions Manual. This resource contains worked-out solutions to all
text exercises and is available for download from Pearson Education’s Instructor
Resource Center.

Student Solutions Manual ISBN-10: 0-321-64013-6; ISBN-13: 978-0-321-64013-0.
Featuring complete solutions to selected exercises, this is a great tool for students
as they study and work through the problem material.

PowerPoint R© Lecture Slides ISBN-10: 0-321-73731-8; ISBN-13: 978-0-321-73731-
1. These slides include most of the figures and tables from the text. Slides are
available to download from Pearson Education’s Instructor Resource Center.
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StatCrunch eText. This interactive, online textbook includes StatCrunch, a pow-
erful, web-based statistical software. Embedded StatCrunch buttons allow users
to open all data sets and tables from the book with the click of a button and
immediately perform an analysis using StatCrunch.

StatCrunchTM. StatCrunch is web-based statistical software that allows users to
perform complex analyses, share data sets, and generate compelling reports of
their data. Users can upload their own data to StatCrunch or search the library
of over twelve thousand publicly shared data sets, covering almost any topic of
interest. Interactive graphical outputs help users understand statistical concepts
and are available for export to enrich reports with visual representations of data.
Additional features include

• A full range of numerical and graphical methods that allow users to analyze
and gain insights from any data set.

• Reporting options that help users create a wide variety of visually appealing
representations of their data.

• An online survey tool that allows users to quickly build and administer surveys
via a web form.

StatCrunch is available to qualified adopters. For more information, visit our
website at www.statcrunch.com or contact your Pearson representative.
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Chapter 1

Introduction to Statistics
and Data Analysis

1.1 Overview: Statistical Inference, Samples, Populations,
and the Role of Probability

Beginning in the 1980s and continuing into the 21st century, an inordinate amount
of attention has been focused on improvement of quality in American industry.
Much has been said and written about the Japanese “industrial miracle,” which
began in the middle of the 20th century. The Japanese were able to succeed where
we and other countries had failed–namely, to create an atmosphere that allows
the production of high-quality products. Much of the success of the Japanese has
been attributed to the use of statistical methods and statistical thinking among
management personnel.

Use of Scientific Data

The use of statistical methods in manufacturing, development of food products,
computer software, energy sources, pharmaceuticals, and many other areas involves
the gathering of information or scientific data. Of course, the gathering of data
is nothing new. It has been done for well over a thousand years. Data have
been collected, summarized, reported, and stored for perusal. However, there is a
profound distinction between collection of scientific information and inferential
statistics. It is the latter that has received rightful attention in recent decades.

The offspring of inferential statistics has been a large “toolbox” of statistical
methods employed by statistical practitioners. These statistical methods are de-
signed to contribute to the process of making scientific judgments in the face of
uncertainty and variation. The product density of a particular material from a
manufacturing process will not always be the same. Indeed, if the process involved
is a batch process rather than continuous, there will be not only variation in ma-
terial density among the batches that come off the line (batch-to-batch variation),
but also within-batch variation. Statistical methods are used to analyze data from
a process such as this one in order to gain more sense of where in the process
changes may be made to improve the quality of the process. In this process, qual-

1
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2 Chapter 1 Introduction to Statistics and Data Analysis

ity may well be defined in relation to closeness to a target density value in harmony
with what portion of the time this closeness criterion is met. An engineer may be
concerned with a specific instrument that is used to measure sulfur monoxide in
the air during pollution studies. If the engineer has doubts about the effectiveness
of the instrument, there are two sources of variation that must be dealt with.
The first is the variation in sulfur monoxide values that are found at the same
locale on the same day. The second is the variation between values observed and
the true amount of sulfur monoxide that is in the air at the time. If either of these
two sources of variation is exceedingly large (according to some standard set by
the engineer), the instrument may need to be replaced. In a biomedical study of a
new drug that reduces hypertension, 85% of patients experienced relief, while it is
generally recognized that the current drug, or “old” drug, brings relief to 80% of pa-
tients that have chronic hypertension. However, the new drug is more expensive to
make and may result in certain side effects. Should the new drug be adopted? This
is a problem that is encountered (often with much more complexity) frequently by
pharmaceutical firms in conjunction with the FDA (Federal Drug Administration).
Again, the consideration of variation needs to be taken into account. The “85%”
value is based on a certain number of patients chosen for the study. Perhaps if the
study were repeated with new patients the observed number of “successes” would
be 75%! It is the natural variation from study to study that must be taken into
account in the decision process. Clearly this variation is important, since variation
from patient to patient is endemic to the problem.

Variability in Scientific Data

In the problems discussed above the statistical methods used involve dealing with
variability, and in each case the variability to be studied is that encountered in
scientific data. If the observed product density in the process were always the
same and were always on target, there would be no need for statistical methods.
If the device for measuring sulfur monoxide always gives the same value and the
value is accurate (i.e., it is correct), no statistical analysis is needed. If there
were no patient-to-patient variability inherent in the response to the drug (i.e.,
it either always brings relief or not), life would be simple for scientists in the
pharmaceutical firms and FDA and no statistician would be needed in the decision
process. Statistics researchers have produced an enormous number of analytical
methods that allow for analysis of data from systems like those described above.
This reflects the true nature of the science that we call inferential statistics, namely,
using techniques that allow us to go beyond merely reporting data to drawing
conclusions (or inferences) about the scientific system. Statisticians make use of
fundamental laws of probability and statistical inference to draw conclusions about
scientific systems. Information is gathered in the form of samples, or collections
of observations. The process of sampling is introduced in Chapter 2, and the
discussion continues throughout the entire book.

Samples are collected from populations, which are collections of all individ-
uals or individual items of a particular type. At times a population signifies a
scientific system. For example, a manufacturer of computer boards may wish to
eliminate defects. A sampling process may involve collecting information on 50
computer boards sampled randomly from the process. Here, the population is all
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1.1 Overview: Statistical Inference, Samples, Populations, and the Role of Probability 3

computer boards manufactured by the firm over a specific period of time. If an
improvement is made in the computer board process and a second sample of boards
is collected, any conclusions drawn regarding the effectiveness of the change in pro-
cess should extend to the entire population of computer boards produced under
the “improved process.” In a drug experiment, a sample of patients is taken and
each is given a specific drug to reduce blood pressure. The interest is focused on
drawing conclusions about the population of those who suffer from hypertension.

Often, it is very important to collect scientific data in a systematic way, with
planning being high on the agenda. At times the planning is, by necessity, quite
limited. We often focus only on certain properties or characteristics of the items or
objects in the population. Each characteristic has particular engineering or, say,
biological importance to the “customer,” the scientist or engineer who seeks to learn
about the population. For example, in one of the illustrations above the quality
of the process had to do with the product density of the output of a process. An
engineer may need to study the effect of process conditions, temperature, humidity,
amount of a particular ingredient, and so on. He or she can systematically move
these factors to whatever levels are suggested according to whatever prescription
or experimental design is desired. However, a forest scientist who is interested
in a study of factors that influence wood density in a certain kind of tree cannot
necessarily design an experiment. This case may require an observational study
in which data are collected in the field but factor levels can not be preselected.
Both of these types of studies lend themselves to methods of statistical inference.
In the former, the quality of the inferences will depend on proper planning of the
experiment. In the latter, the scientist is at the mercy of what can be gathered.
For example, it is sad if an agronomist is interested in studying the effect of rainfall
on plant yield and the data are gathered during a drought.

The importance of statistical thinking by managers and the use of statistical
inference by scientific personnel is widely acknowledged. Research scientists gain
much from scientific data. Data provide understanding of scientific phenomena.
Product and process engineers learn a great deal in their off-line efforts to improve
the process. They also gain valuable insight by gathering production data (on-
line monitoring) on a regular basis. This allows them to determine necessary
modifications in order to keep the process at a desired level of quality.

There are times when a scientific practitioner wishes only to gain some sort of
summary of a set of data represented in the sample. In other words, inferential
statistics is not required. Rather, a set of single-number statistics or descriptive
statistics is helpful. These numbers give a sense of center of the location of
the data, variability in the data, and the general nature of the distribution of
observations in the sample. Though no specific statistical methods leading to
statistical inference are incorporated, much can be learned. At times, descriptive
statistics are accompanied by graphics. Modern statistical software packages allow
for computation of means, medians, standard deviations, and other single-
number statistics as well as production of graphs that show a “footprint” of the
nature of the sample. Definitions and illustrations of the single-number statistics
and graphs, including histograms, stem-and-leaf plots, scatter plots, dot plots, and
box plots, will be given in sections that follow.
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4 Chapter 1 Introduction to Statistics and Data Analysis

The Role of Probability

In this book, Chapters 2 to 6 deal with fundamental notions of probability. A
thorough grounding in these concepts allows the reader to have a better under-
standing of statistical inference. Without some formalism of probability theory,
the student cannot appreciate the true interpretation from data analysis through
modern statistical methods. It is quite natural to study probability prior to study-
ing statistical inference. Elements of probability allow us to quantify the strength
or “confidence” in our conclusions. In this sense, concepts in probability form a
major component that supplements statistical methods and helps us gauge the
strength of the statistical inference. The discipline of probability, then, provides
the transition between descriptive statistics and inferential methods. Elements of
probability allow the conclusion to be put into the language that the science or
engineering practitioners require. An example follows that will enable the reader
to understand the notion of a P -value, which often provides the “bottom line” in
the interpretation of results from the use of statistical methods.

Example 1.1: Suppose that an engineer encounters data from a manufacturing process in which
100 items are sampled and 10 are found to be defective. It is expected and antic-
ipated that occasionally there will be defective items. Obviously these 100 items
represent the sample. However, it has been determined that in the long run, the
company can only tolerate 5% defective in the process. Now, the elements of prob-
ability allow the engineer to determine how conclusive the sample information is
regarding the nature of the process. In this case, the population conceptually
represents all possible items from the process. Suppose we learn that if the process
is acceptable, that is, if it does produce items no more than 5% of which are de-
fective, there is a probability of 0.0282 of obtaining 10 or more defective items in
a random sample of 100 items from the process. This small probability suggests
that the process does, indeed, have a long-run rate of defective items that exceeds
5%. In other words, under the condition of an acceptable process, the sample in-
formation obtained would rarely occur. However, it did occur! Clearly, though, it
would occur with a much higher probability if the process defective rate exceeded
5% by a significant amount.

From this example it becomes clear that the elements of probability aid in the
translation of sample information into something conclusive or inconclusive about
the scientific system. In fact, what was learned likely is alarming information to
the engineer or manager. Statistical methods, which we will actually detail in
Chapter 10, produced a P -value of 0.0282. The result suggests that the process
very likely is not acceptable. The concept of a P-value is dealt with at length
in succeeding chapters. The example that follows provides a second illustration.

Example 1.2: Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 9.40 on page 294 provides
data associated with a study conducted at the Virginia Polytechnic Institute and
State University on the development of a relationship between the roots of trees and
the action of a fungus. Minerals are transferred from the fungus to the trees and
sugars from the trees to the fungus. Two samples of 10 northern red oak seedlings
were planted in a greenhouse, one containing seedlings treated with nitrogen and
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1.1 Overview: Statistical Inference, Samples, Populations, and the Role of Probability 5

the other containing seedlings with no nitrogen. All other environmental conditions
were held constant. All seedlings contained the fungus Pisolithus tinctorus. More
details are supplied in Chapter 9. The stem weights in grams were recorded after
the end of 140 days. The data are given in Table 1.1.

Table 1.1: Data Set for Example 1.2

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 1.1: A dot plot of stem weight data.

In this example there are two samples from two separate populations. The
purpose of the experiment is to determine if the use of nitrogen has an influence
on the growth of the roots. The study is a comparative study (i.e., we seek to
compare the two populations with regard to a certain important characteristic). It
is instructive to plot the data as shown in the dot plot of Figure 1.1. The ◦ values
represent the “nitrogen” data and the × values represent the “no-nitrogen” data.

Notice that the general appearance of the data might suggest to the reader
that, on average, the use of nitrogen increases the stem weight. Four nitrogen ob-
servations are considerably larger than any of the no-nitrogen observations. Most
of the no-nitrogen observations appear to be below the center of the data. The
appearance of the data set would seem to indicate that nitrogen is effective. But
how can this be quantified? How can all of the apparent visual evidence be summa-
rized in some sense? As in the preceding example, the fundamentals of probability
can be used. The conclusions may be summarized in a probability statement or
P-value. We will not show here the statistical inference that produces the summary
probability. As in Example 1.1, these methods will be discussed in Chapter 10.
The issue revolves around the “probability that data like these could be observed”
given that nitrogen has no effect, in other words, given that both samples were
generated from the same population. Suppose that this probability is small, say
0.03. That would certainly be strong evidence that the use of nitrogen does indeed
influence (apparently increases) average stem weight of the red oak seedlings.
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6 Chapter 1 Introduction to Statistics and Data Analysis

How Do Probability and Statistical Inference Work Together?

It is important for the reader to understand the clear distinction between the
discipline of probability, a science in its own right, and the discipline of inferen-
tial statistics. As we have already indicated, the use or application of concepts in
probability allows real-life interpretation of the results of statistical inference. As a
result, it can be said that statistical inference makes use of concepts in probability.
One can glean from the two examples above that the sample information is made
available to the analyst and, with the aid of statistical methods and elements of
probability, conclusions are drawn about some feature of the population (the pro-
cess does not appear to be acceptable in Example 1.1, and nitrogen does appear
to influence average stem weights in Example 1.2). Thus for a statistical problem,
the sample along with inferential statistics allows us to draw conclu-
sions about the population, with inferential statistics making clear use
of elements of probability. This reasoning is inductive in nature. Now as we
move into Chapter 2 and beyond, the reader will note that, unlike what we do in
our two examples here, we will not focus on solving statistical problems. Many
examples will be given in which no sample is involved. There will be a population
clearly described with all features of the population known. Then questions of im-
portance will focus on the nature of data that might hypothetically be drawn from
the population. Thus, one can say that elements in probability allow us to
draw conclusions about characteristics of hypothetical data taken from
the population, based on known features of the population. This type of
reasoning is deductive in nature. Figure 1.2 shows the fundamental relationship
between probability and inferential statistics.

Population Sample

Probability

Statistical Inference

Figure 1.2: Fundamental relationship between probability and inferential statistics.

Now, in the grand scheme of things, which is more important, the field of
probability or the field of statistics? They are both very important and clearly are
complementary. The only certainty concerning the pedagogy of the two disciplines
lies in the fact that if statistics is to be taught at more than merely a “cookbook”
level, then the discipline of probability must be taught first. This rule stems from
the fact that nothing can be learned about a population from a sample until the
analyst learns the rudiments of uncertainty in that sample. For example, consider
Example 1.1. The question centers around whether or not the population, defined
by the process, is no more than 5% defective. In other words, the conjecture is that
on the average 5 out of 100 items are defective. Now, the sample contains 100
items and 10 are defective. Does this support the conjecture or refute it? On the
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1.2 Sampling Procedures; Collection of Data 7

surface it would appear to be a refutation of the conjecture because 10 out of 100
seem to be “a bit much.” But without elements of probability, how do we know?
Only through the study of material in future chapters will we learn the conditions
under which the process is acceptable (5% defective). The probability of obtaining
10 or more defective items in a sample of 100 is 0.0282.

We have given two examples where the elements of probability provide a sum-
mary that the scientist or engineer can use as evidence on which to build a decision.
The bridge between the data and the conclusion is, of course, based on foundations
of statistical inference, distribution theory, and sampling distributions discussed in
future chapters.

1.2 Sampling Procedures; Collection of Data

In Section 1.1 we discussed very briefly the notion of sampling and the sampling
process. While sampling appears to be a simple concept, the complexity of the
questions that must be answered about the population or populations necessitates
that the sampling process be very complex at times. While the notion of sampling
is discussed in a technical way in Chapter 8, we shall endeavor here to give some
common-sense notions of sampling. This is a natural transition to a discussion of
the concept of variability.

Simple Random Sampling

The importance of proper sampling revolves around the degree of confidence with
which the analyst is able to answer the questions being asked. Let us assume that
only a single population exists in the problem. Recall that in Example 1.2 two
populations were involved. Simple random sampling implies that any particular
sample of a specified sample size has the same chance of being selected as any
other sample of the same size. The term sample size simply means the number of
elements in the sample. Obviously, a table of random numbers can be utilized in
sample selection in many instances. The virtue of simple random sampling is that
it aids in the elimination of the problem of having the sample reflect a different
(possibly more confined) population than the one about which inferences need to be
made. For example, a sample is to be chosen to answer certain questions regarding
political preferences in a certain state in the United States. The sample involves
the choice of, say, 1000 families, and a survey is to be conducted. Now, suppose it
turns out that random sampling is not used. Rather, all or nearly all of the 1000
families chosen live in an urban setting. It is believed that political preferences
in rural areas differ from those in urban areas. In other words, the sample drawn
actually confined the population and thus the inferences need to be confined to the
“limited population,” and in this case confining may be undesirable. If, indeed,
the inferences need to be made about the state as a whole, the sample of size 1000
described here is often referred to as a biased sample.

As we hinted earlier, simple random sampling is not always appropriate. Which
alternative approach is used depends on the complexity of the problem. Often, for
example, the sampling units are not homogeneous and naturally divide themselves
into nonoverlapping groups that are homogeneous. These groups are called strata,
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8 Chapter 1 Introduction to Statistics and Data Analysis

and a procedure called stratified random sampling involves random selection of a
sample within each stratum. The purpose is to be sure that each of the strata
is neither over- nor underrepresented. For example, suppose a sample survey is
conducted in order to gather preliminary opinions regarding a bond referendum
that is being considered in a certain city. The city is subdivided into several ethnic
groups which represent natural strata. In order not to disregard or overrepresent
any group, separate random samples of families could be chosen from each group.

Experimental Design

The concept of randomness or random assignment plays a huge role in the area of
experimental design, which was introduced very briefly in Section 1.1 and is an
important staple in almost any area of engineering or experimental science. This
will be discussed at length in Chapters 13 through 15. However, it is instructive to
give a brief presentation here in the context of random sampling. A set of so-called
treatments or treatment combinations becomes the populations to be studied
or compared in some sense. An example is the nitrogen versus no-nitrogen treat-
ments in Example 1.2. Another simple example would be “placebo” versus “active
drug,” or in a corrosion fatigue study we might have treatment combinations that
involve specimens that are coated or uncoated as well as conditions of low or high
humidity to which the specimens are exposed. In fact, there are four treatment
or factor combinations (i.e., 4 populations), and many scientific questions may be
asked and answered through statistical and inferential methods. Consider first the
situation in Example 1.2. There are 20 diseased seedlings involved in the exper-
iment. It is easy to see from the data themselves that the seedlings are different
from each other. Within the nitrogen group (or the no-nitrogen group) there is
considerable variability in the stem weights. This variability is due to what is
generally called the experimental unit. This is a very important concept in in-
ferential statistics, in fact one whose description will not end in this chapter. The
nature of the variability is very important. If it is too large, stemming from a
condition of excessive nonhomogeneity in experimental units, the variability will
“wash out” any detectable difference between the two populations. Recall that in
this case that did not occur.

The dot plot in Figure 1.1 and P-value indicated a clear distinction between
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is
to assign the 20 seedlings or experimental units randomly to the two treat-
ments or conditions. In the drug study, we may decide to use a total of 200
available patients, patients that clearly will be different in some sense. They are
the experimental units. However, they all may have the same chronic condition
for which the drug is a potential treatment. Then in a so-called completely ran-
domized design, 100 patients are assigned randomly to the placebo and 100 to
the active drug. Again, it is these experimental units within a group or treatment
that produce the variability in data results (i.e., variability in the measured result),
say blood pressure, or whatever drug efficacy value is important. In the corrosion
fatigue study, the experimental units are the specimens that are the subjects of
the corrosion.
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1.2 Sampling Procedures; Collection of Data 9

Why Assign Experimental Units Randomly?

What is the possible negative impact of not randomly assigning experimental units
to the treatments or treatment combinations? This is seen most clearly in the
case of the drug study. Among the characteristics of the patients that produce
variability in the results are age, gender, and weight. Suppose merely by chance
the placebo group contains a sample of people that are predominately heavier than
those in the treatment group. Perhaps heavier individuals have a tendency to have
a higher blood pressure. This clearly biases the result, and indeed, any result
obtained through the application of statistical inference may have little to do with
the drug and more to do with differences in weights among the two samples of
patients.

We should emphasize the attachment of importance to the term variability.
Excessive variability among experimental units “camouflages” scientific findings.
In future sections, we attempt to characterize and quantify measures of variability.
In sections that follow, we introduce and discuss specific quantities that can be
computed in samples; the quantities give a sense of the nature of the sample with
respect to center of location of the data and variability in the data. A discussion
of several of these single-number measures serves to provide a preview of what
statistical information will be important components of the statistical methods
that are used in future chapters. These measures that help characterize the nature
of the data set fall into the category of descriptive statistics. This material is
a prelude to a brief presentation of pictorial and graphical methods that go even
further in characterization of the data set. The reader should understand that the
statistical methods illustrated here will be used throughout the text. In order to
offer the reader a clearer picture of what is involved in experimental design studies,
we offer Example 1.3.

Example 1.3: A corrosion study was made in order to determine whether coating an aluminum
metal with a corrosion retardation substance reduced the amount of corrosion.
The coating is a protectant that is advertised to minimize fatigue damage in this
type of material. Also of interest is the influence of humidity on the amount of
corrosion. A corrosion measurement can be expressed in thousands of cycles to
failure. Two levels of coating, no coating and chemical corrosion coating, were
used. In addition, the two relative humidity levels are 20% relative humidity and
80% relative humidity.

The experiment involves four treatment combinations that are listed in the table
that follows. There are eight experimental units used, and they are aluminum
specimens prepared; two are assigned randomly to each of the four treatment
combinations. The data are presented in Table 1.2.

The corrosion data are averages of two specimens. A plot of the averages is
pictured in Figure 1.3. A relatively large value of cycles to failure represents a
small amount of corrosion. As one might expect, an increase in humidity appears
to make the corrosion worse. The use of the chemical corrosion coating procedure
appears to reduce corrosion.

In this experimental design illustration, the engineer has systematically selected
the four treatment combinations. In order to connect this situation to concepts
with which the reader has been exposed to this point, it should be assumed that the
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Table 1.2: Data for Example 1.3

Average Corrosion in
Coating Humidity Thousands of Cycles to Failure

Uncoated
20% 975

80% 350

Chemical Corrosion
20% 1750

80% 1550

0
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Figure 1.3: Corrosion results for Example 1.3.

conditions representing the four treatment combinations are four separate popula-
tions and that the two corrosion values observed for each population are important
pieces of information. The importance of the average in capturing and summariz-
ing certain features in the population will be highlighted in Section 1.3. While we
might draw conclusions about the role of humidity and the impact of coating the
specimens from the figure, we cannot truly evaluate the results from an analyti-
cal point of view without taking into account the variability around the average.
Again, as we indicated earlier, if the two corrosion values for each treatment com-
bination are close together, the picture in Figure 1.3 may be an accurate depiction.
But if each corrosion value in the figure is an average of two values that are widely
dispersed, then this variability may, indeed, truly “wash away” any information
that appears to come through when one observes averages only. The foregoing
example illustrates these concepts:

(1) random assignment of treatment combinations (coating, humidity) to experi-
mental units (specimens)

(2) the use of sample averages (average corrosion values) in summarizing sample
information

(3) the need for consideration of measures of variability in the analysis of any
sample or sets of samples
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1.3 Measures of Location: The Sample Mean and Median 11

This example suggests the need for what follows in Sections 1.3 and 1.4, namely,
descriptive statistics that indicate measures of center of location in a set of data,
and those that measure variability.

1.3 Measures of Location: The Sample Mean and Median

Measures of location are designed to provide the analyst with some quantitative
values of where the center, or some other location, of data is located. In Example
1.2, it appears as if the center of the nitrogen sample clearly exceeds that of the
no-nitrogen sample. One obvious and very useful measure is the sample mean.
The mean is simply a numerical average.

Definition 1.1: Suppose that the observations in a sample are x1, x2, . . . , xn. The sample mean,
denoted by x̄, is

x̄ =
n∑

i=1

xi

n
=

x1 + x2 + · · ·+ xn

n
.

There are other measures of central tendency that are discussed in detail in
future chapters. One important measure is the sample median. The purpose of
the sample median is to reflect the central tendency of the sample in such a way
that it is uninfluenced by extreme values or outliers.

Definition 1.2: Given that the observations in a sample are x1, x2, . . . , xn, arranged in increasing
order of magnitude, the sample median is

x̃ =

{
x(n+1)/2, if n is odd,
1
2 (xn/2 + xn/2+1), if n is even.

As an example, suppose the data set is the following: 1.7, 2.2, 3.9, 3.11, and
14.7. The sample mean and median are, respectively,

x̄ = 5.12, x̃ = 3.9.

Clearly, the mean is influenced considerably by the presence of the extreme obser-
vation, 14.7, whereas the median places emphasis on the true “center” of the data
set. In the case of the two-sample data set of Example 1.2, the two measures of
central tendency for the individual samples are

x̄ (no nitrogen) = 0.399 gram,

x̃ (no nitrogen) =
0.38 + 0.42

2
= 0.400 gram,

x̄ (nitrogen) = 0.565 gram,

x̃ (nitrogen) =
0.49 + 0.52

2
= 0.505 gram.

Clearly there is a difference in concept between the mean and median. It may
be of interest to the reader with an engineering background that the sample mean
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12 Chapter 1 Introduction to Statistics and Data Analysis

is the centroid of the data in a sample. In a sense, it is the point at which a
fulcrum can be placed to balance a system of “weights” which are the locations of
the individual data. This is shown in Figure 1.4 with regard to the with-nitrogen
sample.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

x � 0.565

Figure 1.4: Sample mean as a centroid of the with-nitrogen stem weight.

In future chapters, the basis for the computation of x̄ is that of an estimate
of the population mean. As we indicated earlier, the purpose of statistical infer-
ence is to draw conclusions about population characteristics or parameters and
estimation is a very important feature of statistical inference.

The median and mean can be quite different from each other. Note, however,
that in the case of the stem weight data the sample mean value for no-nitrogen is
quite similar to the median value.

Other Measures of Locations

There are several other methods of quantifying the center of location of the data
in the sample. We will not deal with them at this point. For the most part,
alternatives to the sample mean are designed to produce values that represent
compromises between the mean and the median. Rarely do we make use of these
other measures. However, it is instructive to discuss one class of estimators, namely
the class of trimmed means. A trimmed mean is computed by “trimming away”
a certain percent of both the largest and the smallest set of values. For example,
the 10% trimmed mean is found by eliminating the largest 10% and smallest 10%
and computing the average of the remaining values. For example, in the case of
the stem weight data, we would eliminate the largest and smallest since the sample
size is 10 for each sample. So for the without-nitrogen group the 10% trimmed
mean is given by

x̄tr(10) =
0.32 + 0.37 + 0.47 + 0.43 + 0.36 + 0.42 + 0.38 + 0.43

8
= 0.39750,

and for the 10% trimmed mean for the with-nitrogen group we have

x̄tr(10) =
0.43 + 0.47 + 0.49 + 0.52 + 0.75 + 0.79 + 0.62 + 0.46

8
= 0.56625.

Note that in this case, as expected, the trimmed means are close to both the mean
and the median for the individual samples. The trimmed mean is, of course, more
insensitive to outliers than the sample mean but not as insensitive as the median.
On the other hand, the trimmed mean approach makes use of more information
than the sample median. Note that the sample median is, indeed, a special case of
the trimmed mean in which all of the sample data are eliminated apart from the
middle one or two observations.
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Exercises

1.1 The following measurements were recorded for
the drying time, in hours, of a certain brand of latex
paint.

3.4 2.5 4.8 2.9 3.6
2.8 3.3 5.6 3.7 2.8
4.4 4.0 5.2 3.0 4.8

Assume that the measurements are a simple random
sample.

(a) What is the sample size for the above sample?

(b) Calculate the sample mean for these data.

(c) Calculate the sample median.

(d) Plot the data by way of a dot plot.

(e) Compute the 20% trimmed mean for the above
data set.

(f) Is the sample mean for these data more or less de-
scriptive as a center of location than the trimmed
mean?

1.2 According to the journal Chemical Engineering,
an important property of a fiber is its water ab-
sorbency. A random sample of 20 pieces of cotton fiber
was taken and the absorbency on each piece was mea-
sured. The following are the absorbency values:

18.71 21.41 20.72 21.81 19.29 22.43 20.17
23.71 19.44 20.50 18.92 20.33 23.00 22.85
19.25 21.77 22.11 19.77 18.04 21.12

(a) Calculate the sample mean and median for the
above sample values.

(b) Compute the 10% trimmed mean.

(c) Do a dot plot of the absorbency data.

(d) Using only the values of the mean, median, and
trimmed mean, do you have evidence of outliers in
the data?

1.3 A certain polymer is used for evacuation systems
for aircraft. It is important that the polymer be re-
sistant to the aging process. Twenty specimens of the
polymer were used in an experiment. Ten were as-
signed randomly to be exposed to an accelerated batch
aging process that involved exposure to high tempera-
tures for 10 days. Measurements of tensile strength of
the specimens were made, and the following data were
recorded on tensile strength in psi:

No aging: 227 222 218 217 225
218 216 229 228 221

Aging: 219 214 215 211 209
218 203 204 201 205

(a) Do a dot plot of the data.

(b) From your plot, does it appear as if the aging pro-
cess has had an effect on the tensile strength of this

polymer? Explain.

(c) Calculate the sample mean tensile strength of the
two samples.

(d) Calculate the median for both. Discuss the simi-
larity or lack of similarity between the mean and
median of each group.

1.4 In a study conducted by the Department of Me-
chanical Engineering at Virginia Tech, the steel rods
supplied by two different companies were compared.
Ten sample springs were made out of the steel rods
supplied by each company, and a measure of flexibility
was recorded for each. The data are as follows:

Company A: 9.3 8.8 6.8 8.7 8.5
6.7 8.0 6.5 9.2 7.0

Company B: 11.0 9.8 9.9 10.2 10.1
9.7 11.0 11.1 10.2 9.6

(a) Calculate the sample mean and median for the data
for the two companies.

(b) Plot the data for the two companies on the same
line and give your impression regarding any appar-
ent differences between the two companies.

1.5 Twenty adult males between the ages of 30 and
40 participated in a study to evaluate the effect of a
specific health regimen involving diet and exercise on
the blood cholesterol. Ten were randomly selected to
be a control group, and ten others were assigned to
take part in the regimen as the treatment group for a
period of 6 months. The following data show the re-
duction in cholesterol experienced for the time period
for the 20 subjects:

Control group: 7 3 −4 14 2
5 22 −7 9 5

Treatment group: −6 5 9 4 4
12 37 5 3 3

(a) Do a dot plot of the data for both groups on the
same graph.

(b) Compute the mean, median, and 10% trimmed
mean for both groups.

(c) Explain why the difference in means suggests one
conclusion about the effect of the regimen, while
the difference in medians or trimmed means sug-
gests a different conclusion.

1.6 The tensile strength of silicone rubber is thought
to be a function of curing temperature. A study was
carried out in which samples of 12 specimens of the rub-
ber were prepared using curing temperatures of 20◦C
and 45◦C. The data below show the tensile strength
values in megapascals.
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14 Chapter 1 Introduction to Statistics and Data Analysis

20◦C: 2.07 2.14 2.22 2.03 2.21 2.03
2.05 2.18 2.09 2.14 2.11 2.02

45◦C: 2.52 2.15 2.49 2.03 2.37 2.05
1.99 2.42 2.08 2.42 2.29 2.01

(a) Show a dot plot of the data with both low and high
temperature tensile strength values.

(b) Compute sample mean tensile strength for both
samples.

(c) Does it appear as if curing temperature has an
influence on tensile strength, based on the plot?
Comment further.

(d) Does anything else appear to be influenced by an
increase in curing temperature? Explain.

1.4 Measures of Variability

Sample variability plays an important role in data analysis. Process and product
variability is a fact of life in engineering and scientific systems: The control or
reduction of process variability is often a source of major difficulty. More and
more process engineers and managers are learning that product quality and, as
a result, profits derived from manufactured products are very much a function
of process variability. As a result, much of Chapters 9 through 15 deals with
data analysis and modeling procedures in which sample variability plays a major
role. Even in small data analysis problems, the success of a particular statistical
method may depend on the magnitude of the variability among the observations in
the sample. Measures of location in a sample do not provide a proper summary of
the nature of a data set. For instance, in Example 1.2 we cannot conclude that the
use of nitrogen enhances growth without taking sample variability into account.

While the details of the analysis of this type of data set are deferred to Chap-
ter 9, it should be clear from Figure 1.1 that variability among the no-nitrogen
observations and variability among the nitrogen observations are certainly of some
consequence. In fact, it appears that the variability within the nitrogen sample
is larger than that of the no-nitrogen sample. Perhaps there is something about
the inclusion of nitrogen that not only increases the stem height (x̄ of 0.565 gram
compared to an x̄ of 0.399 gram for the no-nitrogen sample) but also increases the
variability in stem height (i.e., renders the stem height more inconsistent).

As another example, contrast the two data sets below. Each contains two
samples and the difference in the means is roughly the same for the two samples, but
data set B seems to provide a much sharper contrast between the two populations
from which the samples were taken. If the purpose of such an experiment is to
detect differences between the two populations, the task is accomplished in the case
of data set B. However, in data set A the large variability within the two samples
creates difficulty. In fact, it is not clear that there is a distinction between the two
populations.

Data set A: X  X  X  X  X  X    0  X  X  0  0  X  X  X  0    0  0  0  0  0  0  0

Data set B: X  X  X  X  X  X  X  X  X  X  X      0  0  0  0  0  0  0  0  0  0  0

x
X

x
0

x
X

x
0
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Sample Range and Sample Standard Deviation

Just as there are many measures of central tendency or location, there are many
measures of spread or variability. Perhaps the simplest one is the sample range
Xmax −Xmin. The range can be very useful and is discussed at length in Chapter
17 on statistical quality control. The sample measure of spread that is used most
often is the sample standard deviation. We again let x1, x2, . . . , xn denote
sample values.

Definition 1.3: The sample variance, denoted by s2, is given by

s2 =
n∑

i=1

(xi − x̄)2

n− 1
.

The sample standard deviation, denoted by s, is the positive square root of
s2, that is,

s =
√
s2.

It should be clear to the reader that the sample standard deviation is, in fact,
a measure of variability. Large variability in a data set produces relatively large
values of (x − x̄)2 and thus a large sample variance. The quantity n − 1 is often
called the degrees of freedom associated with the variance estimate. In this
simple example, the degrees of freedom depict the number of independent pieces
of information available for computing variability. For example, suppose that we
wish to compute the sample variance and standard deviation of the data set (5,
17, 6, 4). The sample average is x̄ = 8. The computation of the variance involves

(5− 8)2 + (17− 8)2 + (6− 8)2 + (4− 8)2 = (−3)2 + 92 + (−2)2 + (−4)2.

The quantities inside parentheses sum to zero. In general,
n∑

i=1

(xi − x̄) = 0 (see

Exercise 1.16 on page 31). Then the computation of a sample variance does not
involve n independent squared deviations from the mean x̄. In fact, since the
last value of x − x̄ is determined by the initial n − 1 of them, we say that these
are n − 1 “pieces of information” that produce s2. Thus, there are n − 1 degrees
of freedom rather than n degrees of freedom for computing a sample variance.

Example 1.4: In an example discussed extensively in Chapter 10, an engineer is interested in
testing the “bias” in a pH meter. Data are collected on the meter by measuring
the pH of a neutral substance (pH = 7.0). A sample of size 10 is taken, with results
given by

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08.

The sample mean x̄ is given by

x̄ =
7.07 + 7.00 + 7.10 + · · ·+ 7.08

10
= 7.0250.
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16 Chapter 1 Introduction to Statistics and Data Analysis

The sample variance s2 is given by

s2 =
1

9
[(7.07− 7.025)2 + (7.00− 7.025)2 + (7.10− 7.025)2

+ · · ·+ (7.08− 7.025)2] = 0.001939.

As a result, the sample standard deviation is given by

s =
√
0.001939 = 0.044.

So the sample standard deviation is 0.0440 with n− 1 = 9 degrees of freedom.

Units for Standard Deviation and Variance

It should be apparent from Definition 1.3 that the variance is a measure of the
average squared deviation from the mean x̄. We use the term average squared
deviation even though the definition makes use of a division by degrees of freedom
n − 1 rather than n. Of course, if n is large, the difference in the denominator
is inconsequential. As a result, the sample variance possesses units that are the
square of the units in the observed data whereas the sample standard deviation
is found in linear units. As an example, consider the data of Example 1.2. The
stem weights are measured in grams. As a result, the sample standard deviations
are in grams and the variances are measured in grams2. In fact, the individual
standard deviations are 0.0728 gram for the no-nitrogen case and 0.1867 gram for
the nitrogen group. Note that the standard deviation does indicate considerably
larger variability in the nitrogen sample. This condition was displayed in Figure
1.1.

Which Variability Measure Is More Important?

As we indicated earlier, the sample range has applications in the area of statistical
quality control. It may appear to the reader that the use of both the sample
variance and the sample standard deviation is redundant. Both measures reflect the
same concept in measuring variability, but the sample standard deviation measures
variability in linear units whereas the sample variance is measured in squared
units. Both play huge roles in the use of statistical methods. Much of what is
accomplished in the context of statistical inference involves drawing conclusions
about characteristics of populations. Among these characteristics are constants
which are called population parameters. Two important parameters are the
population mean and the population variance. The sample variance plays an
explicit role in the statistical methods used to draw inferences about the population
variance. The sample standard deviation has an important role along with the
sample mean in inferences that are made about the population mean. In general,
the variance is considered more in inferential theory, while the standard deviation
is used more in applications.
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Exercises

1.7 Consider the drying time data for Exercise 1.1
on page 13. Compute the sample variance and sample
standard deviation.

1.8 Compute the sample variance and standard devi-
ation for the water absorbency data of Exercise 1.2 on
page 13.

1.9 Exercise 1.3 on page 13 showed tensile strength
data for two samples, one in which specimens were ex-
posed to an aging process and one in which there was
no aging of the specimens.

(a) Calculate the sample variance as well as standard
deviation in tensile strength for both samples.

(b) Does there appear to be any evidence that aging
affects the variability in tensile strength? (See also
the plot for Exercise 1.3 on page 13.)

1.10 For the data of Exercise 1.4 on page 13, com-
pute both the mean and the variance in “flexibility”
for both company A and company B. Does there ap-
pear to be a difference in flexibility between company
A and company B?

1.11 Consider the data in Exercise 1.5 on page 13.
Compute the sample variance and the sample standard
deviation for both control and treatment groups.

1.12 For Exercise 1.6 on page 13, compute the sample
standard deviation in tensile strength for the samples
separately for the two temperatures. Does it appear as
if an increase in temperature influences the variability
in tensile strength? Explain.

1.5 Discrete and Continuous Data

Statistical inference through the analysis of observational studies or designed ex-
periments is used in many scientific areas. The data gathered may be discrete
or continuous, depending on the area of application. For example, a chemical
engineer may be interested in conducting an experiment that will lead to condi-
tions where yield is maximized. Here, of course, the yield may be in percent or
grams/pound, measured on a continuum. On the other hand, a toxicologist con-
ducting a combination drug experiment may encounter data that are binary in
nature (i.e., the patient either responds or does not).

Great distinctions are made between discrete and continuous data in the prob-
ability theory that allow us to draw statistical inferences. Often applications of
statistical inference are found when the data are count data. For example, an en-
gineer may be interested in studying the number of radioactive particles passing
through a counter in, say, 1 millisecond. Personnel responsible for the efficiency
of a port facility may be interested in the properties of the number of oil tankers
arriving each day at a certain port city. In Chapter 5, several distinct scenarios,
leading to different ways of handling data, are discussed for situations with count
data.

Special attention even at this early stage of the textbook should be paid to some
details associated with binary data. Applications requiring statistical analysis of
binary data are voluminous. Often the measure that is used in the analysis is
the sample proportion. Obviously the binary situation involves two categories.
If there are n units involved in the data and x is defined as the number that
fall into category 1, then n − x fall into category 2. Thus, x/n is the sample
proportion in category 1, and 1− x/n is the sample proportion in category 2. In
the biomedical application, 50 patients may represent the sample units, and if 20
out of 50 experienced an improvement in a stomach ailment (common to all 50)
after all were given the drug, then 20

50 = 0.4 is the sample proportion for which
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18 Chapter 1 Introduction to Statistics and Data Analysis

the drug was a success and 1 − 0.4 = 0.6 is the sample proportion for which the
drug was not successful. Actually the basic numerical measurement for binary
data is generally denoted by either 0 or 1. For example, in our medical example,
a successful result is denoted by a 1 and a nonsuccess a 0. As a result, the sample
proportion is actually a sample mean of the ones and zeros. For the successful
category,

x1 + x2 + · · ·+ x50

50
=

1 + 1 + 0 + · · ·+ 0 + 1

50
=

20

50
= 0.4.

What Kinds of Problems Are Solved in Binary Data Situations?

The kinds of problems facing scientists and engineers dealing in binary data are
not a great deal unlike those seen where continuous measurements are of interest.
However, different techniques are used since the statistical properties of sample
proportions are quite different from those of the sample means that result from
averages taken from continuous populations. Consider the example data in Ex-
ercise 1.6 on page 13. The statistical problem underlying this illustration focuses
on whether an intervention, say, an increase in curing temperature, will alter the
population mean tensile strength associated with the silicone rubber process. On
the other hand, in a quality control area, suppose an automobile tire manufacturer
reports that a shipment of 5000 tires selected randomly from the process results
in 100 of them showing blemishes. Here the sample proportion is 100

5000 = 0.02.
Following a change in the process designed to reduce blemishes, a second sample of
5000 is taken and 90 tires are blemished. The sample proportion has been reduced
to 90

5000 = 0.018. The question arises, “Is the decrease in the sample proportion
from 0.02 to 0.018 substantial enough to suggest a real improvement in the pop-
ulation proportion?” Both of these illustrations require the use of the statistical
properties of sample averages—one from samples from a continuous population,
and the other from samples from a discrete (binary) population. In both cases,
the sample mean is an estimate of a population parameter, a population mean
in the first illustration (i.e., mean tensile strength), and a population proportion
in the second case (i.e., proportion of blemished tires in the population). So here
we have sample estimates used to draw scientific conclusions regarding population
parameters. As we indicated in Section 1.3, this is the general theme in many
practical problems using statistical inference.

1.6 Statistical Modeling, Scientific Inspection, and Graphical
Diagnostics

Often the end result of a statistical analysis is the estimation of parameters of a
postulated model. This is natural for scientists and engineers since they often
deal in modeling. A statistical model is not deterministic but, rather, must entail
some probabilistic aspects. A model form is often the foundation of assumptions
that are made by the analyst. For example, in Example 1.2 the scientist may wish
to draw some level of distinction between the nitrogen and no-nitrogen populations
through the sample information. The analysis may require a certain model for
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1.6 Statistical Modeling, Scientific Inspection, and Graphical Diagnostics 19

the data, for example, that the two samples come from normal or Gaussian
distributions. See Chapter 6 for a discussion of the normal distribution.

Obviously, the user of statistical methods cannot generate sufficient informa-
tion or experimental data to characterize the population totally. But sets of data
are often used to learn about certain properties of the population. Scientists and
engineers are accustomed to dealing with data sets. The importance of character-
izing or summarizing the nature of collections of data should be obvious. Often a
summary of a collection of data via a graphical display can provide insight regard-
ing the system from which the data were taken. For instance, in Sections 1.1 and
1.3, we have shown dot plots.

In this section, the role of sampling and the display of data for enhancement of
statistical inference is explored in detail. We merely introduce some simple but
often effective displays that complement the study of statistical populations.

Scatter Plot

At times the model postulated may take on a somewhat complicated form. Con-
sider, for example, a textile manufacturer who designs an experiment where cloth
specimen that contain various percentages of cotton are produced. Consider the
data in Table 1.3.

Table 1.3: Tensile Strength

Cotton Percentage Tensile Strength

15 7, 7, 9, 8, 10
20 19, 20, 21, 20, 22
25 21, 21, 17, 19, 20
30 8, 7, 8, 9, 10

Five cloth specimens are manufactured for each of the four cotton percentages.
In this case, both the model for the experiment and the type of analysis used
should take into account the goal of the experiment and important input from
the textile scientist. Some simple graphics can shed important light on the clear
distinction between the samples. See Figure 1.5; the sample means and variability
are depicted nicely in the scatter plot. One possible goal of this experiment is
simply to determine which cotton percentages are truly distinct from the others.
In other words, as in the case of the nitrogen/no-nitrogen data, for which cotton
percentages are there clear distinctions between the populations or, more specifi-
cally, between the population means? In this case, perhaps a reasonable model is
that each sample comes from a normal distribution. Here the goal is very much
like that of the nitrogen/no-nitrogen data except that more samples are involved.
The formalism of the analysis involves notions of hypothesis testing discussed in
Chapter 10. Incidentally, this formality is perhaps not necessary in light of the
diagnostic plot. But does this describe the real goal of the experiment and hence
the proper approach to data analysis? It is likely that the scientist anticipates
the existence of a maximum population mean tensile strength in the range of cot-
ton concentration in the experiment. Here the analysis of the data should revolve
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20 Chapter 1 Introduction to Statistics and Data Analysis

around a different type of model, one that postulates a type of structure relating
the population mean tensile strength to the cotton concentration. In other words,
a model may be written

μt,c = β0 + β1C + β2C
2,

where μt,c is the population mean tensile strength, which varies with the amount
of cotton in the product C. The implication of this model is that for a fixed cotton
level, there is a population of tensile strength measurements and the population
mean is μt,c. This type of model, called a regression model, is discussed in
Chapters 11 and 12. The functional form is chosen by the scientist. At times
the data analysis may suggest that the model be changed. Then the data analyst
“entertains” a model that may be altered after some analysis is done. The use
of an empirical model is accompanied by estimation theory, where β0, β1, and
β2 are estimated by the data. Further, statistical inference can then be used to
determine model adequacy.
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Figure 1.5: Scatter plot of tensile strength and cotton percentages.

Two points become evident from the two data illustrations here: (1) The type
of model used to describe the data often depends on the goal of the experiment;
and (2) the structure of the model should take advantage of nonstatistical scientific
input. A selection of a model represents a fundamental assumption upon which
the resulting statistical inference is based. It will become apparent throughout the
book how important graphics can be. Often, plots can illustrate information that
allows the results of the formal statistical inference to be better communicated to
the scientist or engineer. At times, plots or exploratory data analysis can teach
the analyst something not retrieved from the formal analysis. Almost any formal
analysis requires assumptions that evolve from the model of the data. Graphics can
nicely highlight violation of assumptions that would otherwise go unnoticed.
Throughout the book, graphics are used extensively to supplement formal data
analysis. The following sections reveal some graphical tools that are useful in
exploratory or descriptive data analysis.
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Stem-and-Leaf Plot

Statistical data, generated in large masses, can be very useful for studying the
behavior of the distribution if presented in a combined tabular and graphic display
called a stem-and-leaf plot.

To illustrate the construction of a stem-and-leaf plot, consider the data of Table
1.4, which specifies the “life” of 40 similar car batteries recorded to the nearest tenth
of a year. The batteries are guaranteed to last 3 years. First, split each observation
into two parts consisting of a stem and a leaf such that the stem represents the
digit preceding the decimal and the leaf corresponds to the decimal part of the
number. In other words, for the number 3.7, the digit 3 is designated the stem and
the digit 7 is the leaf. The four stems 1, 2, 3, and 4 for our data are listed vertically
on the left side in Table 1.5; the leaves are recorded on the right side opposite the
appropriate stem value. Thus, the leaf 6 of the number 1.6 is recorded opposite
the stem 1; the leaf 5 of the number 2.5 is recorded opposite the stem 2; and so
forth. The number of leaves recorded opposite each stem is summarized under the
frequency column.

Table 1.4: Car Battery Life

2.2 4.1 3.5 4.5 3.2 3.7 3.0 2.6
3.4 1.6 3.1 3.3 3.8 3.1 4.7 3.7
2.5 4.3 3.4 3.6 2.9 3.3 3.9 3.1
3.3 3.1 3.7 4.4 3.2 4.1 1.9 3.4
4.7 3.8 3.2 2.6 3.9 3.0 4.2 3.5

Table 1.5: Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1
2
3
4

69
25669
0011112223334445567778899
11234577

2
5
25
8

The stem-and-leaf plot of Table 1.5 contains only four stems and consequently
does not provide an adequate picture of the distribution. To remedy this problem,
we need to increase the number of stems in our plot. One simple way to accomplish
this is to write each stem value twice and then record the leaves 0, 1, 2, 3, and 4
opposite the appropriate stem value where it appears for the first time, and the
leaves 5, 6, 7, 8, and 9 opposite this same stem value where it appears for the second
time. This modified double-stem-and-leaf plot is illustrated in Table 1.6, where the
stems corresponding to leaves 0 through 4 have been coded by the symbol � and
the stems corresponding to leaves 5 through 9 by the symbol ·.

In any given problem, we must decide on the appropriate stem values. This
decision is made somewhat arbitrarily, although we are guided by the size of our
sample. Usually, we choose between 5 and 20 stems. The smaller the number of
data available, the smaller is our choice for the number of stems. For example, if
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22 Chapter 1 Introduction to Statistics and Data Analysis

the data consist of numbers from 1 to 21 representing the number of people in a
cafeteria line on 40 randomly selected workdays and we choose a double-stem-and-
leaf plot, the stems will be 0�, 0·, 1�, 1·, and 2� so that the smallest observation
1 has stem 0� and leaf 1, the number 18 has stem 1· and leaf 8, and the largest
observation 21 has stem 2� and leaf 1. On the other hand, if the data consist of
numbers from $18,800 to $19,600 representing the best possible deals on 100 new
automobiles from a certain dealership and we choose a single-stem-and-leaf plot,
the stems will be 188, 189, 190, . . . , 196 and the leaves will now each contain two
digits. A car that sold for $19,385 would have a stem value of 193 and the two-digit
leaf 85. Multiple-digit leaves belonging to the same stem are usually separated by
commas in the stem-and-leaf plot. Decimal points in the data are generally ignored
when all the digits to the right of the decimal represent the leaf. Such was the
case in Tables 1.5 and 1.6. However, if the data consist of numbers ranging from
21.8 to 74.9, we might choose the digits 2, 3, 4, 5, 6, and 7 as our stems so that a
number such as 48.3 would have a stem value of 4 and a leaf of 8.3.

Table 1.6: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1·
2�
2·
3�
3·
4�
4·

69
2
5669
001111222333444
5567778899
11234
577

2
1
4

15
10
5
3

The stem-and-leaf plot represents an effective way to summarize data. Another
way is through the use of the frequency distribution, where the data, grouped
into different classes or intervals, can be constructed by counting the leaves be-
longing to each stem and noting that each stem defines a class interval. In Table
1.5, the stem 1 with 2 leaves defines the interval 1.0–1.9 containing 2 observations;
the stem 2 with 5 leaves defines the interval 2.0–2.9 containing 5 observations; the
stem 3 with 25 leaves defines the interval 3.0–3.9 with 25 observations; and the
stem 4 with 8 leaves defines the interval 4.0–4.9 containing 8 observations. For the
double-stem-and-leaf plot of Table 1.6, the stems define the seven class intervals
1.5–1.9, 2.0–2.4, 2.5–2.9, 3.0–3.4, 3.5–3.9, 4.0–4.4, and 4.5–4.9 with frequencies 2,
1, 4, 15, 10, 5, and 3, respectively.

Histogram

Dividing each class frequency by the total number of observations, we obtain the
proportion of the set of observations in each of the classes. A table listing relative
frequencies is called a relative frequency distribution. The relative frequency
distribution for the data of Table 1.4, showing the midpoint of each class interval,
is given in Table 1.7.

The information provided by a relative frequency distribution in tabular form is
easier to grasp if presented graphically. Using the midpoint of each interval and the
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Table 1.7: Relative Frequency Distribution of Battery Life

Class Class Frequency, Relative
Interval Midpoint f Frequency
1.5–1.9 1.7 2 0.050
2.0–2.4 2.2 1 0.025
2.5–2.9 2.7 4 0.100
3.0–3.4 3.2 15 0.375
3.5–3.9 3.7 10 0.250
4.0–4.4 4.2 5 0.125
4.5–4.9 4.7 3 0.075

0.375

0.250

0.125

1.7 2.2 2.7 3.2 3.7 4.2 4.7

R
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Battery Life (years)

Figure 1.6: Relative frequency histogram.

corresponding relative frequency, we construct a relative frequency histogram
(Figure 1.6).

Many continuous frequency distributions can be represented graphically by the
characteristic bell-shaped curve of Figure 1.7. Graphical tools such as what we see
in Figures 1.6 and 1.7 aid in the characterization of the nature of the population. In
Chapters 5 and 6 we discuss a property of the population called its distribution.
While a more rigorous definition of a distribution or probability distribution
will be given later in the text, at this point one can view it as what would be seen
in Figure 1.7 in the limit as the size of the sample becomes larger.

A distribution is said to be symmetric if it can be folded along a vertical axis
so that the two sides coincide. A distribution that lacks symmetry with respect to
a vertical axis is said to be skewed. The distribution illustrated in Figure 1.8(a)
is said to be skewed to the right since it has a long right tail and a much shorter
left tail. In Figure 1.8(b) we see that the distribution is symmetric, while in Figure
1.8(c) it is skewed to the left.

If we rotate a stem-and-leaf plot counterclockwise through an angle of 90◦,
we observe that the resulting columns of leaves form a picture that is similar
to a histogram. Consequently, if our primary purpose in looking at the data is to
determine the general shape or form of the distribution, it will seldom be necessary
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0

f (x )

Battery Life (years)
1 2 3 4 5 6

Figure 1.7: Estimating frequency distribution.

(a) (b) (c)

Figure 1.8: Skewness of data.

to construct a relative frequency histogram.

Box-and-Whisker Plot or Box Plot

Another display that is helpful for reflecting properties of a sample is the box-
and-whisker plot. This plot encloses the interquartile range of the data in a box
that has the median displayed within. The interquartile range has as its extremes
the 75th percentile (upper quartile) and the 25th percentile (lower quartile). In
addition to the box, “whiskers” extend, showing extreme observations in the sam-
ple. For reasonably large samples, the display shows center of location, variability,
and the degree of asymmetry.

In addition, a variation called a box plot can provide the viewer with infor-
mation regarding which observations may be outliers. Outliers are observations
that are considered to be unusually far from the bulk of the data. There are many
statistical tests that are designed to detect outliers. Technically, one may view
an outlier as being an observation that represents a “rare event” (there is a small
probability of obtaining a value that far from the bulk of the data). The concept
of outliers resurfaces in Chapter 12 in the context of regression analysis.
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The visual information in the box-and-whisker plot or box plot is not intended
to be a formal test for outliers. Rather, it is viewed as a diagnostic tool. While the
determination of which observations are outliers varies with the type of software
that is used, one common procedure is to use a multiple of the interquartile
range. For example, if the distance from the box exceeds 1.5 times the interquartile
range (in either direction), the observation may be labeled an outlier.

Example 1.5: Nicotine content was measured in a random sample of 40 cigarettes. The data are
displayed in Table 1.8.

Table 1.8: Nicotine Data for Example 1.5

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97
0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11
1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85
1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93
1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69

1.0 1.5 2.0 2.5

Nicotine

Figure 1.9: Box-and-whisker plot for Example 1.5.

Figure 1.9 shows the box-and-whisker plot of the data, depicting the observa-
tions 0.72 and 0.85 as mild outliers in the lower tail, whereas the observation 2.55
is a mild outlier in the upper tail. In this example, the interquartile range is 0.365,
and 1.5 times the interquartile range is 0.5475. Figure 1.10, on the other hand,
provides a stem-and-leaf plot.

Example 1.6: Consider the data in Table 1.9, consisting of 30 samples measuring the thickness of
paint can “ears” (see the work by Hogg and Ledolter, 1992, in the Bibliography).
Figure 1.11 depicts a box-and-whisker plot for this asymmetric set of data. Notice
that the left block is considerably larger than the block on the right. The median
is 35. The lower quartile is 31, while the upper quartile is 36. Notice also that the
extreme observation on the right is farther away from the box than the extreme
observation on the left. There are no outliers in this data set.
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The decimal point is 1 digit(s) to the left of the |

7 | 2

8 | 5

9 |

10 | 9

11 |

12 | 4

13 | 7

14 | 07

15 | 18

16 | 3447899

17 | 045599

18 | 2568

19 | 0237

20 | 389

21 | 17

22 | 8

23 | 17

24 | 6

25 | 5

Figure 1.10: Stem-and-leaf plot for the nicotine data.

Table 1.9: Data for Example 1.6

Sample Measurements Sample Measurements
1 29 36 39 34 34 16 35 30 35 29 37
2 29 29 28 32 31 17 40 31 38 35 31
3 34 34 39 38 37 18 35 36 30 33 32
4 35 37 33 38 41 19 35 34 35 30 36
5 30 29 31 38 29 20 35 35 31 38 36
6 34 31 37 39 36 21 32 36 36 32 36
7 30 35 33 40 36 22 36 37 32 34 34
8 28 28 31 34 30 23 29 34 33 37 35
9 32 36 38 38 35 24 36 36 35 37 37
10 35 30 37 35 31 25 36 30 35 33 31
11 35 30 35 38 35 26 35 30 29 38 35
12 38 34 35 35 31 27 35 36 30 34 36
13 34 35 33 30 34 28 35 30 36 29 35
14 40 35 34 33 35 29 38 36 35 31 31
15 34 35 38 35 30 30 30 34 40 28 30

There are additional ways that box-and-whisker plots and other graphical dis-
plays can aid the analyst. Multiple samples can be compared graphically. Plots of
data can suggest relationships between variables. Graphs can aid in the detection
of anomalies or outlying observations in samples.

There are other types of graphical tools and plots that are used. These are
discussed in Chapter 8 after we introduce additional theoretical details.
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28 30 32 34 36 38 40

Paint

Figure 1.11: Box-and-whisker plot for thickness of paint can “ears.”

Other Distinguishing Features of a Sample

There are features of the distribution or sample other than measures of center
of location and variability that further define its nature. For example, while the
median divides the data (or distribution) into two parts, there are other measures
that divide parts or pieces of the distribution that can be very useful. Separation
is made into four parts by quartiles, with the third quartile separating the upper
quarter of the data from the rest, the second quartile being the median, and the first
quartile separating the lower quarter of the data from the rest. The distribution can
be even more finely divided by computing percentiles of the distribution. These
quantities give the analyst a sense of the so-called tails of the distribution (i.e.,
values that are relatively extreme, either small or large). For example, the 95th
percentile separates the highest 5% from the bottom 95%. Similar definitions
prevail for extremes on the lower side or lower tail of the distribution. The 1st
percentile separates the bottom 1% from the rest of the distribution. The concept
of percentiles will play a major role in much that will be covered in future chapters.

1.7 General Types of Statistical Studies: Designed
Experiment, Observational Study, and Retrospective Study

In the foregoing sections we have emphasized the notion of sampling from a pop-
ulation and the use of statistical methods to learn or perhaps affirm important
information about the population. The information sought and learned through
the use of these statistical methods can often be influential in decision making and
problem solving in many important scientific and engineering areas. As an illustra-
tion, Example 1.3 describes a simple experiment in which the results may provide
an aid in determining the kinds of conditions under which it is not advisable to use
a particular aluminum alloy that may have a dangerous vulnerability to corrosion.
The results may be of use not only to those who produce the alloy, but also to the
customer who may consider using it. This illustration, as well as many more that
appear in Chapters 13 through 15, highlights the concept of designing or control-
ling experimental conditions (combinations of coating conditions and humidity) of

Uploaded By: anonymousSTUDENTS-HUB.com



28 Chapter 1 Introduction to Statistics and Data Analysis

interest to learn about some characteristic or measurement (level of corrosion) that
results from these conditions. Statistical methods that make use of measures of
central tendency in the corrosion measure, as well as measures of variability, are
employed. As the reader will observe later in the text, these methods often lead to
a statistical model like that discussed in Section 1.6. In this case, the model may be
used to estimate (or predict) the corrosion measure as a function of humidity and
the type of coating employed. Again, in developing this kind of model, descriptive
statistics that highlight central tendency and variability become very useful.

The information supplied in Example 1.3 illustrates nicely the types of engi-
neering questions asked and answered by the use of statistical methods that are
employed through a designed experiment and presented in this text. They are

(i) What is the nature of the impact of relative humidity on the corrosion of the
aluminum alloy within the range of relative humidity in this experiment?

(ii) Does the chemical corrosion coating reduce corrosion levels and can the effect
be quantified in some fashion?

(iii) Is there interaction between coating type and relative humidity that impacts
their influence on corrosion of the alloy? If so, what is its interpretation?

What Is Interaction?

The importance of questions (i) and (ii) should be clear to the reader, as they
deal with issues important to both producers and users of the alloy. But what
about question (iii)? The concept of interaction will be discussed at length in
Chapters 14 and 15. Consider the plot in Figure 1.3. This is an illustration of
the detection of interaction between two factors in a simple designed experiment.
Note that the lines connecting the sample means are not parallel. Parallelism
would have indicated that the effect (seen as a result of the slope of the lines)
of relative humidity is the same, namely a negative effect, for both an uncoated
condition and the chemical corrosion coating. Recall that the negative slope implies
that corrosion becomes more pronounced as humidity rises. Lack of parallelism
implies an interaction between coating type and relative humidity. The nearly
“flat” line for the corrosion coating as opposed to a steeper slope for the uncoated
condition suggests that not only is the chemical corrosion coating beneficial (note
the displacement between the lines), but the presence of the coating renders the
effect of humidity negligible. Clearly all these questions are very important to the
effect of the two individual factors and to the interpretation of the interaction, if
it is present.

Statistical models are extremely useful in answering questions such as those
listed in (i), (ii), and (iii), where the data come from a designed experiment. But
one does not always have the luxury or resources to employ a designed experiment.
For example, there are many instances in which the conditions of interest to the
scientist or engineer cannot be implemented simply because the important factors
cannot be controlled. In Example 1.3, the relative humidity and coating type (or
lack of coating) are quite easy to control. This of course is the defining feature of
a designed experiment. In many fields, factors that need to be studied cannot be
controlled for any one of various reasons. Tight control as in Example 1.3 allows the
analyst to be confident that any differences found (for example, in corrosion levels)
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are due to the factors under control. As a second illustration, consider Exercise
1.6 on page 13. Suppose in this case 24 specimens of silicone rubber are selected
and 12 assigned to each of the curing temperature levels. The temperatures are
controlled carefully, and thus this is an example of a designed experiment with a
single factor being curing temperature. Differences found in the mean tensile
strength would be assumed to be attributed to the different curing temperatures.

What If Factors Are Not Controlled?

Suppose there are no factors controlled and no random assignment of fixed treat-
ments to experimental units and yet there is a need to glean information from a
data set. As an illustration, consider a study in which interest centers around the
relationship between blood cholesterol levels and the amount of sodium measured
in the blood. A group of individuals were monitored over time for both blood
cholesterol and sodium. Certainly some useful information can be gathered from
such a data set. However, it should be clear that there certainly can be no strict
control of blood sodium levels. Ideally, the subjects should be divided randomly
into two groups, with one group assigned a specific high level of blood sodium and
the other a specific low level of blood sodium. Obviously this cannot be done.
Clearly changes in cholesterol can be experienced because of changes in one of
a number of other factors that were not controlled. This kind of study, without
factor control, is called an observational study. Much of the time it involves a
situation in which subjects are observed across time.

Biological and biomedical studies are often by necessity observational studies.
However, observational studies are not confined to those areas. For example, con-
sider a study that is designed to determine the influence of ambient temperature on
the electric power consumed by a chemical plant. Clearly, levels of ambient temper-
ature cannot be controlled, and thus the data structure can only be a monitoring
of the data from the plant over time.

It should be apparent that the striking difference between a well-designed ex-
periment and observational studies is the difficulty in determination of true cause
and effect with the latter. Also, differences found in the fundamental response
(e.g., corrosion levels, blood cholesterol, plant electric power consumption) may
be due to other underlying factors that were not controlled. Ideally, in a designed
experiment the nuisance factors would be equalized via the randomization process.
Certainly changes in blood cholesterol could be due to fat intake, exercise activity,
and so on. Electric power consumption could be affected by the amount of product
produced or even the purity of the product produced.

Another often ignored disadvantage of an observational study when compared
to carefully designed experiments is that, unlike the latter, observational studies
are at the mercy of nature, environmental or other uncontrolled circumstances
that impact the ranges of factors of interest. For example, in the biomedical study
regarding the influence of blood sodium levels on blood cholesterol, it is possible
that there is indeed a strong influence but the particular data set used did not
involve enough observed variation in sodium levels because of the nature of the
subjects chosen. Of course, in a designed experiment, the analyst chooses and
controls ranges of factors.
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A third type of statistical study which can be very useful but has clear dis-
advantages when compared to a designed experiment is a retrospective study.
This type of study uses strictly historical data, data taken over a specific period
of time. One obvious advantage of retrospective data is that there is reduced cost
in collecting the data. However, as one might expect, there are clear disadvantages.

(i) Validity and reliability of historical data are often in doubt.

(ii) If time is an important aspect of the structure of the data, there may be data
missing.

(iii) There may be errors in collection of the data that are not known.

(iv) Again, as in the case of observational data, there is no control on the ranges
of the measured variables (the factors in a study). Indeed, the ranges found
in historical data may not be relevant for current studies.

In Section 1.6, some attention was given to modeling of relationships among vari-
ables. We introduced the notion of regression analysis, which is covered in Chapters
11 and 12 and is illustrated as a form of data analysis for designed experiments
discussed in Chapters 14 and 15. In Section 1.6, a model relating population mean
tensile strength of cloth to percentages of cotton was used for illustration, where
20 specimens of cloth represented the experimental units. In that case, the data
came from a simple designed experiment where the individual cotton percentages
were selected by the scientist.

Often both observational data and retrospective data are used for the purpose
of observing relationships among variables through model-building procedures dis-
cussed in Chapters 11 and 12. While the advantages of designed experiments
certainly apply when the goal is statistical model building, there are many areas
in which designing of experiments is not possible. Thus, observational or historical
data must be used. We refer here to a historical data set that is found in Exercise
12.5 on page 450. The goal is to build a model that will result in an equation
or relationship that relates monthly electric power consumed to average ambient
temperature x1, the number of days in the month x2, the average product purity
x3, and the tons of product produced x4. The data are the past year’s historical
data.

Exercises

1.13 A manufacturer of electronic components is in-
terested in determining the lifetime of a certain type
of battery. A sample, in hours of life, is as follows:

123, 116, 122, 110, 175, 126, 125, 111, 118, 117.

(a) Find the sample mean and median.

(b) What feature in this data set is responsible for the
substantial difference between the two?

1.14 A tire manufacturer wants to determine the in-
ner diameter of a certain grade of tire. Ideally, the
diameter would be 570 mm. The data are as follows:

572, 572, 573, 568, 569, 575, 565, 570.

(a) Find the sample mean and median.

(b) Find the sample variance, standard deviation, and
range.

(c) Using the calculated statistics in parts (a) and (b),
can you comment on the quality of the tires?

1.15 Five independent coin tosses result in
HHHHH. It turns out that if the coin is fair the
probability of this outcome is (1/2)5 = 0.03125. Does
this produce strong evidence that the coin is not fair?
Comment and use the concept of P-value discussed in
Section 1.1.
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1.16 Show that the n pieces of information in
n∑

i=1

(xi − x̄)2 are not independent; that is, show that

n∑
i=1

(xi − x̄) = 0.

1.17 A study of the effects of smoking on sleep pat-
terns is conducted. The measure observed is the time,
in minutes, that it takes to fall asleep. These data are
obtained:

Smokers: 69.3 56.0 22.1 47.6
53.2 48.1 52.7 34.4
60.2 43.8 23.2 13.8

Nonsmokers: 28.6 25.1 26.4 34.9
29.8 28.4 38.5 30.2
30.6 31.8 41.6 21.1
36.0 37.9 13.9

(a) Find the sample mean for each group.

(b) Find the sample standard deviation for each group.

(c) Make a dot plot of the data sets A and B on the
same line.

(d) Comment on what kind of impact smoking appears
to have on the time required to fall asleep.

1.18 The following scores represent the final exami-
nation grades for an elementary statistics course:

23 60 79 32 57 74 52 70 82
36 80 77 81 95 41 65 92 85
55 76 52 10 64 75 78 25 80
98 81 67 41 71 83 54 64 72
88 62 74 43 60 78 89 76 84
48 84 90 15 79 34 67 17 82
69 74 63 80 85 61

(a) Construct a stem-and-leaf plot for the examination
grades in which the stems are 1, 2, 3, . . . , 9.

(b) Construct a relative frequency histogram, draw an
estimate of the graph of the distribution, and dis-
cuss the skewness of the distribution.

(c) Compute the sample mean, sample median, and
sample standard deviation.

1.19 The following data represent the length of life in
years, measured to the nearest tenth, of 30 similar fuel
pumps:

2.0 3.0 0.3 3.3 1.3 0.4
0.2 6.0 5.5 6.5 0.2 2.3
1.5 4.0 5.9 1.8 4.7 0.7
4.5 0.3 1.5 0.5 2.5 5.0
1.0 6.0 5.6 6.0 1.2 0.2

(a) Construct a stem-and-leaf plot for the life in years
of the fuel pumps, using the digit to the left of the
decimal point as the stem for each observation.

(b) Set up a relative frequency distribution.

(c) Compute the sample mean, sample range, and sam-
ple standard deviation.

1.20 The following data represent the length of life,
in seconds, of 50 fruit flies subject to a new spray in a
controlled laboratory experiment:

17 20 10 9 23 13 12 19 18 24
12 14 6 9 13 6 7 10 13 7
16 18 8 13 3 32 9 7 10 11
13 7 18 7 10 4 27 19 16 8
7 10 5 14 15 10 9 6 7 15

(a) Construct a double-stem-and-leaf plot for the life
span of the fruit flies using the stems 0�, 0·, 1�, 1·,
2�, 2·, and 3� such that stems coded by the symbols
� and · are associated, respectively, with leaves 0
through 4 and 5 through 9.

(b) Set up a relative frequency distribution.

(c) Construct a relative frequency histogram.

(d) Find the median.

1.21 The lengths of power failures, in minutes, are
recorded in the following table.

22 18 135 15 90 78 69 98 102
83 55 28 121 120 13 22 124 112
70 66 74 89 103 24 21 112 21
40 98 87 132 115 21 28 43 37
50 96 118 158 74 78 83 93 95

(a) Find the sample mean and sample median of the
power-failure times.

(b) Find the sample standard deviation of the power-
failure times.

1.22 The following data are the measures of the di-
ameters of 36 rivet heads in 1/100 of an inch.

6.72 6.77 6.82 6.70 6.78 6.70 6.62 6.75
6.66 6.66 6.64 6.76 6.73 6.80 6.72 6.76
6.76 6.68 6.66 6.62 6.72 6.76 6.70 6.78
6.76 6.67 6.70 6.72 6.74 6.81 6.79 6.78
6.66 6.76 6.76 6.72

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Comment on whether or not there is any clear in-
dication that the sample came from a population
that has a bell-shaped distribution.

1.23 The hydrocarbon emissions at idling speed in
parts per million (ppm) for automobiles of 1980 and
1990 model years are given for 20 randomly selected
cars.
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1980 models:
141 359 247 940 882 494 306 210 105 880
200 223 188 940 241 190 300 435 241 380

1990 models:
140 160 20 20 223 60 20 95 360 70
220 400 217 58 235 380 200 175 85 65

(a) Construct a dot plot as in Figure 1.1.

(b) Compute the sample means for the two years and
superimpose the two means on the plots.

(c) Comment on what the dot plot indicates regarding
whether or not the population emissions changed
from 1980 to 1990. Use the concept of variability
in your comments.

1.24 The following are historical data on staff salaries
(dollars per pupil) for 30 schools sampled in the eastern
part of the United States in the early 1970s.

3.79 2.99 2.77 2.91 3.10 1.84 2.52 3.22
2.45 2.14 2.67 2.52 2.71 2.75 3.57 3.85
3.36 2.05 2.89 2.83 3.13 2.44 2.10 3.71
3.14 3.54 2.37 2.68 3.51 3.37

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Construct a stem-and-leaf display of the data.

1.25 The following data set is related to that in Ex-
ercise 1.24. It gives the percentages of the families that
are in the upper income level, for the same individual
schools in the same order as in Exercise 1.24.

72.2 31.9 26.5 29.1 27.3 8.6 22.3 26.5
20.4 12.8 25.1 19.2 24.1 58.2 68.1 89.2
55.1 9.4 14.5 13.9 20.7 17.9 8.5 55.4
38.1 54.2 21.5 26.2 59.1 43.3

(a) Calculate the sample mean.

(b) Calculate the sample median.

(c) Construct a relative frequency histogram of the
data.

(d) Compute the 10% trimmed mean. Compare with
the results in (a) and (b) and comment.

1.26 Suppose it is of interest to use the data sets in
Exercises 1.24 and 1.25 to derive a model that would
predict staff salaries as a function of percentage of fam-
ilies in a high income level for current school systems.
Comment on any disadvantage in carrying out this type
of analysis.

1.27 A study is done to determine the influence of
the wear, y, of a bearing as a function of the load, x,
on the bearing. A designed experiment is used for this
study. Three levels of load were used, 700 lb, 1000 lb,
and 1300 lb. Four specimens were used at each level,

and the sample means were, respectively, 210, 325, and
375.

(a) Plot average wear against load.

(b) From the plot in (a), does it appear as if a relation-
ship exists between wear and load?

(c) Suppose we look at the individual wear values for
each of the four specimens at each load level (see
the data that follow). Plot the wear results for all
specimens against the three load values.

(d) From your plot in (c), does it appear as if a clear
relationship exists? If your answer is different from
that in (b), explain why.

x

700 1000 1300
y1 145 250 150
y2 105 195 180
y3 260 375 420
y4 330 480 750

ȳ1 = 210 ȳ2 = 325 ȳ3 = 375

1.28 Many manufacturing companies in the United
States and abroad use molded parts as components of
a process. Shrinkage is often a major problem. Thus, a
molded die for a part is built larger than nominal size
to allow for part shrinkage. In an injection molding
study it is known that the shrinkage is influenced by
many factors, among which are the injection velocity
in ft/sec and mold temperature in ◦C. The following
two data sets show the results of a designed experiment
in which injection velocity was held at two levels (low
and high) and mold temperature was held constant at
a low level. The shrinkage is measured in cm × 104.

Shrinkage values at low injection velocity:

72.68 72.62 72.58 72.48 73.07
72.55 72.42 72.84 72.58 72.92

Shrinkage values at high injection velocity:

71.62 71.68 71.74 71.48 71.55
71.52 71.71 71.56 71.70 71.50

(a) Construct a dot plot of both data sets on the same
graph. Indicate on the plot both shrinkage means,
that for low injection velocity and high injection
velocity.

(b) Based on the graphical results in (a), using the lo-
cation of the two means and your sense of variabil-
ity, what do you conclude regarding the effect of
injection velocity on shrinkage at low mold tem-
perature?

1.29 Use the data in Exercise 1.24 to construct a box
plot.

1.30 Below are the lifetimes, in hours, of fifty 40-watt,
110-volt internally frosted incandescent lamps, taken
from forced life tests:
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919 1196 785 1126 936 918
1156 920 948 1067 1092 1162
1170 929 950 905 972 1035
1045 855 1195 1195 1340 1122
938 970 1237 956 1102 1157
978 832 1009 1157 1151 1009
765 958 902 1022 1333 811

1217 1085 896 958 1311 1037
702 923

Construct a box plot for these data.

1.31 Consider the situation of Exercise 1.28. But now
use the following data set, in which shrinkage is mea-
sured once again at low injection velocity and high in-
jection velocity. However, this time the mold temper-
ature is raised to a high level and held constant.

Shrinkage values at low injection velocity:

76.20 76.09 75.98 76.15 76.17
75.94 76.12 76.18 76.25 75.82

Shrinkage values at high injection velocity:

93.25 93.19 92.87 93.29 93.37
92.98 93.47 93.75 93.89 91.62

(a) As in Exercise 1.28, construct a dot plot with both
data sets on the same graph and identify both
means (i.e., mean shrinkage for low injection ve-
locity and for high injection velocity).

(b) As in Exercise 1.28, comment on the influence of
injection velocity on shrinkage for high mold tem-
perature. Take into account the position of the two
means and the variability around each mean.

(c) Compare your conclusion in (b) with that in (b)
of Exercise 1.28 in which mold temperature was
held at a low level. Would you say that there is
an interaction between injection velocity and mold
temperature? Explain.

1.32 Use the results of Exercises 1.28 and 1.31 to cre-
ate a plot that illustrates the interaction evident from
the data. Use the plot in Figure 1.3 in Example 1.3 as
a guide. Could the type of information found in Exer-
cises 1.28 and 1.31 have been found in an observational
study in which there was no control on injection veloc-
ity and mold temperature by the analyst? Explain why
or why not.

1.33 Group Project: Collect the shoe size of every-
one in the class. Use the sample means and variances
and the types of plots presented in this chapter to sum-
marize any features that draw a distinction between the
distributions of shoe sizes for males and females. Do
the same for the height of everyone in the class.
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Chapter 2

Probability

2.1 Sample Space

In the study of statistics, we are concerned basically with the presentation and
interpretation of chance outcomes that occur in a planned study or scientific
investigation. For example, we may record the number of accidents that occur
monthly at the intersection of Driftwood Lane and Royal Oak Drive, hoping to
justify the installation of a traffic light; we might classify items coming off an as-
sembly line as “defective” or “nondefective”; or we may be interested in the volume
of gas released in a chemical reaction when the concentration of an acid is varied.
Hence, the statistician is often dealing with either numerical data, representing
counts or measurements, or categorical data, which can be classified according
to some criterion.

We shall refer to any recording of information, whether it be numerical or
categorical, as an observation. Thus, the numbers 2, 0, 1, and 2, representing
the number of accidents that occurred for each month from January through April
during the past year at the intersection of Driftwood Lane and Royal Oak Drive,
constitute a set of observations. Similarly, the categorical data N, D, N, N, and
D, representing the items found to be defective or nondefective when five items are
inspected, are recorded as observations.

Statisticians use the word experiment to describe any process that generates
a set of data. A simple example of a statistical experiment is the tossing of a coin.
In this experiment, there are only two possible outcomes, heads or tails. Another
experiment might be the launching of a missile and observing of its velocity at
specified times. The opinions of voters concerning a new sales tax can also be
considered as observations of an experiment. We are particularly interested in the
observations obtained by repeating the experiment several times. In most cases, the
outcomes will depend on chance and, therefore, cannot be predicted with certainty.
If a chemist runs an analysis several times under the same conditions, he or she will
obtain different measurements, indicating an element of chance in the experimental
procedure. Even when a coin is tossed repeatedly, we cannot be certain that a given
toss will result in a head. However, we know the entire set of possibilities for each
toss.

Given the discussion in Section 1.7, we should deal with the breadth of the term
experiment. Three types of statistical studies were reviewed, and several examples
were given of each. In each of the three cases, designed experiments, observational
studies, and retrospective studies, the end result was a set of data that of course is
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subject to uncertainty. Though only one of these has the word experiment in its
description, the process of generating the data or the process of observing the data
is part of an experiment. The corrosion study discussed in Section 1.2 certainly
involves an experiment, with measures of corrosion representing the data. The ex-
ample given in Section 1.7 in which blood cholesterol and sodium were observed on
a group of individuals represented an observational study (as opposed to a designed
experiment), and yet the process generated data and the outcome is subject to un-
certainty. Thus, it is an experiment. A third example in Section 1.7 represented
a retrospective study in which historical data on monthly electric power consump-
tion and average monthly ambient temperature were observed. Even though the
data may have been in the files for decades, the process is still referred to as an
experiment.

Definition 2.1: The set of all possible outcomes of a statistical experiment is called the sample
space and is represented by the symbol S.

Each outcome in a sample space is called an element or a member of the
sample space, or simply a sample point. If the sample space has a finite number
of elements, we may list the members separated by commas and enclosed in braces.
Thus, the sample space S, of possible outcomes when a coin is flipped, may be
written

S = {H,T},
where H and T correspond to heads and tails, respectively.

Example 2.1: Consider the experiment of tossing a die. If we are interested in the number that
shows on the top face, the sample space is

S1 = {1, 2, 3, 4, 5, 6}.
If we are interested only in whether the number is even or odd, the sample space
is simply

S2 = {even, odd}.
Example 2.1 illustrates the fact that more than one sample space can be used to

describe the outcomes of an experiment. In this case, S1 provides more information
than S2. If we know which element in S1 occurs, we can tell which outcome in S2

occurs; however, a knowledge of what happens in S2 is of little help in determining
which element in S1 occurs. In general, it is desirable to use the sample space that
gives the most information concerning the outcomes of the experiment. In some
experiments, it is helpful to list the elements of the sample space systematically by
means of a tree diagram.

Example 2.2: An experiment consists of flipping a coin and then flipping it a second time if a
head occurs. If a tail occurs on the first flip, then a die is tossed once. To list
the elements of the sample space providing the most information, we construct the
tree diagram of Figure 2.1. The various paths along the branches of the tree give
the distinct sample points. Starting with the top left branch and moving to the
right along the first path, we get the sample point HH, indicating the possibility
that heads occurs on two successive flips of the coin. Likewise, the sample point
T3 indicates the possibility that the coin will show a tail followed by a 3 on the
toss of the die. By proceeding along all paths, we see that the sample space is

S = {HH, HT, T1, T2, T3, T4, T5, T6}.
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H

T

H HH

T HT

T 1

T 2

T 3

T 4

T 5

T 6

1
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3

4
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First
Outcome

Second
Outcome

Sample
Point

Figure 2.1: Tree diagram for Example 2.2.

Many of the concepts in this chapter are best illustrated with examples involving
the use of dice and cards. These are particularly important applications to use early
in the learning process, to facilitate the flow of these new concepts into scientific
and engineering examples such as the following.

Example 2.3: Suppose that three items are selected at random from a manufacturing process.
Each item is inspected and classified defective, D, or nondefective, N. To list the
elements of the sample space providing the most information, we construct the tree
diagram of Figure 2.2. Now, the various paths along the branches of the tree give
the distinct sample points. Starting with the first path, we get the sample point
DDD, indicating the possibility that all three items inspected are defective. As we
proceed along the other paths, we see that the sample space is

S = {DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}.
Sample spaces with a large or infinite number of sample points are best de-

scribed by a statement or rule method. For example, if the possible outcomes
of an experiment are the set of cities in the world with a population over 1 million,
our sample space is written

S = {x | x is a city with a population over 1 million},
which reads “S is the set of all x such that x is a city with a population over 1
million.” The vertical bar is read “such that.” Similarly, if S is the set of all points
(x, y) on the boundary or the interior of a circle of radius 2 with center at the
origin, we write the rule

S = {(x, y) | x2 + y2 ≤ 4}.
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N DDN
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Item

Second
Item

Third
Item

Sample
Point

Figure 2.2: Tree diagram for Example 2.3.

Whether we describe the sample space by the rule method or by listing the
elements will depend on the specific problem at hand. The rule method has practi-
cal advantages, particularly for many experiments where listing becomes a tedious
chore.

Consider the situation of Example 2.3 in which items from a manufacturing
process are either D, defective, or N , nondefective. There are many important
statistical procedures called sampling plans that determine whether or not a “lot”
of items is considered satisfactory. One such plan involves sampling until k defec-
tives are observed. Suppose the experiment is to sample items randomly until one
defective item is observed. The sample space for this case is

S = {D,ND,NND,NNND, . . . }.

2.2 Events

For any given experiment, we may be interested in the occurrence of certain events
rather than in the occurrence of a specific element in the sample space. For in-
stance, we may be interested in the event A that the outcome when a die is tossed is
divisible by 3. This will occur if the outcome is an element of the subset A = {3, 6}
of the sample space S1 in Example 2.1. As a further illustration, we may be inter-
ested in the event B that the number of defectives is greater than 1 in Example
2.3. This will occur if the outcome is an element of the subset

B = {DDN,DND,NDD,DDD}
of the sample space S.

To each event we assign a collection of sample points, which constitute a subset
of the sample space. That subset represents all of the elements for which the event
is true.
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Definition 2.2: An event is a subset of a sample space.

Example 2.4: Given the sample space S = {t | t ≥ 0}, where t is the life in years of a certain
electronic component, then the event A that the component fails before the end of
the fifth year is the subset A = {t | 0 ≤ t < 5}.

It is conceivable that an event may be a subset that includes the entire sample
space S or a subset of S called the null set and denoted by the symbol φ, which
contains no elements at all. For instance, if we let A be the event of detecting a
microscopic organism by the naked eye in a biological experiment, then A = φ.
Also, if

B = {x | x is an even factor of 7},
then B must be the null set, since the only possible factors of 7 are the odd numbers
1 and 7.

Consider an experiment where the smoking habits of the employees of a man-
ufacturing firm are recorded. A possible sample space might classify an individual
as a nonsmoker, a light smoker, a moderate smoker, or a heavy smoker. Let the
subset of smokers be some event. Then all the nonsmokers correspond to a different
event, also a subset of S, which is called the complement of the set of smokers.

Definition 2.3: The complement of an event A with respect to S is the subset of all elements
of S that are not in A. We denote the complement of A by the symbol A′.

Example 2.5: Let R be the event that a red card is selected from an ordinary deck of 52 playing
cards, and let S be the entire deck. Then R′ is the event that the card selected
from the deck is not a red card but a black card.

Example 2.6: Consider the sample space

S = {book, cell phone, mp3, paper, stationery, laptop}.
Let A = {book, stationery, laptop, paper}. Then the complement of A is A′ =
{cell phone, mp3}.

We now consider certain operations with events that will result in the formation
of new events. These new events will be subsets of the same sample space as the
given events. Suppose that A and B are two events associated with an experiment.
In other words, A and B are subsets of the same sample space S. For example, in
the tossing of a die we might let A be the event that an even number occurs and
B the event that a number greater than 3 shows. Then the subsets A = {2, 4, 6}
and B = {4, 5, 6} are subsets of the same sample space

S = {1, 2, 3, 4, 5, 6}.
Note that both A and B will occur on a given toss if the outcome is an element of
the subset {4, 6}, which is just the intersection of A and B.

Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the
event containing all elements that are common to A and B.

Example 2.7: Let E be the event that a person selected at random in a classroom is majoring in
engineering, and let F be the event that the person is female. Then E ∩ F is the
event of all female engineering students in the classroom.
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Example 2.8: Let V = {a, e, i, o, u} and C = {l, r, s, t}; then it follows that V ∩ C = φ. That is,
V and C have no elements in common and, therefore, cannot both simultaneously
occur.

For certain statistical experiments it is by no means unusual to define two
events, A and B, that cannot both occur simultaneously. The events A and B are
then said to be mutually exclusive. Stated more formally, we have the following
definition:

Definition 2.5: Two events A and B are mutually exclusive, or disjoint, if A ∩ B = φ, that
is, if A and B have no elements in common.

Example 2.9: A cable television company offers programs on eight different channels, three of
which are affiliated with ABC, two with NBC, and one with CBS. The other
two are an educational channel and the ESPN sports channel. Suppose that a
person subscribing to this service turns on a television set without first selecting
the channel. Let A be the event that the program belongs to the NBC network and
B the event that it belongs to the CBS network. Since a television program cannot
belong to more than one network, the events A and B have no programs in common.
Therefore, the intersection A ∩ B contains no programs, and consequently the
events A and B are mutually exclusive.

Often one is interested in the occurrence of at least one of two events associated
with an experiment. Thus, in the die-tossing experiment, if

A = {2, 4, 6} and B = {4, 5, 6},
we might be interested in either A or B occurring or both A and B occurring. Such
an event, called the union of A and B, will occur if the outcome is an element of
the subset {2, 4, 5, 6}.

Definition 2.6: The union of the two events A and B, denoted by the symbol A∪B, is the event
containing all the elements that belong to A or B or both.

Example 2.10: Let A = {a, b, c} and B = {b, c, d, e}; then A ∪B = {a, b, c, d, e}.

Example 2.11: Let P be the event that an employee selected at random from an oil drilling com-
pany smokes cigarettes. Let Q be the event that the employee selected drinks
alcoholic beverages. Then the event P ∪ Q is the set of all employees who either
drink or smoke or do both.

Example 2.12: If M = {x | 3 < x < 9} and N = {y | 5 < y < 12}, then
M ∪N = {z | 3 < z < 12}.

The relationship between events and the corresponding sample space can be
illustrated graphically by means of Venn diagrams. In a Venn diagram we let
the sample space be a rectangle and represent events by circles drawn inside the
rectangle. Thus, in Figure 2.3, we see that

A ∩B = regions 1 and 2,

B ∩ C = regions 1 and 3,
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Figure 2.3: Events represented by various regions.

A ∪ C = regions 1, 2, 3, 4, 5, and 7,

B′ ∩A = regions 4 and 7,

A ∩B ∩ C = region 1,

(A ∪B) ∩ C ′ = regions 2, 6, and 7,

and so forth.

A

B C

S

Figure 2.4: Events of the sample space S.

In Figure 2.4, we see that events A, B, and C are all subsets of the sample
space S. It is also clear that event B is a subset of event A; event B ∩ C has no
elements and hence B and C are mutually exclusive; event A ∩ C has at least one
element; and event A ∪ B = A. Figure 2.4 might, therefore, depict a situation
where we select a card at random from an ordinary deck of 52 playing cards and
observe whether the following events occur:

A: the card is red,
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B: the card is the jack, queen, or king of diamonds,

C: the card is an ace.

Clearly, the event A ∩ C consists of only the two red aces.
Several results that follow from the foregoing definitions, which may easily be

verified by means of Venn diagrams, are as follows:

1. A ∩ φ = φ.

2. A ∪ φ = A.

3. A ∩A′ = φ.

4. A ∪A′ = S.

5. S′ = φ.

6. φ′ = S.

7. (A′)′ = A.

8. (A ∩B)′ = A′ ∪B′.

9. (A ∪B)′ = A′ ∩B′.

Exercises

2.1 List the elements of each of the following sample
spaces:

(a) the set of integers between 1 and 50 divisible by 8;

(b) the set S = {x | x2 + 4x− 5 = 0};
(c) the set of outcomes when a coin is tossed until a

tail or three heads appear;

(d) the set S = {x | x is a continent};
(e) the set S = {x | 2x− 4 ≥ 0 and x < 1}.

2.2 Use the rule method to describe the sample space
S consisting of all points in the first quadrant inside a
circle of radius 3 with center at the origin.

2.3 Which of the following events are equal?

(a) A = {1, 3};
(b) B = {x | x is a number on a die};
(c) C = {x | x2 − 4x+ 3 = 0};
(d) D = {x | x is the number of heads when six coins

are tossed}.

2.4 An experiment involves tossing a pair of dice, one
green and one red, and recording the numbers that
come up. If x equals the outcome on the green die
and y the outcome on the red die, describe the sample
space S

(a) by listing the elements (x, y);

(b) by using the rule method.

2.5 An experiment consists of tossing a die and then
flipping a coin once if the number on the die is even. If
the number on the die is odd, the coin is flipped twice.
Using the notation 4H, for example, to denote the out-
come that the die comes up 4 and then the coin comes
up heads, and 3HT to denote the outcome that the die

comes up 3 followed by a head and then a tail on the
coin, construct a tree diagram to show the 18 elements
of the sample space S.

2.6 Two jurors are selected from 4 alternates to serve
at a murder trial. Using the notation A1A3, for exam-
ple, to denote the simple event that alternates 1 and 3
are selected, list the 6 elements of the sample space S.

2.7 Four students are selected at random from a
chemistry class and classified as male or female. List
the elements of the sample space S1, using the letter
M for male and F for female. Define a second sample
space S2 where the elements represent the number of
females selected.

2.8 For the sample space of Exercise 2.4,

(a) list the elements corresponding to the event A that
the sum is greater than 8;

(b) list the elements corresponding to the event B that
a 2 occurs on either die;

(c) list the elements corresponding to the event C that
a number greater than 4 comes up on the green die;

(d) list the elements corresponding to the event A∩C;

(e) list the elements corresponding to the event A∩B;

(f) list the elements corresponding to the event B∩C;

(g) construct a Venn diagram to illustrate the intersec-
tions and unions of the events A, B, and C.

2.9 For the sample space of Exercise 2.5,

(a) list the elements corresponding to the event A that
a number less than 3 occurs on the die;

(b) list the elements corresponding to the event B that
two tails occur;

(c) list the elements corresponding to the event A′;
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(d) list the elements corresponding to the event A′∩B;

(e) list the elements corresponding to the event A∪B.

2.10 An engineering firm is hired to determine if cer-
tain waterways in Virginia are safe for fishing. Samples
are taken from three rivers.

(a) List the elements of a sample space S, using the
letters F for safe to fish and N for not safe to fish.

(b) List the elements of S corresponding to event E
that at least two of the rivers are safe for fishing.

(c) Define an event that has as its elements the points

{FFF,NFF, FFN,NFN}.

2.11 The resumés of two male applicants for a college
teaching position in chemistry are placed in the same
file as the resumés of two female applicants. Two po-
sitions become available, and the first, at the rank of
assistant professor, is filled by selecting one of the four
applicants at random. The second position, at the rank
of instructor, is then filled by selecting at random one
of the remaining three applicants. Using the notation
M2F1, for example, to denote the simple event that
the first position is filled by the second male applicant
and the second position is then filled by the first female
applicant,

(a) list the elements of a sample space S;

(b) list the elements of S corresponding to event A that
the position of assistant professor is filled by a male
applicant;

(c) list the elements of S corresponding to event B that
exactly one of the two positions is filled by a male
applicant;

(d) list the elements of S corresponding to event C that
neither position is filled by a male applicant;

(e) list the elements of S corresponding to the event
A ∩B;

(f) list the elements of S corresponding to the event
A ∪ C;

(g) construct a Venn diagram to illustrate the intersec-
tions and unions of the events A, B, and C.

2.12 Exercise and diet are being studied as possi-
ble substitutes for medication to lower blood pressure.
Three groups of subjects will be used to study the ef-
fect of exercise. Group 1 is sedentary, while group 2
walks and group 3 swims for 1 hour a day. Half of each
of the three exercise groups will be on a salt-free diet.
An additional group of subjects will not exercise or re-
strict their salt, but will take the standard medication.
Use Z for sedentary, W for walker, S for swimmer, Y
for salt, N for no salt, M for medication, and F for
medication free.

(a) Show all of the elements of the sample space S.

(b) Given that A is the set of nonmedicated subjects
and B is the set of walkers, list the elements of
A ∪B.

(c) List the elements of A ∩B.

2.13 Construct a Venn diagram to illustrate the pos-
sible intersections and unions for the following events
relative to the sample space consisting of all automo-
biles made in the United States.

F : Four door, S : Sun roof, P : Power steering.

2.14 If S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and A =
{0, 2, 4, 6, 8}, B = {1, 3, 5, 7, 9}, C = {2, 3, 4, 5}, and
D = {1, 6, 7}, list the elements of the sets correspond-
ing to the following events:

(a) A ∪ C;

(b) A ∩B;

(c) C′;
(d) (C′ ∩D) ∪B;

(e) (S ∩ C)′;
(f) A ∩ C ∩D′.

2.15 Consider the sample space S = {copper, sodium,
nitrogen, potassium, uranium, oxygen, zinc} and the
events

A = {copper, sodium, zinc},
B = {sodium, nitrogen, potassium},
C = {oxygen}.

List the elements of the sets corresponding to the fol-
lowing events:

(a) A′;
(b) A ∪ C;

(c) (A ∩B′) ∪ C′;
(d) B′ ∩ C′;
(e) A ∩B ∩ C;

(f) (A′ ∪B′) ∩ (A′ ∩ C).

2.16 If S = {x | 0 < x < 12}, M = {x | 1 < x < 9},
and N = {x | 0 < x < 5}, find
(a) M ∪N ;

(b) M ∩N ;

(c) M ′ ∩N ′.

2.17 Let A, B, and C be events relative to the sam-
ple space S. Using Venn diagrams, shade the areas
representing the following events:

(a) (A ∩B)′;
(b) (A ∪B)′;
(c) (A ∩ C) ∪B.

Uploaded By: anonymousSTUDENTS-HUB.com



44 Chapter 2 Probability

2.18 Which of the following pairs of events are mutu-
ally exclusive?

(a) A golfer scoring the lowest 18-hole round in a 72-
hole tournament and losing the tournament.

(b) A poker player getting a flush (all cards in the same
suit) and 3 of a kind on the same 5-card hand.

(c) A mother giving birth to a baby girl and a set of
twin daughters on the same day.

(d) A chess player losing the last game and winning the
match.

2.19 Suppose that a family is leaving on a summer
vacation in their camper and that M is the event that
they will experience mechanical problems, T is the
event that they will receive a ticket for committing a
traffic violation, and V is the event that they will ar-
rive at a campsite with no vacancies. Referring to the
Venn diagram of Figure 2.5, state in words the events
represented by the following regions:

(a) region 5;

(b) region 3;

(c) regions 1 and 2 together;

(d) regions 4 and 7 together;

(e) regions 3, 6, 7, and 8 together.

2.20 Referring to Exercise 2.19 and the Venn diagram
of Figure 2.5, list the numbers of the regions that rep-
resent the following events:

(a) The family will experience no mechanical problems
and will not receive a ticket for a traffic violation
but will arrive at a campsite with no vacancies.

(b) The family will experience both mechanical prob-
lems and trouble in locating a campsite with a va-
cancy but will not receive a ticket for a traffic vio-
lation.

(c) The family will either have mechanical trouble or
arrive at a campsite with no vacancies but will not
receive a ticket for a traffic violation.

(d) The family will not arrive at a campsite with no
vacancies.

M T

V

1

2 3

4

5 7

6
8

Figure 2.5: Venn diagram for Exercises 2.19 and 2.20.

2.3 Counting Sample Points

One of the problems that the statistician must consider and attempt to evaluate
is the element of chance associated with the occurrence of certain events when
an experiment is performed. These problems belong in the field of probability, a
subject to be introduced in Section 2.4. In many cases, we shall be able to solve a
probability problem by counting the number of points in the sample space without
actually listing each element. The fundamental principle of counting, often referred
to as the multiplication rule, is stated in Rule 2.1.
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Rule 2.1: If an operation can be performed in n1 ways, and if for each of these ways a second
operation can be performed in n2 ways, then the two operations can be performed
together in n1n2 ways.

Example 2.13: How many sample points are there in the sample space when a pair of dice is
thrown once?

Solution : The first die can land face-up in any one of n1 = 6 ways. For each of these 6 ways,
the second die can also land face-up in n2 = 6 ways. Therefore, the pair of dice
can land in n1n2 = (6)(6) = 36 possible ways.

Example 2.14: A developer of a new subdivision offers prospective home buyers a choice of Tudor,
rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level
floor plans. In how many different ways can a buyer order one of these homes?

Exterior Style Floor Plan

Tu
do

r

Rustic

ColonialTraditional

Split-Level

Split-Level

Two-Story

Two-Story

Ranch

Ranch

Split-Level

Split-Level

Two-Story

Two-Story

Ranch

Ranch

Figure 2.6: Tree diagram for Example 2.14.

Solution : Since n1 = 4 and n2 = 3, a buyer must choose from

n1n2 = (4)(3) = 12 possible homes.

The answers to the two preceding examples can be verified by constructing
tree diagrams and counting the various paths along the branches. For instance,
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in Example 2.14 there will be n1 = 4 branches corresponding to the different
exterior styles, and then there will be n2 = 3 branches extending from each of
these 4 branches to represent the different floor plans. This tree diagram yields the
n1n2 = 12 choices of homes given by the paths along the branches, as illustrated
in Figure 2.6.

Example 2.15: If a 22-member club needs to elect a chair and a treasurer, how many different
ways can these two to be elected?

Solution : For the chair position, there are 22 total possibilities. For each of those 22 pos-
sibilities, there are 21 possibilities to elect the treasurer. Using the multiplication
rule, we obtain n1 × n2 = 22× 21 = 462 different ways.

The multiplication rule, Rule 2.1 may be extended to cover any number of
operations. Suppose, for instance, that a customer wishes to buy a new cell phone
and can choose from n1 = 5 brands, n2 = 5 sets of capability, and n3 = 4 colors.
These three classifications result in n1n2n3 = (5)(5)(4) = 100 different ways for
a customer to order one of these phones. The generalized multiplication rule
covering k operations is stated in the following.

Rule 2.2: If an operation can be performed in n1 ways, and if for each of these a second
operation can be performed in n2 ways, and for each of the first two a third
operation can be performed in n3 ways, and so forth, then the sequence of k
operations can be performed in n1n2 · · ·nk ways.

Example 2.16: Sam is going to assemble a computer by himself. He has the choice of chips from
two brands, a hard drive from four, memory from three, and an accessory bundle
from five local stores. How many different ways can Sam order the parts?

Solution : Since n1 = 2, n2 = 4, n3 = 3, and n4 = 5, there are

nl × n2 × n3 × n4 = 2× 4× 3× 5 = 120

different ways to order the parts.

Example 2.17: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and
9 if each digit can be used only once?

Solution : Since the number must be even, we have only n1 = 3 choices for the units position.
However, for a four-digit number the thousands position cannot be 0. Hence, we
consider the units position in two parts, 0 or not 0. If the units position is 0 (i.e.,
n1 = 1), we have n2 = 5 choices for the thousands position, n3 = 4 for the hundreds
position, and n4 = 3 for the tens position. Therefore, in this case we have a total
of

n1n2n3n4 = (1)(5)(4)(3) = 60

even four-digit numbers. On the other hand, if the units position is not 0 (i.e.,
n1 = 2), we have n2 = 4 choices for the thousands position, n3 = 4 for the hundreds
position, and n4 = 3 for the tens position. In this situation, there are a total of

n1n2n3n4 = (2)(4)(4)(3) = 96
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even four-digit numbers.
Since the above two cases are mutually exclusive, the total number of even

four-digit numbers can be calculated as 60 + 96 = 156.
Frequently, we are interested in a sample space that contains as elements all

possible orders or arrangements of a group of objects. For example, we may want
to know how many different arrangements are possible for sitting 6 people around
a table, or we may ask how many different orders are possible for drawing 2 lottery
tickets from a total of 20. The different arrangements are called permutations.

Definition 2.7: A permutation is an arrangement of all or part of a set of objects.

Consider the three letters a, b, and c. The possible permutations are abc, acb,
bac, bca, cab, and cba. Thus, we see that there are 6 distinct arrangements. Using
Rule 2.2, we could arrive at the answer 6 without actually listing the different
orders by the following arguments: There are n1 = 3 choices for the first position.
No matter which letter is chosen, there are always n2 = 2 choices for the second
position. No matter which two letters are chosen for the first two positions, there
is only n3 = 1 choice for the last position, giving a total of

n1n2n3 = (3)(2)(1) = 6 permutations

by Rule 2.2. In general, n distinct objects can be arranged in

n(n− 1)(n− 2) · · · (3)(2)(1) ways.
There is a notation for such a number.

Definition 2.8: For any non-negative integer n, n!, called “n factorial,” is defined as

n! = n(n− 1) · · · (2)(1),

with special case 0! = 1.

Using the argument above, we arrive at the following theorem.

Theorem 2.1: The number of permutations of n objects is n!.

The number of permutations of the four letters a, b, c, and d will be 4! = 24.
Now consider the number of permutations that are possible by taking two letters
at a time from four. These would be ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, and
dc. Using Rule 2.1 again, we have two positions to fill, with n1 = 4 choices for the
first and then n2 = 3 choices for the second, for a total of

n1n2 = (4)(3) = 12

permutations. In general, n distinct objects taken r at a time can be arranged in

n(n− 1)(n− 2) · · · (n− r + 1)

ways. We represent this product by the symbol

nPr =
n!

(n− r)!
.
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As a result, we have the theorem that follows.

Theorem 2.2: The number of permutations of n distinct objects taken r at a time is

nPr =
n!

(n− r)!
.

Example 2.18: In one year, three awards (research, teaching, and service) will be given to a class
of 25 graduate students in a statistics department. If each student can receive at
most one award, how many possible selections are there?

Solution : Since the awards are distinguishable, it is a permutation problem. The total
number of sample points is

25P3 =
25!

(25− 3)!
=

25!

22!
= (25)(24)(23) = 13, 800.

Example 2.19: A president and a treasurer are to be chosen from a student club consisting of 50
people. How many different choices of officers are possible if

(a) there are no restrictions;

(b) A will serve only if he is president;

(c) B and C will serve together or not at all;

(d) D and E will not serve together?

Solution : (a) The total number of choices of officers, without any restrictions, is

50P2 =
50!

48!
= (50)(49) = 2450.

(b) Since A will serve only if he is president, we have two situations here: (i) A is
selected as the president, which yields 49 possible outcomes for the treasurer’s
position, or (ii) officers are selected from the remaining 49 people without A,
which has the number of choices 49P2 = (49)(48) = 2352. Therefore, the total
number of choices is 49 + 2352 = 2401.

(c) The number of selections when B and C serve together is 2. The number of
selections when both B and C are not chosen is 48P2 = 2256. Therefore, the
total number of choices in this situation is 2 + 2256 = 2258.

(d) The number of selections when D serves as an officer but not E is (2)(48) =
96, where 2 is the number of positions D can take and 48 is the number of
selections of the other officer from the remaining people in the club except
E. The number of selections when E serves as an officer but not D is also
(2)(48) = 96. The number of selections when both D and E are not chosen
is 48P2 = 2256. Therefore, the total number of choices is (2)(96) + 2256 =
2448. This problem also has another short solution: Since D and E can only
serve together in 2 ways, the answer is 2450− 2 = 2448.
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Permutations that occur by arranging objects in a circle are called circular
permutations. Two circular permutations are not considered different unless
corresponding objects in the two arrangements are preceded or followed by a dif-
ferent object as we proceed in a clockwise direction. For example, if 4 people are
playing bridge, we do not have a new permutation if they all move one position in
a clockwise direction. By considering one person in a fixed position and arranging
the other three in 3! ways, we find that there are 6 distinct arrangements for the
bridge game.

Theorem 2.3: The number of permutations of n objects arranged in a circle is (n− 1)!.

So far we have considered permutations of distinct objects. That is, all the
objects were completely different or distinguishable. Obviously, if the letters b and
c are both equal to x, then the 6 permutations of the letters a, b, and c become
axx, axx, xax, xax, xxa, and xxa, of which only 3 are distinct. Therefore, with 3
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 different
letters a, b, c, and d, we have 24 distinct permutations. If we let a = b = x and
c = d = y, we can list only the following distinct permutations: xxyy, xyxy, yxxy,
yyxx, xyyx, and yxyx. Thus, we have 4!/(2! 2!) = 6 distinct permutations.

Theorem 2.4: The number of distinct permutations of n things of which n1 are of one kind, n2

of a second kind, . . . , nk of a kth kind is

n!

n1!n2! · · ·nk!
.

Example 2.20: In a college football training session, the defensive coordinator needs to have 10
players standing in a row. Among these 10 players, there are 1 freshman, 2 sopho-
mores, 4 juniors, and 3 seniors. How many different ways can they be arranged in
a row if only their class level will be distinguished?

Solution : Directly using Theorem 2.4, we find that the total number of arrangements is

10!

1! 2! 4! 3!
= 12, 600.

Often we are concerned with the number of ways of partitioning a set of n
objects into r subsets called cells. A partition has been achieved if the intersection
of every possible pair of the r subsets is the empty set φ and if the union of all
subsets gives the original set. The order of the elements within a cell is of no
importance. Consider the set {a, e, i, o, u}. The possible partitions into two cells
in which the first cell contains 4 elements and the second cell 1 element are

{(a, e, i, o), (u)}, {(a, i, o, u), (e)}, {(e, i, o, u), (a)}, {(a, e, o, u), (i)}, {(a, e, i, u), (o)}.

We see that there are 5 ways to partition a set of 4 elements into two subsets, or
cells, containing 4 elements in the first cell and 1 element in the second.
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The number of partitions for this illustration is denoted by the symbol(
5

4, 1

)
=

5!

4! 1!
= 5,

where the top number represents the total number of elements and the bottom
numbers represent the number of elements going into each cell. We state this more
generally in Theorem 2.5.

Theorem 2.5: The number of ways of partitioning a set of n objects into r cells with n1 elements
in the first cell, n2 elements in the second, and so forth, is(

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
,

where n1 + n2 + · · ·+ nr = n.

Example 2.21: In how many ways can 7 graduate students be assigned to 1 triple and 2 double
hotel rooms during a conference?

Solution : The total number of possible partitions would be(
7

3, 2, 2

)
=

7!

3! 2! 2!
= 210.

In many problems, we are interested in the number of ways of selecting r objects
from n without regard to order. These selections are called combinations. A
combination is actually a partition with two cells, the one cell containing the r
objects selected and the other cell containing the (n− r) objects that are left. The
number of such combinations, denoted by(

n

r, n− r

)
, is usually shortened to

(
n

r

)
,

since the number of elements in the second cell must be n− r.

Theorem 2.6: The number of combinations of n distinct objects taken r at a time is(
n

r

)
=

n!

r!(n− r)!
.

Example 2.22: A young boy asks his mother to get 5 Game-BoyTM cartridges from his collection
of 10 arcade and 5 sports games. How many ways are there that his mother can
get 3 arcade and 2 sports games?

Solution : The number of ways of selecting 3 cartridges from 10 is(
10

3

)
=

10!

3! (10− 3)!
= 120.

The number of ways of selecting 2 cartridges from 5 is(
5

2

)
=

5!

2! 3!
= 10.
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Using the multiplication rule (Rule 2.1) with n1 = 120 and n2 = 10, we have
(120)(10) = 1200 ways.

Example 2.23: How many different letter arrangements can be made from the letters in the word
STATISTICS?

Solution : Using the same argument as in the discussion for Theorem 2.6, in this example we
can actually apply Theorem 2.5 to obtain(

10

3, 3, 2, 1, 1

)
=

10!

3! 3! 2! 1! 1!
= 50, 400.

Here we have 10 total letters, with 2 letters (S, T ) appearing 3 times each, letter
I appearing twice, and letters A and C appearing once each. On the other hand,
this result can be directly obtained by using Theorem 2.4.

Exercises

2.21 Registrants at a large convention are offered 6
sightseeing tours on each of 3 days. In how many
ways can a person arrange to go on a sightseeing tour
planned by this convention?

2.22 In a medical study, patients are classified in 8
ways according to whether they have blood type AB+,
AB−, A+, A−, B+, B−, O+, or O−, and also accord-
ing to whether their blood pressure is low, normal, or
high. Find the number of ways in which a patient can
be classified.

2.23 If an experiment consists of throwing a die and
then drawing a letter at random from the English
alphabet, how many points are there in the sample
space?

2.24 Students at a private liberal arts college are clas-
sified as being freshmen, sophomores, juniors, or se-
niors, and also according to whether they are male or
female. Find the total number of possible classifica-
tions for the students of that college.

2.25 A certain brand of shoes comes in 5 different
styles, with each style available in 4 distinct colors. If
the store wishes to display pairs of these shoes showing
all of its various styles and colors, how many different
pairs will the store have on display?

2.26 A California study concluded that following 7
simple health rules can extend a man’s life by 11 years
on the average and a woman’s life by 7 years. These
7 rules are as follows: no smoking, get regular exer-
cise, use alcohol only in moderation, get 7 to 8 hours
of sleep, maintain proper weight, eat breakfast, and do

not eat between meals. In how many ways can a person
adopt 5 of these rules to follow

(a) if the person presently violates all 7 rules?

(b) if the person never drinks and always eats break-
fast?

2.27 A developer of a new subdivision offers a
prospective home buyer a choice of 4 designs, 3 differ-
ent heating systems, a garage or carport, and a patio or
screened porch. How many different plans are available
to this buyer?

2.28 A drug for the relief of asthma can be purchased
from 5 different manufacturers in liquid, tablet, or
capsule form, all of which come in regular and extra
strength. How many different ways can a doctor pre-
scribe the drug for a patient suffering from asthma?

2.29 In a fuel economy study, each of 3 race cars is
tested using 5 different brands of gasoline at 7 test sites
located in different regions of the country. If 2 drivers
are used in the study, and test runs are made once un-
der each distinct set of conditions, how many test runs
are needed?

2.30 In how many different ways can a true-false test
consisting of 9 questions be answered?

2.31 A witness to a hit-and-run accident told the po-
lice that the license number contained the letters RLH
followed by 3 digits, the first of which was a 5. If
the witness cannot recall the last 2 digits, but is cer-
tain that all 3 digits are different, find the maximum
number of automobile registrations that the police may
have to check.
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2.32 (a) In how many ways can 6 people be lined up
to get on a bus?

(b) If 3 specific persons, among 6, insist on following
each other, how many ways are possible?

(c) If 2 specific persons, among 6, refuse to follow each
other, how many ways are possible?

2.33 If a multiple-choice test consists of 5 questions,
each with 4 possible answers of which only 1 is correct,

(a) in how many different ways can a student check off
one answer to each question?

(b) in how many ways can a student check off one
answer to each question and get all the answers
wrong?

2.34 (a) How many distinct permutations can be
made from the letters of the word COLUMNS?

(b) How many of these permutations start with the let-
ter M?

2.35 A contractor wishes to build 9 houses, each dif-
ferent in design. In how many ways can he place these
houses on a street if 6 lots are on one side of the street
and 3 lots are on the opposite side?

2.36 (a) How many three-digit numbers can be
formed from the digits 0, 1, 2, 3, 4, 5, and 6 if
each digit can be used only once?

(b) How many of these are odd numbers?

(c) How many are greater than 330?

2.37 In how many ways can 4 boys and 5 girls sit in
a row if the boys and girls must alternate?

2.38 Four married couples have bought 8 seats in the
same row for a concert. In how many different ways
can they be seated

(a) with no restrictions?

(b) if each couple is to sit together?

(c) if all the men sit together to the right of all the
women?

2.39 In a regional spelling bee, the 8 finalists consist
of 3 boys and 5 girls. Find the number of sample points
in the sample space S for the number of possible orders
at the conclusion of the contest for

(a) all 8 finalists;

(b) the first 3 positions.

2.40 In how many ways can 5 starting positions on a
basketball team be filled with 8 men who can play any
of the positions?

2.41 Find the number of ways that 6 teachers can
be assigned to 4 sections of an introductory psychol-
ogy course if no teacher is assigned to more than one
section.

2.42 Three lottery tickets for first, second, and third
prizes are drawn from a group of 40 tickets. Find the
number of sample points in S for awarding the 3 prizes
if each contestant holds only 1 ticket.

2.43 In how many ways can 5 different trees be
planted in a circle?

2.44 In how many ways can a caravan of 8 covered
wagons from Arizona be arranged in a circle?

2.45 How many distinct permutations can be made
from the letters of the word INFINITY ?

2.46 In how many ways can 3 oaks, 4 pines, and 2
maples be arranged along a property line if one does
not distinguish among trees of the same kind?

2.47 How many ways are there to select 3 candidates
from 8 equally qualified recent graduates for openings
in an accounting firm?

2.48 How many ways are there that no two students
will have the same birth date in a class of size 60?

2.4 Probability of an Event

Perhaps it was humankind’s unquenchable thirst for gambling that led to the early
development of probability theory. In an effort to increase their winnings, gam-
blers called upon mathematicians to provide optimum strategies for various games
of chance. Some of the mathematicians providing these strategies were Pascal,
Leibniz, Fermat, and James Bernoulli. As a result of this development of prob-
ability theory, statistical inference, with all its predictions and generalizations,
has branched out far beyond games of chance to encompass many other fields as-
sociated with chance occurrences, such as politics, business, weather forecasting,
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and scientific research. For these predictions and generalizations to be reasonably
accurate, an understanding of basic probability theory is essential.

What do we mean when we make the statement “John will probably win the
tennis match,” or “I have a fifty-fifty chance of getting an even number when a
die is tossed,” or “The university is not likely to win the football game tonight,”
or “Most of our graduating class will likely be married within 3 years”? In each
case, we are expressing an outcome of which we are not certain, but owing to past
information or from an understanding of the structure of the experiment, we have
some degree of confidence in the validity of the statement.

Throughout the remainder of this chapter, we consider only those experiments
for which the sample space contains a finite number of elements. The likelihood of
the occurrence of an event resulting from such a statistical experiment is evaluated
by means of a set of real numbers, called weights or probabilities, ranging from
0 to 1. To every point in the sample space we assign a probability such that the
sum of all probabilities is 1. If we have reason to believe that a certain sample
point is quite likely to occur when the experiment is conducted, the probability
assigned should be close to 1. On the other hand, a probability closer to 0 is
assigned to a sample point that is not likely to occur. In many experiments, such
as tossing a coin or a die, all the sample points have the same chance of occurring
and are assigned equal probabilities. For points outside the sample space, that is,
for simple events that cannot possibly occur, we assign a probability of 0.

To find the probability of an event A, we sum all the probabilities assigned to
the sample points in A. This sum is called the probability of A and is denoted
by P (A).

Definition 2.9: The probability of an event A is the sum of the weights of all sample points in
A. Therefore,

0 ≤ P (A) ≤ 1, P (φ) = 0, and P (S) = 1.

Furthermore, if A1, A2, A3, . . . is a sequence of mutually exclusive events, then

P (A1 ∪A2 ∪A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · · .

Example 2.24: A coin is tossed twice. What is the probability that at least 1 head occurs?
Solution : The sample space for this experiment is

S = {HH,HT, TH, TT}.
If the coin is balanced, each of these outcomes is equally likely to occur. Therefore,
we assign a probability of ω to each sample point. Then 4ω = 1, or ω = 1/4. If A
represents the event of at least 1 head occurring, then

A = {HH,HT, TH} and P (A) =
1

4
+

1

4
+

1

4
=

3

4
.

Example 2.25: A die is loaded in such a way that an even number is twice as likely to occur as an
odd number. If E is the event that a number less than 4 occurs on a single toss of
the die, find P (E).
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Solution : The sample space is S = {1, 2, 3, 4, 5, 6}. We assign a probability of w to each
odd number and a probability of 2w to each even number. Since the sum of the
probabilities must be 1, we have 9w = 1 or w = 1/9. Hence, probabilities of 1/9
and 2/9 are assigned to each odd and even number, respectively. Therefore,

E = {1, 2, 3} and P (E) =
1

9
+

2

9
+

1

9
=

4

9
.

Example 2.26: In Example 2.25, let A be the event that an even number turns up and let B be
the event that a number divisible by 3 occurs. Find P (A ∪B) and P (A ∩B).

Solution : For the events A = {2, 4, 6} and B = {3, 6}, we have

A ∪B = {2, 3, 4, 6} and A ∩B = {6}.
By assigning a probability of 1/9 to each odd number and 2/9 to each even number,
we have

P (A ∪B) =
2

9
+

1

9
+

2

9
+

2

9
=

7

9
and P (A ∩B) =

2

9
.

If the sample space for an experiment contains N elements, all of which are
equally likely to occur, we assign a probability equal to 1/N to each of the N
points. The probability of any event A containing n of these N sample points is
then the ratio of the number of elements in A to the number of elements in S.

Rule 2.3: If an experiment can result in any one of N different equally likely outcomes, and
if exactly n of these outcomes correspond to event A, then the probability of event
A is

P (A) =
n

N
.

Example 2.27: A statistics class for engineers consists of 25 industrial, 10 mechanical, 10 electrical,
and 8 civil engineering students. If a person is randomly selected by the instruc-
tor to answer a question, find the probability that the student chosen is (a) an
industrial engineering major and (b) a civil engineering or an electrical engineering
major.

Solution : Denote by I, M , E, and C the students majoring in industrial, mechanical, electri-
cal, and civil engineering, respectively. The total number of students in the class
is 53, all of whom are equally likely to be selected.

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob-
ability of event I, selecting an industrial engineering major at random, is

P (I) =
25

53
.

(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows
that

P (C ∪ E) =
18

53
.
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Example 2.28: In a poker hand consisting of 5 cards, find the probability of holding 2 aces and 3
jacks.

Solution : The number of ways of being dealt 2 aces from 4 cards is(
4

2

)
=

4!

2! 2!
= 6,

and the number of ways of being dealt 3 jacks from 4 cards is(
4

3

)
=

4!

3! 1!
= 4.

By the multiplication rule (Rule 2.1), there are n = (6)(4) = 24 hands with 2 aces
and 3 jacks. The total number of 5-card poker hands, all of which are equally
likely, is

N =

(
52

5

)
=

52!

5! 47!
= 2,598,960.

Therefore, the probability of getting 2 aces and 3 jacks in a 5-card poker hand is

P (C) =
24

2, 598, 960
= 0.9× 10−5.

If the outcomes of an experiment are not equally likely to occur, the probabil-
ities must be assigned on the basis of prior knowledge or experimental evidence.
For example, if a coin is not balanced, we could estimate the probabilities of heads
and tails by tossing the coin a large number of times and recording the outcomes.
According to the relative frequency definition of probability, the true probabil-
ities would be the fractions of heads and tails that occur in the long run. Another
intuitive way of understanding probability is the indifference approach. For in-
stance, if you have a die that you believe is balanced, then using this indifference
approach, you determine that the probability that each of the six sides will show
up after a throw is 1/6.

To find a numerical value that represents adequately the probability of winning
at tennis, we must depend on our past performance at the game as well as that of
the opponent and, to some extent, our belief in our ability to win. Similarly, to
find the probability that a horse will win a race, we must arrive at a probability
based on the previous records of all the horses entered in the race as well as the
records of the jockeys riding the horses. Intuition would undoubtedly also play a
part in determining the size of the bet that we might be willing to wager. The
use of intuition, personal beliefs, and other indirect information in arriving at
probabilities is referred to as the subjective definition of probability.

In most of the applications of probability in this book, the relative frequency
interpretation of probability is the operative one. Its foundation is the statistical
experiment rather than subjectivity, and it is best viewed as the limiting relative
frequency. As a result, many applications of probability in science and engineer-
ing must be based on experiments that can be repeated. Less objective notions of
probability are encountered when we assign probabilities based on prior informa-
tion and opinions, as in “There is a good chance that the Giants will lose the Super
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Bowl.” When opinions and prior information differ from individual to individual,
subjective probability becomes the relevant resource. In Bayesian statistics (see
Chapter 18), a more subjective interpretation of probability will be used, based on
an elicitation of prior probability information.

2.5 Additive Rules

Often it is easiest to calculate the probability of some event from known prob-
abilities of other events. This may well be true if the event in question can be
represented as the union of two other events or as the complement of some event.
Several important laws that frequently simplify the computation of probabilities
follow. The first, called the additive rule, applies to unions of events.

Theorem 2.7: If A and B are two events, then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

A BA � B

S

Figure 2.7: Additive rule of probability.

Proof : Consider the Venn diagram in Figure 2.7. The P (A ∪ B) is the sum of the prob-
abilities of the sample points in A ∪ B. Now P (A) + P (B) is the sum of all
the probabilities in A plus the sum of all the probabilities in B. Therefore, we
have added the probabilities in (A ∩ B) twice. Since these probabilities add up
to P (A ∩ B), we must subtract this probability once to obtain the sum of the
probabilities in A ∪B.

Corollary 2.1: If A and B are mutually exclusive, then

P (A ∪B) = P (A) + P (B).

Corollary 2.1 is an immediate result of Theorem 2.7, since if A and B are
mutually exclusive, A∩B = 0 and then P (A∩B) = P (φ) = 0. In general, we can
write Corollary 2.2.
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Corollary 2.2: If A1, A2, . . . , An are mutually exclusive, then

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An).

A collection of events {A1, A2, . . . , An} of a sample space S is called a partition
of S if A1, A2, . . . , An are mutually exclusive and A1 ∪ A2 ∪ · · · ∪ An = S. Thus,
we have

Corollary 2.3: If A1, A2, . . . , An is a partition of sample space S, then

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An) = P (S) = 1.

As one might expect, Theorem 2.7 extends in an analogous fashion.

Theorem 2.8: For three events A, B, and C,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C).

Example 2.29: John is going to graduate from an industrial engineering department in a university
by the end of the semester. After being interviewed at two companies he likes,
he assesses that his probability of getting an offer from company A is 0.8, and
his probability of getting an offer from company B is 0.6. If he believes that
the probability that he will get offers from both companies is 0.5, what is the
probability that he will get at least one offer from these two companies?

Solution : Using the additive rule, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.8 + 0.6− 0.5 = 0.9.

Example 2.30: What is the probability of getting a total of 7 or 11 when a pair of fair dice is
tossed?

Solution : Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total
of 7 occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the
sample points. Since all sample points are equally likely, we have P (A) = 1/6 and
P (B) = 1/18. The events A and B are mutually exclusive, since a total of 7 and
11 cannot both occur on the same toss. Therefore,

P (A ∪B) = P (A) + P (B) =
1

6
+

1

18
=

2

9
.

This result could also have been obtained by counting the total number of points
for the event A ∪B, namely 8, and writing

P (A ∪B) =
n

N
=

8

36
=

2

9
.
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Theorem 2.7 and its three corollaries should help the reader gain more insight
into probability and its interpretation. Corollaries 2.1 and 2.2 suggest the very
intuitive result dealing with the probability of occurrence of at least one of a number
of events, no two of which can occur simultaneously. The probability that at least
one occurs is the sum of the probabilities of occurrence of the individual events.
The third corollary simply states that the highest value of a probability (unity) is
assigned to the entire sample space S.

Example 2.31: If the probabilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person pur-
chasing a new automobile will choose the color green, white, red, or blue, what is
the probability that a given buyer will purchase a new automobile that comes in
one of those colors?

Solution : Let G, W , R, and B be the events that a buyer selects, respectively, a green,
white, red, or blue automobile. Since these four events are mutually exclusive, the
probability is

P (G ∪W ∪R ∪B) = P (G) + P (W ) + P (R) + P (B)

= 0.09 + 0.15 + 0.21 + 0.23 = 0.68.

Often it is more difficult to calculate the probability that an event occurs than
it is to calculate the probability that the event does not occur. Should this be the
case for some event A, we simply find P (A′) first and then, using Theorem 2.7,
find P (A) by subtraction.

Theorem 2.9: If A and A′ are complementary events, then

P (A) + P (A′) = 1.

Proof : Since A ∪A′ = S and the sets A and A′ are disjoint,

1 = P (S) = P (A ∪A′) = P (A) + P (A′).

Example 2.32: If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and
0.07, what is the probability that he will service at least 5 cars on his next day at
work?

Solution : Let E be the event that at least 5 cars are serviced. Now, P (E) = 1 − P (E′),
where E′ is the event that fewer than 5 cars are serviced. Since

P (E′) = 0.12 + 0.19 = 0.31,

it follows from Theorem 2.9 that

P (E) = 1− 0.31 = 0.69.

Example 2.33: Suppose the manufacturer’s specifications for the length of a certain type of com-
puter cable are 2000 ± 10 millimeters. In this industry, it is known that small cable
is just as likely to be defective (not meeting specifications) as large cable. That is,
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the probability of randomly producing a cable with length exceeding 2010 millime-
ters is equal to the probability of producing a cable with length smaller than 1990
millimeters. The probability that the production procedure meets specifications is
known to be 0.99.

(a) What is the probability that a cable selected randomly is too large?

(b) What is the probability that a randomly selected cable is larger than 1990
millimeters?

Solution : Let M be the event that a cable meets specifications. Let S and L be the events
that the cable is too small and too large, respectively. Then

(a) P (M) = 0.99 and P (S) = P (L) = (1− 0.99)/2 = 0.005.

(b) Denoting by X the length of a randomly selected cable, we have

P (1990 ≤ X ≤ 2010) = P (M) = 0.99.

Since P (X ≥ 2010) = P (L) = 0.005,

P (X ≥ 1990) = P (M) + P (L) = 0.995.

This also can be solved by using Theorem 2.9:

P (X ≥ 1990) + P (X < 1990) = 1.

Thus, P (X ≥ 1990) = 1− P (S) = 1− 0.005 = 0.995.

Exercises

2.49 Find the errors in each of the following state-
ments:

(a) The probabilities that an automobile salesperson
will sell 0, 1, 2, or 3 cars on any given day in Febru-
ary are, respectively, 0.19, 0.38, 0.29, and 0.15.

(b) The probability that it will rain tomorrow is 0.40,
and the probability that it will not rain tomorrow
is 0.52.

(c) The probabilities that a printer will make 0, 1, 2,
3, or 4 or more mistakes in setting a document are,
respectively, 0.19, 0.34,−0.25, 0.43, and 0.29.

(d) On a single draw from a deck of playing cards, the
probability of selecting a heart is 1/4, the probabil-
ity of selecting a black card is 1/2, and the proba-
bility of selecting both a heart and a black card is
1/8.

2.50 Assuming that all elements of S in Exercise 2.8
on page 42 are equally likely to occur, find

(a) the probability of event A;

(b) the probability of event C;

(c) the probability of event A ∩ C.

2.51 A box contains 500 envelopes, of which 75 con-
tain $100 in cash, 150 contain $25, and 275 contain
$10. An envelope may be purchased for $25. What is
the sample space for the different amounts of money?
Assign probabilities to the sample points and then find
the probability that the first envelope purchased con-
tains less than $100.

2.52 Suppose that in a senior college class of 500 stu-
dents it is found that 210 smoke, 258 drink alcoholic
beverages, 216 eat between meals, 122 smoke and drink
alcoholic beverages, 83 eat between meals and drink
alcoholic beverages, 97 smoke and eat between meals,
and 52 engage in all three of these bad health practices.
If a member of this senior class is selected at random,
find the probability that the student

(a) smokes but does not drink alcoholic beverages;

(b) eats between meals and drinks alcoholic beverages
but does not smoke;

(c) neither smokes nor eats between meals.

2.53 The probability that an American industry will
locate in Shanghai, China, is 0.7, the probability that
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it will locate in Beijing, China, is 0.4, and the proba-
bility that it will locate in either Shanghai or Beijing or
both is 0.8. What is the probability that the industry
will locate

(a) in both cities?

(b) in neither city?

2.54 From past experience, a stockbroker believes
that under present economic conditions a customer will
invest in tax-free bonds with a probability of 0.6, will
invest in mutual funds with a probability of 0.3, and
will invest in both tax-free bonds and mutual funds
with a probability of 0.15. At this time, find the prob-
ability that a customer will invest

(a) in either tax-free bonds or mutual funds;

(b) in neither tax-free bonds nor mutual funds.

2.55 If each coded item in a catalog begins with 3
distinct letters followed by 4 distinct nonzero digits,
find the probability of randomly selecting one of these
coded items with the first letter a vowel and the last
digit even.

2.56 An automobile manufacturer is concerned about
a possible recall of its best-selling four-door sedan. If
there were a recall, there is a probability of 0.25 of a
defect in the brake system, 0.18 of a defect in the trans-
mission, 0.17 of a defect in the fuel system, and 0.40 of
a defect in some other area.

(a) What is the probability that the defect is the brakes
or the fueling system if the probability of defects in
both systems simultaneously is 0.15?

(b) What is the probability that there are no defects
in either the brakes or the fueling system?

2.57 If a letter is chosen at random from the English
alphabet, find the probability that the letter

(a) is a vowel exclusive of y;

(b) is listed somewhere ahead of the letter j;

(c) is listed somewhere after the letter g.

2.58 A pair of fair dice is tossed. Find the probability
of getting

(a) a total of 8;

(b) at most a total of 5.

2.59 In a poker hand consisting of 5 cards, find the
probability of holding

(a) 3 aces;

(b) 4 hearts and 1 club.

2.60 If 3 books are picked at random from a shelf con-
taining 5 novels, 3 books of poems, and a dictionary,
what is the probability that

(a) the dictionary is selected?

(b) 2 novels and 1 book of poems are selected?

2.61 In a high school graduating class of 100 stu-
dents, 54 studied mathematics, 69 studied history, and
35 studied both mathematics and history. If one of
these students is selected at random, find the proba-
bility that

(a) the student took mathematics or history;

(b) the student did not take either of these subjects;

(c) the student took history but not mathematics.

2.62 Dom’s Pizza Company uses taste testing and
statistical analysis of the data prior to marketing any
new product. Consider a study involving three types
of crusts (thin, thin with garlic and oregano, and thin
with bits of cheese). Dom’s is also studying three
sauces (standard, a new sauce with more garlic, and
a new sauce with fresh basil).

(a) How many combinations of crust and sauce are in-
volved?

(b) What is the probability that a judge will get a plain
thin crust with a standard sauce for his first taste
test?

2.63 According to Consumer Digest (July/August
1996), the probable location of personal computers
(PC) in the home is as follows:

Adult bedroom: 0.03
Child bedroom: 0.15
Other bedroom: 0.14
Office or den: 0.40
Other rooms: 0.28

(a) What is the probability that a PC is in a bedroom?

(b) What is the probability that it is not in a bedroom?

(c) Suppose a household is selected at random from
households with a PC; in what room would you
expect to find a PC?

2.64 Interest centers around the life of an electronic
component. Suppose it is known that the probabil-
ity that the component survives for more than 6000
hours is 0.42. Suppose also that the probability that
the component survives no longer than 4000 hours is
0.04.

(a) What is the probability that the life of the compo-
nent is less than or equal to 6000 hours?

(b) What is the probability that the life is greater than
4000 hours?
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2.65 Consider the situation of Exercise 2.64. Let A
be the event that the component fails a particular test
and B be the event that the component displays strain
but does not actually fail. Event A occurs with prob-
ability 0.20, and event B occurs with probability 0.35.

(a) What is the probability that the component does
not fail the test?

(b) What is the probability that the component works
perfectly well (i.e., neither displays strain nor fails
the test)?

(c) What is the probability that the component either
fails or shows strain in the test?

2.66 Factory workers are constantly encouraged to
practice zero tolerance when it comes to accidents in
factories. Accidents can occur because the working en-
vironment or conditions themselves are unsafe. On the
other hand, accidents can occur due to carelessness
or so-called human error. In addition, the worker’s
shift, 7:00 A.M.–3:00 P.M. (day shift), 3:00 P.M.–11:00
P.M. (evening shift), or 11:00 P.M.–7:00 A.M. (graveyard
shift), may be a factor. During the last year, 300 acci-
dents have occurred. The percentages of the accidents
for the condition combinations are as follows:

Unsafe Human
Shift Conditions Error

Day 5% 32%
Evening 6% 25%
Graveyard 2% 30%

If an accident report is selected randomly from the 300
reports,

(a) what is the probability that the accident occurred
on the graveyard shift?

(b) what is the probability that the accident occurred
due to human error?

(c) what is the probability that the accident occurred
due to unsafe conditions?

(d) what is the probability that the accident occurred
on either the evening or the graveyard shift?

2.67 Consider the situation of Example 2.32 on page
58.

(a) What is the probability that no more than 4 cars
will be serviced by the mechanic?

(b) What is the probability that he will service fewer
than 8 cars?

(c) What is the probability that he will service either
3 or 4 cars?

2.68 Interest centers around the nature of an oven
purchased at a particular department store. It can be
either a gas or an electric oven. Consider the decisions
made by six distinct customers.

(a) Suppose that the probability is 0.40 that at most

two of these individuals purchase an electric oven.
What is the probability that at least three purchase
the electric oven?

(b) Suppose it is known that the probability that all
six purchase the electric oven is 0.007 while 0.104 is
the probability that all six purchase the gas oven.
What is the probability that at least one of each
type is purchased?

2.69 It is common in many industrial areas to use
a filling machine to fill boxes full of product. This
occurs in the food industry as well as other areas in
which the product is used in the home, for example,
detergent. These machines are not perfect, and indeed
they may A, fill to specification, B, underfill, and C,
overfill. Generally, the practice of underfilling is that
which one hopes to avoid. Let P (B) = 0.001 while
P (A) = 0.990.

(a) Give P (C).

(b) What is the probability that the machine does not
underfill?

(c) What is the probability that the machine either
overfills or underfills?

2.70 Consider the situation of Exercise 2.69. Suppose
50,000 boxes of detergent are produced per week and
suppose also that those underfilled are “sent back,”
with customers requesting reimbursement of the pur-
chase price. Suppose also that the cost of production
is known to be $4.00 per box while the purchase price
is $4.50 per box.

(a) What is the weekly profit under the condition of no
defective boxes?

(b) What is the loss in profit expected due to under-
filling?

2.71 As the situation of Exercise 2.69 might suggest,
statistical procedures are often used for control of qual-
ity (i.e., industrial quality control). At times, the
weight of a product is an important variable to con-
trol. Specifications are given for the weight of a certain
packaged product, and a package is rejected if it is ei-
ther too light or too heavy. Historical data suggest that
0.95 is the probability that the product meets weight
specifications whereas 0.002 is the probability that the
product is too light. For each single packaged product,
the manufacturer invests $20.00 in production and the
purchase price for the consumer is $25.00.

(a) What is the probability that a package chosen ran-
domly from the production line is too heavy?

(b) For each 10,000 packages sold, what profit is re-
ceived by the manufacturer if all packages meet
weight specification?

(c) Assuming that all defective packages are rejected
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and rendered worthless, how much is the profit re-
duced on 10,000 packages due to failure to meet
weight specification?

2.72 Prove that

P (A′ ∩B′) = 1 + P (A ∩B)− P (A)− P (B).

2.6 Conditional Probability, Independence, and the Product
Rule

One very important concept in probability theory is conditional probability. In
some applications, the practitioner is interested in the probability structure under
certain restrictions. For instance, in epidemiology, rather than studying the chance
that a person from the general population has diabetes, it might be of more interest
to know this probability for a distinct group such as Asian women in the age range
of 35 to 50 or Hispanic men in the age range of 40 to 60. This type of probability
is called a conditional probability.

Conditional Probability

The probability of an event B occurring when it is known that some event A
has occurred is called a conditional probability and is denoted by P (B|A). The
symbol P (B|A) is usually read “the probability that B occurs given that A occurs”
or simply “the probability of B, given A.”

Consider the event B of getting a perfect square when a die is tossed. The die
is constructed so that the even numbers are twice as likely to occur as the odd
numbers. Based on the sample space S = {1, 2, 3, 4, 5, 6}, with probabilities of
1/9 and 2/9 assigned, respectively, to the odd and even numbers, the probability
of B occurring is 1/3. Now suppose that it is known that the toss of the die
resulted in a number greater than 3. We are now dealing with a reduced sample
space A = {4, 5, 6}, which is a subset of S. To find the probability that B occurs,
relative to the space A, we must first assign new probabilities to the elements of
A proportional to their original probabilities such that their sum is 1. Assigning a
probability of w to the odd number in A and a probability of 2w to the two even
numbers, we have 5w = 1, or w = 1/5. Relative to the space A, we find that B
contains the single element 4. Denoting this event by the symbol B|A, we write
B|A = {4}, and hence

P (B|A) = 2

5
.

This example illustrates that events may have different probabilities when consid-
ered relative to different sample spaces.

We can also write

P (B|A) = 2

5
=

2/9

5/9
=

P (A ∩B)

P (A)
,

where P (A ∩ B) and P (A) are found from the original sample space S. In other
words, a conditional probability relative to a subspace A of S may be calculated
directly from the probabilities assigned to the elements of the original sample space
S.
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Definition 2.10: The conditional probability of B, given A, denoted by P (B|A), is defined by

P (B|A) = P (A ∩B)

P (A)
, provided P (A) > 0.

As an additional illustration, suppose that our sample space S is the population
of adults in a small town who have completed the requirements for a college degree.
We shall categorize them according to gender and employment status. The data
are given in Table 2.1.

Table 2.1: Categorization of the Adults in a Small Town

Employed Unemployed Total
Male
Female

460
140

40
260

500
400

Total 600 300 900

One of these individuals is to be selected at random for a tour throughout the
country to publicize the advantages of establishing new industries in the town. We
shall be concerned with the following events:

M: a man is chosen,

E: the one chosen is employed.

Using the reduced sample space E, we find that

P (M |E) =
460

600
=

23

30
.

Let n(A) denote the number of elements in any set A. Using this notation,
since each adult has an equal chance of being selected, we can write

P (M |E) =
n(E ∩M)

n(E)
=

n(E ∩M)/n(S)

n(E)/n(S)
=

P (E ∩M)

P (E)
,

where P (E ∩M) and P (E) are found from the original sample space S. To verify
this result, note that

P (E) =
600

900
=

2

3
and P (E ∩M) =

460

900
=

23

45
.

Hence,

P (M |E) =
23/45

2/3
=

23

30
,

as before.

Example 2.34: The probability that a regularly scheduled flight departs on time is P (D) = 0.83;
the probability that it arrives on time is P (A) = 0.82; and the probability that it
departs and arrives on time is P (D ∩A) = 0.78. Find the probability that a plane
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(a) arrives on time, given that it departed on time, and (b) departed on time, given
that it has arrived on time.

Solution : Using Definition 2.10, we have the following.

(a) The probability that a plane arrives on time, given that it departed on time,
is

P (A|D) =
P (D ∩A)

P (D)
=

0.78

0.83
= 0.94.

(b) The probability that a plane departed on time, given that it has arrived on
time, is

P (D|A) = P (D ∩A)

P (A)
=

0.78

0.82
= 0.95.

The notion of conditional probability provides the capability of reevaluating the
idea of probability of an event in light of additional information, that is, when it
is known that another event has occurred. The probability P (A|B) is an updating
of P (A) based on the knowledge that event B has occurred. In Example 2.34, it
is important to know the probability that the flight arrives on time. One is given
the information that the flight did not depart on time. Armed with this additional
information, one can calculate the more pertinent probability P (A|D′), that is,
the probability that it arrives on time, given that it did not depart on time. In
many situations, the conclusions drawn from observing the more important condi-
tional probability change the picture entirely. In this example, the computation of
P (A|D′) is

P (A|D′) =
P (A ∩D′)
P (D′)

=
0.82− 0.78

0.17
= 0.24.

As a result, the probability of an on-time arrival is diminished severely in the
presence of the additional information.

Example 2.35: The concept of conditional probability has countless uses in both industrial and
biomedical applications. Consider an industrial process in the textile industry in
which strips of a particular type of cloth are being produced. These strips can be
defective in two ways, length and nature of texture. For the case of the latter, the
process of identification is very complicated. It is known from historical information
on the process that 10% of strips fail the length test, 5% fail the texture test, and
only 0.8% fail both tests. If a strip is selected randomly from the process and a
quick measurement identifies it as failing the length test, what is the probability
that it is texture defective?

Solution : Consider the events

L: length defective, T : texture defective.

Given that the strip is length defective, the probability that this strip is texture
defective is given by

P (T |L) = P (T ∩ L)

P (L)
=

0.008

0.1
= 0.08.

Thus, knowing the conditional probability provides considerably more information
than merely knowing P (T ).
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Independent Events

In the die-tossing experiment discussed on page 62, we note that P (B|A) = 2/5
whereas P (B) = 1/3. That is, P (B|A) �= P (B), indicating that B depends on
A. Now consider an experiment in which 2 cards are drawn in succession from an
ordinary deck, with replacement. The events are defined as

A: the first card is an ace,

B: the second card is a spade.

Since the first card is replaced, our sample space for both the first and the second
draw consists of 52 cards, containing 4 aces and 13 spades. Hence,

P (B|A) = 13

52
=

1

4
and P (B) =

13

52
=

1

4
.

That is, P (B|A) = P (B). When this is true, the events A and B are said to be
independent.

Although conditional probability allows for an alteration of the probability of an
event in the light of additional material, it also enables us to understand better the
very important concept of independence or, in the present context, independent
events. In the airport illustration in Example 2.34, P (A|D) differs from P (A).
This suggests that the occurrence of D influenced A, and this is certainly expected
in this illustration. However, consider the situation where we have events A and
B and

P (A|B) = P (A).

In other words, the occurrence of B had no impact on the odds of occurrence of A.
Here the occurrence of A is independent of the occurrence of B. The importance
of the concept of independence cannot be overemphasized. It plays a vital role in
material in virtually all chapters in this book and in all areas of applied statistics.

Definition 2.11: Two events A and B are independent if and only if

P (B|A) = P (B) or P (A|B) = P (A),

assuming the existences of the conditional probabilities. Otherwise, A and B are
dependent.

The condition P (B|A) = P (B) implies that P (A|B) = P (A), and conversely.
For the card-drawing experiments, where we showed that P (B|A) = P (B) = 1/4,
we also can see that P (A|B) = P (A) = 1/13.

The Product Rule, or the Multiplicative Rule

Multiplying the formula in Definition 2.10 by P (A), we obtain the following im-
portant multiplicative rule (or product rule), which enables us to calculate
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the probability that two events will both occur.

Theorem 2.10: If in an experiment the events A and B can both occur, then

P (A ∩B) = P (A)P (B|A), provided P (A) > 0.

Thus, the probability that both A and B occur is equal to the probability that
A occurs multiplied by the conditional probability that B occurs, given that A
occurs. Since the events A∩B and B ∩A are equivalent, it follows from Theorem
2.10 that we can also write

P (A ∩B) = P (B ∩A) = P (B)P (A|B).

In other words, it does not matter which event is referred to as A and which event
is referred to as B.

Example 2.36: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If
2 fuses are selected at random and removed from the box in succession without
replacing the first, what is the probability that both fuses are defective?

Solution : We shall let A be the event that the first fuse is defective and B the event that the
second fuse is defective; then we interpret A ∩ B as the event that A occurs and
then B occurs after A has occurred. The probability of first removing a defective
fuse is 1/4; then the probability of removing a second defective fuse from the
remaining 4 is 4/19. Hence,

P (A ∩B) =

(
1

4

)(
4

19

)
=

1

19
.

Example 2.37: One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white
balls and 5 black balls. One ball is drawn from the first bag and placed unseen in
the second bag. What is the probability that a ball now drawn from the second
bag is black?

Solution : Let B1, B2, and W1 represent, respectively, the drawing of a black ball from bag 1,
a black ball from bag 2, and a white ball from bag 1. We are interested in the union
of the mutually exclusive events B1 ∩ B2 and W1 ∩ B2. The various possibilities
and their probabilities are illustrated in Figure 2.8. Now

P [(B1 ∩B2) or (W1 ∩B2)] = P (B1 ∩B2) + P (W1 ∩B2)

= P (B1)P (B2|B1) + P (W1)P (B2|W1)

=

(
3

7

)(
6

9

)
+

(
4

7

)(
5

9

)
=

38

63
.

If, in Example 2.36, the first fuse is replaced and the fuses thoroughly rear-
ranged before the second is removed, then the probability of a defective fuse on the
second selection is still 1/4; that is, P (B|A) = P (B) and the events A and B are
independent. When this is true, we can substitute P (B) for P (B|A) in Theorem
2.10 to obtain the following special multiplicative rule.
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Bag 1

4W, 3B

Bag 2

3W, 6B

Bag 2

4W, 5B

P(B1 ∩B2)=(3/7)(6/9)

P(B1 ∩W2)=(3/7)(3/9)

P(W1 ∩B2)=(4/7)(5/9)

P(W1 ∩W2) =(4/7)(4/9)

B
3/7

4/7
W

B
6/9

W
3/9

B
6/9

4/9
W

Figure 2.8: Tree diagram for Example 2.37.

Theorem 2.11: Two events A and B are independent if and only if

P (A ∩B) = P (A)P (B).

Therefore, to obtain the probability that two independent events will both occur,
we simply find the product of their individual probabilities.

Example 2.38: A small town has one fire engine and one ambulance available for emergencies. The
probability that the fire engine is available when needed is 0.98, and the probability
that the ambulance is available when called is 0.92. In the event of an injury
resulting from a burning building, find the probability that both the ambulance
and the fire engine will be available, assuming they operate independently.

Solution : Let A and B represent the respective events that the fire engine and the ambulance
are available. Then

P (A ∩B) = P (A)P (B) = (0.98)(0.92) = 0.9016.

Example 2.39: An electrical system consists of four components as illustrated in Figure 2.9. The
system works if components A and B work and either of the components C or D
works. The reliability (probability of working) of each component is also shown
in Figure 2.9. Find the probability that (a) the entire system works and (b) the
component C does not work, given that the entire system works. Assume that the
four components work independently.

Solution : In this configuration of the system, A, B, and the subsystem C and D constitute
a serial circuit system, whereas the subsystem C and D itself is a parallel circuit
system.

(a) Clearly the probability that the entire system works can be calculated as
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follows:

P [A ∩B ∩ (C ∪D)] = P (A)P (B)P (C ∪D) = P (A)P (B)[1− P (C ′ ∩D′)]
= P (A)P (B)[1− P (C ′)P (D′)]
= (0.9)(0.9)[1− (1− 0.8)(1− 0.8)] = 0.7776.

The equalities above hold because of the independence among the four com-
ponents.

(b) To calculate the conditional probability in this case, notice that

P =
P (the system works but C does not work)

P (the system works)

=
P (A ∩B ∩ C ′ ∩D)

P (the system works)
=

(0.9)(0.9)(1− 0.8)(0.8)

0.7776
= 0.1667.

A B

C

D

0.9 0.9

0.8

0.8

Figure 2.9: An electrical system for Example 2.39.

The multiplicative rule can be extended to more than two-event situations.

Theorem 2.12: If, in an experiment, the events A1, A2, . . . , Ak can occur, then

P (A1 ∩A2 ∩ · · · ∩Ak)

= P (A1)P (A2|A1)P (A3|A1 ∩A2) · · ·P (Ak|A1 ∩A2 ∩ · · · ∩Ak−1).

If the events A1, A2, . . . , Ak are independent, then

P (A1 ∩A2 ∩ · · · ∩Ak) = P (A1)P (A2) · · ·P (Ak).

Example 2.40: Three cards are drawn in succession, without replacement, from an ordinary deck
of playing cards. Find the probability that the event A1 ∩ A2 ∩ A3 occurs, where
A1 is the event that the first card is a red ace, A2 is the event that the second card
is a 10 or a jack, and A3 is the event that the third card is greater than 3 but less
than 7.

Solution : First we define the events

A1: the first card is a red ace,

A2: the second card is a 10 or a jack,
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A3: the third card is greater than 3 but less than 7.

Now

P (A1) =
2

52
, P (A2|A1) =

8

51
, P (A3|A1 ∩A2) =

12

50
,

and hence, by Theorem 2.12,

P (A1 ∩A2 ∩A3) = P (A1)P (A2|A1)P (A3|A1 ∩A2)

=

(
2

52

)(
8

51

)(
12

50

)
=

8

5525
.

The property of independence stated in Theorem 2.11 can be extended to deal
with more than two events. Consider, for example, the case of three events A, B,
and C. It is not sufficient to only have that P (A ∩B ∩C) = P (A)P (B)P (C) as a
definition of independence among the three. Suppose A = B and C = φ, the null
set. Although A∩B∩C = φ, which results in P (A∩B∩C) = 0 = P (A)P (B)P (C),
events A and B are not independent. Hence, we have the following definition.

Definition 2.12: A collection of events A = {A1, . . . , An} are mutually independent if for any
subset of A, Ai1 , . . . , Aik , for k ≤ n, we have

P (Ai1 ∩ · · · ∩Aik) = P (Ai1) · · ·P (Aik).

Exercises

2.73 If R is the event that a convict committed armed
robbery and D is the event that the convict pushed
dope, state in words what probabilities are expressed
by

(a) P (R|D);

(b) P (D′|R);

(c) P (R′|D′).

2.74 A class in advanced physics is composed of 10
juniors, 30 seniors, and 10 graduate students. The final
grades show that 3 of the juniors, 10 of the seniors, and
5 of the graduate students received an A for the course.
If a student is chosen at random from this class and is
found to have earned an A, what is the probability that
he or she is a senior?

2.75 A random sample of 200 adults are classified be-
low by sex and their level of education attained.

Education Male Female
Elementary 38 45
Secondary 28 50
College 22 17

If a person is picked at random from this group, find
the probability that

(a) the person is a male, given that the person has a
secondary education;

(b) the person does not have a college degree, given
that the person is a female.

2.76 In an experiment to study the relationship of hy-
pertension and smoking habits, the following data are
collected for 180 individuals:

Moderate Heavy
Nonsmokers Smokers Smokers

H 21 36 30
NH 48 26 19

where H and NH in the table stand for Hypertension
and Nonhypertension, respectively. If one of these indi-
viduals is selected at random, find the probability that
the person is

(a) experiencing hypertension, given that the person is
a heavy smoker;

(b) a nonsmoker, given that the person is experiencing
no hypertension.

2.77 In the senior year of a high school graduating
class of 100 students, 42 studied mathematics, 68 stud-
ied psychology, 54 studied history, 22 studied both
mathematics and history, 25 studied both mathematics
and psychology, 7 studied history but neither mathe-
matics nor psychology, 10 studied all three subjects,
and 8 did not take any of the three. Randomly select
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a student from the class and find the probabilities of
the following events.

(a) A person enrolled in psychology takes all three sub-
jects.

(b) A person not taking psychology is taking both his-
tory and mathematics.

2.78 A manufacturer of a flu vaccine is concerned
about the quality of its flu serum. Batches of serum are
processed by three different departments having rejec-
tion rates of 0.10, 0.08, and 0.12, respectively. The in-
spections by the three departments are sequential and
independent.

(a) What is the probability that a batch of serum sur-
vives the first departmental inspection but is re-
jected by the second department?

(b) What is the probability that a batch of serum is
rejected by the third department?

2.79 In USA Today (Sept. 5, 1996), the results of a
survey involving the use of sleepwear while traveling
were listed as follows:

Male Female Total
Underwear 0.220 0.024 0.244
Nightgown 0.002 0.180 0.182
Nothing 0.160 0.018 0.178
Pajamas 0.102 0.073 0.175
T-shirt 0.046 0.088 0.134
Other 0.084 0.003 0.087

(a) What is the probability that a traveler is a female
who sleeps in the nude?

(b) What is the probability that a traveler is male?

(c) Assuming the traveler is male, what is the proba-
bility that he sleeps in pajamas?

(d) What is the probability that a traveler is male if
the traveler sleeps in pajamas or a T-shirt?

2.80 The probability that an automobile being filled
with gasoline also needs an oil change is 0.25; the prob-
ability that it needs a new oil filter is 0.40; and the
probability that both the oil and the filter need chang-
ing is 0.14.

(a) If the oil has to be changed, what is the probability
that a new oil filter is needed?

(b) If a new oil filter is needed, what is the probability
that the oil has to be changed?

2.81 The probability that a married man watches a
certain television show is 0.4, and the probability that
a married woman watches the show is 0.5. The proba-
bility that a man watches the show, given that his wife
does, is 0.7. Find the probability that

(a) a married couple watches the show;

(b) a wife watches the show, given that her husband
does;

(c) at least one member of a married couple will watch
the show.

2.82 For married couples living in a certain suburb,
the probability that the husband will vote on a bond
referendum is 0.21, the probability that the wife will
vote on the referendum is 0.28, and the probability that
both the husband and the wife will vote is 0.15. What
is the probability that

(a) at least one member of a married couple will vote?

(b) a wife will vote, given that her husband will vote?

(c) a husband will vote, given that his wife will not
vote?

2.83 The probability that a vehicle entering the Lu-
ray Caverns has Canadian license plates is 0.12; the
probability that it is a camper is 0.28; and the proba-
bility that it is a camper with Canadian license plates
is 0.09. What is the probability that

(a) a camper entering the Luray Caverns has Canadian
license plates?

(b) a vehicle with Canadian license plates entering the
Luray Caverns is a camper?

(c) a vehicle entering the Luray Caverns does not have
Canadian plates or is not a camper?

2.84 The probability that the head of a household is
home when a telemarketing representative calls is 0.4.
Given that the head of the house is home, the proba-
bility that goods will be bought from the company is
0.3. Find the probability that the head of the house is
home and goods are bought from the company.

2.85 The probability that a doctor correctly diag-
noses a particular illness is 0.7. Given that the doctor
makes an incorrect diagnosis, the probability that the
patient files a lawsuit is 0.9. What is the probability
that the doctor makes an incorrect diagnosis and the
patient sues?

2.86 In 1970, 11% of Americans completed four years
of college; 43% of them were women. In 1990, 22% of
Americans completed four years of college; 53% of them
were women (Time, Jan. 19, 1996).

(a) Given that a person completed four years of college
in 1970, what is the probability that the person was
a woman?

(b) What is the probability that a woman finished four
years of college in 1990?

(c) What is the probability that a man had not finished
college in 1990?
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2.87 A real estate agent has 8 master keys to open
several new homes. Only 1 master key will open any
given house. If 40% of these homes are usually left
unlocked, what is the probability that the real estate
agent can get into a specific home if the agent selects
3 master keys at random before leaving the office?

2.88 Before the distribution of certain statistical soft-
ware, every fourth compact disk (CD) is tested for ac-
curacy. The testing process consists of running four
independent programs and checking the results. The
failure rates for the four testing programs are, respec-
tively, 0.01, 0.03, 0.02, and 0.01.

(a) What is the probability that a CD was tested and
failed any test?

(b) Given that a CD was tested, what is the probability
that it failed program 2 or 3?

(c) In a sample of 100, how many CDs would you ex-
pect to be rejected?

(d) Given that a CD was defective, what is the proba-
bility that it was tested?

2.89 A town has two fire engines operating indepen-
dently. The probability that a specific engine is avail-
able when needed is 0.96.

(a) What is the probability that neither is available
when needed?

(b) What is the probability that a fire engine is avail-
able when needed?

2.90 Pollution of the rivers in the United States has
been a problem for many years. Consider the following
events:

A : the river is polluted,

B : a sample of water tested detects pollution,

C : fishing is permitted.

Assume P (A) = 0.3, P (B|A) = 0.75, P (B|A′) = 0.20,
P (C|A∩B) = 0.20, P (C|A′∩B) = 0.15, P (C|A∩B′) =
0.80, and P (C|A′ ∩B′) = 0.90.

(a) Find P (A ∩B ∩ C).

(b) Find P (B′ ∩ C).

(c) Find P (C).

(d) Find the probability that the river is polluted, given
that fishing is permitted and the sample tested did
not detect pollution.

2.91 Find the probability of randomly selecting 4
good quarts of milk in succession from a cooler con-
taining 20 quarts of which 5 have spoiled, by using

(a) the first formula of Theorem 2.12 on page 68;

(b) the formulas of Theorem 2.6 and Rule 2.3 on pages
50 and 54, respectively.

2.92 Suppose the diagram of an electrical system is
as given in Figure 2.10. What is the probability that
the system works? Assume the components fail inde-
pendently.

2.93 A circuit system is given in Figure 2.11. Assume
the components fail independently.

(a) What is the probability that the entire system
works?

(b) Given that the system works, what is the probabil-
ity that the component A is not working?

2.94 In the situation of Exercise 2.93, it is known that
the system does not work. What is the probability that
the component A also does not work?

DA

B

C

0.90.95

0.7

0.8

Figure 2.10: Diagram for Exercise 2.92.

A B

C D E

0.7 0.7

0.8 0.8 0.8

Figure 2.11: Diagram for Exercise 2.93.
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2.7 Bayes’ Rule

Bayesian statistics is a collection of tools that is used in a special form of statistical
inference which applies in the analysis of experimental data in many practical
situations in science and engineering. Bayes’ rule is one of the most important
rules in probability theory. It is the foundation of Bayesian inference, which will
be discussed in Chapter 18.

Total Probability

Let us now return to the illustration of Section 2.6, where an individual is being
selected at random from the adults of a small town to tour the country and publicize
the advantages of establishing new industries in the town. Suppose that we are
now given the additional information that 36 of those employed and 12 of those
unemployed are members of the Rotary Club. We wish to find the probability of
the event A that the individual selected is a member of the Rotary Club. Referring
to Figure 2.12, we can write A as the union of the two mutually exclusive events
E∩A and E′∩A. Hence, A = (E∩A)∪ (E′∩A), and by Corollary 2.1 of Theorem
2.7, and then Theorem 2.10, we can write

P (A) = P [(E ∩A) ∪ (E′ ∩A)] = P (E ∩A) + P (E′ ∩A)

= P (E)P (A|E) + P (E′)P (A|E′).

E �E A

E � A

E � � A

Figure 2.12: Venn diagram for the events A, E, and E′.

The data of Section 2.6, together with the additional data given above for the set
A, enable us to compute

P (E) =
600

900
=

2

3
, P (A|E) =

36

600
=

3

50
,

and

P (E′) =
1

3
, P (A|E′) =

12

300
=

1

25
.

If we display these probabilities by means of the tree diagram of Figure 2.13, where
the first branch yields the probability P (E)P (A|E) and the second branch yields
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E' P(A|E)� � 1/25 A'
P(E')P(A|E')

P(E)P(A|E)
P(A|E) = 3/50

P(E
) =

 2
/3

E A

P(E') = 1/3

Figure 2.13: Tree diagram for the data on page 63, using additional information
on page 72.

the probability P (E′)P (A|E′), it follows that

P (A) =

(
2

3

)(
3

50

)
+

(
1

3

)(
1

25

)
=

4

75
.

A generalization of the foregoing illustration to the case where the sample space
is partitioned into k subsets is covered by the following theorem, sometimes called
the theorem of total probability or the rule of elimination.

Theorem 2.13: If the events B1, B2, . . . , Bk constitute a partition of the sample space S such that
P (Bi) �= 0 for i = 1, 2, . . . , k, then for any event A of S,

P (A) =
k∑

i=1

P (Bi ∩A) =
k∑

i=1

P (Bi)P (A|Bi).

A

B1

B2

B3

B4 B5

…

Figure 2.14: Partitioning the sample space S.
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Proof : Consider the Venn diagram of Figure 2.14. The event A is seen to be the union of
the mutually exclusive events

B1 ∩A, B2 ∩A, . . . , Bk ∩A;

that is,

A = (B1 ∩A) ∪ (B2 ∩A) ∪ · · · ∪ (Bk ∩A).

Using Corollary 2.2 of Theorem 2.7 and Theorem 2.10, we have

P (A) = P [(B1 ∩A) ∪ (B2 ∩A) ∪ · · · ∪ (Bk ∩A)]

= P (B1 ∩A) + P (B2 ∩A) + · · ·+ P (Bk ∩A)

=
k∑

i=1

P (Bi ∩A)

=
k∑

i=1

P (Bi)P (A|Bi).

Example 2.41: In a certain assembly plant, three machines, B1, B2, and B3, make 30%, 45%, and
25%, respectively, of the products. It is known from past experience that 2%, 3%,
and 2% of the products made by each machine, respectively, are defective. Now,
suppose that a finished product is randomly selected. What is the probability that
it is defective?

Solution : Consider the following events:

A: the product is defective,

B1: the product is made by machine B1,

B2: the product is made by machine B2,

B3: the product is made by machine B3.

Applying the rule of elimination, we can write

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3).

Referring to the tree diagram of Figure 2.15, we find that the three branches give
the probabilities

P (B1)P (A|B1) = (0.3)(0.02) = 0.006,

P (B2)P (A|B2) = (0.45)(0.03) = 0.0135,

P (B3)P (A|B3) = (0.25)(0.02) = 0.005,

and hence

P (A) = 0.006 + 0.0135 + 0.005 = 0.0245.
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A 

P(A | B 1 ) = 0.02

P(A | B 3 ) = 0.02 

P(A | B 2 ) = 0.03 P(B 2 ) = 0.45 

B 1 

B 2 

B 3 

A 

A P(B
 1 

) =
 0

.3
 

P(B 3 ) = 0.25 
Figure 2.15: Tree diagram for Example 2.41.

Bayes’ Rule

Instead of asking for P (A) in Example 2.41, by the rule of elimination, suppose
that we now consider the problem of finding the conditional probability P (Bi|A).
In other words, suppose that a product was randomly selected and it is defective.
What is the probability that this product was made by machine Bi? Questions of
this type can be answered by using the following theorem, called Bayes’ rule:

Theorem 2.14: (Bayes’ Rule) If the events B1, B2, . . . , Bk constitute a partition of the sample
space S such that P (Bi) �= 0 for i = 1, 2, . . . , k, then for any event A in S such
that P (A) �= 0,

P (Br|A) =
P (Br ∩A)
k∑

i=1

P (Bi ∩A)

=
P (Br)P (A|Br)
k∑

i=1

P (Bi)P (A|Bi)

for r = 1, 2, . . . , k.

Proof : By the definition of conditional probability,

P (Br|A) = P (Br ∩A)

P (A)
,

and then using Theorem 2.13 in the denominator, we have

P (Br|A) = P (Br ∩A)
k∑

i=1

P (Bi ∩A)

=
P (Br)P (A|Br)
k∑

i=1

P (Bi)P (A|Bi)

,

which completes the proof.

Example 2.42: With reference to Example 2.41, if a product was chosen randomly and found to
be defective, what is the probability that it was made by machine B3?

Solution : Using Bayes’ rule to write

P (B3|A) = P (B3)P (A|B3)

P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)
,
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and then substituting the probabilities calculated in Example 2.41, we have

P (B3|A) = 0.005

0.006 + 0.0135 + 0.005
=

0.005

0.0245
=

10

49
.

In view of the fact that a defective product was selected, this result suggests that
it probably was not made by machine B3.

Example 2.43: A manufacturing firm employs three analytical plans for the design and devel-
opment of a particular product. For cost reasons, all three are used at varying
times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products,
respectively. The defect rate is different for the three procedures as follows:

P (D|P1) = 0.01, P (D|P2) = 0.03, P (D|P3) = 0.02,

where P (D|Pj) is the probability of a defective product, given plan j. If a random
product was observed and found to be defective, which plan was most likely used
and thus responsible?

Solution : From the statement of the problem

P (P1) = 0.30, P (P2) = 0.20, and P (P3) = 0.50,

we must find P (Pj |D) for j = 1, 2, 3. Bayes’ rule (Theorem 2.14) shows

P (P1|D) =
P (P1)P (D|P1)

P (P1)P (D|P1) + P (P2)P (D|P2) + P (P3)P (D|P3)

=
(0.30)(0.01)

(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)
=

0.003

0.019
= 0.158.

Similarly,

P (P2|D) =
(0.03)(0.20)

0.019
= 0.316 and P (P3|D) =

(0.02)(0.50)

0.019
= 0.526.

The conditional probability of a defect given plan 3 is the largest of the three; thus
a defective for a random product is most likely the result of the use of plan 3.

Using Bayes’ rule, a statistical methodology called the Bayesian approach has
attracted a lot of attention in applications. An introduction to the Bayesian method
will be discussed in Chapter 18.

Exercises

2.95 In a certain region of the country it is known
from past experience that the probability of selecting
an adult over 40 years of age with cancer is 0.05. If
the probability of a doctor correctly diagnosing a per-
son with cancer as having the disease is 0.78 and the
probability of incorrectly diagnosing a person without
cancer as having the disease is 0.06, what is the prob-

ability that an adult over 40 years of age is diagnosed
as having cancer?

2.96 Police plan to enforce speed limits by using radar
traps at four different locations within the city limits.
The radar traps at each of the locations L1, L2, L3,
and L4 will be operated 40%, 30%, 20%, and 30% of
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the time. If a person who is speeding on her way to
work has probabilities of 0.2, 0.1, 0.5, and 0.2, respec-
tively, of passing through these locations, what is the
probability that she will receive a speeding ticket?

2.97 Referring to Exercise 2.95, what is the probabil-
ity that a person diagnosed as having cancer actually
has the disease?

2.98 If the person in Exercise 2.96 received a speed-
ing ticket on her way to work, what is the probability
that she passed through the radar trap located at L2?

2.99 Suppose that the four inspectors at a film fac-
tory are supposed to stamp the expiration date on each
package of film at the end of the assembly line. John,
who stamps 20% of the packages, fails to stamp the
expiration date once in every 200 packages; Tom, who
stamps 60% of the packages, fails to stamp the expira-
tion date once in every 100 packages; Jeff, who stamps
15% of the packages, fails to stamp the expiration date
once in every 90 packages; and Pat, who stamps 5% of
the packages, fails to stamp the expiration date once
in every 200 packages. If a customer complains that
her package of film does not show the expiration date,
what is the probability that it was inspected by John?

2.100 A regional telephone company operates three
identical relay stations at different locations. During a

one-year period, the number of malfunctions reported
by each station and the causes are shown below.

Station A B C
Problems with electricity supplied 2 1 1
Computer malfunction 4 3 2
Malfunctioning electrical equipment 5 4 2
Caused by other human errors 7 7 5

Suppose that a malfunction was reported and it was
found to be caused by other human errors. What is
the probability that it came from station C?

2.101 A paint-store chain produces and sells latex
and semigloss paint. Based on long-range sales, the
probability that a customer will purchase latex paint is
0.75. Of those that purchase latex paint, 60% also pur-
chase rollers. But only 30% of semigloss paint buyers
purchase rollers. A randomly selected buyer purchases
a roller and a can of paint. What is the probability
that the paint is latex?

2.102 Denote by A, B, and C the events that a grand
prize is behind doors A, B, and C, respectively. Sup-
pose you randomly picked a door, say A. The game
host opened a door, say B, and showed there was no
prize behind it. Now the host offers you the option
of either staying at the door that you picked (A) or
switching to the remaining unopened door (C). Use
probability to explain whether you should switch or
not.

Review Exercises

2.103 A truth serum has the property that 90% of
the guilty suspects are properly judged while, of course,
10% of the guilty suspects are improperly found inno-
cent. On the other hand, innocent suspects are mis-
judged 1% of the time. If the suspect was selected
from a group of suspects of which only 5% have ever
committed a crime, and the serum indicates that he is
guilty, what is the probability that he is innocent?

2.104 An allergist claims that 50% of the patients
she tests are allergic to some type of weed. What is
the probability that

(a) exactly 3 of her next 4 patients are allergic to
weeds?

(b) none of her next 4 patients is allergic to weeds?

2.105 By comparing appropriate regions of Venn di-
agrams, verify that

(a) (A ∩B) ∪ (A ∩B′) = A;

(b) A′ ∩ (B′ ∪ C) = (A′ ∩B′) ∪ (A′ ∩ C).

2.106 The probabilities that a service station will
pump gas into 0, 1, 2, 3, 4, or 5 or more cars during
a certain 30-minute period are 0.03, 0.18, 0.24, 0.28,
0.10, and 0.17, respectively. Find the probability that
in this 30-minute period

(a) more than 2 cars receive gas;

(b) at most 4 cars receive gas;

(c) 4 or more cars receive gas.

2.107 How many bridge hands are possible contain-
ing 4 spades, 6 diamonds, 1 club, and 2 hearts?

2.108 If the probability is 0.1 that a person will make
a mistake on his or her state income tax return, find
the probability that

(a) four totally unrelated persons each make a mistake;

(b) Mr. Jones and Ms. Clark both make mistakes,
and Mr. Roberts and Ms. Williams do not make a
mistake.
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2.109 A large industrial firm uses three local motels
to provide overnight accommodations for its clients.
From past experience it is known that 20% of the
clients are assigned rooms at the Ramada Inn, 50% at
the Sheraton, and 30% at the Lakeview Motor Lodge.
If the plumbing is faulty in 5% of the rooms at the Ra-
mada Inn, in 4% of the rooms at the Sheraton, and in
8% of the rooms at the Lakeview Motor Lodge, what
is the probability that

(a) a client will be assigned a room with faulty
plumbing?

(b) a person with a room having faulty plumbing was
assigned accommodations at the Lakeview Motor
Lodge?

2.110 The probability that a patient recovers from a
delicate heart operation is 0.8. What is the probability
that

(a) exactly 2 of the next 3 patients who have this op-
eration survive?

(b) all of the next 3 patients who have this operation
survive?

2.111 In a certain federal prison, it is known that
2/3 of the inmates are under 25 years of age. It is
also known that 3/5 of the inmates are male and that
5/8 of the inmates are female or 25 years of age or
older. What is the probability that a prisoner selected
at random from this prison is female and at least 25
years old?

2.112 From 4 red, 5 green, and 6 yellow apples, how
many selections of 9 apples are possible if 3 of each
color are to be selected?

2.113 From a box containing 6 black balls and 4 green
balls, 3 balls are drawn in succession, each ball being re-
placed in the box before the next draw is made. What
is the probability that

(a) all 3 are the same color?

(b) each color is represented?

2.114 A shipment of 12 television sets contains 3 de-
fective sets. In how many ways can a hotel purchase
5 of these sets and receive at least 2 of the defective
sets?

2.115 A certain federal agency employs three con-
sulting firms (A, B, and C) with probabilities 0.40,
0.35, and 0.25, respectively. From past experience it
is known that the probability of cost overruns for the
firms are 0.05, 0.03, and 0.15, respectively. Suppose a
cost overrun is experienced by the agency.

(a) What is the probability that the consulting firm
involved is company C?

(b) What is the probability that it is company A?

2.116 A manufacturer is studying the effects of cook-
ing temperature, cooking time, and type of cooking oil
for making potato chips. Three different temperatures,
4 different cooking times, and 3 different oils are to be
used.

(a) What is the total number of combinations to be
studied?

(b) How many combinations will be used for each type
of oil?

(c) Discuss why permutations are not an issue in this
exercise.

2.117 Consider the situation in Exercise 2.116, and
suppose that the manufacturer can try only two com-
binations in a day.

(a) What is the probability that any given set of two
runs is chosen?

(b) What is the probability that the highest tempera-
ture is used in either of these two combinations?

2.118 A certain form of cancer is known to be found
in women over 60 with probability 0.07. A blood test
exists for the detection of the disease, but the test is
not infallible. In fact, it is known that 10% of the time
the test gives a false negative (i.e., the test incorrectly
gives a negative result) and 5% of the time the test
gives a false positive (i.e., incorrectly gives a positive
result). If a woman over 60 is known to have taken
the test and received a favorable (i.e., negative) result,
what is the probability that she has the disease?

2.119 A producer of a certain type of electronic com-
ponent ships to suppliers in lots of twenty. Suppose
that 60% of all such lots contain no defective compo-
nents, 30% contain one defective component, and 10%
contain two defective components. A lot is picked, two
components from the lot are randomly selected and
tested, and neither is defective.

(a) What is the probability that zero defective compo-
nents exist in the lot?

(b) What is the probability that one defective exists in
the lot?

(c) What is the probability that two defectives exist in
the lot?

2.120 A rare disease exists with which only 1 in 500
is affected. A test for the disease exists, but of course
it is not infallible. A correct positive result (patient
actually has the disease) occurs 95% of the time, while
a false positive result (patient does not have the dis-
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ease) occurs 1% of the time. If a randomly selected
individual is tested and the result is positive, what is
the probability that the individual has the disease?

2.121 A construction company employs two sales en-
gineers. Engineer 1 does the work of estimating cost
for 70% of jobs bid by the company. Engineer 2 does
the work for 30% of jobs bid by the company. It is
known that the error rate for engineer 1 is such that
0.02 is the probability of an error when he does the
work, whereas the probability of an error in the work
of engineer 2 is 0.04. Suppose a bid arrives and a se-
rious error occurs in estimating cost. Which engineer
would you guess did the work? Explain and show all
work.

2.122 In the field of quality control, the science of
statistics is often used to determine if a process is “out
of control.” Suppose the process is, indeed, out of con-
trol and 20% of items produced are defective.

(a) If three items arrive off the process line in succes-
sion, what is the probability that all three are de-
fective?

(b) If four items arrive in succession, what is the prob-
ability that three are defective?

2.123 An industrial plant is conducting a study to
determine how quickly injured workers are back on the
job following injury. Records show that 10% of all in-
jured workers are admitted to the hospital for treat-
ment and 15% are back on the job the next day. In
addition, studies show that 2% are both admitted for
hospital treatment and back on the job the next day.
If a worker is injured, what is the probability that the
worker will either be admitted to a hospital or be back
on the job the next day or both?

2.124 A firm is accustomed to training operators who
do certain tasks on a production line. Those operators
who attend the training course are known to be able to
meet their production quotas 90% of the time. New op-
erators who do not take the training course only meet
their quotas 65% of the time. Fifty percent of new op-
erators attend the course. Given that a new operator
meets her production quota, what is the probability
that she attended the program?

2.125 A survey of those using a particular statistical
software system indicated that 10% were dissatisfied.

Half of those dissatisfied purchased the system from
vendor A. It is also known that 20% of those surveyed
purchased from vendor A. Given that the software was
purchased from vendor A, what is the probability that
that particular user is dissatisfied?

2.126 During bad economic times, industrial workers
are dismissed and are often replaced by machines. The
history of 100 workers whose loss of employment is at-
tributable to technological advances is reviewed. For
each of these individuals, it is determined if he or she
was given an alternative job within the same company,
found a job with another company in the same field,
found a job in a new field, or has been unemployed for
1 year. In addition, the union status of each worker is
recorded. The following table summarizes the results.

Union Nonunion
Same Company
New Company (same field)
New Field
Unemployed

40
13
4
2

15
10
11
5

(a) If the selected worker found a job with a new com-
pany in the same field, what is the probability that
the worker is a union member?

(b) If the worker is a union member, what is the prob-
ability that the worker has been unemployed for a
year?

2.127 There is a 50-50 chance that the queen carries
the gene of hemophilia. If she is a carrier, then each
prince has a 50-50 chance of having hemophilia inde-
pendently. If the queen is not a carrier, the prince will
not have the disease. Suppose the queen has had three
princes without the disease. What is the probability
the queen is a carrier?

2.128 Group Project: Give each student a bag of
chocolate M&Ms. Divide the students into groups of 5
or 6. Calculate the relative frequency distribution for
color of M&Ms for each group.

(a) What is your estimated probability of randomly
picking a yellow? a red?

(b) Redo the calculations for the whole classroom. Did
the estimates change?

(c) Do you believe there is an equal number of each
color in a process batch? Discuss.

2.8 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

This chapter contains the fundamental definitions, rules, and theorems that
provide a foundation that renders probability an important tool for evaluating
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scientific and engineering systems. The evaluations are often in the form of prob-
ability computations, as is illustrated in examples and exercises. Concepts such as
independence, conditional probability, Bayes’ rule, and others tend to mesh nicely
to solve practical problems in which the bottom line is to produce a probability
value. Illustrations in exercises are abundant. See, for example, Exercises 2.100
and 2.101. In these and many other exercises, an evaluation of a scientific system
is being made judiciously from a probability calculation, using rules and definitions
discussed in the chapter.

Now, how does the material in this chapter relate to that in other chapters?
It is best to answer this question by looking ahead to Chapter 3. Chapter 3 also
deals with the type of problems in which it is important to calculate probabili-
ties. We illustrate how system performance depends on the value of one or more
probabilities. Once again, conditional probability and independence play a role.
However, new concepts arise which allow more structure based on the notion of a
random variable and its probability distribution. Recall that the idea of frequency
distributions was discussed briefly in Chapter 1. The probability distribution dis-
plays, in equation form or graphically, the total information necessary to describe a
probability structure. For example, in Review Exercise 2.122 the random variable
of interest is the number of defective items, a discrete measurement. Thus, the
probability distribution would reveal the probability structure for the number of
defective items out of the number selected from the process. As the reader moves
into Chapter 3 and beyond, it will become apparent that assumptions will be re-
quired in order to determine and thus make use of probability distributions for
solving scientific problems.
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Chapter 3

Random Variables and Probability
Distributions

3.1 Concept of a Random Variable

Statistics is concerned with making inferences about populations and population
characteristics. Experiments are conducted with results that are subject to chance.
The testing of a number of electronic components is an example of a statistical
experiment, a term that is used to describe any process by which several chance
observations are generated. It is often important to allocate a numerical description
to the outcome. For example, the sample space giving a detailed description of each
possible outcome when three electronic components are tested may be written

S = {NNN,NND,NDN,DNN,NDD,DND,DDN,DDD},

where N denotes nondefective and D denotes defective. One is naturally concerned
with the number of defectives that occur. Thus, each point in the sample space will
be assigned a numerical value of 0, 1, 2, or 3. These values are, of course, random
quantities determined by the outcome of the experiment. They may be viewed as
values assumed by the random variable X , the number of defective items when
three electronic components are tested.

Definition 3.1: A random variable is a function that associates a real number with each element
in the sample space.

We shall use a capital letter, say X, to denote a random variable and its correspond-
ing small letter, x in this case, for one of its values. In the electronic component
testing illustration above, we notice that the random variable X assumes the value
2 for all elements in the subset

E = {DDN,DND,NDD}

of the sample space S. That is, each possible value of X represents an event that
is a subset of the sample space for the given experiment.

81
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Example 3.1: Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the values y of the random
variable Y , where Y is the number of red balls, are

Sample Space y
RR 2
RB 1
BR 1
BB 0

Example 3.2: A stockroom clerk returns three safety helmets at random to three steel mill em-
ployees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample points for the possible orders
of returning the helmets, and find the value m of the random variable M that
represents the number of correct matches.

Solution : If S, J , and B stand for Smith’s, Jones’s, and Brown’s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB 3
SBJ 1
BJS 1
JSB 1
JBS 0
BSJ 0

In each of the two preceding examples, the sample space contains a finite number
of elements. On the other hand, when a die is thrown until a 5 occurs, we obtain
a sample space with an unending sequence of elements,

S = {F,NF,NNF,NNNF, . . . },

where F and N represent, respectively, the occurrence and nonoccurrence of a 5.
But even in this experiment, the number of elements can be equated to the number
of whole numbers so that there is a first element, a second element, a third element,
and so on, and in this sense can be counted.

There are cases where the random variable is categorical in nature. Variables,
often called dummy variables, are used. A good illustration is the case in which
the random variable is binary in nature, as shown in the following example.

Example 3.3: Consider the simple condition in which components are arriving from the produc-
tion line and they are stipulated to be defective or not defective. Define the random
variable X by

X =

{
1, if the component is defective,

0, if the component is not defective.
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Clearly the assignment of 1 or 0 is arbitrary though quite convenient. This will
become clear in later chapters. The random variable for which 0 and 1 are chosen
to describe the two possible values is called a Bernoulli random variable.

Further illustrations of random variables are revealed in the following examples.

Example 3.4: Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
0, 1, 2, . . . , 9, 10.

Example 3.5: Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
items are observed. In that regard, let X be a random variable defined by the
number of items observed before a defective is found. With N a nondefective and
D a defective, sample spaces are S = {D} given X = 1, S = {ND} given X = 2,
S = {NND} given X = 3, and so on.

Example 3.6: Interest centers around the proportion of people who respond to a certain mail
order solicitation. Let X be that proportion. X is a random variable that takes
on all values x for which 0 ≤ x ≤ 1.

Example 3.7: Let X be the random variable defined by the waiting time, in hours, between
successive speeders spotted by a radar unit. The random variable X takes on all
values x for which x ≥ 0.

Definition 3.2: If a sample space contains a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers, it is called a discrete sample
space.

The outcomes of some statistical experiments may be neither finite nor countable.
Such is the case, for example, when one conducts an investigation measuring the
distances that a certain make of automobile will travel over a prescribed test course
on 5 liters of gasoline. Assuming distance to be a variable measured to any degree
of accuracy, then clearly we have an infinite number of possible distances in the
sample space that cannot be equated to the number of whole numbers. Or, if one
were to record the length of time for a chemical reaction to take place, once again
the possible time intervals making up our sample space would be infinite in number
and uncountable. We see now that all sample spaces need not be discrete.

Definition 3.3: If a sample space contains an infinite number of possibilities equal to the number
of points on a line segment, it is called a continuous sample space.

A random variable is called a discrete random variable if its set of possible
outcomes is countable. The random variables in Examples 3.1 to 3.5 are discrete
random variables. But a random variable whose set of possible values is an entire
interval of numbers is not discrete. When a random variable can take on values
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on a continuous scale, it is called a continuous random variable. Often the
possible values of a continuous random variable are precisely the same values that
are contained in the continuous sample space. Obviously, the random variables
described in Examples 3.6 and 3.7 are continuous random variables.

In most practical problems, continuous random variables represent measured
data, such as all possible heights, weights, temperatures, distance, or life periods,
whereas discrete random variables represent count data, such as the number of
defectives in a sample of k items or the number of highway fatalities per year in
a given state. Note that the random variables Y and M of Examples 3.1 and 3.2
both represent count data, Y the number of red balls and M the number of correct
hat matches.

3.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability.
In the case of tossing a coin three times, the variable X, representing the number
of heads, assumes the value 2 with probability 3/8, since 3 of the 8 equally likely
sample points result in two heads and one tail. If one assumes equal weights for the
simple events in Example 3.2, the probability that no employee gets back the right
helmet, that is, the probability that M assumes the value 0, is 1/3. The possible
values m of M and their probabilities are

m 0 1 3

P(M = m) 1
3

1
2

1
6

Note that the values of m exhaust all possible cases and hence the probabilities
add to 1.

Frequently, it is convenient to represent all the probabilities of a random variable
X by a formula. Such a formula would necessarily be a function of the numerical
values x that we shall denote by f(x), g(x), r(x), and so forth. Therefore, we write
f(x) = P (X = x); that is, f(3) = P (X = 3). The set of ordered pairs (x, f(x)) is
called the probability function, probability mass function, or probability
distribution of the discrete random variable X.

Definition 3.4: The set of ordered pairs (x, f(x)) is a probability function, probability mass
function, or probability distribution of the discrete random variable X if, for
each possible outcome x,

1. f(x) ≥ 0,

2.
∑
x
f(x) = 1,

3. P (X = x) = f(x).

Example 3.8: A shipment of 20 similar laptop computers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers, find the
probability distribution for the number of defectives.

Solution : Let X be a random variable whose values x are the possible numbers of defective
computers purchased by the school. Then x can only take the numbers 0, 1, and
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2. Now

f(0) = P (X = 0) =

(
3
0

)(
17
2

)(
20
2

) =
68

95
, f(1) = P (X = 1) =

(
3
1

)(
17
1

)(
20
2

) =
51

190
,

f(2) = P (X = 2) =

(
3
2

)(
17
0

)(
20
2

) =
3

190
.

Thus, the probability distribution of X is
x 0 1 2

f(x) 68
95

51
190

3
190

Example 3.9: If a car agency sells 50% of its inventory of a certain foreign car equipped with side
airbags, find a formula for the probability distribution of the number of cars with
side airbags among the next 4 cars sold by the agency.

Solution : Since the probability of selling an automobile with side airbags is 0.5, the 24 = 16
points in the sample space are equally likely to occur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be
done in

(
4
3

)
= 4 ways. In general, the event of selling x models with side airbags

and 4− x models without side airbags can occur in
(
4
x

)
ways, where x can be 0, 1,

2, 3, or 4. Thus, the probability distribution f(x) = P (X = x) is

f(x) =
1

16

(
4

x

)
, for x = 0, 1, 2, 3, 4.

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
number x. Writing F (x) = P (X ≤ x) for every real number x, we define F (x) to
be the cumulative distribution function of the random variable X.

Definition 3.5: The cumulative distribution function F (x) of a discrete random variable X
with probability distribution f(x) is

F (x) = P (X ≤ x) =
∑
t≤x

f(t), for −∞ < x < ∞.

For the random variable M , the number of correct matches in Example 3.2, we
have

F (2) = P (M ≤ 2) = f(0) + f(1) =
1

3
+

1

2
=

5

6
.

The cumulative distribution function of M is

F (m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for m < 0,
1
3 , for 0 ≤ m < 1,
5
6 , for 1 ≤ m < 3,

1, for m ≥ 3.
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One should pay particular notice to the fact that the cumulative distribution func-
tion is a monotone nondecreasing function defined not only for the values assumed
by the given random variable but for all real numbers.

Example 3.10: Find the cumulative distribution function of the random variable X in Example
3.9. Using F (x), verify that f(2) = 3/8.

Solution : Direct calculations of the probability distribution of Example 3.9 give f(0)= 1/16,
f(1) = 1/4, f(2)= 3/8, f(3)= 1/4, and f(4)= 1/16. Therefore,

F (0) = f(0) =
1

16
,

F (1) = f(0) + f(1) =
5

16
,

F (2) = f(0) + f(1) + f(2) =
11

16
,

F (3) = f(0) + f(1) + f(2) + f(3) =
15

16
,

F (4) = f(0) + f(1) + f(2) + f(3) + f(4) = 1.

Hence,

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 0,
1
16 , for 0 ≤ x < 1,
5
16 , for 1 ≤ x < 2,
11
16 , for 2 ≤ x < 3,
15
16 , for 3 ≤ x < 4,

1 for x ≥ 4.

Now

f(2) = F (2)− F (1) =
11

16
− 5

16
=

3

8
.

It is often helpful to look at a probability distribution in graphic form. One
might plot the points (x, f(x)) of Example 3.9 to obtain Figure 3.1. By joining
the points to the x axis either with a dashed or with a solid line, we obtain a
probability mass function plot. Figure 3.1 makes it easy to see what values of X
are most likely to occur, and it also indicates a perfectly symmetric situation in
this case.

Instead of plotting the points (x, f(x)), we more frequently construct rectangles,
as in Figure 3.2. Here the rectangles are constructed so that their bases of equal
width are centered at each value x and their heights are equal to the corresponding
probabilities given by f(x). The bases are constructed so as to leave no space
between the rectangles. Figure 3.2 is called a probability histogram.

Since each base in Figure 3.2 has unit width, P (X = x) is equal to the area
of the rectangle centered at x. Even if the bases were not of unit width, we could
adjust the heights of the rectangles to give areas that would still equal the proba-
bilities of X assuming any of its values x. This concept of using areas to represent
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x

f (x )

0 1 2 3 4
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Figure 3.1: Probability mass function plot.
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Figure 3.2: Probability histogram.

probabilities is necessary for our consideration of the probability distribution of a
continuous random variable.

The graph of the cumulative distribution function of Example 3.9, which ap-
pears as a step function in Figure 3.3, is obtained by plotting the points (x, F (x)).

Certain probability distributions are applicable to more than one physical situ-
ation. The probability distribution of Example 3.9, for example, also applies to the
random variable Y , where Y is the number of heads when a coin is tossed 4 times,
or to the random variable W , where W is the number of red cards that occur when
4 cards are drawn at random from a deck in succession with each card replaced and
the deck shuffled before the next drawing. Special discrete distributions that can
be applied to many different experimental situations will be considered in Chapter
5.
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Figure 3.3: Discrete cumulative distribution function.

3.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assuming exactly any of its
values. Consequently, its probability distribution cannot be given in tabular form.
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88 Chapter 3 Random Variables and Probability Distributions

At first this may seem startling, but it becomes more plausible when we consider a
particular example. Let us discuss a random variable whose values are the heights
of all people over 21 years of age. Between any two values, say 163.5 and 164.5
centimeters, or even 163.99 and 164.01 centimeters, there are an infinite number
of heights, one of which is 164 centimeters. The probability of selecting a person
at random who is exactly 164 centimeters tall and not one of the infinitely large
set of heights so close to 164 centimeters that you cannot humanly measure the
difference is remote, and thus we assign a probability of 0 to the event. This is not
the case, however, if we talk about the probability of selecting a person who is at
least 163 centimeters but not more than 165 centimeters tall. Now we are dealing
with an interval rather than a point value of our random variable.

We shall concern ourselves with computing probabilities for various intervals of
continuous random variables such as P (a < X < b), P (W ≥ c), and so forth. Note
that when X is continuous,

P (a < X ≤ b) = P (a < X < b) + P (X = b) = P (a < X < b).

That is, it does not matter whether we include an endpoint of the interval or not.
This is not true, though, when X is discrete.

Although the probability distribution of a continuous random variable cannot
be presented in tabular form, it can be stated as a formula. Such a formula would
necessarily be a function of the numerical values of the continuous random variable
X and as such will be represented by the functional notation f(x). In dealing with
continuous variables, f(x) is usually called the probability density function, or
simply the density function, of X. Since X is defined over a continuous sample
space, it is possible for f(x) to have a finite number of discontinuities. However,
most density functions that have practical applications in the analysis of statistical
data are continuous and their graphs may take any of several forms, some of which
are shown in Figure 3.4. Because areas will be used to represent probabilities and
probabilities are positive numerical values, the density function must lie entirely
above the x axis.

(a) (b) (c) (d)

Figure 3.4: Typical density functions.

A probability density function is constructed so that the area under its curve
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3.3 Continuous Probability Distributions 89

bounded by the x axis is equal to 1 when computed over the range of X for which
f(x) is defined. Should this range of X be a finite interval, it is always possible
to extend the interval to include the entire set of real numbers by defining f(x) to
be zero at all points in the extended portions of the interval. In Figure 3.5, the
probability that X assumes a value between a and b is equal to the shaded area
under the density function between the ordinates at x = a and x = b, and from
integral calculus is given by

P (a < X < b) =

∫ b

a

f(x) dx.

a b
x

f(x)

Figure 3.5: P (a < X < b).

Definition 3.6: The function f(x) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(x) ≥ 0, for all x ∈ R.

2.
∫∞
−∞ f(x) dx = 1.

3. P (a < X < b) =
∫ b

a
f(x) dx.

Example 3.11: Suppose that the error in the reaction temperature, in ◦C, for a controlled labora-
tory experiment is a continuous random variable X having the probability density
function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

.

(a) Verify that f(x) is a density function.

(b) Find P (0 < X ≤ 1).

Solution : We use Definition 3.6.

(a) Obviously, f(x) ≥ 0. To verify condition 2 in Definition 3.6, we have∫ ∞

−∞
f(x) dx =

∫ 2

−1

x2

3
dx =

x3

9
|2−1 =

8

9
+

1

9
= 1.
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90 Chapter 3 Random Variables and Probability Distributions

(b) Using formula 3 in Definition 3.6, we obtain

P (0 < X ≤ 1) =

∫ 1

0

x2

3
dx =

x3

9

∣∣∣∣1
0

=
1

9
.

Definition 3.7: The cumulative distribution function F (x) of a continuous random variable
X with density function f(x) is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt, for −∞ < x < ∞.

As an immediate consequence of Definition 3.7, one can write the two results

P (a < X < b) = F (b)− F (a) and f(x) =
dF (x)

dx
,

if the derivative exists.

Example 3.12: For the density function of Example 3.11, find F (x), and use it to evaluate
P (0 < X ≤ 1).

Solution : For −1 < x < 2,

F (x) =

∫ x

−∞
f(t) dt =

∫ x

−1

t2

3
dt =

t3

9

∣∣∣∣x
−1

=
x3 + 1

9
.

Therefore,

F (x) =

⎧⎪⎨⎪⎩
0, x < −1,
x3+1

9 , −1 ≤ x < 2,

1, x ≥ 2.

The cumulative distribution function F (x) is expressed in Figure 3.6. Now

P (0 < X ≤ 1) = F (1)− F (0) =
2

9
− 1

9
=

1

9
,

which agrees with the result obtained by using the density function in Example
3.11.

Example 3.13: The Department of Energy (DOE) puts projects out on bid and generally estimates
what a reasonable bid should be. Call the estimate b. The DOE has determined
that the density function of the winning (low) bid is

f(y) =

{
5
8b ,

2
5b ≤ y ≤ 2b,

0, elsewhere.

Find F (y) and use it to determine the probability that the winning bid is less than
the DOE’s preliminary estimate b.

Solution : For 2b/5 ≤ y ≤ 2b,

F (y) =

∫ y

2b/5

5

8b
dy =

5t

8b

∣∣∣∣y
2b/5

=
5y

8b
− 1

4
.
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Figure 3.6: Continuous cumulative distribution function.

Thus,

F (y) =

⎧⎪⎨⎪⎩
0, y < 2

5b,
5y
8b − 1

4 ,
2
5b ≤ y < 2b,

1, y ≥ 2b.

To determine the probability that the winning bid is less than the preliminary bid
estimate b, we have

P (Y ≤ b) = F (b) =
5

8
− 1

4
=

3

8
.

Exercises

3.1 Classify the following random variables as dis-
crete or continuous:

X: the number of automobile accidents per year
in Virginia.

Y : the length of time to play 18 holes of golf.

M : the amount of milk produced yearly by a par-
ticular cow.

N : the number of eggs laid each month by a hen.

P : the number of building permits issued each
month in a certain city.

Q: the weight of grain produced per acre.

3.2 An overseas shipment of 5 foreign automobiles
contains 2 that have slight paint blemishes. If an
agency receives 3 of these automobiles at random, list
the elements of the sample space S, using the letters B
and N for blemished and nonblemished, respectively;

then to each sample point assign a value x of the ran-
dom variable X representing the number of automo-
biles with paint blemishes purchased by the agency.

3.3 Let W be a random variable giving the number
of heads minus the number of tails in three tosses of a
coin. List the elements of the sample space S for the
three tosses of the coin and to each sample point assign
a value w of W .

3.4 A coin is flipped until 3 heads in succession oc-
cur. List only those elements of the sample space that
require 6 or less tosses. Is this a discrete sample space?
Explain.

3.5 Determine the value c so that each of the follow-
ing functions can serve as a probability distribution of
the discrete random variable X:

(a) f(x) = c(x2 + 4), for x = 0, 1, 2, 3;

(b) f(x) = c
(
2
x

)(
3

3−x

)
, for x = 0, 1, 2.
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3.6 The shelf life, in days, for bottles of a certain
prescribed medicine is a random variable having the
density function

f(x) =

{
20,000

(x+100)3
, x > 0,

0, elsewhere.

Find the probability that a bottle of this medicine will
have a shell life of

(a) at least 200 days;

(b) anywhere from 80 to 120 days.

3.7 The total number of hours, measured in units of
100 hours, that a family runs a vacuum cleaner over a
period of one year is a continuous random variable X
that has the density function

f(x) =

⎧⎨⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Find the probability that over a period of one year, a
family runs their vacuum cleaner

(a) less than 120 hours;

(b) between 50 and 100 hours.

3.8 Find the probability distribution of the random
variable W in Exercise 3.3, assuming that the coin is
biased so that a head is twice as likely to occur as a
tail.

3.9 The proportion of people who respond to a certain
mail-order solicitation is a continuous random variable
X that has the density function

f(x) =

{
2(x+2)

5
, 0 < x < 1,

0, elsewhere.

(a) Show that P (0 < X < 1) = 1.

(b) Find the probability that more than 1/4 but fewer
than 1/2 of the people contacted will respond to
this type of solicitation.

3.10 Find a formula for the probability distribution of
the random variable X representing the outcome when
a single die is rolled once.

3.11 A shipment of 7 television sets contains 2 de-
fective sets. A hotel makes a random purchase of 3
of the sets. If x is the number of defective sets pur-
chased by the hotel, find the probability distribution
of X. Express the results graphically as a probability
histogram.

3.12 An investment firm offers its customers munici-
pal bonds that mature after varying numbers of years.
Given that the cumulative distribution function of T ,
the number of years to maturity for a randomly se-
lected bond, is

F (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, t < 1,
1
4
, 1 ≤ t < 3,

1
2
, 3 ≤ t < 5,

3
4
, 5 ≤ t < 7,

1, t ≥ 7,

find

(a) P (T = 5);

(b) P (T > 3);

(c) P (1.4 < T < 6);

(d) P (T ≤ 5 | T ≥ 2).

3.13 The probability distribution of X, the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Construct the cumulative distribution function of X.

3.14 The waiting time, in hours, between successive
speeders spotted by a radar unit is a continuous ran-
dom variable with cumulative distribution function

F (x) =

{
0, x < 0,

1− e−8x, x ≥ 0.

Find the probability of waiting less than 12 minutes
between successive speeders

(a) using the cumulative distribution function of X;

(b) using the probability density function of X.

3.15 Find the cumulative distribution function of the
random variable X representing the number of defec-
tives in Exercise 3.11. Then using F (x), find

(a) P (X = 1);

(b) P (0 < X ≤ 2).

3.16 Construct a graph of the cumulative distribution
function of Exercise 3.15.

3.17 A continuous random variable X that can as-
sume values between x = 1 and x = 3 has a density
function given by f(x) = 1/2.

(a) Show that the area under the curve is equal to 1.

(b) Find P (2 < X < 2.5).

(c) Find P (X ≤ 1.6).
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3.18 A continuous random variable X that can as-
sume values between x = 2 and x = 5 has a density
function given by f(x) = 2(1 + x)/27. Find

(a) P (X < 4);

(b) P (3 ≤ X < 4).

3.19 For the density function of Exercise 3.17, find
F (x). Use it to evaluate P (2 < X < 2.5).

3.20 For the density function of Exercise 3.18, find
F (x), and use it to evaluate P (3 ≤ X < 4).

3.21 Consider the density function

f(x) =

{
k
√
x, 0 < x < 1,

0, elsewhere.

(a) Evaluate k.

(b) Find F (x) and use it to evaluate

P (0.3 < X < 0.6).

3.22 Three cards are drawn in succession from a deck
without replacement. Find the probability distribution
for the number of spades.

3.23 Find the cumulative distribution function of the
random variable W in Exercise 3.8. Using F (w), find

(a) P (W > 0);

(b) P (−1 ≤ W < 3).

3.24 Find the probability distribution for the number
of jazz CDs when 4 CDs are selected at random from
a collection consisting of 5 jazz CDs, 2 classical CDs,
and 3 rock CDs. Express your results by means of a
formula.

3.25 From a box containing 4 dimes and 2 nickels,
3 coins are selected at random without replacement.
Find the probability distribution for the total T of the
3 coins. Express the probability distribution graphi-
cally as a probability histogram.

3.26 From a box containing 4 black balls and 2 green
balls, 3 balls are drawn in succession, each ball being
replaced in the box before the next draw is made. Find
the probability distribution for the number of green
balls.

3.27 The time to failure in hours of an important
piece of electronic equipment used in a manufactured
DVD player has the density function

f(x) =

{
1

2000
exp(−x/2000), x ≥ 0,

0, x < 0.

(a) Find F (x).

(b) Determine the probability that the component (and
thus the DVD player) lasts more than 1000 hours
before the component needs to be replaced.

(c) Determine the probability that the component fails
before 2000 hours.

3.28 A cereal manufacturer is aware that the weight
of the product in the box varies slightly from box
to box. In fact, considerable historical data have al-
lowed the determination of the density function that
describes the probability structure for the weight (in
ounces). Letting X be the random variable weight, in
ounces, the density function can be described as

f(x) =

{
2
5
, 23.75 ≤ x ≤ 26.25,

0, elsewhere.

(a) Verify that this is a valid density function.

(b) Determine the probability that the weight is
smaller than 24 ounces.

(c) The company desires that the weight exceeding 26
ounces be an extremely rare occurrence. What is
the probability that this rare occurrence does ac-
tually occur?

3.29 An important factor in solid missile fuel is the
particle size distribution. Significant problems occur if
the particle sizes are too large. From production data
in the past, it has been determined that the particle
size (in micrometers) distribution is characterized by

f(x) =

{
3x−4, x > 1,

0, elsewhere.

(a) Verify that this is a valid density function.

(b) Evaluate F (x).

(c) What is the probability that a random particle
from the manufactured fuel exceeds 4 micrometers?

3.30 Measurements of scientific systems are always
subject to variation, some more than others. There
are many structures for measurement error, and statis-
ticians spend a great deal of time modeling these errors.
Suppose the measurement error X of a certain physical
quantity is decided by the density function

f(x) =

{
k(3− x2), −1 ≤ x ≤ 1,

0, elsewhere.

(a) Determine k that renders f(x) a valid density func-
tion.

(b) Find the probability that a random error in mea-
surement is less than 1/2.

(c) For this particular measurement, it is undesirable
if the magnitude of the error (i.e., |x|) exceeds 0.8.
What is the probability that this occurs?

Uploaded By: anonymousSTUDENTS-HUB.com



94 Chapter 3 Random Variables and Probability Distributions

3.31 Based on extensive testing, it is determined by
the manufacturer of a washing machine that the time
Y (in years) before a major repair is required is char-
acterized by the probability density function

f(y) =

{
1
4
e−y/4, y ≥ 0,

0, elsewhere.

(a) Critics would certainly consider the product a bar-
gain if it is unlikely to require a major repair before
the sixth year. Comment on this by determining
P (Y > 6).

(b) What is the probability that a major repair occurs
in the first year?

3.32 The proportion of the budget for a certain type
of industrial company that is allotted to environmental
and pollution control is coming under scrutiny. A data
collection project determines that the distribution of
these proportions is given by

f(y) =

{
5(1− y)4, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify that the above is a valid density function.

(b) What is the probability that a company chosen at
random expends less than 10% of its budget on en-
vironmental and pollution controls?

(c) What is the probability that a company selected
at random spends more than 50% of its budget on
environmental and pollution controls?

3.33 Suppose a certain type of small data processing
firm is so specialized that some have difficulty making
a profit in their first year of operation. The probabil-
ity density function that characterizes the proportion
Y that make a profit is given by

f(y) =

{
ky4(1− y)3, 0 ≤ y ≤ 1,

0, elsewhere.

(a) What is the value of k that renders the above a
valid density function?

(b) Find the probability that at most 50% of the firms
make a profit in the first year.

(c) Find the probability that at least 80% of the firms
make a profit in the first year.

3.34 Magnetron tubes are produced on an automated
assembly line. A sampling plan is used periodically to
assess quality of the lengths of the tubes. This mea-
surement is subject to uncertainty. It is thought that
the probability that a random tube meets length spec-
ification is 0.99. A sampling plan is used in which the
lengths of 5 random tubes are measured.

(a) Show that the probability function of Y , the num-
ber out of 5 that meet length specification, is given
by the following discrete probability function:

f(y) =
5!

y!(5− y)!
(0.99)y(0.01)5−y,

for y = 0, 1, 2, 3, 4, 5.

(b) Suppose random selections are made off the line
and 3 are outside specifications. Use f(y) above ei-
ther to support or to refute the conjecture that the
probability is 0.99 that a single tube meets specifi-
cations.

3.35 Suppose it is known from large amounts of his-
torical data that X, the number of cars that arrive at
a specific intersection during a 20-second time period,
is characterized by the following discrete probability
function:

f(x) = e−6 6
x

x!
, for x = 0, 1, 2, . . . .

(a) Find the probability that in a specific 20-second
time period, more than 8 cars arrive at the
intersection.

(b) Find the probability that only 2 cars arrive.

3.36 On a laboratory assignment, if the equipment is
working, the density function of the observed outcome,
X, is

f(x) =

{
2(1− x), 0 < x < 1,

0, otherwise.

(a) Calculate P (X ≤ 1/3).

(b) What is the probability that X will exceed 0.5?

(c) Given that X ≥ 0.5, what is the probability that
X will be less than 0.75?

3.4 Joint Probability Distributions

Our study of random variables and their probability distributions in the preced-
ing sections is restricted to one-dimensional sample spaces, in that we recorded
outcomes of an experiment as values assumed by a single random variable. There
will be situations, however, where we may find it desirable to record the simulta-
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neous outcomes of several random variables. For example, we might measure the
amount of precipitate P and volume V of gas released from a controlled chemical
experiment, giving rise to a two-dimensional sample space consisting of the out-
comes (p, v), or we might be interested in the hardness H and tensile strength T
of cold-drawn copper, resulting in the outcomes (h, t). In a study to determine the
likelihood of success in college based on high school data, we might use a three-
dimensional sample space and record for each individual his or her aptitude test
score, high school class rank, and grade-point average at the end of freshman year
in college.

If X and Y are two discrete random variables, the probability distribution for
their simultaneous occurrence can be represented by a function with values f(x, y)
for any pair of values (x, y) within the range of the random variables X and Y . It
is customary to refer to this function as the joint probability distribution of
X and Y .

Hence, in the discrete case,

f(x, y) = P (X = x, Y = y);

that is, the values f(x, y) give the probability that outcomes x and y occur at
the same time. For example, if an 18-wheeler is to have its tires serviced and X
represents the number of miles these tires have been driven and Y represents the
number of tires that need to be replaced, then f(30000, 5) is the probability that
the tires are used over 30,000 miles and the truck needs 5 new tires.

Definition 3.8: The function f(x, y) is a joint probability distribution or probability mass
function of the discrete random variables X and Y if

1. f(x, y) ≥ 0 for all (x, y),

2.
∑
x

∑
y
f(x, y) = 1,

3. P (X = x, Y = y) = f(x, y).

For any region A in the xy plane, P [(X,Y ) ∈ A] =
∑∑

A

f(x, y).

Example 3.14: Two ballpoint pens are selected at random from a box that contains 3 blue pens,
2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is
the number of red pens selected, find

(a) the joint probability function f(x, y),

(b) P [(X,Y ) ∈ A], where A is the region {(x, y)|x+ y ≤ 1}.
Solution : The possible pairs of values (x, y) are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0).

(a) Now, f(0, 1), for example, represents the probability that a red and a green
pens are selected. The total number of equally likely ways of selecting any 2
pens from the 8 is

(
8
2

)
= 28. The number of ways of selecting 1 red from 2

red pens and 1 green from 3 green pens is
(
2
1

)(
3
1

)
= 6. Hence, f(0, 1) = 6/28

= 3/14. Similar calculations yield the probabilities for the other cases, which
are presented in Table 3.1. Note that the probabilities sum to 1. In Chapter
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5, it will become clear that the joint probability distribution of Table 3.1 can
be represented by the formula

f(x, y) =

(
3
x

)(
2
y

)(
3

2−x−y

)(
8
2

) ,

for x = 0, 1, 2; y = 0, 1, 2; and 0 ≤ x+ y ≤ 2.

(b) The probability that (X,Y ) fall in the region A is

P [(X,Y ) ∈ A] = P (X + Y ≤ 1) = f(0, 0) + f(0, 1) + f(1, 0)

=
3

28
+

3

14
+

9

28
=

9

14
.

Table 3.1: Joint Probability Distribution for Example 3.14

x Row
f(x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

When X and Y are continuous random variables, the joint density function
f(x, y) is a surface lying above the xy plane, and P [(X,Y ) ∈ A], where A is any
region in the xy plane, is equal to the volume of the right cylinder bounded by the
base A and the surface.

Definition 3.9: The function f(x, y) is a joint density function of the continuous random
variables X and Y if

1. f(x, y) ≥ 0, for all (x, y),

2.
∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1,

3. P [(X,Y ) ∈ A] =
∫ ∫

A
f(x, y) dx dy, for any region A in the xy plane.

Example 3.15: A privately owned business operates both a drive-in facility and a walk-in facility.
On a randomly selected day, let X and Y , respectively, be the proportions of the
time that the drive-in and the walk-in facilities are in use, and suppose that the
joint density function of these random variables is

f(x, y) =

{
2
5 (2x+ 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify condition 2 of Definition 3.9.

(b) Find P [(X,Y ) ∈ A], where A = {(x, y) | 0 < x < 1
2 ,

1
4 < y < 1

2}.
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Solution : (a) The integration of f(x, y) over the whole region is∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ 1

0

∫ 1

0

2

5
(2x+ 3y) dx dy

=

∫ 1

0

(
2x2

5
+

6xy

5

)∣∣∣∣x=1

x=0

dy

=

∫ 1

0

(
2

5
+

6y

5

)
dy =

(
2y

5
+

3y2

5

)∣∣∣∣1
0

=
2

5
+

3

5
= 1.

(b) To calculate the probability, we use

P [(X,Y ) ∈ A] = P

(
0 < X <

1

2
,
1

4
< Y <

1

2

)
=

∫ 1/2

1/4

∫ 1/2

0

2

5
(2x+ 3y) dx dy

=

∫ 1/2

1/4

(
2x2

5
+

6xy

5

)∣∣∣∣x=1/2

x=0

dy =

∫ 1/2

1/4

(
1

10
+

3y

5

)
dy

=

(
y

10
+

3y2

10

)∣∣∣∣1/2
1/4

=
1

10

[(
1

2
+

3

4

)
−
(
1

4
+

3

16

)]
=

13

160
.

Given the joint probability distribution f(x, y) of the discrete random variables
X and Y , the probability distribution g(x) of X alone is obtained by summing
f(x, y) over the values of Y . Similarly, the probability distribution h(y) of Y alone
is obtained by summing f(x, y) over the values of X. We define g(x) and h(y) to
be the marginal distributions of X and Y , respectively. When X and Y are
continuous random variables, summations are replaced by integrals. We can now
make the following general definition.

Definition 3.10: The marginal distributions of X alone and of Y alone are

g(x) =
∑
y

f(x, y) and h(y) =
∑
x

f(x, y)

for the discrete case, and

g(x) =

∫ ∞

−∞
f(x, y) dy and h(y) =

∫ ∞

−∞
f(x, y) dx

for the continuous case.

The term marginal is used here because, in the discrete case, the values of g(x)
and h(y) are just the marginal totals of the respective columns and rows when the
values of f(x, y) are displayed in a rectangular table.
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98 Chapter 3 Random Variables and Probability Distributions

Example 3.16: Show that the column and row totals of Table 3.1 give the marginal distribution
of X alone and of Y alone.

Solution : For the random variable X, we see that

g(0) = f(0, 0) + f(0, 1) + f(0, 2) =
3

28
+

3

14
+

1

28
=

5

14
,

g(1) = f(1, 0) + f(1, 1) + f(1, 2) =
9

28
+

3

14
+ 0 =

15

28
,

and

g(2) = f(2, 0) + f(2, 1) + f(2, 2) =
3

28
+ 0 + 0 =

3

28
,

which are just the column totals of Table 3.1. In a similar manner we could show
that the values of h(y) are given by the row totals. In tabular form, these marginal
distributions may be written as follows:

x 0 1 2

g(x) 5
14

15
28

3
28

y 0 1 2

h(y) 15
28

3
7

1
28

Example 3.17: Find g(x) and h(y) for the joint density function of Example 3.15.
Solution : By definition,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

0

2

5
(2x+ 3y) dy =

(
4xy

5
+

6y2

10

)∣∣∣∣y=1

y=0

=
4x+ 3

5
,

for 0 ≤ x ≤ 1, and g(x) = 0 elsewhere. Similarly,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ 1

0

2

5
(2x+ 3y) dx =

2(1 + 3y)

5
,

for 0 ≤ y ≤ 1, and h(y) = 0 elsewhere.
The fact that the marginal distributions g(x) and h(y) are indeed the proba-

bility distributions of the individual variables X and Y alone can be verified by
showing that the conditions of Definition 3.4 or Definition 3.6 are satisfied. For
example, in the continuous case∫ ∞

−∞
g(x) dx =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dy dx = 1,

and

P (a < X < b) = P (a < X < b,−∞ < Y < ∞)

=

∫ b

a

∫ ∞

−∞
f(x, y) dy dx =

∫ b

a

g(x) dx.

In Section 3.1, we stated that the value x of the random variable X represents
an event that is a subset of the sample space. If we use the definition of conditional
probability as stated in Chapter 2,

P (B|A) = P (A ∩B)

P (A)
, provided P (A) > 0,
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where A and B are now the events defined by X = x and Y = y, respectively, then

P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)
=

f(x, y)

g(x)
, provided g(x) > 0,

where X and Y are discrete random variables.
It is not difficult to show that the function f(x, y)/g(x), which is strictly a func-

tion of y with x fixed, satisfies all the conditions of a probability distribution. This
is also true when f(x, y) and g(x) are the joint density and marginal distribution,
respectively, of continuous random variables. As a result, it is extremely important
that we make use of the special type of distribution of the form f(x, y)/g(x) in
order to be able to effectively compute conditional probabilities. This type of dis-
tribution is called a conditional probability distribution; the formal definition
follows.

Definition 3.11: Let X and Y be two random variables, discrete or continuous. The conditional
distribution of the random variable Y given that X = x is

f(y|x) = f(x, y)

g(x)
, provided g(x) > 0.

Similarly, the conditional distribution of X given that Y = y is

f(x|y) = f(x, y)

h(y)
, provided h(y) > 0.

If we wish to find the probability that the discrete random variable X falls between
a and b when it is known that the discrete variable Y = y, we evaluate

P (a < X < b | Y = y) =
∑

a<x<b

f(x|y),

where the summation extends over all values of X between a and b. When X and
Y are continuous, we evaluate

P (a < X < b | Y = y) =

∫ b

a

f(x|y) dx.

Example 3.18: Referring to Example 3.14, find the conditional distribution ofX, given that Y = 1,
and use it to determine P (X = 0 | Y = 1).

Solution : We need to find f(x|y), where y = 1. First, we find that

h(1) =

2∑
x=0

f(x, 1) =
3

14
+

3

14
+ 0 =

3

7
.

Now

f(x|1) = f(x, 1)

h(1)
=

(
7

3

)
f(x, 1), x = 0, 1, 2.
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Therefore,

f(0|1) =
(
7

3

)
f(0, 1) =

(
7

3

)(
3

14

)
=

1

2
, f(1|1) =

(
7

3

)
f(1, 1) =

(
7

3

)(
3

14

)
=

1

2
,

f(2|1) =
(
7

3

)
f(2, 1) =

(
7

3

)
(0) = 0,

and the conditional distribution of X, given that Y = 1, is

x 0 1 2

f(x|1) 1
2

1
2 0

Finally,

P (X = 0 | Y = 1) = f(0|1) = 1

2
.

Therefore, if it is known that 1 of the 2 pen refills selected is red, we have a
probability equal to 1/2 that the other refill is not blue.

Example 3.19: The joint density for the random variables (X,Y ), where X is the unit temperature
change and Y is the proportion of spectrum shift that a certain atomic particle
produces, is

f(x, y) =

{
10xy2, 0 < x < y < 1,

0, elsewhere.

(a) Find the marginal densities g(x), h(y), and the conditional density f(y|x).
(b) Find the probability that the spectrum shifts more than half of the total

observations, given that the temperature is increased by 0.25 unit.

Solution : (a) By definition,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

x

10xy2 dy

=
10

3
xy3

∣∣∣∣y=1

y=x

=
10

3
x(1− x3), 0 < x < 1,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ y

0

10xy2 dx = 5x2y2
∣∣x=y

x=0
= 5y4, 0 < y < 1.

Now

f(y|x) = f(x, y)

g(x)
=

10xy2

10
3 x(1− x3)

=
3y2

1− x3
, 0 < x < y < 1.

(b) Therefore,

P

(
Y >

1

2

∣∣∣∣ X = 0.25

)
=

∫ 1

1/2

f(y | x = 0.25) dy =

∫ 1

1/2

3y2

1− 0.253
dy =

8

9
.

Example 3.20: Given the joint density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere,
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find g(x), h(y), f(x|y), and evaluate P ( 14 < X < 1
2 | Y = 1

3 ).
Solution : By definition of the marginal density. for 0 < x < 2,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

0

x(1 + 3y2)

4
dy

=

(
xy

4
+

xy3

4

)∣∣∣∣y=1

y=0

=
x

2
,

and for 0 < y < 1,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ 2

0

x(1 + 3y2)

4
dx

=

(
x2

8
+

3x2y2

8

)∣∣∣∣x=2

x=0

=
1 + 3y2

2
.

Therefore, using the conditional density definition, for 0 < x < 2,

f(x|y) = f(x, y)

h(y)
=

x(1 + 3y2)/4

(1 + 3y2)/2
=

x

2
,

and

P

(
1

4
< X <

1

2

∣∣∣∣ Y =
1

3

)
=

∫ 1/2

1/4

x

2
dx =

3

64
.

Statistical Independence

If f(x|y) does not depend on y, as is the case for Example 3.20, then f(x|y) = g(x)
and f(x, y) = g(x)h(y). The proof follows by substituting

f(x, y) = f(x|y)h(y)
into the marginal distribution of X. That is,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ ∞

−∞
f(x|y)h(y) dy.

If f(x|y) does not depend on y, we may write

g(x) = f(x|y)
∫ ∞

−∞
h(y) dy.

Now ∫ ∞

−∞
h(y) dy = 1,

since h(y) is the probability density function of Y . Therefore,

g(x) = f(x|y) and then f(x, y) = g(x)h(y).
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It should make sense to the reader that if f(x|y) does not depend on y, then of
course the outcome of the random variable Y has no impact on the outcome of the
random variable X. In other words, we say that X and Y are independent random
variables. We now offer the following formal definition of statistical independence.

Definition 3.12: Let X and Y be two random variables, discrete or continuous, with joint proba-
bility distribution f(x, y) and marginal distributions g(x) and h(y), respectively.
The random variables X and Y are said to be statistically independent if and
only if

f(x, y) = g(x)h(y)

for all (x, y) within their range.

The continuous random variables of Example 3.20 are statistically indepen-
dent, since the product of the two marginal distributions gives the joint density
function. This is obviously not the case, however, for the continuous variables of
Example 3.19. Checking for statistical independence of discrete random variables
requires a more thorough investigation, since it is possible to have the product of
the marginal distributions equal to the joint probability distribution for some but
not all combinations of (x, y). If you can find any point (x, y) for which f(x, y)
is defined such that f(x, y) �= g(x)h(y), the discrete variables X and Y are not
statistically independent.

Example 3.21: Show that the random variables of Example 3.14 are not statistically independent.
Proof : Let us consider the point (0, 1). From Table 3.1 we find the three probabilities

f(0, 1), g(0), and h(1) to be

f(0, 1) =
3

14
,

g(0) =
2∑

y=0

f(0, y) =
3

28
+

3

14
+

1

28
=

5

14
,

h(1) =

2∑
x=0

f(x, 1) =
3

14
+

3

14
+ 0 =

3

7
.

Clearly,

f(0, 1) �= g(0)h(1),

and therefore X and Y are not statistically independent.
All the preceding definitions concerning two random variables can be general-

ized to the case of n random variables. Let f(x1, x2, . . . , xn) be the joint probability
function of the random variables X1, X2, . . . , Xn. The marginal distribution of X1,
for example, is

g(x1) =
∑
x2

· · ·
∑
xn

f(x1, x2, . . . , xn)
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for the discrete case, and

g(x1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, x2, . . . , xn) dx2 dx3 · · · dxn

for the continuous case. We can now obtain joint marginal distributions such
as g(x1, x2), where

g(x1, x2) =

⎧⎨⎩
∑
x3

· · ·∑
xn

f(x1, x2, . . . , xn) (discrete case),∫∞
−∞ · · · ∫∞

−∞ f(x1, x2, . . . , xn) dx3 dx4 · · · dxn (continuous case).

We could consider numerous conditional distributions. For example, the joint con-
ditional distribution of X1, X2, and X3, given that X4 = x4, X5 = x5, . . . , Xn =
xn, is written

f(x1, x2, x3 | x4, x5, . . . , xn) =
f(x1, x2, . . . , xn)

g(x4, x5, . . . , xn)
,

where g(x4, x5, . . . , xn) is the joint marginal distribution of the random variables
X4, X5, . . . , Xn.

A generalization of Definition 3.12 leads to the following definition for the mu-
tual statistical independence of the variables X1, X2, . . . , Xn.

Definition 3.13: Let X1, X2, . . . , Xn be n random variables, discrete or continuous, with
joint probability distribution f(x1, x2, . . . , xn) and marginal distribution
f1(x1), f2(x2), . . . , fn(xn), respectively. The random variablesX1, X2, . . . , Xn are
said to be mutually statistically independent if and only if

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)

for all (x1, x2, . . . , xn) within their range.

Example 3.22: Suppose that the shelf life, in years, of a certain perishable food product packaged
in cardboard containers is a random variable whose probability density function is
given by

f(x) =

{
e−x, x > 0,

0, elsewhere.

Let X1, X2, and X3 represent the shelf lives for three of these containers selected
independently and find P (X1 < 2, 1 < X2 < 3, X3 > 2).

Solution : Since the containers were selected independently, we can assume that the random
variables X1, X2, and X3 are statistically independent, having the joint probability
density

f(x1, x2, x3) = f(x1)f(x2)f(x3) = e−x1e−x2e−x3 = e−x1−x2−x3 ,

for x1 > 0, x2 > 0, x3 > 0, and f(x1, x2, x3) = 0 elsewhere. Hence

P (X1 < 2, 1 < X2 < 3, X3 > 2) =

∫ ∞

2

∫ 3

1

∫ 2

0

e−x1−x2−x3 dx1 dx2 dx3

= (1− e−2)(e−1 − e−3)e−2 = 0.0372.
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What Are Important Characteristics of Probability Distributions
and Where Do They Come From?

This is an important point in the text to provide the reader with a transition into
the next three chapters. We have given illustrations in both examples and exercises
of practical scientific and engineering situations in which probability distributions
and their properties are used to solve important problems. These probability dis-
tributions, either discrete or continuous, were introduced through phrases like “it
is known that” or “suppose that” or even in some cases “historical evidence sug-
gests that.” These are situations in which the nature of the distribution and even
a good estimate of the probability structure can be determined through historical
data, data from long-term studies, or even large amounts of planned data. The
reader should remember the discussion of the use of histograms in Chapter 1 and
from that recall how frequency distributions are estimated from the histograms.
However, not all probability functions and probability density functions are derived
from large amounts of historical data. There are a substantial number of situa-
tions in which the nature of the scientific scenario suggests a distribution type.
Indeed, many of these are reflected in exercises in both Chapter 2 and this chap-
ter. When independent repeated observations are binary in nature (e.g., defective
or not, survive or not, allergic or not) with value 0 or 1, the distribution covering
this situation is called the binomial distribution and the probability function
is known and will be demonstrated in its generality in Chapter 5. Exercise 3.34
in Section 3.3 and Review Exercise 3.80 are examples, and there are others that
the reader should recognize. The scenario of a continuous distribution in time to
failure, as in Review Exercise 3.69 or Exercise 3.27 on page 93, often suggests a dis-
tribution type called the exponential distribution. These types of illustrations
are merely two of many so-called standard distributions that are used extensively
in real-world problems because the scientific scenario that gives rise to each of them
is recognizable and occurs often in practice. Chapters 5 and 6 cover many of these
types along with some underlying theory concerning their use.

A second part of this transition to material in future chapters deals with the
notion of population parameters or distributional parameters. Recall in
Chapter 1 we discussed the need to use data to provide information about these
parameters. We went to some length in discussing the notions of a mean and
variance and provided a vision for the concepts in the context of a population.
Indeed, the population mean and variance are easily found from the probability
function for the discrete case or probability density function for the continuous
case. These parameters and their importance in the solution of many types of
real-world problems will provide much of the material in Chapters 8 through 17.

Exercises

3.37 Determine the values of c so that the follow-
ing functions represent joint probability distributions
of the random variables X and Y :

(a) f(x, y) = cxy, for x = 1, 2, 3; y = 1, 2, 3;

(b) f(x, y) = c|x− y|, for x = −2, 0, 2; y = −2, 3.

3.38 If the joint probability distribution of X and Y
is given by

f(x, y) =
x+ y

30
, for x = 0, 1, 2, 3; y = 0, 1, 2,

find
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(a) P (X ≤ 2, Y = 1);

(b) P (X > 2, Y ≤ 1);

(c) P (X > Y );

(d) P (X + Y = 4).

3.39 From a sack of fruit containing 3 oranges, 2 ap-
ples, and 3 bananas, a random sample of 4 pieces of
fruit is selected. If X is the number of oranges and Y
is the number of apples in the sample, find

(a) the joint probability distribution of X and Y ;

(b) P [(X,Y ) ∈ A], where A is the region that is given
by {(x, y) | x+ y ≤ 2}.

3.40 A fast-food restaurant operates both a drive-
through facility and a walk-in facility. On a randomly
selected day, let X and Y , respectively, be the propor-
tions of the time that the drive-through and walk-in
facilities are in use, and suppose that the joint density
function of these random variables is

f(x, y) =

{
2
3
(x+ 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Find the marginal density of X.

(b) Find the marginal density of Y .

(c) Find the probability that the drive-through facility
is busy less than one-half of the time.

3.41 A candy company distributes boxes of choco-
lates with a mixture of creams, toffees, and cordials.
Suppose that the weight of each box is 1 kilogram, but
the individual weights of the creams, toffees, and cor-
dials vary from box to box. For a randomly selected
box, let X and Y represent the weights of the creams
and the toffees, respectively, and suppose that the joint
density function of these variables is

f(x, y) =

{
24xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1,

0, elsewhere.

(a) Find the probability that in a given box the cordials
account for more than 1/2 of the weight.

(b) Find the marginal density for the weight of the
creams.

(c) Find the probability that the weight of the toffees
in a box is less than 1/8 of a kilogram if it is known
that creams constitute 3/4 of the weight.

3.42 Let X and Y denote the lengths of life, in years,
of two components in an electronic system. If the joint
density function of these variables is

f(x, y) =

{
e−(x+y), x > 0, y > 0,

0, elsewhere,

find P (0 < X < 1 | Y = 2).

3.43 Let X denote the reaction time, in seconds, to
a certain stimulus and Y denote the temperature (◦F)
at which a certain reaction starts to take place. Sup-
pose that two random variables X and Y have the joint
density

f(x, y) =

{
4xy, 0 < x < 1, 0 < y < 1,

0, elsewhere.

Find

(a) P (0 ≤ X ≤ 1
2
and 1

4
≤ Y ≤ 1

2
);

(b) P (X < Y ).

3.44 Each rear tire on an experimental airplane is
supposed to be filled to a pressure of 40 pounds per
square inch (psi). Let X denote the actual air pressure
for the right tire and Y denote the actual air pressure
for the left tire. Suppose that X and Y are random
variables with the joint density function

f(x, y) =

{
k(x2 + y2), 30 ≤ x < 50, 30 ≤ y < 50,

0, elsewhere.

(a) Find k.

(b) Find P (30 ≤ X ≤ 40 and 40 ≤ Y < 50).

(c) Find the probability that both tires are underfilled.

3.45 Let X denote the diameter of an armored elec-
tric cable and Y denote the diameter of the ceramic
mold that makes the cable. Both X and Y are scaled
so that they range between 0 and 1. Suppose that X
and Y have the joint density

f(x, y) =

{
1
y
, 0 < x < y < 1,

0, elsewhere.

Find P (X + Y > 1/2).

3.46 Referring to Exercise 3.38, find

(a) the marginal distribution of X;

(b) the marginal distribution of Y .

3.47 The amount of kerosene, in thousands of liters,
in a tank at the beginning of any day is a random
amount Y from which a random amount X is sold dur-
ing that day. Suppose that the tank is not resupplied
during the day so that x ≤ y, and assume that the
joint density function of these variables is

f(x, y) =

{
2, 0 < x ≤ y < 1,

0, elsewhere.

(a) Determine if X and Y are independent.
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(b) Find P (1/4 < X < 1/2 | Y = 3/4).

3.48 Referring to Exercise 3.39, find

(a) f(y|2) for all values of y;
(b) P (Y = 0 | X = 2).

3.49 Let X denote the number of times a certain nu-
merical control machine will malfunction: 1, 2, or 3
times on any given day. Let Y denote the number of
times a technician is called on an emergency call. Their
joint probability distribution is given as

x
f(x, y) 1 2 3

y

1
3
5

0.05
0.05
0.00

0.05
0.10
0.20

0.10
0.35
0.10

(a) Evaluate the marginal distribution of X.

(b) Evaluate the marginal distribution of Y .

(c) Find P (Y = 3 | X = 2).

3.50 Suppose that X and Y have the following joint
probability distribution:

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the marginal distribution of X.

(b) Find the marginal distribution of Y .

3.51 Three cards are drawn without replacement
from the 12 face cards (jacks, queens, and kings) of
an ordinary deck of 52 playing cards. Let X be the
number of kings selected and Y the number of jacks.
Find

(a) the joint probability distribution of X and Y ;

(b) P [(X,Y ) ∈ A], where A is the region given by
{(x, y) | x+ y ≥ 2}.

3.52 A coin is tossed twice. Let Z denote the number
of heads on the first toss and W the total number of
heads on the 2 tosses. If the coin is unbalanced and a
head has a 40% chance of occurring, find

(a) the joint probability distribution of W and Z;

(b) the marginal distribution of W ;

(c) the marginal distribution of Z;

(d) the probability that at least 1 head occurs.

3.53 Given the joint density function

f(x, y) =

{ 6−x−y
8

, 0 < x < 2, 2 < y < 4,

0, elsewhere,

find P (1 < Y < 3 | X = 1).

3.54 Determine whether the two random variables of
Exercise 3.49 are dependent or independent.

3.55 Determine whether the two random variables of
Exercise 3.50 are dependent or independent.

3.56 The joint density function of the random vari-
ables X and Y is

f(x, y) =

{
6x, 0 < x < 1, 0 < y < 1− x,

0, elsewhere.

(a) Show that X and Y are not independent.

(b) Find P (X > 0.3 | Y = 0.5).

3.57 Let X, Y , and Z have the joint probability den-
sity function

f(x, y, z) =

{
kxy2z, 0 < x, y < 1, 0 < z < 2,

0, elsewhere.

(a) Find k.

(b) Find P (X < 1
4
, Y > 1

2
, 1 < Z < 2).

3.58 Determine whether the two random variables of
Exercise 3.43 are dependent or independent.

3.59 Determine whether the two random variables of
Exercise 3.44 are dependent or independent.

3.60 The joint probability density function of the ran-
dom variables X, Y , and Z is

f(x, y, z) =

{
4xyz2

9
, 0 < x, y < 1, 0 < z < 3,

0, elsewhere.

Find

(a) the joint marginal density function of Y and Z;

(b) the marginal density of Y ;

(c) P ( 1
4
< X < 1

2
, Y > 1

3
, 1 < Z < 2);

(d) P (0 < X < 1
2
| Y = 1

4
, Z = 2).
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Review Exercises

3.61 A tobacco company produces blends of tobacco,
with each blend containing various proportions of
Turkish, domestic, and other tobaccos. The propor-
tions of Turkish and domestic in a blend are random
variables with joint density function (X = Turkish and
Y = domestic)

f(x, y) =

{
24xy, 0 ≤ x, y ≤ 1, x+ y ≤ 1,

0, elsewhere.

(a) Find the probability that in a given box the Turkish
tobacco accounts for over half the blend.

(b) Find the marginal density function for the propor-
tion of the domestic tobacco.

(c) Find the probability that the proportion of Turk-
ish tobacco is less than 1/8 if it is known that the
blend contains 3/4 domestic tobacco.

3.62 An insurance company offers its policyholders a
number of different premium payment options. For a
randomly selected policyholder, let X be the number of
months between successive payments. The cumulative
distribution function of X is

F (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if x < 1,

0.4, if 1 ≤ x < 3,

0.6, if 3 ≤ x < 5,

0.8, if 5 ≤ x < 7,

1.0, if x ≥ 7.

(a) What is the probability mass function of X?

(b) Compute P (4 < X ≤ 7).

3.63 Two electronic components of a missile system
work in harmony for the success of the total system.
Let X and Y denote the life in hours of the two com-
ponents. The joint density of X and Y is

f(x, y) =

{
ye−y(1+x), x, y ≥ 0,

0, elsewhere.

(a) Give the marginal density functions for both ran-
dom variables.

(b) What is the probability that the lives of both com-
ponents will exceed 2 hours?

3.64 A service facility operates with two service lines.
On a randomly selected day, let X be the proportion of
time that the first line is in use whereas Y is the pro-
portion of time that the second line is in use. Suppose
that the joint probability density function for (X,Y ) is

f(x, y) =

{
3
2
(x2 + y2), 0 ≤ x, y ≤ 1,

0, elsewhere.

(a) Compute the probability that neither line is busy
more than half the time.

(b) Find the probability that the first line is busy more
than 75% of the time.

3.65 Let the number of phone calls received by a
switchboard during a 5-minute interval be a random
variable X with probability function

f(x) =
e−22x

x!
, for x = 0, 1, 2, . . . .

(a) Determine the probability that X equals 0, 1, 2, 3,
4, 5, and 6.

(b) Graph the probability mass function for these val-
ues of x.

(c) Determine the cumulative distribution function for
these values of X.

3.66 Consider the random variables X and Y with
joint density function

f(x, y) =

{
x+ y, 0 ≤ x, y ≤ 1,

0, elsewhere.

(a) Find the marginal distributions of X and Y .

(b) Find P (X > 0.5, Y > 0.5).

3.67 An industrial process manufactures items that
can be classified as either defective or not defective.
The probability that an item is defective is 0.1. An
experiment is conducted in which 5 items are drawn
randomly from the process. Let the random variable X
be the number of defectives in this sample of 5. What
is the probability mass function of X?

3.68 Consider the following joint probability density
function of the random variables X and Y :

f(x, y) =

{ 3x−y
9

, 1 < x < 3, 1 < y < 2,

0, elsewhere.

(a) Find the marginal density functions of X and Y .

(b) Are X and Y independent?

(c) Find P (X > 2).

3.69 The life span in hours of an electrical compo-
nent is a random variable with cumulative distribution
function

F (x) =

{
1− e−

x
50 , x > 0,

0, eleswhere.
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(a) Determine its probability density function.

(b) Determine the probability that the life span of such
a component will exceed 70 hours.

3.70 Pairs of pants are being produced by a particu-
lar outlet facility. The pants are checked by a group of
10 workers. The workers inspect pairs of pants taken
randomly from the production line. Each inspector is
assigned a number from 1 through 10. A buyer selects
a pair of pants for purchase. Let the random variable
X be the inspector number.

(a) Give a reasonable probability mass function for X.

(b) Plot the cumulative distribution function for X.

3.71 The shelf life of a product is a random variable
that is related to consumer acceptance. It turns out
that the shelf life Y in days of a certain type of bakery
product has a density function

f(y) =

{
1
2
e−y/2, 0 ≤ y < ∞,

0, elsewhere.

What fraction of the loaves of this product stocked to-
day would you expect to be sellable 3 days from now?

3.72 Passenger congestion is a service problem in air-
ports. Trains are installed within the airport to reduce
the congestion. With the use of the train, the timeX in
minutes that it takes to travel from the main terminal
to a particular concourse has density function

f(x) =

{
1
10
, 0 ≤ x ≤ 10,

0, elsewhere.

(a) Show that the above is a valid probability density
function.

(b) Find the probability that the time it takes a pas-
senger to travel from the main terminal to the con-
course will not exceed 7 minutes.

3.73 Impurities in a batch of final product of a chem-
ical process often reflect a serious problem. From con-
siderable plant data gathered, it is known that the pro-
portion Y of impurities in a batch has a density func-
tion given by

f(y) =

{
10(1− y)9, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify that the above is a valid density function.

(b) A batch is considered not sellable and then not
acceptable if the percentage of impurities exceeds
60%. With the current quality of the process, what
is the percentage of batches that are not
acceptable?

3.74 The time Z in minutes between calls to an elec-
trical supply system has the probability density func-
tion

f(z) =

{
1
10
e−z/10, 0 < z < ∞,

0, elsewhere.

(a) What is the probability that there are no calls
within a 20-minute time interval?

(b) What is the probability that the first call comes
within 10 minutes of opening?

3.75 A chemical system that results from a chemical
reaction has two important components among others
in a blend. The joint distribution describing the pro-
portions X1 and X2 of these two components is given
by

f(x1, x2) =

{
2, 0 < x1 < x2 < 1,

0, elsewhere.

(a) Give the marginal distribution of X1.

(b) Give the marginal distribution of X2.

(c) What is the probability that component propor-
tions produce the results X1 < 0.2 and X2 > 0.5?

(d) Give the conditional distribution fX1|X2
(x1|x2).

3.76 Consider the situation of Review Exercise 3.75.
But suppose the joint distribution of the two propor-
tions is given by

f(x1, x2) =

{
6x2, 0 < x2 < x1 < 1,

0, elsewhere.

(a) Give the marginal distribution fX1(x1) of the pro-
portion X1 and verify that it is a valid density
function.

(b) What is the probability that proportion X2 is less
than 0.5, given that X1 is 0.7?

3.77 Consider the random variables X and Y that
represent the number of vehicles that arrive at two sep-
arate street corners during a certain 2-minute period.
These street corners are fairly close together so it is im-
portant that traffic engineers deal with them jointly if
necessary. The joint distribution of X and Y is known
to be

f(x, y) =
9

16
· 1

4(x+y)
,

for x = 0, 1, 2, . . . and y = 0, 1, 2, . . . .

(a) Are the two random variables X and Y indepen-
dent? Explain why or why not.

(b) What is the probability that during the time pe-
riod in question less than 4 vehicles arrive at the
two street corners?

Uploaded By: anonymousSTUDENTS-HUB.com



3.5 Potential Misconceptions and Hazards 109

3.78 The behavior of series of components plays a
huge role in scientific and engineering reliability prob-
lems. The reliability of the entire system is certainly
no better than that of the weakest component in the
series. In a series system, the components operate in-
dependently of each other. In a particular system con-
taining three components, the probabilities of meeting
specifications for components 1, 2, and 3, respectively,
are 0.95, 0.99, and 0.92. What is the probability that
the entire system works?

3.79 Another type of system that is employed in en-
gineering work is a group of parallel components or a
parallel system. In this more conservative approach,
the probability that the system operates is larger than
the probability that any component operates. The sys-
tem fails only when all components fail. Consider a sit-
uation in which there are 4 independent components in
a parallel system with probability of operation given by

Component 1: 0.95; Component 2: 0.94;

Component 3: 0.90; Component 4: 0.97.

What is the probability that the system does not fail?

3.80 Consider a system of components in which there
are 5 independent components, each of which possesses
an operational probability of 0.92. The system does
have a redundancy built in such that it does not fail
if 3 out of the 5 components are operational. What is
the probability that the total system is operational?

3.81 Project: Take 5 class periods to observe the
shoe color of individuals in class. Assume the shoe
color categories are red, white, black, brown, and other.
Complete a frequency table for each color category.

(a) Estimate and interpret the meaning of the proba-
bility distribution.

(b) What is the estimated probability that in the next
class period a randomly selected student will be
wearing a red or a white pair of shoes?

3.5 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

In future chapters it will become apparent that probability distributions represent
the structure through which probabilities that are computed aid in the evalua-
tion and understanding of a process. For example, in Review Exercise 3.65, the
probability distribution that quantifies the probability of a heavy load during cer-
tain time periods can be very useful in planning for any changes in the system.
Review Exercise 3.69 describes a scenario in which the life span of an electronic
component is studied. Knowledge of the probability structure for the component
will contribute significantly to an understanding of the reliability of a large system
of which the component is a part. In addition, an understanding of the general
nature of probability distributions will enhance understanding of the concept of
a P-value, which was introduced briefly in Chapter 1 and will play a major role
beginning in Chapter 10 and extending throughout the balance of the text.

Chapters 4, 5, and 6 depend heavily on the material in this chapter. In Chapter
4, we discuss the meaning of important parameters in probability distributions.
These important parameters quantify notions of central tendency and variabil-
ity in a system. In fact, knowledge of these quantities themselves, quite apart
from the complete distribution, can provide insight into the nature of the system.
Chapters 5 and 6 will deal with engineering, biological, or general scientific scenar-
ios that identify special types of distributions. For example, the structure of the
probability function in Review Exercise 3.65 will easily be identified under certain
assumptions discussed in Chapter 5. The same holds for the scenario of Review
Exercise 3.69. This is a special type of time to failure problem for which the
probability density function will be discussed in Chapter 6.
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As far as potential hazards with the use of material in this chapter, the warning
to the reader is not to read more into the material than is evident. The general
nature of the probability distribution for a specific scientific phenomenon is not
obvious from what is learned in this chapter. The purpose of this chapter is for
readers to learn how to manipulate a probability distribution, not to learn how
to identify a specific type. Chapters 5 and 6 go a long way toward identification
according to the general nature of the scientific system.
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Chapter 4

Mathematical Expectation

4.1 Mean of a Random Variable

In Chapter 1, we discussed the sample mean, which is the arithmetic mean of the
data. Now consider the following. If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the values of X are 0, 1, and 2. Suppose
that the experiment yields no heads, one head, and two heads a total of 4, 7, and 5
times, respectively. The average number of heads per toss of the two coins is then

(0)(4) + (1)(7) + (2)(5)

16
= 1.06.

This is an average value of the data and yet it is not a possible outcome of {0, 1, 2}.
Hence, an average is not necessarily a possible outcome for the experiment. For
instance, a salesman’s average monthly income is not likely to be equal to any of
his monthly paychecks.

Let us now restructure our computation for the average number of heads so as
to have the following equivalent form:

(0)

(
4

16

)
+ (1)

(
7

16

)
+ (2)

(
5

16

)
= 1.06.

The numbers 4/16, 7/16, and 5/16 are the fractions of the total tosses resulting in 0,
1, and 2 heads, respectively. These fractions are also the relative frequencies for the
different values of X in our experiment. In fact, then, we can calculate the mean,
or average, of a set of data by knowing the distinct values that occur and their
relative frequencies, without any knowledge of the total number of observations in
our set of data. Therefore, if 4/16, or 1/4, of the tosses result in no heads, 7/16 of
the tosses result in one head, and 5/16 of the tosses result in two heads, the mean
number of heads per toss would be 1.06 no matter whether the total number of
tosses were 16, 1000, or even 10,000.

This method of relative frequencies is used to calculate the average number of
heads per toss of two coins that we might expect in the long run. We shall refer
to this average value as the mean of the random variable X or the mean of
the probability distribution of X and write it as μx or simply as μ when it is

111
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112 Chapter 4 Mathematical Expectation

clear to which random variable we refer. It is also common among statisticians to
refer to this mean as the mathematical expectation, or the expected value of the
random variable X, and denote it as E(X).

Assuming that 1 fair coin was tossed twice, we find that the sample space for
our experiment is

S = {HH,HT, TH, TT}.
Since the 4 sample points are all equally likely, it follows that

P (X = 0) = P (TT ) =
1

4
, P (X = 1) = P (TH) + P (HT ) =

1

2
,

and

P (X = 2) = P (HH) =
1

4
,

where a typical element, say TH, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

μ = E(X) = (0)

(
1

4

)
+ (1)

(
1

2

)
+ (2)

(
1

4

)
= 1.

This result means that a person who tosses 2 coins over and over again will, on the
average, get 1 head per toss.

The method described above for calculating the expected number of heads
per toss of 2 coins suggests that the mean, or expected value, of any discrete
random variable may be obtained by multiplying each of the values x1, x2, . . . , xn

of the random variable X by its corresponding probability f(x1), f(x2), . . . , f(xn)
and summing the products. This is true, however, only if the random variable is
discrete. In the case of continuous random variables, the definition of an expected
value is essentially the same with summations replaced by integrations.

Definition 4.1: Let X be a random variable with probability distribution f(x). The mean, or
expected value, of X is

μ = E(X) =
∑
x

xf(x)

if X is discrete, and

μ = E(X) =

∫ ∞

−∞
xf(x) dx

if X is continuous.

The reader should note that the way to calculate the expected value, or mean,
shown here is different from the way to calculate the sample mean described in
Chapter 1, where the sample mean is obtained by using data. In mathematical
expectation, the expected value is calculated by using the probability distribution.
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However, the mean is usually understood as a “center” value of the underlying
distribution if we use the expected value, as in Definition 4.1.

Example 4.1: A lot containing 7 components is sampled by a quality inspector; the lot contains
4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Solution : Let X represent the number of good components in the sample. The probability
distribution of X is

f(x) =

(
4
x

)(
3

3−x

)(
7
3

) , x = 0, 1, 2, 3.

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
4/35. Therefore,

μ = E(X) = (0)

(
1

35

)
+ (1)

(
12

35

)
+ (2)

(
18

35

)
+ (3)

(
4

35

)
=

12

7
= 1.7.

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components.

Example 4.2: A salesperson for a medical device company has two appointments on a given day.
At the first appointment, he believes that he has a 70% chance to make the deal,
from which he can earn $1000 commission if successful. On the other hand, he
thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.

Solution : First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

f($0) = (1− 0.7)(1− 0.4) = 0.18, f($2500) = (0.7)(0.4) = 0.28,

f($1000) = (0.7)(1− 0.4) = 0.42, and f($1500) = (1− 0.7)(0.4) = 0.12.

Therefore, the expected commission for the salesperson is

E(X) = ($0)(0.18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300.

Examples 4.1 and 4.2 are designed to allow the reader to gain some insight
into what we mean by the expected value of a random variable. In both cases the
random variables are discrete. We follow with an example involving a continuous
random variable, where an engineer is interested in the mean life of a certain
type of electronic device. This is an illustration of a time to failure problem that
occurs often in practice. The expected value of the life of a device is an important
parameter for its evaluation.
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Example 4.3: Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

f(x) =

{
20,000
x3 , x > 100,

0, elsewhere.

Find the expected life of this type of device.
Solution : Using Definition 4.1, we have

μ = E(X) =

∫ ∞

100

x
20, 000

x3
dx =

∫ ∞

100

20, 000

x2
dx = 200.

Therefore, we can expect this type of device to last, on average, 200 hours.
Now let us consider a new random variable g(X), which depends on X; that

is, each value of g(X) is determined by the value of X. For instance, g(X) might
be X2 or 3X − 1, and whenever X assumes the value 2, g(X) assumes the value
g(2). In particular, if X is a discrete random variable with probability distribution
f(x), for x = −1, 0, 1, 2, and g(X) = X2, then

P [g(X) = 0] = P (X = 0) = f(0),

P [g(X) = 1] = P (X = −1) + P (X = 1) = f(−1) + f(1),

P [g(X) = 4] = P (X = 2) = f(2),

and so the probability distribution of g(X) may be written

g(x) 0 1 4
P [g(X) = g(x)] f(0) f(−1) + f(1) f(2)

By the definition of the expected value of a random variable, we obtain

μg(X) = E[g(x)] = 0f(0) + 1[f(−1) + f(1)] + 4f(2)

= (−1)2f(−1) + (0)2f(0) + (1)2f(1) + (2)2f(2) =
∑
x

g(x)f(x).

This result is generalized in Theorem 4.1 for both discrete and continuous random
variables.

Theorem 4.1: Let X be a random variable with probability distribution f(x). The expected
value of the random variable g(X) is

μg(X) = E[g(X)] =
∑
x

g(x)f(x)

if X is discrete, and

μg(X) = E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx

if X is continuous.
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Example 4.4: Suppose that the number of cars X that pass through a car wash between 4:00
P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

x 4 5 6 7 8 9

P (X = x) 1
12

1
12

1
4

1
4

1
6

1
6

Let g(X) = 2X−1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time
period.

Solution : By Theorem 4.1, the attendant can expect to receive

E[g(X)] = E(2X − 1) =

9∑
x=4

(2x− 1)f(x)

= (7)

(
1

12

)
+ (9)

(
1

12

)
+ (11)

(
1

4

)
+ (13)

(
1

4

)
+ (15)

(
1

6

)
+ (17)

(
1

6

)
= $12.67.

Example 4.5: Let X be a random variable with density function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

Find the expected value of g(X) = 4X + 3.
Solution : By Theorem 4.1, we have

E(4X + 3) =

∫ 2

−1

(4x+ 3)x2

3
dx =

1

3

∫ 2

−1

(4x3 + 3x2) dx = 8.

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(x, y).

Definition 4.2: Let X and Y be random variables with joint probability distribution f(x, y). The
mean, or expected value, of the random variable g(X,Y ) is

μg(X,Y ) = E[g(X,Y )] =
∑
x

∑
y

g(x, y)f(x, y)

if X and Y are discrete, and

μg(X,Y ) = E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy

if X and Y are continuous.

Generalization of Definition 4.2 for the calculation of mathematical expectations
of functions of several random variables is straightforward.
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Example 4.6: Let X and Y be the random variables with joint probability distribution indicated
in Table 3.1 on page 96. Find the expected value of g(X,Y ) = XY . The table is
reprinted here for convenience.

x Row
f(x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

Solution : By Definition 4.2, we write

E(XY ) =

2∑
x=0

2∑
y=0

xyf(x, y)

= (0)(0)f(0, 0) + (0)(1)f(0, 1)

+ (1)(0)f(1, 0) + (1)(1)f(1, 1) + (2)(0)f(2, 0)

= f(1, 1) =
3

14
.

Example 4.7: Find E(Y/X) for the density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.

Solution : We have

E

(
Y

X

)
=

∫ 1

0

∫ 2

0

y(1 + 3y2)

4
dxdy =

∫ 1

0

y + 3y3

2
dy =

5

8
.

Note that if g(X,Y ) = X in Definition 4.2, we have

E(X) =

⎧⎨⎩
∑
x

∑
y
xf(x, y) =

∑
x
xg(x) (discrete case),∫∞

−∞
∫∞
−∞ xf(x, y) dy dx =

∫∞
−∞ xg(x) dx (continuous case),

where g(x) is the marginal distribution of X. Therefore, in calculating E(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

E(Y ) =

⎧⎨⎩
∑
y

∑
x
yf(x, y) =

∑
y
yh(y) (discrete case),∫∞

−∞
∫∞
−∞ yf(x, y) dxdy =

∫∞
−∞ yh(y) dy (continuous case),

where h(y) is the marginal distribution of the random variable Y .
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Exercises

4.1 The probability distribution of X, the number of
imperfections per 10 meters of a synthetic fabric in con-
tinuous rolls of uniform width, is given in Exercise 3.13
on page 92 as

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the average number of imperfections per 10 me-
ters of this fabric.

4.2 The probability distribution of the discrete ran-
dom variable X is

f(x) =

(
3

x

)(
1

4

)x (
3

4

)3−x

, x = 0, 1, 2, 3.

Find the mean of X.

4.3 Find the mean of the random variable T repre-
senting the total of the three coins in Exercise 3.25 on
page 93.

4.4 A coin is biased such that a head is three times
as likely to occur as a tail. Find the expected number
of tails when this coin is tossed twice.

4.5 In a gambling game, a woman is paid $3 if she
draws a jack or a queen and $5 if she draws a king or
an ace from an ordinary deck of 52 playing cards. If
she draws any other card, she loses. How much should
she pay to play if the game is fair?

4.6 An attendant at a car wash is paid according to
the number of cars that pass through. Suppose the
probabilities are 1/12, 1/12, 1/4, 1/4, 1/6, and 1/6,
respectively, that the attendant receives $7, $9, $11,
$13, $15, or $17 between 4:00 P.M. and 5:00 P.M. on
any sunny Friday. Find the attendant’s expected earn-
ings for this particular period.

4.7 By investing in a particular stock, a person can
make a profit in one year of $4000 with probability 0.3
or take a loss of $1000 with probability 0.7. What is
this person’s expected gain?

4.8 Suppose that an antique jewelry dealer is inter-
ested in purchasing a gold necklace for which the prob-
abilities are 0.22, 0.36, 0.28, and 0.14, respectively, that
she will be able to sell it for a profit of $250, sell it for
a profit of $150, break even, or sell it for a loss of $150.
What is her expected profit?

4.9 A private pilot wishes to insure his airplane for
$200,000. The insurance company estimates that a to-
tal loss will occur with probability 0.002, a 50% loss
with probability 0.01, and a 25% loss with probability

0.1. Ignoring all other partial losses, what premium
should the insurance company charge each year to re-
alize an average profit of $500?

4.10 Two tire-quality experts examine stacks of tires
and assign a quality rating to each tire on a 3-point
scale. Let X denote the rating given by expert A and
Y denote the rating given by B. The following table
gives the joint distribution for X and Y .

y
f(x, y) 1 2 3

1 0.10 0.05 0.02
x 2 0.10 0.35 0.05

3 0.03 0.10 0.20

Find μX and μY .

4.11 The density function of coded measurements of
the pitch diameter of threads of a fitting is

f(x) =

{
4

π(1+x2)
, 0 < x < 1,

0, elsewhere.

Find the expected value of X.

4.12 If a dealer’s profit, in units of $5000, on a new
automobile can be looked upon as a random variable
X having the density function

f(x) =

{
2(1− x), 0 < x < 1,

0, elsewhere,

find the average profit per automobile.

4.13 The density function of the continuous random
variable X, the total number of hours, in units of 100
hours, that a family runs a vacuum cleaner over a pe-
riod of one year, is given in Exercise 3.7 on page 92
as

f(x) =

⎧⎨⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Find the average number of hours per year that families
run their vacuum cleaners.

4.14 Find the proportion X of individuals who can be
expected to respond to a certain mail-order solicitation
if X has the density function

f(x) =

{
2(x+2)

5
, 0 < x < 1,

0, elsewhere.
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4.15 Assume that two random variables (X,Y ) are
uniformly distributed on a circle with radius a. Then
the joint probability density function is

f(x, y) =

{
1

πa2 , x2 + y2 ≤ a2,

0, otherwise.

Find μX , the expected value of X.

4.16 Suppose that you are inspecting a lot of 1000
light bulbs, among which 20 are defectives. You choose
two light bulbs randomly from the lot without replace-
ment. Let

X1 =

{
1, if the 1st light bulb is defective,

0, otherwise,

X2 =

{
1, if the 2nd light bulb is defective,

0, otherwise.

Find the probability that at least one light bulb chosen
is defective. [Hint: Compute P (X1 +X2 = 1).]

4.17 Let X be a random variable with the following
probability distribution:

x −3 6 9
f(x) 1/6 1/2 1/3

Find μg(X), where g(X) = (2X + 1)2.

4.18 Find the expected value of the random variable
g(X) = X2, where X has the probability distribution
of Exercise 4.2.

4.19 A large industrial firm purchases several new
word processors at the end of each year, the exact num-
ber depending on the frequency of repairs in the previ-
ous year. Suppose that the number of word processors,
X, purchased each year has the following probability
distribution:

x 0 1 2 3
f(x) 1/10 3/10 2/5 1/5

If the cost of the desired model is $1200 per unit and
at the end of the year a refund of 50X2 dollars will be
issued, how much can this firm expect to spend on new
word processors during this year?

4.20 A continuous random variable X has the density
function

f(x) =

{
e−x, x > 0,

0, elsewhere.

Find the expected value of g(X) = e2X/3.

4.21 What is the dealer’s average profit per auto-
mobile if the profit on each automobile is given by
g(X) = X2, where X is a random variable having the
density function of Exercise 4.12?

4.22 The hospitalization period, in days, for patients
following treatment for a certain type of kidney disor-
der is a random variable Y = X + 4, where X has the
density function

f(x) =

{
32

(x+4)3
, x > 0,

0, elsewhere.

Find the average number of days that a person is hos-
pitalized following treatment for this disorder.

4.23 Suppose that X and Y have the following joint
probability function:

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the expected value of g(X,Y ) = XY 2.

(b) Find μX and μY .

4.24 Referring to the random variables whose joint
probability distribution is given in Exercise 3.39 on
page 105,

(a) find E(X2Y − 2XY );

(b) find μX − μY .

4.25 Referring to the random variables whose joint
probability distribution is given in Exercise 3.51 on
page 106, find the mean for the total number of jacks
and kings when 3 cards are drawn without replacement
from the 12 face cards of an ordinary deck of 52 playing
cards.

4.26 Let X and Y be random variables with joint
density function

f(x, y) =

{
4xy, 0 < x, y < 1,

0, elsewhere.

Find the expected value of Z =
√
X2 + Y 2.

4.27 In Exercise 3.27 on page 93, a density function
is given for the time to failure of an important compo-
nent of a DVD player. Find the mean number of hours
to failure of the component and thus the DVD player.

4.28 Consider the information in Exercise 3.28 on
page 93. The problem deals with the weight in ounces
of the product in a cereal box, with

f(x) =

{
2
5
, 23.75 ≤ x ≤ 26.25,

0, elsewhere.

Uploaded By: anonymousSTUDENTS-HUB.com



4.2 Variance and Covariance of Random Variables 119

(a) Plot the density function.

(b) Compute the expected value, or mean weight, in
ounces.

(c) Are you surprised at your answer in (b)? Explain
why or why not.

4.29 Exercise 3.29 on page 93 dealt with an impor-
tant particle size distribution characterized by

f(x) =

{
3x−4, x > 1,

0, elsewhere.

(a) Plot the density function.

(b) Give the mean particle size.

4.30 In Exercise 3.31 on page 94, the distribution of
times before a major repair of a washing machine was
given as

f(y) =

{
1
4
e−y/4, y ≥ 0,

0, elsewhere.

What is the population mean of the times to repair?

4.31 Consider Exercise 3.32 on page 94.

(a) What is the mean proportion of the budget allo-
cated to environmental and pollution control?

(b) What is the probability that a company selected
at random will have allocated to environmental
and pollution control a proportion that exceeds the
population mean given in (a)?

4.32 In Exercise 3.13 on page 92, the distribution of
the number of imperfections per 10 meters of synthetic
fabric is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

(a) Plot the probability function.

(b) Find the expected number of imperfections,
E(X) = μ.

(c) Find E(X2).

4.2 Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 4.1, we have the histograms of two discrete probability distributions that
have the same mean, μ = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

1 2 3 0 1 2 3 4
x

(a) (b)

x

Figure 4.1: Distributions with equal means and unequal dispersions.

The most important measure of variability of a random variable X is obtained
by applying Theorem 4.1 with g(X) = (X − μ)2. The quantity is referred to as
the variance of the random variable X or the variance of the probability
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distribution of X and is denoted by Var(X) or the symbol σ2
X , or simply by σ2

when it is clear to which random variable we refer.

Definition 4.3: Let X be a random variable with probability distribution f(x) and mean μ. The
variance of X is

σ2 = E[(X − μ)2] =
∑
x

(x− μ)2f(x), if X is discrete, and

σ2 = E[(X − μ)2] =

∫ ∞

−∞
(x− μ)2f(x) dx, if X is continuous.

The positive square root of the variance, σ, is called the standard deviation of
X.

The quantity x−μ in Definition 4.3 is called the deviation of an observation
from its mean. Since the deviations are squared and then averaged, σ2 will be much
smaller for a set of x values that are close to μ than it will be for a set of values
that vary considerably from μ.

Example 4.8: Let the random variable X represent the number of automobiles that are used for
official business purposes on any given workday. The probability distribution for
company A [Figure 4.1(a)] is

x 1 2 3
f(x) 0.3 0.4 0.3

and that for company B [Figure 4.1(b)] is

x 0 1 2 3 4
f(x) 0.2 0.1 0.3 0.3 0.1

Show that the variance of the probability distribution for company B is greater
than that for company A.

Solution : For company A, we find that

μA = E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0,

and then

σ2
A =

3∑
x=1

(x− 2)2 = (1− 2)2(0.3) + (2− 2)2(0.4) + (3− 2)2(0.3) = 0.6.

For company B, we have

μB = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,

and then

σ2
B =

4∑
x=0

(x− 2)2f(x)

= (0− 2)2(0.2) + (1− 2)2(0.1) + (2− 2)2(0.3)

+ (3− 2)2(0.3) + (4− 2)2(0.1) = 1.6.
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Clearly, the variance of the number of automobiles that are used for official business
purposes is greater for company B than for company A.

An alternative and preferred formula for finding σ2, which often simplifies the
calculations, is stated in the following theorem.

Theorem 4.2: The variance of a random variable X is

σ2 = E(X2)− μ2.

Proof : For the discrete case, we can write

σ2 =
∑
x

(x− μ)2f(x) =
∑
x

(x2 − 2μx+ μ2)f(x)

=
∑
x

x2f(x)− 2μ
∑
x

xf(x) + μ2
∑
x

f(x).

Since μ =
∑
x
xf(x) by definition, and

∑
x
f(x) = 1 for any discrete probability

distribution, it follows that

σ2 =
∑
x

x2f(x)− μ2 = E(X2)− μ2.

For the continuous case the proof is step by step the same, with summations
replaced by integrations.

Example 4.9: Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X.

x 0 1 2 3
f(x) 0.51 0.38 0.10 0.01

Using Theorem 4.2, calculate σ2.
Solution : First, we compute

μ = (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61.

Now,

E(X2) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.

Therefore,

σ2 = 0.87− (0.61)2 = 0.4979.

Example 4.10: The weekly demand for a drinking-water product, in thousands of liters, from
a local chain of efficiency stores is a continuous random variable X having the
probability density

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the mean and variance of X.
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Solution : Calculating E(X) and E(X2, we have

μ = E(X) = 2

∫ 2

1

x(x− 1) dx =
5

3

and

E(X2) = 2

∫ 2

1

x2(x− 1) dx =
17

6
.

Therefore,

σ2 =
17

6
−
(
5

3

)2

=
1

18
.

At this point, the variance or standard deviation has meaning only when we
compare two or more distributions that have the same units of measurement.
Therefore, we could compare the variances of the distributions of contents, mea-
sured in liters, of bottles of orange juice from two companies, and the larger value
would indicate the company whose product was more variable or less uniform. It
would not be meaningful to compare the variance of a distribution of heights to
the variance of a distribution of aptitude scores. In Section 4.4, we show how the
standard deviation can be used to describe a single distribution of observations.

We shall now extend our concept of the variance of a random variable X to
include random variables related to X. For the random variable g(X), the variance
is denoted by σ2

g(X) and is calculated by means of the following theorem.

Theorem 4.3: Let X be a random variable with probability distribution f(x). The variance of
the random variable g(X) is

σ2
g(X) = E{[g(X)− μg(X)]

2} =
∑
x

[g(x)− μg(X)]
2f(x)

if X is discrete, and

σ2
g(X) = E{[g(X)− μg(X)]

2} =

∫ ∞

−∞
[g(x)− μg(X)]

2f(x) dx

if X is continuous.

Proof : Since g(X) is itself a random variable with mean μg(X) as defined in Theorem 4.1,
it follows from Definition 4.3 that

σ2
g(X) = E{[g(X)− μg(X)]}.

Now, applying Theorem 4.1 again to the random variable [g(X)−μg(X)]
2 completes

the proof.

Example 4.11: Calculate the variance of g(X) = 2X + 3, where X is a random variable with
probability distribution

x 0 1 2 3

f(x) 1
4

1
8

1
2

1
8

Uploaded By: anonymousSTUDENTS-HUB.com



4.2 Variance and Covariance of Random Variables 123

Solution : First, we find the mean of the random variable 2X+3. According to Theorem 4.1,

μ2X+3 = E(2X + 3) =
3∑

x=0

(2x+ 3)f(x) = 6.

Now, using Theorem 4.3, we have

σ2
2X+3 = E{[(2X + 3)− μ2x+3]

2} = E[(2X + 3− 6)2]

= E(4X2 − 12X + 9) =
3∑

x=0

(4x2 − 12x+ 9)f(x) = 4.

Example 4.12: Let X be a random variable having the density function given in Example 4.5 on
page 115. Find the variance of the random variable g(X) = 4X + 3.

Solution : In Example 4.5, we found that μ4X+3 = 8. Now, using Theorem 4.3,

σ2
4X+3 = E{[(4X + 3)− 8]2} = E[(4X − 5)2]

=

∫ 2

−1

(4x− 5)2
x2

3
dx =

1

3

∫ 2

−1

(16x4 − 40x3 + 25x2) dx =
51

5
.

If g(X,Y ) = (X−μX)(Y −μY ), where μX = E(X) and μY = E(Y ), Definition
4.2 yields an expected value called the covariance of X and Y , which we denote
by σXY or Cov(X,Y ).

Definition 4.4: Let X and Y be random variables with joint probability distribution f(x, y). The
covariance of X and Y is

σXY = E[(X − μX)(Y − μY )] =
∑
x

∑
y

(x− μX)(y − μy)f(x, y)

if X and Y are discrete, and

σXY = E[(X − μX)(Y − μY )] =

∫ ∞

−∞

∫ ∞

−∞
(x− μX)(y − μy)f(x, y) dx dy

if X and Y are continuous.

The covariance between two random variables is a measure of the nature of the
association between the two. If large values of X often result in large values of Y
or small values of X result in small values of Y , positive X−μX will often result in
positive Y −μY and negative X−μX will often result in negative Y −μY . Thus, the
product (X − μX)(Y − μY ) will tend to be positive. On the other hand, if large X
values often result in small Y values, the product (X−μX)(Y −μY ) will tend to be
negative. The sign of the covariance indicates whether the relationship between two
dependent random variables is positive or negative. WhenX and Y are statistically
independent, it can be shown that the covariance is zero (see Corollary 4.5). The
converse, however, is not generally true. Two variables may have zero covariance
and still not be statistically independent. Note that the covariance only describes
the linear relationship between two random variables. Therefore, if a covariance
between X and Y is zero, X and Y may have a nonlinear relationship, which means
that they are not necessarily independent.
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The alternative and preferred formula for σXY is stated by Theorem 4.4.

Theorem 4.4: The covariance of two random variables X and Y with means μX and μY , respec-
tively, is given by

σXY = E(XY )− μXμY .

Proof : For the discrete case, we can write

σXY =
∑
x

∑
y

(x− μX)(y − μY )f(x, y)

=
∑
x

∑
y

xyf(x, y)− μX

∑
x

∑
y

yf(x, y)

− μY

∑
x

∑
y

xf(x, y) + μXμY

∑
x

∑
y

f(x, y).

Since

μX =
∑
x

xf(x, y), μY =
∑
y

yf(x, y), and
∑
x

∑
y

f(x, y) = 1

for any joint discrete distribution, it follows that

σXY = E(XY )− μXμY − μY μX + μXμY = E(XY )− μXμY .

For the continuous case, the proof is identical with summations replaced by inte-
grals.

Example 4.13: Example 3.14 on page 95 describes a situation involving the number of blue refills
X and the number of red refills Y . Two refills for a ballpoint pen are selected at
random from a certain box, and the following is the joint probability distribution:

x
f(x, y) 0 1 2 h(y)

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

g(x) 5
14

15
28

3
28 1

Find the covariance of X and Y .
Solution : From Example 4.6, we see that E(XY ) = 3/14. Now

μX =
2∑

x=0

xg(x) = (0)

(
5

14

)
+ (1)

(
15

28

)
+ (2)

(
3

28

)
=

3

4
,

and

μY =
2∑

y=0

yh(y) = (0)

(
15

28

)
+ (1)

(
3

7

)
+ (2)

(
1

28

)
=

1

2
.
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Therefore,

σXY = E(XY )− μXμY =
3

14
−
(
3

4

)(
1

2

)
= − 9

56
.

Example 4.14: The fraction X of male runners and the fraction Y of female runners who compete
in marathon races are described by the joint density function

f(x, y) =

{
8xy, 0 ≤ y ≤ x ≤ 1,

0, elsewhere.

Find the covariance of X and Y .
Solution : We first compute the marginal density functions. They are

g(x) =

{
4x3, 0 ≤ x ≤ 1,

0, elsewhere,

and

h(y) =

{
4y(1− y2), 0 ≤ y ≤ 1,

0, elsewhere.

From these marginal density functions, we compute

μX = E(X) =

∫ 1

0

4x4 dx =
4

5
and μY =

∫ 1

0

4y2(1− y2) dy =
8

15
.

From the joint density function given above, we have

E(XY ) =

∫ 1

0

∫ 1

y

8x2y2 dx dy =
4

9
.

Then

σXY = E(XY )− μXμY =
4

9
−
(
4

5

)(
8

15

)
=

4

225
.

Although the covariance between two random variables does provide informa-
tion regarding the nature of the relationship, the magnitude of σXY does not indi-
cate anything regarding the strength of the relationship, since σXY is not scale-free.
Its magnitude will depend on the units used to measure both X and Y . There is a
scale-free version of the covariance called the correlation coefficient that is used
widely in statistics.

Definition 4.5: Let X and Y be random variables with covariance σXY and standard deviations
σX and σY , respectively. The correlation coefficient of X and Y is

ρXY =
σXY

σXσY

.

It should be clear to the reader that ρXY is free of the units of X and Y . The
correlation coefficient satisfies the inequality −1 ≤ ρXY ≤ 1. It assumes a value of
zero when σXY = 0. Where there is an exact linear dependency, say Y ≡ a+ bX,

Uploaded By: anonymousSTUDENTS-HUB.com



126 Chapter 4 Mathematical Expectation

ρXY = 1 if b > 0 and ρXY = −1 if b < 0. (See Exercise 4.48.) The correlation
coefficient is the subject of more discussion in Chapter 12, where we deal with
linear regression.

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13.
Solution : Since

E(X2) = (02)

(
5

14

)
+ (12)

(
15

28

)
+ (22)

(
3

28

)
=

27

28

and

E(Y 2) = (02)

(
15

28

)
+ (12)

(
3

7

)
+ (22)

(
1

28

)
=

4

7
,

we obtain

σ2
X =

27

28
−
(
3

4

)2

=
45

112
and σ2

Y =
4

7
−
(
1

2

)2

=
9

28
.

Therefore, the correlation coefficient between X and Y is

ρXY =
σXY

σXσY
=

−9/56√
(45/112)(9/28)

= − 1√
5
.

Example 4.16: Find the correlation coefficient of X and Y in Example 4.14.
Solution : Because

E(X2) =

∫ 1

0

4x5 dx =
2

3
and E(Y 2) =

∫ 1

0

4y3(1− y2) dy = 1− 2

3
=

1

3
,

we conclude that

σ2
X =

2

3
−
(
4

5

)2

=
2

75
and σ2

Y =
1

3
−
(

8

15

)2

=
11

225
.

Hence,

ρXY =
4/225√

(2/75)(11/225)
=

4√
66

.

Note that although the covariance in Example 4.15 is larger in magnitude (dis-
regarding the sign) than that in Example 4.16, the relationship of the magnitudes
of the correlation coefficients in these two examples is just the reverse. This is
evidence that we cannot look at the magnitude of the covariance to decide on how
strong the relationship is.
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Exercises

4.33 Use Definition 4.3 on page 120 to find the vari-
ance of the random variable X of Exercise 4.7 on page
117.

4.34 Let X be a random variable with the following
probability distribution:

x −2 3 5
f(x) 0.3 0.2 0.5

Find the standard deviation of X.

4.35 The random variable X, representing the num-
ber of errors per 100 lines of software code, has the
following probability distribution:

x 2 3 4 5 6
f(x) 0.01 0.25 0.4 0.3 0.04

Using Theorem 4.2 on page 121, find the variance of
X.

4.36 Suppose that the probabilities are 0.4, 0.3, 0.2,
and 0.1, respectively, that 0, 1, 2, or 3 power failures
will strike a certain subdivision in any given year. Find
the mean and variance of the random variable X repre-
senting the number of power failures striking this sub-
division.

4.37 A dealer’s profit, in units of $5000, on a new
automobile is a random variable X having the density
function given in Exercise 4.12 on page 117. Find the
variance of X.

4.38 The proportion of people who respond to a cer-
tain mail-order solicitation is a random variable X hav-
ing the density function given in Exercise 4.14 on page
117. Find the variance of X.

4.39 The total number of hours, in units of 100 hours,
that a family runs a vacuum cleaner over a period of
one year is a random variable X having the density
function given in Exercise 4.13 on page 117. Find the
variance of X.

4.40 Referring to Exercise 4.14 on page 117, find
σ2
g(X) for the function g(X) = 3X2 + 4.

4.41 Find the standard deviation of the random vari-
able g(X) = (2X + 1)2 in Exercise 4.17 on page 118.

4.42 Using the results of Exercise 4.21 on page 118,
find the variance of g(X) = X2, where X is a random
variable having the density function given in Exercise
4.12 on page 117.

4.43 The length of time, in minutes, for an airplane
to obtain clearance for takeoff at a certain airport is a

random variable Y = 3X− 2, where X has the density
function

f(x) =

{
1
4
e−x/4, x > 0

0, elsewhere.

Find the mean and variance of the random variable Y .

4.44 Find the covariance of the random variables X
and Y of Exercise 3.39 on page 105.

4.45 Find the covariance of the random variables X
and Y of Exercise 3.49 on page 106.

4.46 Find the covariance of the random variables X
and Y of Exercise 3.44 on page 105.

4.47 For the random variables X and Y whose joint
density function is given in Exercise 3.40 on page 105,
find the covariance.

4.48 Given a random variable X, with standard de-
viation σX , and a random variable Y = a + bX, show
that if b < 0, the correlation coefficient ρXY = −1, and
if b > 0, ρXY = 1.

4.49 Consider the situation in Exercise 4.32 on page
119. The distribution of the number of imperfections
per 10 meters of synthetic failure is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the variance and standard deviation of the num-
ber of imperfections.

4.50 For a laboratory assignment, if the equipment is
working, the density function of the observed outcome
X is

f(x) =

{
2(1− x), 0 < x < 1,

0, otherwise.

Find the variance and standard deviation of X.

4.51 For the random variables X and Y in Exercise
3.39 on page 105, determine the correlation coefficient
between X and Y .

4.52 Random variables X and Y follow a joint distri-
bution

f(x, y) =

{
2, 0 < x ≤ y < 1,

0, otherwise.

Determine the correlation coefficient between X and
Y .
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4.3 Means and Variances of Linear Combinations of
Random Variables

We now develop some useful properties that will simplify the calculations of means
and variances of random variables that appear in later chapters. These properties
will permit us to deal with expectations in terms of other parameters that are
either known or easily computed. All the results that we present here are valid
for both discrete and continuous random variables. Proofs are given only for the
continuous case. We begin with a theorem and two corollaries that should be,
intuitively, reasonable to the reader.

Theorem 4.5: If a and b are constants, then

E(aX + b) = aE(X) + b.

Proof : By the definition of expected value,

E(aX + b) =

∫ ∞

−∞
(ax+ b)f(x) dx = a

∫ ∞

−∞
xf(x) dx+ b

∫ ∞

−∞
f(x) dx.

The first integral on the right is E(X) and the second integral equals 1. Therefore,
we have

E(aX + b) = aE(X) + b.

Corollary 4.1: Setting a = 0, we see that E(b) = b.

Corollary 4.2: Setting b = 0, we see that E(aX) = aE(X).

Example 4.17: Applying Theorem 4.5 to the discrete random variable f(X) = 2X − 1, rework
Example 4.4 on page 115.

Solution : According to Theorem 4.5, we can write

E(2X − 1) = 2E(X)− 1.

Now

μ = E(X) =

9∑
x=4

xf(x)

= (4)

(
1

12

)
+ (5)

(
1

12

)
+ (6)

(
1

4

)
+ (7)

(
1

4

)
+ (8)

(
1

6

)
+ (9)

(
1

6

)
=

41

6
.

Therefore,

μ2X−1 = (2)

(
41

6

)
− 1 = $12.67,

as before.
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Example 4.18: Applying Theorem 4.5 to the continuous random variable g(X) = 4X + 3, rework
Example 4.5 on page 115.

Solution : For Example 4.5, we may use Theorem 4.5 to write

E(4X + 3) = 4E(X) + 3.

Now

E(X) =

∫ 2

−1

x

(
x2

3

)
dx =

∫ 2

−1

x3

3
dx =

5

4
.

Therefore,

E(4X + 3) = (4)

(
5

4

)
+ 3 = 8,

as before.

Theorem 4.6: The expected value of the sum or difference of two or more functions of a random
variable X is the sum or difference of the expected values of the functions. That
is,

E[g(X)± h(X)] = E[g(X)]± E[h(X)].

Proof : By definition,

E[g(X)± h(X)] =

∫ ∞

−∞
[g(x)± h(x)]f(x) dx

=

∫ ∞

−∞
g(x)f(x) dx±

∫ ∞

−∞
h(x)f(x) dx

= E[g(X)]± E[h(X)].

Example 4.19: Let X be a random variable with probability distribution as follows:
x 0 1 2 3

f(x) 1
3

1
2 0 1

6

Find the expected value of Y = (X − 1)2.
Solution : Applying Theorem 4.6 to the function Y = (X − 1)2, we can write

E[(X − 1)2] = E(X2 − 2X + 1) = E(X2)− 2E(X) + E(1).

From Corollary 4.1, E(1) = 1, and by direct computation,

E(X) = (0)

(
1

3

)
+ (1)

(
1

2

)
+ (2)(0) + (3)

(
1

6

)
= 1 and

E(X2) = (0)

(
1

3

)
+ (1)

(
1

2

)
+ (4)(0) + (9)

(
1

6

)
= 2.

Hence,

E[(X − 1)2] = 2− (2)(1) + 1 = 1.
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Example 4.20: The weekly demand for a certain drink, in thousands of liters, at a chain of con-
venience stores is a continuous random variable g(X) = X2 +X − 2, where X has
the density function

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the expected value of the weekly demand for the drink.
Solution : By Theorem 4.6, we write

E(X2 +X − 2) = E(X2) + E(X)− E(2).

From Corollary 4.1, E(2) = 2, and by direct integration,

E(X) =

∫ 2

1

2x(x− 1) dx =
5

3
and E(X2) =

∫ 2

1

2x2(x− 1) dx =
17

6
.

Now

E(X2 +X − 2) =
17

6
+

5

3
− 2 =

5

2
,

so the average weekly demand for the drink from this chain of efficiency stores is
2500 liters.

Suppose that we have two random variables X and Y with joint probability dis-
tribution f(x, y). Two additional properties that will be very useful in succeeding
chapters involve the expected values of the sum, difference, and product of these
two random variables. First, however, let us prove a theorem on the expected
value of the sum or difference of functions of the given variables. This, of course,
is merely an extension of Theorem 4.6.

Theorem 4.7: The expected value of the sum or difference of two or more functions of the random
variables X and Y is the sum or difference of the expected values of the functions.
That is,

E[g(X,Y )± h(X,Y )] = E[g(X,Y )]± E[h(X,Y )].

Proof : By Definition 4.2,

E[g(X,Y )± h(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
[g(x, y)± h(x, y)]f(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy ±

∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y) dx dy

= E[g(X,Y )]± E[h(X,Y )].

Corollary 4.3: Setting g(X,Y ) = g(X) and h(X,Y ) = h(Y ), we see that

E[g(X)± h(Y )] = E[g(X)]± E[h(Y )].
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Corollary 4.4: Setting g(X,Y ) = X and h(X,Y ) = Y , we see that

E[X ± Y ] = E[X]± E[Y ].

If X represents the daily production of some item from machine A and Y the
daily production of the same kind of item from machine B, then X +Y represents
the total number of items produced daily by both machines. Corollary 4.4 states
that the average daily production for both machines is equal to the sum of the
average daily production of each machine.

Theorem 4.8: Let X and Y be two independent random variables. Then

E(XY ) = E(X)E(Y ).

Proof : By Definition 4.2,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy.

Since X and Y are independent, we may write

f(x, y) = g(x)h(y),

where g(x) and h(y) are the marginal distributions ofX and Y , respectively. Hence,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyg(x)h(y) dx dy =

∫ ∞

−∞
xg(x) dx

∫ ∞

−∞
yh(y) dy

= E(X)E(Y ).
Theorem 4.8 can be illustrated for discrete variables by considering the exper-

iment of tossing a green die and a red die. Let the random variable X represent
the outcome on the green die and the random variable Y represent the outcome
on the red die. Then XY represents the product of the numbers that occur on the
pair of dice. In the long run, the average of the products of the numbers is equal
to the product of the average number that occurs on the green die and the average
number that occurs on the red die.

Corollary 4.5: Let X and Y be two independent random variables. Then σXY = 0.

Proof : The proof can be carried out by using Theorems 4.4 and 4.8.

Example 4.21: It is known that the ratio of gallium to arsenide does not affect the functioning
of gallium-arsenide wafers, which are the main components of microchips. Let X
denote the ratio of gallium to arsenide and Y denote the functional wafers retrieved
during a 1-hour period. X and Y are independent random variables with the joint
density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.
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Show that E(XY ) = E(X)E(Y ), as Theorem 4.8 suggests.
Solution : By definition,

E(XY ) =

∫ 1

0

∫ 2

0

x2y(1 + 3y2)

4
dxdy =

5

6
, E(X) =

4

3
, and E(Y ) =

5

8
.

Hence,

E(X)E(Y ) =

(
4

3

)(
5

8

)
=

5

6
= E(XY ).

We conclude this section by proving one theorem and presenting several corol-
laries that are useful for calculating variances or standard deviations.

Theorem 4.9: If X and Y are random variables with joint probability distribution f(x, y) and a,
b, and c are constants, then

σ2
aX+bY+c = a2σ2

X + b2σ2
Y + 2abσXY .

Proof : By definition, σ2
aX+bY+c = E{[(aX + bY + c)− μaX+bY+c]

2}. Now

μaX+bY+c = E(aX + bY + c) = aE(X) + bE(Y ) + c = aμX + bμY + c,

by using Corollary 4.4 followed by Corollary 4.2. Therefore,

σ2
aX+bY+c = E{[a(X − μX) + b(Y − μY )]

2}
= a2E[(X − μX)

2] + b2E[(Y − μY )
2] + 2abE[(X − μX)(Y − μY )]

= a2σ2
X + b2σ2

Y + 2abσXY .

Using Theorem 4.9, we have the following corollaries.

Corollary 4.6: Setting b = 0, we see that

σ2
aX+c = a2σ2

X = a2σ2.

Corollary 4.7: Setting a = 1 and b = 0, we see that

σ2
X+c = σ2

X = σ2.

Corollary 4.8: Setting b = 0 and c = 0, we see that

σ2
aX = a2σ2

X = a2σ2.

Corollaries 4.6 and 4.7 state that the variance is unchanged if a constant is
added to or subtracted from a random variable. The addition or subtraction of
a constant simply shifts the values of X to the right or to the left but does not
change their variability. However, if a random variable is multiplied or divided by
a constant, then Corollaries 4.6 and 4.8 state that the variance is multiplied or
divided by the square of the constant.
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Corollary 4.9: If X and Y are independent random variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y .

The result stated in Corollary 4.9 is obtained from Theorem 4.9 by invoking
Corollary 4.5.

Corollary 4.10: If X and Y are independent random variables, then

σ2
aX−bY = a2σ2

X + b2σ2
Y .

Corollary 4.10 follows when b in Corollary 4.9 is replaced by −b. Generalizing
to a linear combination of n independent random variables, we have Corollary 4.11.

Corollary 4.11: If X1, X2, . . . , Xn are independent random variables, then

σ2
a1X1+a2X2+···+anXn

= a21σ
2
X1

+ a22σ
2
X2

+ · · ·+ a2nσ
2
Xn

.

Example 4.22: If X and Y are random variables with variances σ2
X = 2 and σ2

Y = 4 and covariance
σXY = −2, find the variance of the random variable Z = 3X − 4Y + 8.

Solution :
σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Corollary 4.6)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.9)

= (9)(2) + (16)(4)− (24)(−2) = 130.

Example 4.23: Let X and Y denote the amounts of two different types of impurities in a batch
of a certain chemical product. Suppose that X and Y are independent random
variables with variances σ2

X = 2 and σ2
Y = 3. Find the variance of the random

variable Z = 3X − 2Y + 5.
Solution :

σ2
Z = σ2

3X−2Y+5 = σ2
3X−2Y (by Corollary 4.6)

= 9σ2
x + 4σ2

y (by Corollary 4.10)

= (9)(2) + (4)(3) = 30.

What If the Function Is Nonlinear?

In that which has preceded this section, we have dealt with properties of linear
functions of random variables for very important reasons. Chapters 8 through 15
will discuss and illustrate practical real-world problems in which the analyst is
constructing a linear model to describe a data set and thus to describe or explain
the behavior of a certain scientific phenomenon. Thus, it is natural that expected
values and variances of linear combinations of random variables are encountered.
However, there are situations in which properties of nonlinear functions of random
variables become important. Certainly there are many scientific phenomena that
are nonlinear, and certainly statistical modeling using nonlinear functions is very
important. In fact, in Chapter 12, we deal with the modeling of what have become
standard nonlinear models. Indeed, even a simple function of random variables,
such as Z = X/Y , occurs quite frequently in practice, and yet unlike in the case of

Uploaded By: anonymousSTUDENTS-HUB.com



134 Chapter 4 Mathematical Expectation

the expected value of linear combinations of random variables, there is no simple
general rule. For example,

E(Z) = E(X/Y ) �= E(X)/E(Y ),

except in very special circumstances.
The material provided by Theorems 4.5 through 4.9 and the various corollaries

is extremely useful in that there are no restrictions on the form of the density or
probability functions, apart from the property of independence when it is required
as in the corollaries following Theorems 4.9. To illustrate, consider Example 4.23;
the variance of Z = 3X−2Y +5 does not require restrictions on the distributions of
the amounts X and Y of the two types of impurities. Only independence between
X and Y is required. Now, we do have at our disposal the capacity to find μg(X)

and σ2
g(X) for any function g(·) from first principles established in Theorems 4.1

and 4.3, where it is assumed that the corresponding distribution f(x) is known.
Exercises 4.40, 4.41, and 4.42, among others, illustrate the use of these theorems.
Thus, if the function g(x) is nonlinear and the density function (or probability
function in the discrete case) is known, μg(X) and σ2

g(X) can be evaluated exactly.

But, similar to the rules given for linear combinations, are there rules for nonlinear
functions that can be used when the form of the distribution of the pertinent
random variables is not known?

In general, suppose X is a random variable and Y = g(x). The general solution
for E(Y ) or Var(Y ) can be difficult to find and depends on the complexity of the
function g(·). However, there are approximations available that depend on a linear
approximation of the function g(x). For example, suppose we denote E(X) as μ
and Var(X) = σ2

X . Then a Taylor series approximation of g(x) around X = μX

gives

g(x) = g(μX) +
∂g(x)

∂x

∣∣∣∣
x=μX

(x− μX) +
∂2g(x)

∂x2

∣∣∣∣
x=μX

(x− μX)
2

2
+ · · · .

As a result, if we truncate after the linear term and take the expected value of both
sides, we obtain E[g(X)] ≈ g(μX), which is certainly intuitive and in some cases
gives a reasonable approximation. However, if we include the second-order term
of the Taylor series, then we have a second-order adjustment for this first-order
approximation as follows:

Approximation of
E[g(X)] E[g(X)] ≈ g(μX) +

∂2g(x)

∂x2

∣∣∣∣
x=μX

σ2
X

2
.

Example 4.24: Given the random variable X with mean μX and variance σ2
X , give the second-order

approximation to E(eX).

Solution : Since ∂ex

∂x = ex and ∂2ex

∂x2 = ex, we obtain E(eX) ≈ eμX (1 + σ2
X/2).

Similarly, we can develop an approximation for Var[g(x)] by taking the variance
of both sides of the first-order Taylor series expansion of g(x).

Approximation of
Var[g(X)] Var[g(X)] ≈

[
∂g(x)

∂x

]2
x=μX

σ2
X .

Example 4.25: Given the random variable X as in Example 4.24, give an approximate formula for
Var[g(x)].
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Solution : Again ∂ex

∂x = ex; thus, Var(X) ≈ e2μXσ2
X .

These approximations can be extended to nonlinear functions of more than one
random variable.

Given a set of independent random variables X1, X2, . . . , Xk with means μ1,
μ2, . . . , μk and variances σ2

1 , σ
2
2 , . . . , σ

2
k, respectively, let

Y = h(X1, X2, . . . , Xk)

be a nonlinear function; then the following are approximations for E(Y ) and
Var(Y ):

E(Y ) ≈ h(μ1, μ2, . . . , μk) +

k∑
i=1

σ2
i

2

[
∂2h(x1, x2, . . . , xk)

∂x2
i

]∣∣∣∣
xi=μi, 1≤i≤k

,

Var(Y ) ≈
k∑

i=1

[
∂h(x1, x2, . . . , xk)

∂xi

]2∣∣∣∣∣
xi=μi, 1≤i≤k

σ2
i .

Example 4.26: Consider two independent random variables X and Z with means μX and μZ and
variances σ2

X and σ2
Z , respectively. Consider a random variable

Y = X/Z.

Give approximations for E(Y ) and Var(Y ).

Solution : For E(Y ), we must use ∂y
∂x = 1

z and ∂y
∂z = − x

z2 . Thus,

∂2y

∂x2
= 0 and

∂2y

∂z2
=

2x

z3
.

As a result,

E(Y ) ≈ μX

μZ

+
μX

μ3
Z

σ2
Z =

μX

μZ

(
1 +

σ2
Z

μ2
Z

)
,

and the approximation for the variance of Y is given by

Var(Y ) ≈ 1

μ2
Z

σ2
X +

μ2
X

μ4
Z

σ2
Z =

1

μ2
Z

(
σ2

X +
μ2

X

μ2
Z

σ2
Z

)
.

4.4 Chebyshev’s Theorem

In Section 4.2 we stated that the variance of a random variable tells us something
about the variability of the observations about the mean. If a random variable
has a small variance or standard deviation, we would expect most of the values to
be grouped around the mean. Therefore, the probability that the random variable
assumes a value within a certain interval about the mean is greater than for a
similar random variable with a larger standard deviation. If we think of probability
in terms of area, we would expect a continuous distribution with a large value of
σ to indicate a greater variability, and therefore we should expect the area to
be more spread out, as in Figure 4.2(a). A distribution with a small standard
deviation should have most of its area close to μ, as in Figure 4.2(b).
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x
μ

(a)

x
μ

(b)

Figure 4.2: Variability of continuous observations about the mean.

μ

x

(a)
μ

x

(b)

Figure 4.3: Variability of discrete observations about the mean.

We can argue the same way for a discrete distribution. The area in the prob-
ability histogram in Figure 4.3(b) is spread out much more than that in Figure
4.3(a) indicating a more variable distribution of measurements or outcomes.

The Russian mathematician P. L. Chebyshev (1821–1894) discovered that the
fraction of the area between any two values symmetric about the mean is related
to the standard deviation. Since the area under a probability distribution curve
or in a probability histogram adds to 1, the area between any two numbers is the
probability of the random variable assuming a value between these numbers.

The following theorem, due to Chebyshev, gives a conservative estimate of the
probability that a random variable assumes a value within k standard deviations
of its mean for any real number k.
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Theorem 4.10: (Chebyshev’s Theorem) The probability that any random variable X will as-
sume a value within k standard deviations of the mean is at least 1− 1/k2. That
is,

P (μ− kσ < X < μ+ kσ) ≥ 1− 1

k2
.

For k = 2, the theorem states that the random variable X has a probability of
at least 1−1/22 = 3/4 of falling within two standard deviations of the mean. That
is, three-fourths or more of the observations of any distribution lie in the interval
μ ± 2σ. Similarly, the theorem says that at least eight-ninths of the observations
of any distribution fall in the interval μ± 3σ.

Example 4.27: A random variable X has a mean μ = 8, a variance σ2 = 9, and an unknown
probability distribution. Find

(a) P (−4 < X < 20),

(b) P (|X − 8| ≥ 6).

Solution : (a) P (−4 < X < 20) = P [8− (4)(3) < X < 8 + (4)(3)] ≥ 15
16 .

(b) P (|X − 8| ≥ 6) = 1− P (|X − 8| < 6) = 1− P (−6 < X − 8 < 6)

= 1− P [8− (2)(3) < X < 8 + (2)(3)] ≤ 1

4
.

Chebyshev’s theorem holds for any distribution of observations, and for this
reason the results are usually weak. The value given by the theorem is a lower
bound only. That is, we know that the probability of a random variable falling
within two standard deviations of the mean can be no less than 3/4, but we never
know how much more it might actually be. Only when the probability distribution
is known can we determine exact probabilities. For this reason we call the theorem
a distribution-free result. When specific distributions are assumed, as in future
chapters, the results will be less conservative. The use of Chebyshev’s theorem is
relegated to situations where the form of the distribution is unknown.

Exercises

4.53 Referring to Exercise 4.35 on page 127, find the
mean and variance of the discrete random variable
Z = 3X − 2, when X represents the number of errors
per 100 lines of code.

4.54 Using Theorem 4.5 and Corollary 4.6, find the
mean and variance of the random variable Z = 5X+3,
where X has the probability distribution of Exercise
4.36 on page 127.

4.55 Suppose that a grocery store purchases 5 car-
tons of skim milk at the wholesale price of $1.20 per
carton and retails the milk at $1.65 per carton. After
the expiration date, the unsold milk is removed from
the shelf and the grocer receives a credit from the dis-

tributor equal to three-fourths of the wholesale price.
If the probability distribution of the random variable
X, the number of cartons that are sold from this lot,
is

x 0 1 2 3 4 5
f(x) 1

15
2
15

2
15

3
15

4
15

3
15

find the expected profit.

4.56 Repeat Exercise 4.43 on page 127 by applying
Theorem 4.5 and Corollary 4.6.

4.57 Let X be a random variable with the following
probability distribution:

x −3 6 9
f(x) 1

6
1
2

1
3
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Find E(X) and E(X2) and then, using these values,
evaluate E[(2X + 1)2].

4.58 The total time, measured in units of 100 hours,
that a teenager runs her hair dryer over a period of one
year is a continuous random variable X that has the
density function

f(x) =

⎧⎨⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Use Theorem 4.6 to evaluate the mean of the random
variable Y = 60X2 + 39X, where Y is equal to the
number of kilowatt hours expended annually.

4.59 If a random variable X is defined such that

E[(X − 1)2] = 10 and E[(X − 2)2] = 6,

find μ and σ2.

4.60 Suppose that X and Y are independent random
variables having the joint probability distribution

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

Find

(a) E(2X − 3Y );

(b) E(XY ).

4.61 Use Theorem 4.7 to evaluate E(2XY 2 − X2Y )
for the joint probability distribution shown in Table
3.1 on page 96.

4.62 If X and Y are independent random variables
with variances σ2

X = 5 and σ2
Y = 3, find the variance

of the random variable Z = −2X + 4Y − 3.

4.63 Repeat Exercise 4.62 if X and Y are not inde-
pendent and σXY = 1.

4.64 Suppose that X and Y are independent random
variables with probability densities and

g(x) =

{
8
x3 , x > 2,

0, elsewhere,

and

h(y) =

{
2y, 0 < y < 1,

0, elsewhere.

Find the expected value of Z = XY .

4.65 Let X represent the number that occurs when a
red die is tossed and Y the number that occurs when
a green die is tossed. Find

(a) E(X + Y );

(b) E(X − Y );

(c) E(XY ).

4.66 Let X represent the number that occurs when a
green die is tossed and Y the number that occurs when
a red die is tossed. Find the variance of the random
variable

(a) 2X − Y ;

(b) X + 3Y − 5.

4.67 If the joint density function of X and Y is given
by

f(x, y) =

{
2
7
(x+ 2y), 0 < x < 1, 1 < y < 2,

0, elsewhere,

find the expected value of g(X,Y ) = X
Y 3 +X2Y .

4.68 The power P in watts which is dissipated in an
electric circuit with resistance R is known to be given
by P = I2R, where I is current in amperes and R is a
constant fixed at 50 ohms. However, I is a random vari-
able with μI = 15 amperes and σ2

I = 0.03 amperes2.
Give numerical approximations to the mean and vari-
ance of the power P .

4.69 Consider Review Exercise 3.77 on page 108. The
random variables X and Y represent the number of ve-
hicles that arrive at two separate street corners during
a certain 2-minute period in the day. The joint distri-
bution is

f(x, y) =

(
1

4(x+y)

)(
9

16

)
,

for x = 0, 1, 2, . . . and y = 0, 1, 2, . . . .

(a) Give E(X), E(Y ), Var(X), and Var(Y ).

(b) Consider Z = X + Y , the sum of the two. Find
E(Z) and Var(Z).

4.70 Consider Review Exercise 3.64 on page 107.
There are two service lines. The random variables X
and Y are the proportions of time that line 1 and line
2 are in use, respectively. The joint probability density
function for (X,Y ) is given by

f(x, y) =

{
3
2
(x2 + y2), 0 ≤ x, y ≤ 1,

0, elsewhere.

(a) Determine whether or not X and Y are indepen-
dent.
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(b) It is of interest to know something about the pro-
portion of Z = X + Y , the sum of the two propor-
tions. Find E(X + Y ). Also find E(XY ).

(c) Find Var(X), Var(Y ), and Cov(X,Y ).

(d) Find Var(X + Y ).

4.71 The length of time Y , in minutes, required to
generate a human reflex to tear gas has the density
function

f(y) =

{
1
4
e−y/4, 0 ≤ y < ∞,

0, elsewhere.

(a) What is the mean time to reflex?

(b) Find E(Y 2) and Var(Y ).

4.72 A manufacturing company has developed a ma-
chine for cleaning carpet that is fuel-efficient because
it delivers carpet cleaner so rapidly. Of interest is a
random variable Y , the amount in gallons per minute
delivered. It is known that the density function is given
by

f(y) =

{
1, 7 ≤ y ≤ 8,

0, elsewhere.

(a) Sketch the density function.

(b) Give E(Y ), E(Y 2), and Var(Y ).

4.73 For the situation in Exercise 4.72, compute
E(eY ) using Theorem 4.1, that is, by using

E(eY ) =

∫ 8

7

eyf(y) dy.

Then compute E(eY ) not by using f(y), but rather by
using the second-order adjustment to the first-order
approximation of E(eY ). Comment.

4.74 Consider again the situation of Exercise 4.72. It
is required to find Var(eY ). Use Theorems 4.2 and 4.3
and define Z = eY . Thus, use the conditions of Exer-
cise 4.73 to find

Var(Z) = E(Z2)− [E(Z)]2.

Then do it not by using f(y), but rather by using
the first-order Taylor series approximation to Var(eY ).
Comment!

4.75 An electrical firm manufactures a 100-watt light
bulb, which, according to specifications written on the
package, has a mean life of 900 hours with a standard
deviation of 50 hours. At most, what percentage of
the bulbs fail to last even 700 hours? Assume that the
distribution is symmetric about the mean.

4.76 Seventy new jobs are opening up at an automo-
bile manufacturing plant, and 1000 applicants show up
for the 70 positions. To select the best 70 from among
the applicants, the company gives a test that covers
mechanical skill, manual dexterity, and mathematical
ability. The mean grade on this test turns out to be
60, and the scores have a standard deviation of 6. Can
a person who scores 84 count on getting one of the
jobs? [Hint: Use Chebyshev’s theorem.] Assume that
the distribution is symmetric about the mean.

4.77 A random variable X has a mean μ = 10 and a
variance σ2 = 4. Using Chebyshev’s theorem, find

(a) P (|X − 10| ≥ 3);

(b) P (|X − 10| < 3);

(c) P (5 < X < 15);

(d) the value of the constant c such that

P (|X − 10| ≥ c) ≤ 0.04.

4.78 Compute P (μ − 2σ < X < μ + 2σ), where X
has the density function

f(x) =

{
6x(1− x), 0 < x < 1,

0, elsewhere,

and compare with the result given in Chebyshev’s
theorem.

Review Exercises

4.79 Prove Chebyshev’s theorem.

4.80 Find the covariance of random variables X and
Y having the joint probability density function

f(x, y) =

{
x+ y, 0 < x < 1, 0 < y < 1,

0, elsewhere.

4.81 Referring to the random variables whose joint
probability density function is given in Exercise 3.47
on page 105, find the average amount of kerosene left
in the tank at the end of the day.

4.82 Assume the length X, in minutes, of a particu-
lar type of telephone conversation is a random variable
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with probability density function

f(x) =

{
1
5
e−x/5, x > 0,

0, elsewhere.

(a) Determine the mean length E(X) of this type of
telephone conversation.

(b) Find the variance and standard deviation of X.

(c) Find E[(X + 5)2].

4.83 Referring to the random variables whose joint
density function is given in Exercise 3.41 on page 105,
find the covariance between the weight of the creams
and the weight of the toffees in these boxes of choco-
lates.

4.84 Referring to the random variables whose joint
probability density function is given in Exercise 3.41
on page 105, find the expected weight for the sum of
the creams and toffees if one purchased a box of these
chocolates.

4.85 Suppose it is known that the life X of a partic-
ular compressor, in hours, has the density function

f(x) =

{
1

900
e−x/900, x > 0,

0, elsewhere.

(a) Find the mean life of the compressor.

(b) Find E(X2).

(c) Find the variance and standard deviation of the
random variable X.

4.86 Referring to the random variables whose joint
density function is given in Exercise 3.40 on page 105,

(a) find μX and μY ;

(b) find E[(X + Y )/2].

4.87 Show that Cov(aX, bY ) = ab Cov(X,Y ).

4.88 Consider the density function of Review Ex-
ercise 4.85. Demonstrate that Chebyshev’s theorem
holds for k = 2 and k = 3.

4.89 Consider the joint density function

f(x, y) =

{ 16y
x3 , x > 2, 0 < y < 1,

0, elsewhere.

Compute the correlation coefficient ρXY .

4.90 Consider random variables X and Y of Exercise
4.63 on page 138. Compute ρXY .

4.91 A dealer’s profit, in units of $5000, on a new au-
tomobile is a random variable X having density func-
tion

f(x) =

{
2(1− x), 0 ≤ x ≤ 1,

0, elsewhere.

(a) Find the variance of the dealer’s profit.

(b) Demonstrate that Chebyshev’s theorem holds for
k = 2 with the density function above.

(c) What is the probability that the profit exceeds
$500?

4.92 Consider Exercise 4.10 on page 117. Can it be
said that the ratings given by the two experts are in-
dependent? Explain why or why not.

4.93 A company’s marketing and accounting depart-
ments have determined that if the company markets
its newly developed product, the contribution of the
product to the firm’s profit during the next 6 months
will be described by the following:

Profit Contribution Probability

−$5, 000
$10, 000
$30, 000

0.2
0.5
0.3

What is the company’s expected profit?

4.94 In a support system in the U.S. space program,
a single crucial component works only 85% of the time.
In order to enhance the reliability of the system, it is
decided that 3 components will be installed in parallel
such that the system fails only if they all fail. Assume
the components act independently and that they are
equivalent in the sense that all 3 of them have an 85%
success rate. Consider the random variable X as the
number of components out of 3 that fail.

(a) Write out a probability function for the random
variable X.

(b) What is E(X) (i.e., the mean number of compo-
nents out of 3 that fail)?

(c) What is Var(X)?

(d) What is the probability that the entire system is
successful?

(e) What is the probability that the system fails?

(f) If the desire is to have the system be successful
with probability 0.99, are three components suffi-
cient? If not, how many are required?

4.95 In business, it is important to plan and carry out
research in order to anticipate what will occur at the
end of the year. Research suggests that the profit (loss)
spectrum for a certain company, with corresponding
probabilities, is as follows:
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Profit Probability

−$15, 000 0.05
$0 0.15

$15,000 0.15
$25,000 0.30
$40,000 0.15
$50,000 0.10

$100,000 0.05
$150,000 0.03
$200,000 0.02

(a) What is the expected profit?

(b) Give the standard deviation of the profit.

4.96 It is known through data collection and consid-
erable research that the amount of time in seconds that
a certain employee of a company is late for work is a
random variable X with density function

f(x) =

{
3

(4)(503)
(502 − x2), −50 ≤ x ≤ 50,

0, elsewhere.

In other words, he not only is slightly late at times,
but also can be early to work.

(a) Find the expected value of the time in seconds that
he is late.

(b) Find E(X2).

(c) What is the standard deviation of the amount of
time he is late?

4.97 A delivery truck travels from point A to point B
and back using the same route each day. There are four
traffic lights on the route. Let X1 denote the number
of red lights the truck encounters going from A to B
and X2 denote the number encountered on the return
trip. Data collected over a long period suggest that the
joint probability distribution for (X1, X2) is given by

x2

x1 0 1 2 3 4

0 0.01 0.01 0.03 0.07 0.01
1 0.03 0.05 0.08 0.03 0.02
2 0.03 0.11 0.15 0.01 0.01
3 0.02 0.07 0.10 0.03 0.01
4 0.01 0.06 0.03 0.01 0.01

(a) Give the marginal density of X1.

(b) Give the marginal density of X2.

(c) Give the conditional density distribution of X1

given X2 = 3.

(d) Give E(X1).

(e) Give E(X2).

(f) Give E(X1 | X2 = 3).

(g) Give the standard deviation of X1.

4.98 A convenience store has two separate locations
where customers can be checked out as they leave.
These locations each have two cash registers and two
employees who check out customers. Let X be the
number of cash registers being used at a particular time
for location 1 and Y the number being used at the same
time for location 2. The joint probability function is
given by

y

x 0 1 2

0 0.12 0.04 0.04
1 0.08 0.19 0.05
2 0.06 0.12 0.30

(a) Give the marginal density of both X and Y as well
as the probability distribution of X given Y = 2.

(b) Give E(X) and Var(X).

(c) Give E(X | Y = 2) and Var(X | Y = 2).

4.99 Consider a ferry that can carry both buses and
cars across a waterway. Each trip costs the owner ap-
proximately $10. The fee for cars is $3 and the fee for
buses is $8. Let X and Y denote the number of buses
and cars, respectively, carried on a given trip. The
joint distribution of X and Y is given by

x

y 0 1 2

0 0.01 0.01 0.03
1 0.03 0.08 0.07
2 0.03 0.06 0.06
3 0.07 0.07 0.13
4 0.12 0.04 0.03
5 0.08 0.06 0.02

Compute the expected profit for the ferry trip.

4.100 As we shall illustrate in Chapter 12, statistical
methods associated with linear and nonlinear models
are very important. In fact, exponential functions are
often used in a wide variety of scientific and engineering
problems. Consider a model that is fit to a set of data
involving measured values k1 and k2 and a certain re-
sponse Y to the measurements. The model postulated
is

Ŷ = eb0+b1k1+b2k2 ,

where Ŷ denotes the estimated value of Y, k1 and
k2 are fixed values, and b0, b1, and b2 are estimates
of constants and hence are random variables. Assume
that these random variables are independent and use
the approximate formula for the variance of a nonlinear
function of more than one variable. Give an expression

for Var(Ŷ ). Assume that the means of b0, b1, and b2
are known and are β0, β1, and β2, and assume that the
variances of b0, b1, and b2 are known and are σ2

0 , σ
2
1 ,

and σ2
2 .
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4.101 Consider Review Exercise 3.73 on page 108. It
involved Y , the proportion of impurities in a batch,
and the density function is given by

f(y) =

{
10(1− y)9, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Find the expected percentage of impurities.

(b) Find the expected value of the proportion of quality
material (i.e., find E(1− Y )).

(c) Find the variance of the random variable Z = 1−Y .

4.102 Project: Let X = number of hours each stu-
dent in the class slept the night before. Create a dis-
crete variable by using the following arbitrary intervals:
X < 3, 3 ≤ X < 6, 6 ≤ X < 9, and X ≥ 9.

(a) Estimate the probability distribution for X.

(b) Calculate the estimated mean and variance for X.

4.5 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The material in this chapter is extremely fundamental in nature, much like that in
Chapter 3. Whereas in Chapter 3 we focused on general characteristics of a prob-
ability distribution, in this chapter we defined important quantities or parameters
that characterize the general nature of the system. The mean of a distribution
reflects central tendency, and the variance or standard deviation reflects vari-
ability in the system. In addition, covariance reflects the tendency for two random
variables to “move together” in a system. These important parameters will remain
fundamental to all that follows in this text.

The reader should understand that the distribution type is often dictated by
the scientific scenario. However, the parameter values need to be estimated from
scientific data. For example, in the case of Review Exercise 4.85, the manufac-
turer of the compressor may know (material that will be presented in Chapter 6)
from experience and knowledge of the type of compressor that the nature of the
distribution is as indicated in the exercise. But the mean μ = 900 would be esti-
mated from experimentation on the machine. Though the parameter value of 900
is given as known here, it will not be known in real-life situations without the use
of experimental data. Chapter 9 is dedicated to estimation.
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Chapter 5

Some Discrete Probability
Distributions

5.1 Introduction and Motivation

No matter whether a discrete probability distribution is represented graphically by
a histogram, in tabular form, or by means of a formula, the behavior of a random
variable is described. Often, the observations generated by different statistical ex-
periments have the same general type of behavior. Consequently, discrete random
variables associated with these experiments can be described by essentially the
same probability distribution and therefore can be represented by a single formula.
In fact, one needs only a handful of important probability distributions to describe
many of the discrete random variables encountered in practice.

Such a handful of distributions describe several real-life random phenomena.
For instance, in a study involving testing the effectiveness of a new drug, the num-
ber of cured patients among all the patients who use the drug approximately follows
a binomial distribution (Section 5.2). In an industrial example, when a sample of
items selected from a batch of production is tested, the number of defective items
in the sample usually can be modeled as a hypergeometric random variable (Sec-
tion 5.3). In a statistical quality control problem, the experimenter will signal a
shift of the process mean when observational data exceed certain limits. The num-
ber of samples required to produce a false alarm follows a geometric distribution
which is a special case of the negative binomial distribution (Section 5.4). On the
other hand, the number of white cells from a fixed amount of an individual’s blood
sample is usually random and may be described by a Poisson distribution (Section
5.5). In this chapter, we present these commonly used distributions with various
examples.

5.2 Binomial and Multinomial Distributions

An experiment often consists of repeated trials, each with two possible outcomes
that may be labeled success or failure. The most obvious application deals with
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the testing of items as they come off an assembly line, where each trial may indicate
a defective or a nondefective item. We may choose to define either outcome as a
success. The process is referred to as a Bernoulli process. Each trial is called a
Bernoulli trial. Observe, for example, if one were drawing cards from a deck, the
probabilities for repeated trials change if the cards are not replaced. That is, the
probability of selecting a heart on the first draw is 1/4, but on the second draw it is
a conditional probability having a value of 13/51 or 12/51, depending on whether
a heart appeared on the first draw: this, then, would no longer be considered a set
of Bernoulli trials.

The Bernoulli Process

Strictly speaking, the Bernoulli process must possess the following properties:

1. The experiment consists of repeated trials.

2. Each trial results in an outcome that may be classified as a success or a failure.

3. The probability of success, denoted by p, remains constant from trial to trial.

4. The repeated trials are independent.

Consider the set of Bernoulli trials where three items are selected at random
from a manufacturing process, inspected, and classified as defective or nondefective.
A defective item is designated a success. The number of successes is a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values of X are

Outcome NNN NDN NND DNN NDD DND DDN DDD

x 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P (NDN) = P (N)P (D)P (N) =

(
3

4

)(
1

4

)(
3

4

)
=

9

64
.

Similar calculations yield the probabilities for the other possible outcomes. The
probability distribution of X is therefore

x 0 1 2 3

f(x) 27
64

27
64

9
64

1
64

Binomial Distribution

The number X of successes in n Bernoulli trials is called a binomial random
variable. The probability distribution of this discrete random variable is called
the binomial distribution, and its values will be denoted by b(x;n, p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X, the number of defectives is

P (X = 2) = f(2) = b

(
2; 3,

1

4

)
=

9

64
.
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Let us now generalize the above illustration to yield a formula for b(x;n, p).
That is, we wish to find a formula that gives the probability of x successes in
n trials for a binomial experiment. First, consider the probability of x successes
and n − x failures in a specified order. Since the trials are independent, we can
multiply all the probabilities corresponding to the different outcomes. Each success
occurs with probability p and each failure with probability q = 1 − p. Therefore,
the probability for the specified order is pxqn−x. We must now determine the total
number of sample points in the experiment that have x successes and n−x failures.
This number is equal to the number of partitions of n outcomes into two groups
with x in one group and n−x in the other and is written

(
n
x

)
as introduced in Section

2.3. Because these partitions are mutually exclusive, we add the probabilities of all
the different partitions to obtain the general formula, or simply multiply pxqn−x

by
(
n
x

)
.

Binomial
Distribution

A Bernoulli trial can result in a success with probability p and a failure with
probability q = 1−p. Then the probability distribution of the binomial random
variable X, the number of successes in n independent trials, is

b(x;n, p) =

(
n

x

)
pxqn−x, x = 0, 1, 2, . . . , n.

Note that when n = 3 and p = 1/4, the probability distribution of X, the number
of defectives, may be written as

b

(
x; 3,

1

4

)
=

(
3

x

)(
1

4

)x(
3

4

)3−x

, x = 0, 1, 2, 3,

rather than in the tabular form on page 144.

Example 5.1: The probability that a certain kind of component will survive a shock test is 3/4.
Find the probability that exactly 2 of the next 4 components tested survive.

Solution : Assuming that the tests are independent and p = 3/4 for each of the 4 tests, we
obtain

b

(
2; 4,

3

4

)
=

(
4

2

)(
3

4

)2(
1

4

)2

=

(
4!

2! 2!

)(
32

44

)
=

27

128
.

Where Does the Name Binomial Come From?

The binomial distribution derives its name from the fact that the n + 1 terms in
the binomial expansion of (q+p)n correspond to the various values of b(x;n, p) for
x = 0, 1, 2, . . . , n. That is,

(q + p)n =

(
n

0

)
qn +

(
n

1

)
pqn−1 +

(
n

2

)
p2qn−2 + · · ·+

(
n

n

)
pn

= b(0;n, p) + b(1;n, p) + b(2;n, p) + · · ·+ b(n;n, p).

Since p+ q = 1, we see that

n∑
x=0

b(x;n, p) = 1,
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a condition that must hold for any probability distribution.
Frequently, we are interested in problems where it is necessary to find P (X < r)

or P (a ≤ X ≤ b). Binomial sums

B(r;n, p) =
r∑

x=0

b(x;n, p)

are given in Table A.1 of the Appendix for n = 1, 2, . . . , 20 for selected values of p
from 0.1 to 0.9. We illustrate the use of Table A.1 with the following example.

Example 5.2: The probability that a patient recovers from a rare blood disease is 0.4. If 15 people
are known to have contracted this disease, what is the probability that (a) at least
10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive?

Solution : Let X be the number of people who survive.

(a) P (X ≥ 10) = 1− P (X < 10) = 1−
9∑

x=0

b(x; 15, 0.4) = 1− 0.9662

= 0.0338

(b) P (3 ≤ X ≤ 8) =
8∑

x=3

b(x; 15, 0.4) =
8∑

x=0

b(x; 15, 0.4)−
2∑

x=0

b(x; 15, 0.4)

= 0.9050− 0.0271 = 0.8779

(c) P (X = 5) = b(5; 15, 0.4) =
5∑

x=0

b(x; 15, 0.4)−
4∑

x=0

b(x; 15, 0.4)

= 0.4032− 0.2173 = 0.1859

Example 5.3: A large chain retailer purchases a certain kind of electronic device from a manu-
facturer. The manufacturer indicates that the defective rate of the device is 3%.

(a) The inspector randomly picks 20 items from a shipment. What is the proba-
bility that there will be at least one defective item among these 20?

(b) Suppose that the retailer receives 10 shipments in a month and the inspector
randomly tests 20 devices per shipment. What is the probability that there
will be exactly 3 shipments each containing at least one defective device among
the 20 that are selected and tested from the shipment?

Solution : (a) Denote by X the number of defective devices among the 20. Then X follows
a b(x; 20, 0.03) distribution. Hence,

P (X ≥ 1) = 1− P (X = 0) = 1− b(0; 20, 0.03)

= 1− (0.03)0(1− 0.03)20−0 = 0.4562.

(b) In this case, each shipment can either contain at least one defective item or
not. Hence, testing of each shipment can be viewed as a Bernoulli trial with
p = 0.4562 from part (a). Assuming independence from shipment to shipment
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and denoting by Y the number of shipments containing at least one defective
item, Y follows another binomial distribution b(y; 10, 0.4562). Therefore,

P (Y = 3) =

(
10

3

)
0.45623(1− 0.4562)7 = 0.1602.

Areas of Application

From Examples 5.1 through 5.3, it should be clear that the binomial distribution
finds applications in many scientific fields. An industrial engineer is keenly inter-
ested in the “proportion defective” in an industrial process. Often, quality control
measures and sampling schemes for processes are based on the binomial distribu-
tion. This distribution applies to any industrial situation where an outcome of a
process is dichotomous and the results of the process are independent, with the
probability of success being constant from trial to trial. The binomial distribution
is also used extensively for medical and military applications. In both fields, a
success or failure result is important. For example, “cure” or “no cure” is impor-
tant in pharmaceutical work, and “hit” or “miss” is often the interpretation of the
result of firing a guided missile.

Since the probability distribution of any binomial random variable depends only
on the values assumed by the parameters n, p, and q, it would seem reasonable
to assume that the mean and variance of a binomial random variable also depend
on the values assumed by these parameters. Indeed, this is true, and in the proof
of Theorem 5.1 we derive general formulas that can be used to compute the mean
and variance of any binomial random variable as functions of n, p, and q.

Theorem 5.1: The mean and variance of the binomial distribution b(x;n, p) are
μ = np and σ2 = npq.

Proof : Let the outcome on the jth trial be represented by a Bernoulli random variable
Ij , which assumes the values 0 and 1 with probabilities q and p, respectively.
Therefore, in a binomial experiment the number of successes can be written as the
sum of the n independent indicator variables. Hence,

X = I1 + I2 + · · ·+ In.

The mean of any Ij is E(Ij) = (0)(q) + (1)(p) = p. Therefore, using Corollary 4.4
on page 131, the mean of the binomial distribution is

μ = E(X) = E(I1) + E(I2) + · · ·+ E(In) = p+ p+ · · ·+ p︸ ︷︷ ︸
n terms

= np.

The variance of any Ij is σ
2
Ij

= E(I2j )−p2 = (0)2(q)+(1)2(p)−p2 = p(1−p) = pq.
Extending Corollary 4.11 to the case of n independent Bernoulli variables gives the
variance of the binomial distribution as

σ2
X = σ2

I1 + σ2
I2 + · · ·+ σ2

In = pq + pq + · · ·+ pq︸ ︷︷ ︸
n terms

= npq.

Uploaded By: anonymousSTUDENTS-HUB.com



148 Chapter 5 Some Discrete Probability Distributions

Example 5.4: It is conjectured that an impurity exists in 30% of all drinking wells in a certain
rural community. In order to gain some insight into the true extent of the problem,
it is determined that some testing is necessary. It is too expensive to test all of the
wells in the area, so 10 are randomly selected for testing.

(a) Using the binomial distribution, what is the probability that exactly 3 wells
have the impurity, assuming that the conjecture is correct?

(b) What is the probability that more than 3 wells are impure?

Solution : (a) We require

b(3; 10, 0.3) =

3∑
x=0

b(x; 10, 0.3)−
2∑

x=0

b(x; 10, 0.3) = 0.6496− 0.3828 = 0.2668.

(b) In this case, P (X > 3) = 1− 0.6496 = 0.3504.

Example 5.5: Find the mean and variance of the binomial random variable of Example 5.2, and
then use Chebyshev’s theorem (on page 137) to interpret the interval μ± 2σ.

Solution : Since Example 5.2 was a binomial experiment with n = 15 and p = 0.4, by Theorem
5.1, we have

μ = (15)(0.4) = 6 and σ2 = (15)(0.4)(0.6) = 3.6.

Taking the square root of 3.6, we find that σ = 1.897. Hence, the required interval is
6±(2)(1.897), or from 2.206 to 9.794. Chebyshev’s theorem states that the number
of recoveries among 15 patients who contracted the disease has a probability of at
least 3/4 of falling between 2.206 and 9.794 or, because the data are discrete,
between 2 and 10 inclusive.

There are solutions in which the computation of binomial probabilities may
allow us to draw a scientific inference about population after data are collected.
An illustration is given in the next example.

Example 5.6: Consider the situation of Example 5.4. The notion that 30% of the wells are impure
is merely a conjecture put forth by the area water board. Suppose 10 wells are
randomly selected and 6 are found to contain the impurity. What does this imply
about the conjecture? Use a probability statement.

Solution : We must first ask: “If the conjecture is correct, is it likely that we would find 6 or
more impure wells?”

P (X ≥ 6) =
10∑
x=0

b(x; 10, 0.3)−
5∑

x=0

b(x; 10, 0.3) = 1− 0.9527 = 0.0473.

As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found
impure if only 30% of all are impure. This casts considerable doubt on the conjec-
ture and suggests that the impurity problem is much more severe.

As the reader should realize by now, in many applications there are more than
two possible outcomes. To borrow an example from the field of genetics, the color of
guinea pigs produced as offspring may be red, black, or white. Often the “defective”
or “not defective” dichotomy is truly an oversimplification in engineering situations.
Indeed, there are often more than two categories that characterize items or parts
coming off an assembly line.
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Multinomial Experiments and the Multinomial Distribution

The binomial experiment becomes a multinomial experiment if we let each
trial have more than two possible outcomes. The classification of a manufactured
product as being light, heavy, or acceptable and the recording of accidents at a
certain intersection according to the day of the week constitute multinomial exper-
iments. The drawing of a card from a deck with replacement is also a multinomial
experiment if the 4 suits are the outcomes of interest.

In general, if a given trial can result in any one of k possible outcomes E1, E2, . . . ,
Ek with probabilities p1, p2, . . . , pk, then the multinomial distribution will give
the probability that E1 occurs x1 times, E2 occurs x2 times, . . . , and Ek occurs
xk times in n independent trials, where

x1 + x2 + · · ·+ xk = n.

We shall denote this joint probability distribution by

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n).

Clearly, p1 + p2 + · · · + pk = 1, since the result of each trial must be one of the k
possible outcomes.

To derive the general formula, we proceed as in the binomial case. Since the
trials are independent, any specified order yielding x1 outcomes for E1, x2 for
E2, . . . , xk for Ek will occur with probability px1

1 px2
2 · · · pxk

k . The total number of
orders yielding similar outcomes for the n trials is equal to the number of partitions
of n items into k groups with x1 in the first group, x2 in the second group, . . . ,
and xk in the kth group. This can be done in(

n

x1, x2, . . . , xk

)
=

n!

x1!x2! · · ·xk!

ways. Since all the partitions are mutually exclusive and occur with equal proba-
bility, we obtain the multinomial distribution by multiplying the probability for a
specified order by the total number of partitions.

Multinomial
Distribution

If a given trial can result in the k outcomes E1, E2, . . . , Ek with probabilities
p1, p2, . . . , pk, then the probability distribution of the random variables X1, X2,
. . . , Xk, representing the number of occurrences for E1, E2, . . . , Ek in n inde-
pendent trials, is

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n) =

(
n

x1, x2, . . . , xk

)
px1
1 px2

2 · · · pxk

k ,

with
k∑

i=1

xi = n and
k∑

i=1

pi = 1.

The multinomial distribution derives its name from the fact that the terms of
the multinomial expansion of (p1 + p2 + · · · + pk)

n correspond to all the possible
values of f(x1, x2, . . . , xk; p1, p2, . . . , pk, n).
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Example 5.7: The complexity of arrivals and departures of planes at an airport is such that
computer simulation is often used to model the “ideal” conditions. For a certain
airport with three runways, it is known that in the ideal setting the following are
the probabilities that the individual runways are accessed by a randomly arriving
commercial jet:

Runway 1: p1 = 2/9,
Runway 2: p2 = 1/6,
Runway 3: p3 = 11/18.

What is the probability that 6 randomly arriving airplanes are distributed in the
following fashion?

Runway 1: 2 airplanes,
Runway 2: 1 airplane,
Runway 3: 3 airplanes

Solution : Using the multinomial distribution, we have

f

(
2, 1, 3;

2

9
,
1

6
,
11

18
, 6

)
=

(
6

2, 1, 3

)(
2

9

)2(
1

6

)1(
11

18

)3

=
6!

2! 1! 3!
· 2

2

92
· 1
6
· 11

3

183
= 0.1127.

Exercises

5.1 A random variable X that assumes the values
x1, x2, . . . , xk is called a discrete uniform random vari-
able if its probability mass function is f(x) = 1

k
for all

of x1, x2, . . . , xk and 0 otherwise. Find the mean and
variance of X.

5.2 Twelve people are given two identical speakers,
which they are asked to listen to for differences, if any.
Suppose that these people answer simply by guessing.
Find the probability that three people claim to have
heard a difference between the two speakers.

5.3 An employee is selected from a staff of 10 to super-
vise a certain project by selecting a tag at random from
a box containing 10 tags numbered from 1 to 10. Find
the formula for the probability distribution of X rep-
resenting the number on the tag that is drawn. What
is the probability that the number drawn is less than
4?

5.4 In a certain city district, the need for money to
buy drugs is stated as the reason for 75% of all thefts.
Find the probability that among the next 5 theft cases
reported in this district,

(a) exactly 2 resulted from the need for money to buy
drugs;

(b) at most 3 resulted from the need for money to buy
drugs.

5.5 According to Chemical Engineering Progress
(November 1990), approximately 30% of all pipework
failures in chemical plants are caused by operator error.

(a) What is the probability that out of the next 20
pipework failures at least 10 are due to operator
error?

(b) What is the probability that no more than 4 out of
20 such failures are due to operator error?

(c) Suppose, for a particular plant, that out of the ran-
dom sample of 20 such failures, exactly 5 are due
to operator error. Do you feel that the 30% figure
stated above applies to this plant? Comment.

5.6 According to a survey by the Administrative
Management Society, one-half of U.S. companies give
employees 4 weeks of vacation after they have been
with the company for 15 years. Find the probabil-
ity that among 6 companies surveyed at random, the
number that give employees 4 weeks of vacation after
15 years of employment is

(a) anywhere from 2 to 5;

(b) fewer than 3.

5.7 One prominent physician claims that 70% of those
with lung cancer are chain smokers. If his assertion is
correct,

(a) find the probability that of 10 such patients
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recently admitted to a hospital, fewer than half are
chain smokers;

(b) find the probability that of 20 such patients re-
cently admitted to a hospital, fewer than half are
chain smokers.

5.8 According to a study published by a group of Uni-
versity of Massachusetts sociologists, approximately
60% of the Valium users in the state of Massachusetts
first took Valium for psychological problems. Find the
probability that among the next 8 users from this state
who are interviewed,

(a) exactly 3 began taking Valium for psychological
problems;

(b) at least 5 began taking Valium for problems that
were not psychological.

5.9 In testing a certain kind of truck tire over rugged
terrain, it is found that 25% of the trucks fail to com-
plete the test run without a blowout. Of the next 15
trucks tested, find the probability that

(a) from 3 to 6 have blowouts;

(b) fewer than 4 have blowouts;

(c) more than 5 have blowouts.

5.10 A nationwide survey of college seniors by the
University of Michigan revealed that almost 70% dis-
approve of daily pot smoking, according to a report in
Parade. If 12 seniors are selected at random and asked
their opinion, find the probability that the number who
disapprove of smoking pot daily is

(a) anywhere from 7 to 9;

(b) at most 5;

(c) not less than 8.

5.11 The probability that a patient recovers from a
delicate heart operation is 0.9. What is the probabil-
ity that exactly 5 of the next 7 patients having this
operation survive?

5.12 A traffic control engineer reports that 75% of the
vehicles passing through a checkpoint are from within
the state. What is the probability that fewer than 4 of
the next 9 vehicles are from out of state?

5.13 A national study that examined attitudes about
antidepressants revealed that approximately 70% of re-
spondents believe “antidepressants do not really cure
anything, they just cover up the real trouble.” Accord-
ing to this study, what is the probability that at least
3 of the next 5 people selected at random will hold this
opinion?

5.14 The percentage of wins for the Chicago Bulls
basketball team going into the playoffs for the 1996–97
season was 87.7. Round the 87.7 to 90 in order to use
Table A.1.

(a) What is the probability that the Bulls sweep (4-0)
the initial best-of-7 playoff series?

(b) What is the probability that the Bulls win the ini-
tial best-of-7 playoff series?

(c) What very important assumption is made in an-
swering parts (a) and (b)?

5.15 It is known that 60% of mice inoculated with a
serum are protected from a certain disease. If 5 mice
are inoculated, find the probability that

(a) none contracts the disease;

(b) fewer than 2 contract the disease;

(c) more than 3 contract the disease.

5.16 Suppose that airplane engines operate indepen-
dently and fail with probability equal to 0.4. Assuming
that a plane makes a safe flight if at least one-half of its
engines run, determine whether a 4-engine plane or a 2-
engine plane has the higher probability for a successful
flight.

5.17 If X represents the number of people in Exer-
cise 5.13 who believe that antidepressants do not cure
but only cover up the real problem, find the mean and
variance of X when 5 people are selected at random.

5.18 (a) In Exercise 5.9, how many of the 15 trucks
would you expect to have blowouts?

(b) What is the variance of the number of blowouts ex-
perienced by the 15 trucks? What does that mean?

5.19 As a student drives to school, he encounters a
traffic signal. This traffic signal stays green for 35 sec-
onds, yellow for 5 seconds, and red for 60 seconds. As-
sume that the student goes to school each weekday
between 8:00 and 8:30 a.m. Let X1 be the number of
times he encounters a green light, X2 be the number
of times he encounters a yellow light, and X3 be the
number of times he encounters a red light. Find the
joint distribution of X1, X2, and X3.

5.20 According to USA Today (March 18, 1997), of 4
million workers in the general workforce, 5.8% tested
positive for drugs. Of those testing positive, 22.5%
were cocaine users and 54.4% marijuana users.

(a) What is the probability that of 10 workers testing
positive, 2 are cocaine users, 5 are marijuana users,
and 3 are users of other drugs?

(b) What is the probability that of 10 workers testing
positive, all are marijuana users?
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(c) What is the probability that of 10 workers testing
positive, none is a cocaine user?

5.21 The surface of a circular dart board has a small
center circle called the bull’s-eye and 20 pie-shaped re-
gions numbered from 1 to 20. Each of the pie-shaped
regions is further divided into three parts such that a
person throwing a dart that lands in a specific region
scores the value of the number, double the number,
or triple the number, depending on which of the three
parts the dart hits. If a person hits the bull’s-eye with
probability 0.01, hits a double with probability 0.10,
hits a triple with probability 0.05, and misses the dart
board with probability 0.02, what is the probability
that 7 throws will result in no bull’s-eyes, no triples, a
double twice, and a complete miss once?

5.22 According to a genetics theory, a certain cross of
guinea pigs will result in red, black, and white offspring
in the ratio 8:4:4. Find the probability that among 8
offspring, 5 will be red, 2 black, and 1 white.

5.23 The probabilities are 0.4, 0.2, 0.3, and 0.1, re-
spectively, that a delegate to a certain convention ar-
rived by air, bus, automobile, or train. What is the
probability that among 9 delegates randomly selected
at this convention, 3 arrived by air, 3 arrived by bus,
1 arrived by automobile, and 2 arrived by train?

5.24 A safety engineer claims that only 40% of all
workers wear safety helmets when they eat lunch at
the workplace. Assuming that this claim is right, find
the probability that 4 of 6 workers randomly chosen
will be wearing their helmets while having lunch at the
workplace.

5.25 Suppose that for a very large shipment of
integrated-circuit chips, the probability of failure for
any one chip is 0.10. Assuming that the assumptions
underlying the binomial distributions are met, find the
probability that at most 3 chips fail in a random sample
of 20.

5.26 Assuming that 6 in 10 automobile accidents are
due mainly to a speed violation, find the probabil-
ity that among 8 automobile accidents, 6 will be due
mainly to a speed violation

(a) by using the formula for the binomial distribution;

(b) by using Table A.1.

5.27 If the probability that a fluorescent light has a
useful life of at least 800 hours is 0.9, find the proba-
bilities that among 20 such lights

(a) exactly 18 will have a useful life of at least 800
hours;

(b) at least 15 will have a useful life of at least 800
hours;

(c) at least 2 will not have a useful life of at least 800
hours.

5.28 A manufacturer knows that on average 20% of
the electric toasters produced require repairs within 1
year after they are sold. When 20 toasters are ran-
domly selected, find appropriate numbers x and y such
that

(a) the probability that at least x of them will require
repairs is less than 0.5;

(b) the probability that at least y of them will not re-
quire repairs is greater than 0.8.

5.3 Hypergeometric Distribution

The simplest way to view the distinction between the binomial distribution of
Section 5.2 and the hypergeometric distribution is to note the way the sampling is
done. The types of applications for the hypergeometric are very similar to those
for the binomial distribution. We are interested in computing probabilities for the
number of observations that fall into a particular category. But in the case of the
binomial distribution, independence among trials is required. As a result, if that
distribution is applied to, say, sampling from a lot of items (deck of cards, batch
of production items), the sampling must be done with replacement of each item
after it is observed. On the other hand, the hypergeometric distribution does not
require independence and is based on sampling done without replacement.

Applications for the hypergeometric distribution are found in many areas, with
heavy use in acceptance sampling, electronic testing, and quality assurance. Ob-
viously, in many of these fields, testing is done at the expense of the item being
tested. That is, the item is destroyed and hence cannot be replaced in the sample.
Thus, sampling without replacement is necessary. A simple example with playing
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cards will serve as our first illustration.
If we wish to find the probability of observing 3 red cards in 5 draws from an

ordinary deck of 52 playing cards, the binomial distribution of Section 5.2 does not
apply unless each card is replaced and the deck reshuffled before the next draw is
made. To solve the problem of sampling without replacement, let us restate the
problem. If 5 cards are drawn at random, we are interested in the probability of
selecting 3 red cards from the 26 available in the deck and 2 black cards from the 26
available in the deck. There are

(
26
3

)
ways of selecting 3 red cards, and for each of

these ways we can choose 2 black cards in
(
26
2

)
ways. Therefore, the total number

of ways to select 3 red and 2 black cards in 5 draws is the product
(
26
3

)(
26
2

)
. The

total number of ways to select any 5 cards from the 52 that are available is
(
52
5

)
.

Hence, the probability of selecting 5 cards without replacement of which 3 are red
and 2 are black is given by(

26
3

)(
26
2

)(
52
5

) =
(26!/3! 23!)(26!/2! 24!)

52!/5! 47!
= 0.3251.

In general, we are interested in the probability of selecting x successes from
the k items labeled successes and n − x failures from the N − k items labeled
failures when a random sample of size n is selected from N items. This is known
as a hypergeometric experiment, that is, one that possesses the following two
properties:

1. A random sample of size n is selected without replacement from N items.

2. Of the N items, k may be classified as successes and N − k are classified as
failures.

The number X of successes of a hypergeometric experiment is called a hyper-
geometric random variable. Accordingly, the probability distribution of the
hypergeometric variable is called the hypergeometric distribution, and its val-
ues are denoted by h(x;N,n, k), since they depend on the number of successes k
in the set N from which we select n items.

Hypergeometric Distribution in Acceptance Sampling

Like the binomial distribution, the hypergeometric distribution finds applications
in acceptance sampling, where lots of materials or parts are sampled in order to
determine whether or not the entire lot is accepted.

Example 5.8: A particular part that is used as an injection device is sold in lots of 10. The
producer deems a lot acceptable if no more than one defective is in the lot. A
sampling plan involves random sampling and testing 3 of the parts out of 10. If
none of the 3 is defective, the lot is accepted. Comment on the utility of this plan.

Solution : Let us assume that the lot is truly unacceptable (i.e., that 2 out of 10 parts are
defective). The probability that the sampling plan finds the lot acceptable is

P (X = 0) =

(
2
0

)(
8
3

)(
10
3

) = 0.467.
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Thus, if the lot is truly unacceptable, with 2 defective parts, this sampling plan
will allow acceptance roughly 47% of the time. As a result, this plan should be
considered faulty.

Let us now generalize in order to find a formula for h(x;N,n, k). The total
number of samples of size n chosen from N items is

(
N
n

)
. These samples are

assumed to be equally likely. There are
(
k
x

)
ways of selecting x successes from the

k that are available, and for each of these ways we can choose the n− x failures in(
N−k
n−x

)
ways. Thus, the total number of favorable samples among the

(
N
n

)
possible

samples is given by
(
k
x

)(
N−k
n−x

)
. Hence, we have the following definition.

Hypergeometric
Distribution

The probability distribution of the hypergeometric random variableX, the num-
ber of successes in a random sample of size n selected from N items of which k
are labeled success and N − k labeled failure, is

h(x;N,n, k) =

(
k
x

)(
N−k
n−x

)(
N
n

) , max{0, n− (N − k)} ≤ x ≤ min{n, k}.

The range of x can be determined by the three binomial coefficients in the
definition, where x and n−x are no more than k and N−k, respectively, and both
of them cannot be less than 0. Usually, when both k (the number of successes)
and N − k (the number of failures) are larger than the sample size n, the range of
a hypergeometric random variable will be x = 0, 1, . . . , n.

Example 5.9: Lots of 40 components each are deemed unacceptable if they contain 3 or more
defectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective is found. What is the probability that exactly 1
defective is found in the sample if there are 3 defectives in the entire lot?

Solution : Using the hypergeometric distribution with n = 5, N = 40, k = 3, and x = 1, we
find the probability of obtaining 1 defective to be

h(1; 40, 5, 3) =

(
3
1

)(
37
4

)(
40
5

) = 0.3011.

Once again, this plan is not desirable since it detects a bad lot (3 defectives) only
about 30% of the time.

Theorem 5.2: The mean and variance of the hypergeometric distribution h(x;N,n, k) are

μ =
nk

N
and σ2 =

N − n

N − 1
· n · k

N

(
1− k

N

)
.

The proof for the mean is shown in Appendix A.24.

Example 5.10: Let us now reinvestigate Example 3.4 on page 83. The purpose of this example was
to illustrate the notion of a random variable and the corresponding sample space.
In the example, we have a lot of 100 items of which 12 are defective. What is the
probability that in a sample of 10, 3 are defective?
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Solution : Using the hypergeometric probability function, we have

h(3; 100, 10, 12) =

(
12
3

)(
88
7

)(
100
10

) = 0.08.

Example 5.11: Find the mean and variance of the random variable of Example 5.9 and then use
Chebyshev’s theorem to interpret the interval μ± 2σ.

Solution : Since Example 5.9 was a hypergeometric experiment with N = 40, n = 5, and
k = 3, by Theorem 5.2, we have

μ =
(5)(3)

40
=

3

8
= 0.375,

and

σ2 =

(
40− 5

39

)
(5)

(
3

40

)(
1− 3

40

)
= 0.3113.

Taking the square root of 0.3113, we find that σ = 0.558. Hence, the required
interval is 0.375 ± (2)(0.558), or from −0.741 to 1.491. Chebyshev’s theorem
states that the number of defectives obtained when 5 components are selected at
random from a lot of 40 components of which 3 are defective has a probability of
at least 3/4 of falling between −0.741 and 1.491. That is, at least three-fourths of
the time, the 5 components include fewer than 2 defectives.

Relationship to the Binomial Distribution

In this chapter, we discuss several important discrete distributions that have wide
applicability. Many of these distributions relate nicely to each other. The beginning
student should gain a clear understanding of these relationships. There is an
interesting relationship between the hypergeometric and the binomial distribution.
As one might expect, if n is small compared toN , the nature of theN items changes
very little in each draw. So a binomial distribution can be used to approximate
the hypergeometric distribution when n is small compared to N . In fact, as a rule
of thumb, the approximation is good when n/N ≤ 0.05.

Thus, the quantity k/N plays the role of the binomial parameter p. As a
result, the binomial distribution may be viewed as a large-population version of the
hypergeometric distribution. The mean and variance then come from the formulas

μ = np =
nk

N
and σ2 = npq = n · k

N

(
1− k

N

)
.

Comparing these formulas with those of Theorem 5.2, we see that the mean is the
same but the variance differs by a correction factor of (N − n)/(N − 1), which is
negligible when n is small relative to N .

Example 5.12: A manufacturer of automobile tires reports that among a shipment of 5000 sent to
a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at
random from the distributor, what is the probability that exactly 3 are blemished?
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Solution : Since N = 5000 is large relative to the sample size n = 10, we shall approximate the
desired probability by using the binomial distribution. The probability of obtaining
a blemished tire is 0.2. Therefore, the probability of obtaining exactly 3 blemished
tires is

h(3; 5000, 10, 1000) ≈ b(3; 10, 0.2) = 0.8791− 0.6778 = 0.2013.

On the other hand, the exact probability is h(3; 5000, 10, 1000) = 0.2015.
The hypergeometric distribution can be extended to treat the case where the

N items can be partitioned into k cells A1, A2, . . . , Ak with a1 elements in the first
cell, a2 elements in the second cell, . . . , ak elements in the kth cell. We are now
interested in the probability that a random sample of size n yields x1 elements
from A1, x2 elements from A2, . . . , and xk elements from Ak. Let us represent
this probability by

f(x1, x2, . . . , xk; a1, a2, . . . , ak, N, n).

To obtain a general formula, we note that the total number of samples of size
n that can be chosen from N items is still

(
N
n

)
. There are

(
a1

x1

)
ways of selecting

x1 items from the items in A1, and for each of these we can choose x2 items from
the items in A2 in

(
a2

x2

)
ways. Therefore, we can select x1 items from A1 and x2

items from A2 in
(
a1

x1

)(
a2

x2

)
ways. Continuing in this way, we can select all n items

consisting of x1 from A1, x2 from A2, . . . , and xk from Ak in(
a1
x1

)(
a2
x2

)
· · ·

(
ak
xk

)
ways.

The required probability distribution is now defined as follows.

Multivariate
Hypergeometric

Distribution

If N items can be partitioned into the k cells A1, A2, . . . , Ak with a1, a2, . . . , ak
elements, respectively, then the probability distribution of the random vari-
ables X1, X2, . . . , Xk, representing the number of elements selected from
A1, A2, . . . , Ak in a random sample of size n, is

f(x1, x2, . . . , xk; a1, a2, . . . , ak, N, n) =

(
a1

x1

)(
a2

x2

) · · · (ak

xk

)(
N
n

) ,

with
k∑

i=1

xi = n and
k∑

i=1

ai = N .

Example 5.13: A group of 10 individuals is used for a biological case study. The group contains 3
people with blood type O, 4 with blood type A, and 3 with blood type B. What is
the probability that a random sample of 5 will contain 1 person with blood type
O, 2 people with blood type A, and 2 people with blood type B?

Solution : Using the extension of the hypergeometric distribution with x1 = 1, x2 = 2, x3 = 2,
a1 = 3, a2 = 4, a3 = 3, N = 10, and n = 5, we find that the desired probability is

f(1, 2, 2; 3, 4, 3, 10, 5) =

(
3
1

)(
4
2

)(
3
2

)(
10
5

) =
3

14
.
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Exercises

5.29 A homeowner plants 6 bulbs selected at ran-
dom from a box containing 5 tulip bulbs and 4 daf-
fodil bulbs. What is the probability that he planted 2
daffodil bulbs and 4 tulip bulbs?

5.30 To avoid detection at customs, a traveler places
6 narcotic tablets in a bottle containing 9 vitamin
tablets that are similar in appearance. If the customs
official selects 3 of the tablets at random for analysis,
what is the probability that the traveler will be arrested
for illegal possession of narcotics?

5.31 A random committee of size 3 is selected from
4 doctors and 2 nurses. Write a formula for the prob-
ability distribution of the random variable X repre-
senting the number of doctors on the committee. Find
P (2 ≤ X ≤ 3).

5.32 From a lot of 10 missiles, 4 are selected at ran-
dom and fired. If the lot contains 3 defective missiles
that will not fire, what is the probability that

(a) all 4 will fire?

(b) at most 2 will not fire?

5.33 If 7 cards are dealt from an ordinary deck of 52
playing cards, what is the probability that

(a) exactly 2 of them will be face cards?

(b) at least 1 of them will be a queen?

5.34 What is the probability that a waitress will
refuse to serve alcoholic beverages to only 2 minors
if she randomly checks the IDs of 5 among 9 students,
4 of whom are minors?

5.35 A company is interested in evaluating its cur-
rent inspection procedure for shipments of 50 identical
items. The procedure is to take a sample of 5 and
pass the shipment if no more than 2 are found to be
defective. What proportion of shipments with 20% de-
fectives will be accepted?

5.36 A manufacturing company uses an acceptance
scheme on items from a production line before they
are shipped. The plan is a two-stage one. Boxes of 25
items are readied for shipment, and a sample of 3 items
is tested for defectives. If any defectives are found, the
entire box is sent back for 100% screening. If no defec-
tives are found, the box is shipped.

(a) What is the probability that a box containing 3
defectives will be shipped?

(b) What is the probability that a box containing only
1 defective will be sent back for screening?

5.37 Suppose that the manufacturing company of Ex-
ercise 5.36 decides to change its acceptance scheme.
Under the new scheme, an inspector takes 1 item at
random, inspects it, and then replaces it in the box;
a second inspector does likewise. Finally, a third in-
spector goes through the same procedure. The box is
not shipped if any of the three inspectors find a de-
fective. Answer the questions in Exercise 5.36 for this
new plan.

5.38 Among 150 IRS employees in a large city, only
30 are women. If 10 of the employees are chosen at
random to provide free tax assistance for the residents
of this city, use the binomial approximation to the hy-
pergeometric distribution to find the probability that
at least 3 women are selected.

5.39 An annexation suit against a county subdivision
of 1200 residences is being considered by a neighboring
city. If the occupants of half the residences object to
being annexed, what is the probability that in a ran-
dom sample of 10 at least 3 favor the annexation suit?

5.40 It is estimated that 4000 of the 10,000 voting
residents of a town are against a new sales tax. If 15
eligible voters are selected at random and asked their
opinion, what is the probability that at most 7 favor
the new tax?

5.41 A nationwide survey of 17,000 college seniors by
the University of Michigan revealed that almost 70%
disapprove of daily pot smoking. If 18 of these seniors
are selected at random and asked their opinion, what
is the probability that more than 9 but fewer than 14
disapprove of smoking pot daily?

5.42 Find the probability of being dealt a bridge hand
of 13 cards containing 5 spades, 2 hearts, 3 diamonds,
and 3 clubs.

5.43 A foreign student club lists as its members 2
Canadians, 3 Japanese, 5 Italians, and 2 Germans. If
a committee of 4 is selected at random, find the prob-
ability that

(a) all nationalities are represented;

(b) all nationalities except Italian are represented.

5.44 An urn contains 3 green balls, 2 blue balls, and
4 red balls. In a random sample of 5 balls, find the
probability that both blue balls and at least 1 red ball
are selected.

5.45 Biologists doing studies in a particular environ-
ment often tag and release subjects in order to estimate
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the size of a population or the prevalence of certain
features in the population. Ten animals of a certain
population thought to be extinct (or near extinction)
are caught, tagged, and released in a certain region.
After a period of time, a random sample of 15 of this
type of animal is selected in the region. What is the
probability that 5 of those selected are tagged if there
are 25 animals of this type in the region?

5.46 A large company has an inspection system for
the batches of small compressors purchased from ven-
dors. A batch typically contains 15 compressors. In the
inspection system, a random sample of 5 is selected and
all are tested. Suppose there are 2 faulty compressors
in the batch of 15.

(a) What is the probability that for a given sample
there will be 1 faulty compressor?

(b) What is the probability that inspection will dis-
cover both faulty compressors?

5.47 A government task force suspects that some
manufacturing companies are in violation of federal
pollution regulations with regard to dumping a certain
type of product. Twenty firms are under suspicion but
not all can be inspected. Suppose that 3 of the firms
are in violation.

(a) What is the probability that inspection of 5 firms
will find no violations?

(b) What is the probability that the plan above will
find two violations?

5.48 Every hour, 10,000 cans of soda are filled by a
machine, among which 300 underfilled cans are pro-
duced. Each hour, a sample of 30 cans is randomly
selected and the number of ounces of soda per can is
checked. Denote by X the number of cans selected
that are underfilled. Find the probability that at least
1 underfilled can will be among those sampled.

5.4 Negative Binomial and Geometric Distributions

Let us consider an experiment where the properties are the same as those listed for
a binomial experiment, with the exception that the trials will be repeated until a
fixed number of successes occur. Therefore, instead of the probability of x successes
in n trials, where n is fixed, we are now interested in the probability that the kth
success occurs on the xth trial. Experiments of this kind are called negative
binomial experiments.

As an illustration, consider the use of a drug that is known to be effective
in 60% of the cases where it is used. The drug will be considered a success if
it is effective in bringing some degree of relief to the patient. We are interested
in finding the probability that the fifth patient to experience relief is the seventh
patient to receive the drug during a given week. Designating a success by S and a
failure by F , a possible order of achieving the desired result is SFSSSFS, which
occurs with probability

(0.6)(0.4)(0.6)(0.6)(0.6)(0.4)(0.6) = (0.6)5(0.4)2.

We could list all possible orders by rearranging the F ’s and S’s except for the last
outcome, which must be the fifth success. The total number of possible orders
is equal to the number of partitions of the first six trials into two groups with 2
failures assigned to the one group and 4 successes assigned to the other group.
This can be done in

(
6
4

)
= 15 mutually exclusive ways. Hence, if X represents the

outcome on which the fifth success occurs, then

P (X = 7) =

(
6

4

)
(0.6)5(0.4)2 = 0.1866.

What Is the Negative Binomial Random Variable?

The number X of trials required to produce k successes in a negative binomial
experiment is called a negative binomial random variable, and its probability
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distribution is called the negative binomial distribution. Since its probabilities
depend on the number of successes desired and the probability of a success on a
given trial, we shall denote them by b∗(x; k, p). To obtain the general formula
for b∗(x; k, p), consider the probability of a success on the xth trial preceded by
k − 1 successes and x − k failures in some specified order. Since the trials are
independent, we can multiply all the probabilities corresponding to each desired
outcome. Each success occurs with probability p and each failure with probability
q = 1− p. Therefore, the probability for the specified order ending in success is

pk−1qx−kp = pkqx−k.

The total number of sample points in the experiment ending in a success, after the
occurrence of k−1 successes and x−k failures in any order, is equal to the number
of partitions of x−1 trials into two groups with k−1 successes corresponding to one
group and x−k failures corresponding to the other group. This number is specified
by the term

(
x−1
k−1

)
, each mutually exclusive and occurring with equal probability

pkqx−k. We obtain the general formula by multiplying pkqx−k by
(
x−1
k−1

)
.

Negative
Binomial

Distribution

If repeated independent trials can result in a success with probability p and
a failure with probability q = 1 − p, then the probability distribution of the
random variable X, the number of the trial on which the kth success occurs, is

b∗(x; k, p) =
(
x− 1

k − 1

)
pkqx−k, x = k, k + 1, k + 2, . . . .

Example 5.14: In an NBA (National Basketball Association) championship series, the team that
wins four games out of seven is the winner. Suppose that teams A and B face each
other in the championship games and that team A has probability 0.55 of winning
a game over team B.

(a) What is the probability that team A will win the series in 6 games?

(b) What is the probability that team A will win the series?

(c) If teams A and B were facing each other in a regional playoff series, which is
decided by winning three out of five games, what is the probability that team
A would win the series?

Solution : (a) b∗(6; 4, 0.55) =
(
5
3

)
0.554(1− 0.55)6−4 = 0.1853

(b) P (team A wins the championship series) is

b∗(4; 4, 0.55) + b∗(5; 4, 0.55) + b∗(6; 4, 0.55) + b∗(7; 4, 0.55)
= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(c) P (team A wins the playoff) is

b∗(3; 3, 0.55) + b∗(4; 3, 0.55) + b∗(5; 3, 0.55)
= 0.1664 + 0.2246 + 0.2021 = 0.5931.
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The negative binomial distribution derives its name from the fact that each
term in the expansion of pk(1 − q)−k corresponds to the values of b∗(x; k, p) for
x = k, k + 1, k + 2, . . . . If we consider the special case of the negative binomial
distribution where k = 1, we have a probability distribution for the number of
trials required for a single success. An example would be the tossing of a coin until
a head occurs. We might be interested in the probability that the first head occurs
on the fourth toss. The negative binomial distribution reduces to the form

b∗(x; 1, p) = pqx−1, x = 1, 2, 3, . . . .

Since the successive terms constitute a geometric progression, it is customary to
refer to this special case as the geometric distribution and denote its values by
g(x; p).

Geometric
Distribution

If repeated independent trials can result in a success with probability p and
a failure with probability q = 1 − p, then the probability distribution of the
random variable X, the number of the trial on which the first success occurs, is

g(x; p) = pqx−1, x = 1, 2, 3, . . . .

Example 5.15: For a certain manufacturing process, it is known that, on the average, 1 in every
100 items is defective. What is the probability that the fifth item inspected is the
first defective item found?

Solution : Using the geometric distribution with x = 5 and p = 0.01, we have

g(5; 0.01) = (0.01)(0.99)4 = 0.0096.

Example 5.16: At a “busy time,” a telephone exchange is very near capacity, so callers have
difficulty placing their calls. It may be of interest to know the number of attempts
necessary in order to make a connection. Suppose that we let p = 0.05 be the
probability of a connection during a busy time. We are interested in knowing the
probability that 5 attempts are necessary for a successful call.

Solution : Using the geometric distribution with x = 5 and p = 0.05 yields

P (X = x) = g(5; 0.05) = (0.05)(0.95)4 = 0.041.

Quite often, in applications dealing with the geometric distribution, the mean
and variance are important. For example, in Example 5.16, the expected number
of calls necessary to make a connection is quite important. The following theorem
states without proof the mean and variance of the geometric distribution.

Theorem 5.3: The mean and variance of a random variable following the geometric distribution
are

μ =
1

p
and σ2 =

1− p

p2
.
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Applications of Negative Binomial and Geometric Distributions

Areas of application for the negative binomial and geometric distributions become
obvious when one focuses on the examples in this section and the exercises devoted
to these distributions at the end of Section 5.5. In the case of the geometric
distribution, Example 5.16 depicts a situation where engineers or managers are
attempting to determine how inefficient a telephone exchange system is during
busy times. Clearly, in this case, trials occurring prior to a success represent a
cost. If there is a high probability of several attempts being required prior to
making a connection, then plans should be made to redesign the system.

Applications of the negative binomial distribution are similar in nature. Sup-
pose attempts are costly in some sense and are occurring in sequence. A high
probability of needing a “large” number of attempts to experience a fixed number
of successes is not beneficial to the scientist or engineer. Consider the scenarios
of Review Exercises 5.90 and 5.91. In Review Exercise 5.91, the oil driller defines
a certain level of success from sequentially drilling locations for oil. If only 6 at-
tempts have been made at the point where the second success is experienced, the
profits appear to dominate substantially the investment incurred by the drilling.

5.5 Poisson Distribution and the Poisson Process

Experiments yielding numerical values of a random variable X, the number of
outcomes occurring during a given time interval or in a specified region, are called
Poisson experiments. The given time interval may be of any length, such as a
minute, a day, a week, a month, or even a year. For example, a Poisson experiment
can generate observations for the random variable X representing the number of
telephone calls received per hour by an office, the number of days school is closed
due to snow during the winter, or the number of games postponed due to rain
during a baseball season. The specified region could be a line segment, an area,
a volume, or perhaps a piece of material. In such instances, X might represent
the number of field mice per acre, the number of bacteria in a given culture, or
the number of typing errors per page. A Poisson experiment is derived from the
Poisson process and possesses the following properties.

Properties of the Poisson Process

1. The number of outcomes occurring in one time interval or specified region of
space is independent of the number that occur in any other disjoint time in-
terval or region. In this sense we say that the Poisson process has no memory.

2. The probability that a single outcome will occur during a very short time
interval or in a small region is proportional to the length of the time interval
or the size of the region and does not depend on the number of outcomes
occurring outside this time interval or region.

3. The probability that more than one outcome will occur in such a short time
interval or fall in such a small region is negligible.

The number X of outcomes occurring during a Poisson experiment is called a
Poisson random variable, and its probability distribution is called the Poisson
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distribution. The mean number of outcomes is computed from μ = λt, where
t is the specific “time,” “distance,” “area,” or “volume” of interest. Since the
probabilities depend on λ, the rate of occurrence of outcomes, we shall denote
them by p(x;λt). The derivation of the formula for p(x;λt), based on the three
properties of a Poisson process listed above, is beyond the scope of this book. The
following formula is used for computing Poisson probabilities.

Poisson
Distribution

The probability distribution of the Poisson random variable X, representing
the number of outcomes occurring in a given time interval or specified region
denoted by t, is

p(x;λt) =
e−λt(λt)x

x!
, x = 0, 1, 2, . . . ,

where λ is the average number of outcomes per unit time, distance, area, or
volume and e = 2.71828 . . . .

Table A.2 contains Poisson probability sums,

P (r;λt) =
r∑

x=0

p(x;λt),

for selected values of λt ranging from 0.1 to 18.0. We illustrate the use of this table
with the following two examples.

Example 5.17: During a laboratory experiment, the average number of radioactive particles pass-
ing through a counter in 1 millisecond is 4. What is the probability that 6 particles
enter the counter in a given millisecond?

Solution : Using the Poisson distribution with x = 6 and λt = 4 and referring to Table A.2,
we have

p(6; 4) =
e−446

6!
=

6∑
x=0

p(x; 4)−
5∑

x=0

p(x; 4) = 0.8893− 0.7851 = 0.1042.

Example 5.18: Ten is the average number of oil tankers arriving each day at a certain port. The
facilities at the port can handle at most 15 tankers per day. What is the probability
that on a given day tankers have to be turned away?

Solution : Let X be the number of tankers arriving each day. Then, using Table A.2, we have

P (X > 15) = 1− P (X ≤ 15) = 1−
15∑
x=0

p(x; 10) = 1− 0.9513 = 0.0487.

Like the binomial distribution, the Poisson distribution is used for quality con-
trol, quality assurance, and acceptance sampling. In addition, certain important
continuous distributions used in reliability theory and queuing theory depend on
the Poisson process. Some of these distributions are discussed and developed in
Chapter 6. The following theorem concerning the Poisson random variable is given
in Appendix A.25.

Theorem 5.4: Both the mean and the variance of the Poisson distribution p(x;λt) are λt.
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Nature of the Poisson Probability Function

Like so many discrete and continuous distributions, the form of the Poisson distri-
bution becomes more and more symmetric, even bell-shaped, as the mean grows
large. Figure 5.1 illustrates this, showing plots of the probability function for
μ = 0.1, μ = 2, and μ = 5. Note the nearness to symmetry when μ becomes
as large as 5. A similar condition exists for the binomial distribution, as will be
illustrated later in the text.
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Figure 5.1: Poisson density functions for different means.

Approximation of Binomial Distribution by a Poisson Distribution

It should be evident from the three principles of the Poisson process that the
Poisson distribution is related to the binomial distribution. Although the Poisson
usually finds applications in space and time problems, as illustrated by Examples
5.17 and 5.18, it can be viewed as a limiting form of the binomial distribution. In
the case of the binomial, if n is quite large and p is small, the conditions begin to
simulate the continuous space or time implications of the Poisson process. The in-
dependence among Bernoulli trials in the binomial case is consistent with principle
2 of the Poisson process. Allowing the parameter p to be close to 0 relates to prin-
ciple 3 of the Poisson process. Indeed, if n is large and p is close to 0, the Poisson
distribution can be used, with μ = np, to approximate binomial probabilities. If
p is close to 1, we can still use the Poisson distribution to approximate binomial
probabilities by interchanging what we have defined to be a success and a failure,
thereby changing p to a value close to 0.

Theorem 5.5: LetX be a binomial random variable with probability distribution b(x;n, p). When

n → ∞, p → 0, and np
n→∞−→ μ remains constant,

b(x;n, p)
n→∞−→ p(x;μ).
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Example 5.19: In a certain industrial facility, accidents occur infrequently. It is known that the
probability of an accident on any given day is 0.005 and accidents are independent
of each other.

(a) What is the probability that in any given period of 400 days there will be an
accident on one day?

(b) What is the probability that there are at most three days with an accident?

Solution : Let X be a binomial random variable with n = 400 and p = 0.005. Thus, np = 2.
Using the Poisson approximation,

(a) P (X = 1) = e−221 = 0.271 and

(b) P (X ≤ 3) =
3∑

x=0
e−22x/x! = 0.857.

Example 5.20: In a manufacturing process where glass products are made, defects or bubbles
occur, occasionally rendering the piece undesirable for marketing. It is known
that, on average, 1 in every 1000 of these items produced has one or more bubbles.
What is the probability that a random sample of 8000 will yield fewer than 7 items
possessing bubbles?

Solution : This is essentially a binomial experiment with n = 8000 and p = 0.001. Since
p is very close to 0 and n is quite large, we shall approximate with the Poisson
distribution using

μ = (8000)(0.001) = 8.

Hence, if X represents the number of bubbles, we have

P (X < 7) =

6∑
x=0

b(x; 8000, 0.001) ≈ p(x; 8) = 0.3134.

Exercises

5.49 The probability that a person living in a certain
city owns a dog is estimated to be 0.3. Find the prob-
ability that the tenth person randomly interviewed in
that city is the fifth one to own a dog.

5.50 Find the probability that a person flipping a coin
gets

(a) the third head on the seventh flip;

(b) the first head on the fourth flip.

5.51 Three people toss a fair coin and the odd one
pays for coffee. If the coins all turn up the same, they
are tossed again. Find the probability that fewer than
4 tosses are needed.

5.52 A scientist inoculates mice, one at a time, with
a disease germ until he finds 2 that have contracted the

disease. If the probability of contracting the disease is
1/6, what is the probability that 8 mice are required?

5.53 An inventory study determines that, on aver-
age, demands for a particular item at a warehouse are
made 5 times per day. What is the probability that on
a given day this item is requested

(a) more than 5 times?

(b) not at all?

5.54 According to a study published by a group of
University of Massachusetts sociologists, about two-
thirds of the 20 million persons in this country who
take Valium are women. Assuming this figure to be a
valid estimate, find the probability that on a given day
the fifth prescription written by a doctor for Valium is

(a) the first prescribing Valium for a woman;
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(b) the third prescribing Valium for a woman.

5.55 The probability that a student pilot passes the
written test for a private pilot’s license is 0.7. Find the
probability that a given student will pass the test

(a) on the third try;

(b) before the fourth try.

5.56 On average, 3 traffic accidents per month occur
at a certain intersection. What is the probability that
in any given month at this intersection

(a) exactly 5 accidents will occur?

(b) fewer than 3 accidents will occur?

(c) at least 2 accidents will occur?

5.57 On average, a textbook author makes two word-
processing errors per page on the first draft of her text-
book. What is the probability that on the next page
she will make

(a) 4 or more errors?

(b) no errors?

5.58 A certain area of the eastern United States is,
on average, hit by 6 hurricanes a year. Find the prob-
ability that in a given year that area will be hit by

(a) fewer than 4 hurricanes;

(b) anywhere from 6 to 8 hurricanes.

5.59 Suppose the probability that any given person
will believe a tale about the transgressions of a famous
actress is 0.8. What is the probability that

(a) the sixth person to hear this tale is the fourth one
to believe it?

(b) the third person to hear this tale is the first one to
believe it?

5.60 The average number of field mice per acre in
a 5-acre wheat field is estimated to be 12. Find the
probability that fewer than 7 field mice are found

(a) on a given acre;

(b) on 2 of the next 3 acres inspected.

5.61 Suppose that, on average, 1 person in 1000
makes a numerical error in preparing his or her income
tax return. If 10,000 returns are selected at random
and examined, find the probability that 6, 7, or 8 of
them contain an error.

5.62 The probability that a student at a local high
school fails the screening test for scoliosis (curvature
of the spine) is known to be 0.004. Of the next 1875
students at the school who are screened for scoliosis,

find the probability that

(a) fewer than 5 fail the test;

(b) 8, 9, or 10 fail the test.

5.63 Find the mean and variance of the random vari-
able X in Exercise 5.58, representing the number of
hurricanes per year to hit a certain area of the eastern
United States.

5.64 Find the mean and variance of the random vari-
able X in Exercise 5.61, representing the number of
persons among 10,000 who make an error in preparing
their income tax returns.

5.65 An automobile manufacturer is concerned about
a fault in the braking mechanism of a particular model.
The fault can, on rare occasions, cause a catastrophe at
high speed. The distribution of the number of cars per
year that will experience the catastrophe is a Poisson
random variable with λ = 5.

(a) What is the probability that at most 3 cars per year
will experience a catastrophe?

(b) What is the probability that more than 1 car per
year will experience a catastrophe?

5.66 Changes in airport procedures require consid-
erable planning. Arrival rates of aircraft are impor-
tant factors that must be taken into account. Suppose
small aircraft arrive at a certain airport, according to
a Poisson process, at the rate of 6 per hour. Thus, the
Poisson parameter for arrivals over a period of hours is
μ = 6t.

(a) What is the probability that exactly 4 small air-
craft arrive during a 1-hour period?

(b) What is the probability that at least 4 arrive during
a 1-hour period?

(c) If we define a working day as 12 hours, what is
the probability that at least 75 small aircraft ar-
rive during a working day?

5.67 The number of customers arriving per hour at a
certain automobile service facility is assumed to follow
a Poisson distribution with mean λ = 7.

(a) Compute the probability that more than 10 cus-
tomers will arrive in a 2-hour period.

(b) What is the mean number of arrivals during a
2-hour period?

5.68 Consider Exercise 5.62. What is the mean num-
ber of students who fail the test?

5.69 The probability that a person will die when he
or she contracts a virus infection is 0.001. Of the next
4000 people infected, what is the mean number who
will die?
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5.70 A company purchases large lots of a certain kind
of electronic device. A method is used that rejects a
lot if 2 or more defective units are found in a random
sample of 100 units.

(a) What is the mean number of defective units found
in a sample of 100 units if the lot is 1% defective?

(b) What is the variance?

5.71 For a certain type of copper wire, it is known
that, on the average, 1.5 flaws occur per millimeter.
Assuming that the number of flaws is a Poisson random
variable, what is the probability that no flaws occur in
a certain portion of wire of length 5 millimeters? What
is the mean number of flaws in a portion of length 5
millimeters?

5.72 Potholes on a highway can be a serious problem,
and are in constant need of repair. With a particular
type of terrain and make of concrete, past experience
suggests that there are, on the average, 2 potholes per
mile after a certain amount of usage. It is assumed
that the Poisson process applies to the random vari-
able “number of potholes.”

(a) What is the probability that no more than one pot-
hole will appear in a section of 1 mile?

(b) What is the probability that no more than 4 pot-
holes will occur in a given section of 5 miles?

5.73 Hospital administrators in large cities anguish
about traffic in emergency rooms. At a particular hos-
pital in a large city, the staff on hand cannot accom-

modate the patient traffic if there are more than 10
emergency cases in a given hour. It is assumed that
patient arrival follows a Poisson process, and historical
data suggest that, on the average, 5 emergencies arrive
per hour.

(a) What is the probability that in a given hour the
staff cannot accommodate the patient traffic?

(b) What is the probability that more than 20 emer-
gencies arrive during a 3-hour shift?

5.74 It is known that 3% of people whose luggage
is screened at an airport have questionable objects in
their luggage. What is the probability that a string of
15 people pass through screening successfully before an
individual is caught with a questionable object? What
is the expected number of people to pass through be-
fore an individual is stopped?

5.75 Computer technology has produced an environ-
ment in which robots operate with the use of micro-
processors. The probability that a robot fails during
any 6-hour shift is 0.10. What is the probability that
a robot will operate through at most 5 shifts before it
fails?

5.76 The refusal rate for telephone polls is known to
be approximately 20%. A newspaper report indicates
that 50 people were interviewed before the first refusal.

(a) Comment on the validity of the report. Use a prob-
ability in your argument.

(b) What is the expected number of people interviewed
before a refusal?

Review Exercises

5.77 During a manufacturing process, 15 units are
randomly selected each day from the production line
to check the percent defective. From historical infor-
mation it is known that the probability of a defective
unit is 0.05. Any time 2 or more defectives are found
in the sample of 15, the process is stopped. This proce-
dure is used to provide a signal in case the probability
of a defective has increased.

(a) What is the probability that on any given day the
production process will be stopped? (Assume 5%
defective.)

(b) Suppose that the probability of a defective has in-
creased to 0.07. What is the probability that on
any given day the production process will not be
stopped?

5.78 An automatic welding machine is being consid-
ered for use in a production process. It will be con-
sidered for purchase if it is successful on 99% of its

welds. Otherwise, it will not be considered efficient.
A test is to be conducted with a prototype that is to
perform 100 welds. The machine will be accepted for
manufacture if it misses no more than 3 welds.

(a) What is the probability that a good machine will
be rejected?

(b) What is the probability that an inefficient machine
with 95% welding success will be accepted?

5.79 A car rental agency at a local airport has avail-
able 5 Fords, 7 Chevrolets, 4 Dodges, 3 Hondas, and 4
Toyotas. If the agency randomly selects 9 of these cars
to chauffeur delegates from the airport to the down-
town convention center, find the probability that 2
Fords, 3 Chevrolets, 1 Dodge, 1 Honda, and 2 Toyotas
are used.

5.80 Service calls come to a maintenance center ac-
cording to a Poisson process, and on average, 2.7 calls
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are received per minute. Find the probability that

(a) no more than 4 calls come in any minute;

(b) fewer than 2 calls come in any minute;

(c) more than 10 calls come in a 5-minute period.

5.81 An electronics firm claims that the proportion of
defective units from a certain process is 5%. A buyer
has a standard procedure of inspecting 15 units selected
randomly from a large lot. On a particular occasion,
the buyer found 5 items defective.

(a) What is the probability of this occurrence, given
that the claim of 5% defective is correct?

(b) What would be your reaction if you were the buyer?

5.82 An electronic switching device occasionally mal-
functions, but the device is considered satisfactory if it
makes, on average, no more than 0.20 error per hour.
A particular 5-hour period is chosen for testing the de-
vice. If no more than 1 error occurs during the time
period, the device will be considered satisfactory.

(a) What is the probability that a satisfactory device
will be considered unsatisfactory on the basis of the
test? Assume a Poisson process.

(b) What is the probability that a device will be ac-
cepted as satisfactory when, in fact, the mean num-
ber of errors is 0.25? Again, assume a Poisson pro-
cess.

5.83 A company generally purchases large lots of a
certain kind of electronic device. A method is used
that rejects a lot if 2 or more defective units are found
in a random sample of 100 units.

(a) What is the probability of rejecting a lot that is 1%
defective?

(b) What is the probability of accepting a lot that is
5% defective?

5.84 A local drugstore owner knows that, on average,
100 people enter his store each hour.

(a) Find the probability that in a given 3-minute pe-
riod nobody enters the store.

(b) Find the probability that in a given 3-minute pe-
riod more than 5 people enter the store.

5.85 (a) Suppose that you throw 4 dice. Find the
probability that you get at least one 1.

(b) Suppose that you throw 2 dice 24 times. Find the
probability that you get at least one (1, 1), that is,
“snake-eyes.”

5.86 Suppose that out of 500 lottery tickets sold, 200
pay off at least the cost of the ticket. Now suppose
that you buy 5 tickets. Find the probability that you

will win back at least the cost of 3 tickets.

5.87 Imperfections in computer circuit boards and
computer chips lend themselves to statistical treat-
ment. For a particular type of board, the probability
of a diode failure is 0.03 and the board contains 200
diodes.

(a) What is the mean number of failures among the
diodes?

(b) What is the variance?

(c) The board will work if there are no defective diodes.
What is the probability that a board will work?

5.88 The potential buyer of a particular engine re-
quires (among other things) that the engine start suc-
cessfully 10 consecutive times. Suppose the probability
of a successful start is 0.990. Let us assume that the
outcomes of attempted starts are independent.

(a) What is the probability that the engine is accepted
after only 10 starts?

(b) What is the probability that 12 attempted starts
are made during the acceptance process?

5.89 The acceptance scheme for purchasing lots con-
taining a large number of batteries is to test no more
than 75 randomly selected batteries and to reject a lot
if a single battery fails. Suppose the probability of a
failure is 0.001.

(a) What is the probability that a lot is accepted?

(b) What is the probability that a lot is rejected on the
20th test?

(c) What is the probability that it is rejected in 10 or
fewer trials?

5.90 An oil drilling company ventures into various lo-
cations, and its success or failure is independent from
one location to another. Suppose the probability of a
success at any specific location is 0.25.

(a) What is the probability that the driller drills at 10
locations and has 1 success?

(b) The driller will go bankrupt if it drills 10 times be-
fore the first success occurs. What are the driller’s
prospects for bankruptcy?

5.91 Consider the information in Review Exercise
5.90. The drilling company feels that it will “hit it
big” if the second success occurs on or before the sixth
attempt. What is the probability that the driller will
hit it big?

5.92 A couple decides to continue to have children un-
til they have two males. Assuming that P (male) = 0.5,
what is the probability that their second male is their
fourth child?
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5.93 It is known by researchers that 1 in 100 people
carries a gene that leads to the inheritance of a certain
chronic disease. In a random sample of 1000 individ-
uals, what is the probability that fewer than 7 indi-
viduals carry the gene? Use a Poisson approximation.
Again, using the approximation, what is the approxi-
mate mean number of people out of 1000 carrying the
gene?

5.94 A production process produces electronic com-
ponent parts. It is presumed that the probability of a
defective part is 0.01. During a test of this presump-
tion, 500 parts are sampled randomly and 15 defectives
are observed.

(a) What is your response to the presumption that the
process is 1% defective? Be sure that a computed
probability accompanies your comment.

(b) Under the presumption of a 1% defective process,
what is the probability that only 3 parts will be
found defective?

(c) Do parts (a) and (b) again using the Poisson ap-
proximation.

5.95 A production process outputs items in lots of 50.
Sampling plans exist in which lots are pulled aside pe-
riodically and exposed to a certain type of inspection.
It is usually assumed that the proportion defective is
very small. It is important to the company that lots
containing defectives be a rare event. The current in-
spection plan is to periodically sample randomly 10 out
of the 50 items in a lot and, if none are defective, to
perform no intervention.

(a) Suppose in a lot chosen at random, 2 out of 50 are
defective. What is the probability that at least 1
in the sample of 10 from the lot is defective?

(b) From your answer to part (a), comment on the
quality of this sampling plan.

(c) What is the mean number of defects found out of
10 items sampled?

5.96 Consider the situation of Review Exercise 5.95.
It has been determined that the sampling plan should
be extensive enough that there is a high probability,
say 0.9, that if as many as 2 defectives exist in the lot
of 50 being sampled, at least 1 will be found in the
sampling. With these restrictions, how many of the 50
items should be sampled?

5.97 National security requires that defense technol-
ogy be able to detect incoming projectiles or missiles.
To make the defense system successful, multiple radar
screens are required. Suppose that three independent
screens are to be operated and the probability that any
one screen will detect an incoming missile is 0.8. Ob-
viously, if no screens detect an incoming projectile, the

system is unworthy and must be improved.

(a) What is the probability that an incoming missile
will not be detected by any of the three screens?

(b) What is the probability that the missile will be de-
tected by only one screen?

(c) What is the probability that it will be detected by
at least two out of three screens?

5.98 Suppose it is important that the overall missile
defense system be as near perfect as possible.

(a) Assuming the quality of the screens is as indicated
in Review Exercise 5.97, how many are needed
to ensure that the probability that a missile gets
through undetected is 0.0001?

(b) Suppose it is decided to stay with only 3 screens
and attempt to improve the screen detection abil-
ity. What must the individual screen effectiveness
(i.e., probability of detection) be in order to achieve
the effectiveness required in part (a)?

5.99 Go back to Review Exercise 5.95(a). Re-
compute the probability using the binomial distribu-
tion. Comment.

5.100 There are two vacancies in a certain university
statistics department. Five individuals apply. Two
have expertise in linear models, and one has exper-
tise in applied probability. The search committee is
instructed to choose the two applicants randomly.

(a) What is the probability that the two chosen are
those with expertise in linear models?

(b) What is the probability that of the two chosen, one
has expertise in linear models and one has expertise
in applied probability?

5.101 The manufacturer of a tricycle for children has
received complaints about defective brakes in the prod-
uct. According to the design of the product and consid-
erable preliminary testing, it had been determined that
the probability of the kind of defect in the complaint
was 1 in 10,000 (i.e., 0.0001). After a thorough investi-
gation of the complaints, it was determined that during
a certain period of time, 200 products were randomly
chosen from production and 5 had defective brakes.

(a) Comment on the “1 in 10,000” claim by the man-
ufacturer. Use a probabilistic argument. Use the
binomial distribution for your calculations.

(b) Repeat part (a) using the Poisson approximation.

5.102 Group Project: Divide the class into two
groups of approximately equal size. The students in
group 1 will each toss a coin 10 times (n1) and count
the number of heads obtained. The students in group 2
will each toss a coin 40 times (n2) and again count the
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number of heads. The students in each group should
individually compute the proportion of heads observed,
which is an estimate of p, the probability of observing
a head. Thus, there will be a set of values of p1 (from
group 1) and a set of values p2 (from group 2). All of
the values of p1 and p2 are estimates of 0.5, which is
the true value of the probability of observing a head
for a fair coin.

(a) Which set of values is consistently closer to 0.5, the
values of p1 or p2? Consider the proof of Theorem
5.1 on page 147 with regard to the estimates of the
parameter p = 0.5. The values of p1 were obtained
with n = n1 = 10, and the values of p2 were ob-
tained with n = n2 = 40. Using the notation of the
proof, the estimates are given by

p1 =
x1

n1
=

I1 + · · ·+ In1

n1
,

where I1, . . . , In1 are 0s and 1s and n1 = 10, and

p2 =
x2

n2
=

I1 + · · ·+ In2

n2
,

where I1, . . . , In2 , again, are 0s and 1s and n2 = 40.

(b) Referring again to Theorem 5.1, show that

E(p1) = E(p2) = p = 0.5.

(c) Show that σ2
p1 =

σ2
X1

n1
is 4 times the value of

σ2
p2 =

σ2
X2

n2
. Then explain further why the values

of p2 from group 2 are more consistently closer to
the true value, p = 0.5, than the values of p1 from
group 1.

You will continue to learn more and more about
parameter estimation beginning in Chapter 9. At
that point emphasis will put on the importance of
the mean and variance of an estimator of a param-
eter.

5.6 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The discrete distributions discussed in this chapter occur with great frequency in
engineering and the biological and physical sciences. The exercises and examples
certainly suggest this. Industrial sampling plans and many engineering judgments
are based on the binomial and Poisson distributions as well as on the hypergeo-
metric distribution. While the geometric and negative binomial distributions are
used to a somewhat lesser extent, they also find applications. In particular, a neg-
ative binomial random variable can be viewed as a mixture of Poisson and gamma
random variables (the gamma distribution will be discussed in Chapter 6).

Despite the rich heritage that these distributions find in real life, they can
be misused unless the scientific practitioner is prudent and cautious. Of course,
any probability calculation for the distributions discussed in this chapter is made
under the assumption that the parameter value is known. Real-world applications
often result in a parameter value that may “move around” due to factors that are
difficult to control in the process or because of interventions in the process that
have not been taken into account. For example, in Review Exercise 5.77, “historical
information” is used. But is the process that exists now the same as that under
which the historical data were collected? The use of the Poisson distribution can
suffer even more from this kind of difficulty. For example, in Review Exercise 5.80,
the questions in parts (a), (b), and (c) are based on the use of μ = 2.7 calls per
minute. Based on historical records, this is the number of calls that occur “on
average.” But in this and many other applications of the Poisson distribution,
there are slow times and busy times and so there are times in which the conditions
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for the Poisson process may appear to hold when in fact they do not. Thus,
the probability calculations may be incorrect. In the case of the binomial, the
assumption that may fail in certain applications (in addition to nonconstancy of p)
is the independence assumption, stating that the Bernoulli trials are independent.

One of the most famous misuses of the binomial distribution occurred in the
1961 baseball season, when Mickey Mantle and Roger Maris were engaged in a
friendly battle to break Babe Ruth’s all-time record of 60 home runs. A famous
magazine article made a prediction, based on probability theory, that Mantle would
break the record. The prediction was based on probability calculation with the use
of the binomial distribution. The classic error made was to estimate the param-
eter p (one for each player) based on relative historical frequency of home runs
throughout the players’ careers. Maris, unlike Mantle, had not been a prodigious
home run hitter prior to 1961 so his estimate of p was quite low. As a result, the
calculated probability of breaking the record was quite high for Mantle and low for
Maris. The end result: Mantle failed to break the record and Maris succeeded.
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Chapter 6

Some Continuous Probability
Distributions

6.1 Continuous Uniform Distribution

One of the simplest continuous distributions in all of statistics is the continuous
uniform distribution. This distribution is characterized by a density function
that is “flat,” and thus the probability is uniform in a closed interval, say [A, B].
Although applications of the continuous uniform distribution are not as abundant
as those for other distributions discussed in this chapter, it is appropriate for the
novice to begin this introduction to continuous distributions with the uniform
distribution.

Uniform
Distribution

The density function of the continuous uniform random variable X on the in-
terval [A, B] is

f(x;A,B) =

{
1

B−A , A ≤ x ≤ B,

0, elsewhere.

The density function forms a rectangle with base B−A and constant height 1
B−A .

As a result, the uniform distribution is often called the rectangular distribution.
Note, however, that the interval may not always be closed: [A,B]. It can be (A,B)
as well. The density function for a uniform random variable on the interval [1, 3]
is shown in Figure 6.1.

Probabilities are simple to calculate for the uniform distribution because of the
simple nature of the density function. However, note that the application of this
distribution is based on the assumption that the probability of falling in an interval
of fixed length within [A, B] is constant.

Example 6.1: Suppose that a large conference room at a certain company can be reserved for no
more than 4 hours. Both long and short conferences occur quite often. In fact, it
can be assumed that the length X of a conference has a uniform distribution on
the interval [0, 4].

171
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x

f (x )

0 31

1
2

Figure 6.1: The density function for a random variable on the interval [1, 3].

(a) What is the probability density function?

(b) What is the probability that any given conference lasts at least 3 hours?

Solution : (a) The appropriate density function for the uniformly distributed random vari-
able X in this situation is

f(x) =

{
1
4 , 0 ≤ x ≤ 4,

0, elsewhere.

(b) P [X ≥ 3] =
∫ 4

3
1
4 dx = 1

4 .

Theorem 6.1: The mean and variance of the uniform distribution are

μ =
A+B

2
and σ2 =

(B −A)2

12
.

The proofs of the theorems are left to the reader. See Exercise 6.1 on page 185.

6.2 Normal Distribution

The most important continuous probability distribution in the entire field of statis-
tics is the normal distribution. Its graph, called the normal curve, is the
bell-shaped curve of Figure 6.2, which approximately describes many phenomena
that occur in nature, industry, and research. For example, physical measurements
in areas such as meteorological experiments, rainfall studies, and measurements
of manufactured parts are often more than adequately explained with a normal
distribution. In addition, errors in scientific measurements are extremely well ap-
proximated by a normal distribution. In 1733, Abraham DeMoivre developed the
mathematical equation of the normal curve. It provided a basis from which much
of the theory of inductive statistics is founded. The normal distribution is of-
ten referred to as the Gaussian distribution, in honor of Karl Friedrich Gauss
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x
μ

σ

Figure 6.2: The normal curve.

(1777–1855), who also derived its equation from a study of errors in repeated mea-
surements of the same quantity.

A continuous random variable X having the bell-shaped distribution of Figure
6.2 is called a normal random variable. The mathematical equation for the
probability distribution of the normal variable depends on the two parameters μ
and σ, its mean and standard deviation, respectively. Hence, we denote the values
of the density of X by n(x;μ, σ).

Normal
Distribution

The density of the normal random variable X, with mean μ and variance σ2, is

n(x;μ, σ) =
1√
2πσ

e−
1

2σ2 (x−μ)2 , −∞ < x < ∞,

where π = 3.14159 . . . and e = 2.71828 . . . .

Once μ and σ are specified, the normal curve is completely determined. For exam-
ple, if μ = 50 and σ = 5, then the ordinates n(x; 50, 5) can be computed for various
values of x and the curve drawn. In Figure 6.3, we have sketched two normal curves
having the same standard deviation but different means. The two curves are iden-
tical in form but are centered at different positions along the horizontal axis.

x

1 �   2σ σ

1 2μμ

Figure 6.3: Normal curves with μ1 < μ2 and σ1 = σ2.
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x
1 �   2

1

2

μ μ

σ

σ

Figure 6.4: Normal curves with μ1 = μ2 and σ1 < σ2.

In Figure 6.4, we have sketched two normal curves with the same mean but
different standard deviations. This time we see that the two curves are centered
at exactly the same position on the horizontal axis, but the curve with the larger
standard deviation is lower and spreads out farther. Remember that the area under
a probability curve must be equal to 1, and therefore the more variable the set of
observations, the lower and wider the corresponding curve will be.

Figure 6.5 shows two normal curves having different means and different stan-
dard deviations. Clearly, they are centered at different positions on the horizontal
axis and their shapes reflect the two different values of σ.

x

1

2

2μ1μ

σ

σ

Figure 6.5: Normal curves with μ1 < μ2 and σ1 < σ2.

Based on inspection of Figures 6.2 through 6.5 and examination of the first
and second derivatives of n(x;μ, σ), we list the following properties of the normal
curve:

1. The mode, which is the point on the horizontal axis where the curve is a
maximum, occurs at x = μ.

2. The curve is symmetric about a vertical axis through the mean μ.

3. The curve has its points of inflection at x = μ± σ; it is concave downward if
μ− σ < X < μ+ σ and is concave upward otherwise.
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4. The normal curve approaches the horizontal axis asymptotically as we proceed
in either direction away from the mean.

5. The total area under the curve and above the horizontal axis is equal to 1.

Theorem 6.2: The mean and variance of n(x;μ, σ) are μ and σ2, respectively. Hence, the stan-
dard deviation is σ.

Proof : To evaluate the mean, we first calculate

E(X − μ) =

∫ ∞

−∞

x− μ√
2πσ

e−
1
2 (

x−μ
σ )

2

dx.

Setting z = (x− μ)/σ and dx = σ dz, we obtain

E(X − μ) =
1√
2π

∫ ∞

−∞
ze−

1
2 z

2

dz = 0,

since the integrand above is an odd function of z. Using Theorem 4.5 on page 128,
we conclude that

E(X) = μ.

The variance of the normal distribution is given by

E[(X − μ)2] =
1√
2πσ

∫ ∞

−∞
(x− μ)2e−

1
2 [(x−μ)/σ]2 dx.

Again setting z = (x− μ)/σ and dx = σ dz, we obtain

E[(X − μ)2] =
σ2

√
2π

∫ ∞

−∞
z2e−

z2

2 dz.

Integrating by parts with u = z and dv = ze−z2/2 dz so that du = dz and v =
−e−z2/2, we find that

E[(X − μ)2] =
σ2

√
2π

(
−ze−z2/2

∣∣∣∞
−∞

+

∫ ∞

−∞
e−z2/2 dz

)
= σ2(0 + 1) = σ2.

Many random variables have probability distributions that can be described
adequately by the normal curve once μ and σ2 are specified. In this chapter, we
shall assume that these two parameters are known, perhaps from previous inves-
tigations. Later, we shall make statistical inferences when μ and σ2 are unknown
and have been estimated from the available experimental data.

We pointed out earlier the role that the normal distribution plays as a reason-
able approximation of scientific variables in real-life experiments. There are other
applications of the normal distribution that the reader will appreciate as he or she
moves on in the book. The normal distribution finds enormous application as a
limiting distribution. Under certain conditions, the normal distribution provides a
good continuous approximation to the binomial and hypergeometric distributions.
The case of the approximation to the binomial is covered in Section 6.5. In Chap-
ter 8, the reader will learn about sampling distributions. It turns out that the
limiting distribution of sample averages is normal. This provides a broad base
for statistical inference that proves very valuable to the data analyst interested in
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estimation and hypothesis testing. Theory in the important areas such as analysis
of variance (Chapters 13, 14, and 15) and quality control (Chapter 17) is based on
assumptions that make use of the normal distribution.

In Section 6.3, examples demonstrate the use of tables of the normal distribu-
tion. Section 6.4 follows with examples of applications of the normal distribution.

6.3 Areas under the Normal Curve

The curve of any continuous probability distribution or density function is con-
structed so that the area under the curve bounded by the two ordinates x = x1

and x = x2 equals the probability that the random variable X assumes a value
between x = x1 and x = x2. Thus, for the normal curve in Figure 6.6,

P (x1 < X < x2) =

∫ x2

x1

n(x;μ, σ) dx =
1√
2πσ

∫ x2

x1

e−
1

2σ2 (x−μ)2dx

is represented by the area of the shaded region.

xx1 x2μ

Figure 6.6: P (x1 < X < x2) = area of the shaded region.

In Figures 6.3, 6.4, and 6.5 we saw how the normal curve is dependent on
the mean and the standard deviation of the distribution under investigation. The
area under the curve between any two ordinates must then also depend on the
values μ and σ. This is evident in Figure 6.7, where we have shaded regions cor-
responding to P (x1 < X < x2) for two curves with different means and variances.
P (x1 < X < x2), where X is the random variable describing distribution A, is
indicated by the shaded area below the curve of A. If X is the random variable de-
scribing distribution B, then P (x1 < X < x2) is given by the entire shaded region.
Obviously, the two shaded regions are different in size; therefore, the probability
associated with each distribution will be different for the two given values of X.

There are many types of statistical software that can be used in calculating
areas under the normal curve. The difficulty encountered in solving integrals of
normal density functions necessitates the tabulation of normal curve areas for quick
reference. However, it would be a hopeless task to attempt to set up separate tables
for every conceivable value of μ and σ. Fortunately, we are able to transform all
the observations of any normal random variable X into a new set of observations
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x
x1 x2

A

B

Figure 6.7: P (x1 < X < x2) for different normal curves.

of a normal random variable Z with mean 0 and variance 1. This can be done by
means of the transformation

Z =
X − μ

σ
.

Whenever X assumes a value x, the corresponding value of Z is given by z =
(x − μ)/σ. Therefore, if X falls between the values x = x1 and x = x2, the
random variable Z will fall between the corresponding values z1 = (x1 − μ)/σ and
z2 = (x2 − μ)/σ. Consequently, we may write

P (x1 < X < x2) =
1√
2πσ

∫ x2

x1

e−
1

2σ2 (x−μ)2dx =
1√
2π

∫ z2

z1

e−
1
2 z

2

dz

=

∫ z2

z1

n(z; 0, 1) dz = P (z1 < Z < z2),

where Z is seen to be a normal random variable with mean 0 and variance 1.

Definition 6.1: The distribution of a normal random variable with mean 0 and variance 1 is called
a standard normal distribution.

The original and transformed distributions are illustrated in Figure 6.8. Since
all the values of X falling between x1 and x2 have corresponding z values between
z1 and z2, the area under the X-curve between the ordinates x = x1 and x = x2 in
Figure 6.8 equals the area under the Z-curve between the transformed ordinates
z = z1 and z = z2.

We have now reduced the required number of tables of normal-curve areas to
one, that of the standard normal distribution. Table A.3 indicates the area under
the standard normal curve corresponding to P (Z < z) for values of z ranging from
−3.49 to 3.49. To illustrate the use of this table, let us find the probability that Z is
less than 1.74. First, we locate a value of z equal to 1.7 in the left column; then we
move across the row to the column under 0.04, where we read 0.9591. Therefore,
P (Z < 1.74) = 0.9591. To find a z value corresponding to a given probability, the
process is reversed. For example, the z value leaving an area of 0.2148 under the
curve to the left of z is seen to be −0.79.
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x
μx1 x2

σ

σ

z
0z1 z2

� 1

Figure 6.8: The original and transformed normal distributions.

Example 6.2: Given a standard normal distribution, find the area under the curve that lies

(a) to the right of z = 1.84 and

(b) between z = −1.97 and z = 0.86.

z
0 1.84

(a)

z
�1.97 0 0.86

(b)

Figure 6.9: Areas for Example 6.2.

Solution : See Figure 6.9 for the specific areas.

(a) The area in Figure 6.9(a) to the right of z = 1.84 is equal to 1 minus the area
in Table A.3 to the left of z = 1.84, namely, 1− 0.9671 = 0.0329.

(b) The area in Figure 6.9(b) between z = −1.97 and z = 0.86 is equal to the
area to the left of z = 0.86 minus the area to the left of z = −1.97. From
Table A.3 we find the desired area to be 0.8051− 0.0244 = 0.7807.
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Example 6.3: Given a standard normal distribution, find the value of k such that

(a) P (Z > k) = 0.3015 and

(b) P (k < Z < −0.18) = 0.4197.

x
0 k

(a)

0.3015
x

k −0.18
(b)

0.4197

Figure 6.10: Areas for Example 6.3.

Solution : Distributions and the desired areas are shown in Figure 6.10.

(a) In Figure 6.10(a), we see that the k value leaving an area of 0.3015 to the
right must then leave an area of 0.6985 to the left. From Table A.3 it follows
that k = 0.52.

(b) From Table A.3 we note that the total area to the left of −0.18 is equal to
0.4286. In Figure 6.10(b), we see that the area between k and −0.18 is 0.4197,
so the area to the left of k must be 0.4286 − 0.4197 = 0.0089. Hence, from
Table A.3, we have k = −2.37.

Example 6.4: Given a random variable X having a normal distribution with μ = 50 and σ = 10,
find the probability that X assumes a value between 45 and 62.

x
0�0.5 1.2

Figure 6.11: Area for Example 6.4.

Solution : The z values corresponding to x1 = 45 and x2 = 62 are

z1 =
45− 50

10
= −0.5 and z2 =

62− 50

10
= 1.2.
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Therefore,

P (45 < X < 62) = P (−0.5 < Z < 1.2).

P (−0.5 < Z < 1.2) is shown by the area of the shaded region in Figure 6.11. This
area may be found by subtracting the area to the left of the ordinate z = −0.5
from the entire area to the left of z = 1.2. Using Table A.3, we have

P (45 < X < 62) = P (−0.5 < Z < 1.2) = P (Z < 1.2)− P (Z < −0.5)

= 0.8849− 0.3085 = 0.5764.

Example 6.5: Given that X has a normal distribution with μ = 300 and σ = 50, find the
probability that X assumes a value greater than 362.

Solution : The normal probability distribution with the desired area shaded is shown in
Figure 6.12. To find P (X > 362), we need to evaluate the area under the normal
curve to the right of x = 362. This can be done by transforming x = 362 to the
corresponding z value, obtaining the area to the left of z from Table A.3, and then
subtracting this area from 1. We find that

z =
362− 300

50
= 1.24.

Hence,

P (X > 362) = P (Z > 1.24) = 1− P (Z < 1.24) = 1− 0.8925 = 0.1075.

x
300 362

 � 50σ

Figure 6.12: Area for Example 6.5.

According to Chebyshev’s theorem on page 137, the probability that a random
variable assumes a value within 2 standard deviations of the mean is at least 3/4.
If the random variable has a normal distribution, the z values corresponding to
x1 = μ− 2σ and x2 = μ+ 2σ are easily computed to be

z1 =
(μ− 2σ)− μ

σ
= −2 and z2 =

(μ+ 2σ)− μ

σ
= 2.

Hence,

P (μ− 2σ < X < μ+ 2σ) = P (−2 < Z < 2) = P (Z < 2)− P (Z < −2)

= 0.9772− 0.0228 = 0.9544,

which is a much stronger statement than that given by Chebyshev’s theorem.
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Using the Normal Curve in Reverse

Sometimes, we are required to find the value of z corresponding to a specified
probability that falls between values listed in Table A.3 (see Example 6.6). For
convenience, we shall always choose the z value corresponding to the tabular prob-
ability that comes closest to the specified probability.

The preceding two examples were solved by going first from a value of x to a z
value and then computing the desired area. In Example 6.6, we reverse the process
and begin with a known area or probability, find the z value, and then determine
x by rearranging the formula

z =
x− μ

σ
to give x = σz + μ.

Example 6.6: Given a normal distribution with μ = 40 and σ = 6, find the value of x that has

(a) 45% of the area to the left and

(b) 14% of the area to the right.

x
40
(a)

σ = 6 σ = 6

0.45
x

40
(b)

0.14

Figure 6.13: Areas for Example 6.6.

Solution : (a) An area of 0.45 to the left of the desired x value is shaded in Figure 6.13(a).
We require a z value that leaves an area of 0.45 to the left. From Table A.3
we find P (Z < −0.13) = 0.45, so the desired z value is −0.13. Hence,

x = (6)(−0.13) + 40 = 39.22.

(b) In Figure 6.13(b), we shade an area equal to 0.14 to the right of the desired
x value. This time we require a z value that leaves 0.14 of the area to the
right and hence an area of 0.86 to the left. Again, from Table A.3, we find
P (Z < 1.08) = 0.86, so the desired z value is 1.08 and

x = (6)(1.08) + 40 = 46.48.
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6.4 Applications of the Normal Distribution

Some of the many problems for which the normal distribution is applicable are
treated in the following examples. The use of the normal curve to approximate
binomial probabilities is considered in Section 6.5.

Example 6.7: A certain type of storage battery lasts, on average, 3.0 years with a standard
deviation of 0.5 year. Assuming that battery life is normally distributed, find the
probability that a given battery will last less than 2.3 years.

Solution : First construct a diagram such as Figure 6.14, showing the given distribution of
battery lives and the desired area. To find P (X < 2.3), we need to evaluate the
area under the normal curve to the left of 2.3. This is accomplished by finding the
area to the left of the corresponding z value. Hence, we find that

z =
2.3− 3

0.5
= −1.4,

and then, using Table A.3, we have

P (X < 2.3) = P (Z < −1.4) = 0.0808.

x
32.3

 � 0.5σ

Figure 6.14: Area for Example 6.7.

x
800778 834

 � 40σ

Figure 6.15: Area for Example 6.8.

Example 6.8: An electrical firm manufactures light bulbs that have a life, before burn-out, that
is normally distributed with mean equal to 800 hours and a standard deviation of
40 hours. Find the probability that a bulb burns between 778 and 834 hours.

Solution : The distribution of light bulb life is illustrated in Figure 6.15. The z values corre-
sponding to x1 = 778 and x2 = 834 are

z1 =
778− 800

40
= −0.55 and z2 =

834− 800

40
= 0.85.

Hence,

P (778 < X < 834) = P (−0.55 < Z < 0.85) = P (Z < 0.85)− P (Z < −0.55)

= 0.8023− 0.2912 = 0.5111.

Example 6.9: In an industrial process, the diameter of a ball bearing is an important measure-
ment. The buyer sets specifications for the diameter to be 3.0 ± 0.01 cm. The
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implication is that no part falling outside these specifications will be accepted. It
is known that in the process the diameter of a ball bearing has a normal distribu-
tion with mean μ = 3.0 and standard deviation σ = 0.005. On average, how many
manufactured ball bearings will be scrapped?

Solution : The distribution of diameters is illustrated by Figure 6.16. The values correspond-
ing to the specification limits are x1 = 2.99 and x2 = 3.01. The corresponding z
values are

z1 =
2.99− 3.0

0.005
= −2.0 and z2 =

3.01− 3.0

0.005
= +2.0.

Hence,

P (2.99 < X < 3.01) = P (−2.0 < Z < 2.0).

From Table A.3, P (Z < −2.0) = 0.0228. Due to symmetry of the normal distribu-
tion, we find that

P (Z < −2.0) + P (Z > 2.0) = 2(0.0228) = 0.0456.

As a result, it is anticipated that, on average, 4.56% of manufactured ball bearings
will be scrapped.

x
3.02.99 3.01

σ = 0.005

0.02280.0228

Figure 6.16: Area for Example 6.9.

x
1.5001.108 1.892

σ = 0.2

0.025 0.025

Figure 6.17: Specifications for Example 6.10.

Example 6.10: Gauges are used to reject all components for which a certain dimension is not
within the specification 1.50 ± d. It is known that this measurement is normally
distributed with mean 1.50 and standard deviation 0.2. Determine the value d
such that the specifications “cover” 95% of the measurements.

Solution : From Table A.3 we know that

P (−1.96 < Z < 1.96) = 0.95.

Therefore,

1.96 =
(1.50 + d)− 1.50

0.2
,

from which we obtain

d = (0.2)(1.96) = 0.392.

An illustration of the specifications is shown in Figure 6.17.
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Example 6.11: A certain machine makes electrical resistors having a mean resistance of 40 ohms
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal
distribution and can be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?

Solution : A percentage is found by multiplying the relative frequency by 100%. Since the
relative frequency for an interval is equal to the probability of a value falling in the
interval, we must find the area to the right of x = 43 in Figure 6.18. This can be
done by transforming x = 43 to the corresponding z value, obtaining the area to
the left of z from Table A.3, and then subtracting this area from 1. We find

z =
43− 40

2
= 1.5.

Therefore,

P (X > 43) = P (Z > 1.5) = 1− P (Z < 1.5) = 1− 0.9332 = 0.0668.

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms.

x
40 43

� 2.0σ

Figure 6.18: Area for Example 6.11.

x
40 43.5

 � 2.0σ

Figure 6.19: Area for Example 6.12.

Example 6.12: Find the percentage of resistances exceeding 43 ohms for Example 6.11 if resistance
is measured to the nearest ohm.

Solution : This problem differs from that in Example 6.11 in that we now assign a measure-
ment of 43 ohms to all resistors whose resistances are greater than 42.5 and less
than 43.5. We are actually approximating a discrete distribution by means of a
continuous normal distribution. The required area is the region shaded to the right
of 43.5 in Figure 6.19. We now find that

z =
43.5− 40

2
= 1.75.

Hence,

P (X > 43.5) = P (Z > 1.75) = 1− P (Z < 1.75) = 1− 0.9599 = 0.0401.

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest
ohm. The difference 6.68% − 4.01% = 2.67% between this answer and that of
Example 6.11 represents all those resistance values greater than 43 and less than
43.5 that are now being recorded as 43 ohms.
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Example 6.13: The average grade for an exam is 74, and the standard deviation is 7. If 12% of
the class is given As, and the grades are curved to follow a normal distribution,
what is the lowest possible A and the highest possible B?

Solution : In this example, we begin with a known area of probability, find the z value, and
then determine x from the formula x = σz + μ. An area of 0.12, corresponding
to the fraction of students receiving As, is shaded in Figure 6.20. We require a z
value that leaves 0.12 of the area to the right and, hence, an area of 0.88 to the
left. From Table A.3, P (Z < 1.18) has the closest value to 0.88, so the desired z
value is 1.18. Hence,

x = (7)(1.18) + 74 = 82.26.

Therefore, the lowest A is 83 and the highest B is 82.

x
74

σ = 7

0.12

Figure 6.20: Area for Example 6.13.

x
74 D6

σ = 7

0.6

Figure 6.21: Area for Example 6.14.

Example 6.14: Refer to Example 6.13 and find the sixth decile.
Solution : The sixth decile, written D6, is the x value that leaves 60% of the area to the left,

as shown in Figure 6.21. From Table A.3 we find P (Z < 0.25) ≈ 0.6, so the desired
z value is 0.25. Now x = (7)(0.25) + 74 = 75.75. Hence, D6 = 75.75. That is, 60%
of the grades are 75 or less.

Exercises

6.1 Given a continuous uniform distribution, show
that

(a) μ = A+B
2

and

(b) σ2 = (B−A)2

12
.

6.2 Suppose X follows a continuous uniform distribu-
tion from 1 to 5. Determine the conditional probability
P (X > 2.5 | X ≤ 4).

6.3 The daily amount of coffee, in liters, dispensed
by a machine located in an airport lobby is a random

variable X having a continuous uniform distribution
with A = 7 and B = 10. Find the probability that
on a given day the amount of coffee dispensed by this
machine will be

(a) at most 8.8 liters;

(b) more than 7.4 liters but less than 9.5 liters;

(c) at least 8.5 liters.

6.4 A bus arrives every 10 minutes at a bus stop. It
is assumed that the waiting time for a particular indi-
vidual is a random variable with a continuous uniform
distribution.
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(a) What is the probability that the individual waits
more than 7 minutes?

(b) What is the probability that the individual waits
between 2 and 7 minutes?

6.5 Given a standard normal distribution, find the
area under the curve that lies

(a) to the left of z = −1.39;

(b) to the right of z = 1.96;

(c) between z = −2.16 and z = −0.65;

(d) to the left of z = 1.43;

(e) to the right of z = −0.89;

(f) between z = −0.48 and z = 1.74.

6.6 Find the value of z if the area under a standard
normal curve

(a) to the right of z is 0.3622;

(b) to the left of z is 0.1131;

(c) between 0 and z, with z > 0, is 0.4838;

(d) between −z and z, with z > 0, is 0.9500.

6.7 Given a standard normal distribution, find the
value of k such that

(a) P (Z > k) = 0.2946;

(b) P (Z < k) = 0.0427;

(c) P (−0.93 < Z < k) = 0.7235.

6.8 Given a normal distribution with μ = 30 and
σ = 6, find

(a) the normal curve area to the right of x = 17;

(b) the normal curve area to the left of x = 22;

(c) the normal curve area between x = 32 and x = 41;

(d) the value of x that has 80% of the normal curve
area to the left;

(e) the two values of x that contain the middle 75% of
the normal curve area.

6.9 Given the normally distributed variable X with
mean 18 and standard deviation 2.5, find

(a) P (X < 15);

(b) the value of k such that P (X < k) = 0.2236;

(c) the value of k such that P (X > k) = 0.1814;

(d) P (17 < X < 21).

6.10 According to Chebyshev’s theorem, the proba-
bility that any random variable assumes a value within
3 standard deviations of the mean is at least 8/9. If it
is known that the probability distribution of a random
variable X is normal with mean μ and variance σ2,
what is the exact value of P (μ− 3σ < X < μ+ 3σ)?

6.11 A soft-drink machine is regulated so that it dis-
charges an average of 200 milliliters per cup. If the
amount of drink is normally distributed with a stan-
dard deviation equal to 15 milliliters,

(a) what fraction of the cups will contain more than
224 milliliters?

(b) what is the probability that a cup contains between
191 and 209 milliliters?

(c) how many cups will probably overflow if 230-
milliliter cups are used for the next 1000 drinks?

(d) below what value do we get the smallest 25% of the
drinks?

6.12 The loaves of rye bread distributed to local
stores by a certain bakery have an average length of 30
centimeters and a standard deviation of 2 centimeters.
Assuming that the lengths are normally distributed,
what percentage of the loaves are

(a) longer than 31.7 centimeters?

(b) between 29.3 and 33.5 centimeters in length?

(c) shorter than 25.5 centimeters?

6.13 A research scientist reports that mice will live an
average of 40 months when their diets are sharply re-
stricted and then enriched with vitamins and proteins.
Assuming that the lifetimes of such mice are normally
distributed with a standard deviation of 6.3 months,
find the probability that a given mouse will live

(a) more than 32 months;

(b) less than 28 months;

(c) between 37 and 49 months.

6.14 The finished inside diameter of a piston ring is
normally distributed with a mean of 10 centimeters and
a standard deviation of 0.03 centimeter.

(a) What proportion of rings will have inside diameters
exceeding 10.075 centimeters?

(b) What is the probability that a piston ring will have
an inside diameter between 9.97 and 10.03 centime-
ters?

(c) Below what value of inside diameter will 15% of the
piston rings fall?

6.15 A lawyer commutes daily from his suburban
home to his midtown office. The average time for a
one-way trip is 24 minutes, with a standard deviation
of 3.8 minutes. Assume the distribution of trip times
to be normally distributed.

(a) What is the probability that a trip will take at least
1/2 hour?

(b) If the office opens at 9:00 A.M. and the lawyer leaves
his house at 8:45 A.M. daily, what percentage of the
time is he late for work?
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(c) If he leaves the house at 8:35 A.M. and coffee is
served at the office from 8:50 A.M. until 9:00 A.M.,
what is the probability that he misses coffee?

(d) Find the length of time above which we find the
slowest 15% of the trips.

(e) Find the probability that 2 of the next 3 trips will
take at least 1/2 hour.

6.16 In the November 1990 issue of Chemical Engi-
neering Progress, a study discussed the percent purity
of oxygen from a certain supplier. Assume that the
mean was 99.61 with a standard deviation of 0.08. As-
sume that the distribution of percent purity was ap-
proximately normal.

(a) What percentage of the purity values would you
expect to be between 99.5 and 99.7?

(b) What purity value would you expect to exceed ex-
actly 5% of the population?

6.17 The average life of a certain type of small motor
is 10 years with a standard deviation of 2 years. The
manufacturer replaces free all motors that fail while
under guarantee. If she is willing to replace only 3% of
the motors that fail, how long a guarantee should be
offered? Assume that the lifetime of a motor follows a
normal distribution.

6.18 The heights of 1000 students are normally dis-
tributed with a mean of 174.5 centimeters and a stan-
dard deviation of 6.9 centimeters. Assuming that the
heights are recorded to the nearest half-centimeter,
how many of these students would you expect to have
heights

(a) less than 160.0 centimeters?

(b) between 171.5 and 182.0 centimeters inclusive?

(c) equal to 175.0 centimeters?

(d) greater than or equal to 188.0 centimeters?

6.19 A company pays its employees an average wage
of $15.90 an hour with a standard deviation of $1.50. If
the wages are approximately normally distributed and
paid to the nearest cent,

(a) what percentage of the workers receive wages be-
tween $13.75 and $16.22 an hour inclusive?

(b) the highest 5% of the employee hourly wages is
greater than what amount?

6.20 The weights of a large number of miniature poo-
dles are approximately normally distributed with a
mean of 8 kilograms and a standard deviation of 0.9
kilogram. If measurements are recorded to the nearest
tenth of a kilogram, find the fraction of these poodles
with weights

(a) over 9.5 kilograms;

(b) of at most 8.6 kilograms;

(c) between 7.3 and 9.1 kilograms inclusive.

6.21 The tensile strength of a certain metal compo-
nent is normally distributed with a mean of 10,000 kilo-
grams per square centimeter and a standard deviation
of 100 kilograms per square centimeter. Measurements
are recorded to the nearest 50 kilograms per square
centimeter.

(a) What proportion of these components exceed
10,150 kilograms per square centimeter in tensile
strength?

(b) If specifications require that all components have
tensile strength between 9800 and 10,200 kilograms
per square centimeter inclusive, what proportion of
pieces would we expect to scrap?

6.22 If a set of observations is normally distributed,
what percent of these differ from the mean by

(a) more than 1.3σ?

(b) less than 0.52σ?

6.23 The IQs of 600 applicants to a certain college
are approximately normally distributed with a mean
of 115 and a standard deviation of 12. If the college
requires an IQ of at least 95, how many of these stu-
dents will be rejected on this basis of IQ, regardless of
their other qualifications? Note that IQs are recorded
to the nearest integers.

6.5 Normal Approximation to the Binomial

Probabilities associated with binomial experiments are readily obtainable from the
formula b(x;n, p) of the binomial distribution or from Table A.1 when n is small.
In addition, binomial probabilities are readily available in many computer software
packages. However, it is instructive to learn the relationship between the binomial
and the normal distribution. In Section 5.5, we illustrated how the Poisson dis-
tribution can be used to approximate binomial probabilities when n is quite large
and p is very close to 0 or 1. Both the binomial and the Poisson distributions
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are discrete. The first application of a continuous probability distribution to ap-
proximate probabilities over a discrete sample space was demonstrated in Example
6.12, where the normal curve was used. The normal distribution is often a good
approximation to a discrete distribution when the latter takes on a symmetric bell
shape. From a theoretical point of view, some distributions converge to the normal
as their parameters approach certain limits. The normal distribution is a conve-
nient approximating distribution because the cumulative distribution function is
so easily tabled. The binomial distribution is nicely approximated by the normal
in practical problems when one works with the cumulative distribution function.
We now state a theorem that allows us to use areas under the normal curve to
approximate binomial properties when n is sufficiently large.

Theorem 6.3: If X is a binomial random variable with mean μ = np and variance σ2 = npq,
then the limiting form of the distribution of

Z =
X − np√

npq
,

as n → ∞, is the standard normal distribution n(z; 0, 1).

It turns out that the normal distribution with μ = np and σ2 = np(1− p) not
only provides a very accurate approximation to the binomial distribution when
n is large and p is not extremely close to 0 or 1 but also provides a fairly good
approximation even when n is small and p is reasonably close to 1/2.

To illustrate the normal approximation to the binomial distribution, we first
draw the histogram for b(x; 15, 0.4) and then superimpose the particular normal
curve having the same mean and variance as the binomial variable X. Hence, we
draw a normal curve with

μ = np = (15)(0.4) = 6 and σ2 = npq = (15)(0.4)(0.6) = 3.6.

The histogram of b(x; 15, 0.4) and the corresponding superimposed normal curve,
which is completely determined by its mean and variance, are illustrated in Figure
6.22.

110 1 2 3 4 5 6 7 8 9 13 15
x

Figure 6.22: Normal approximation of b(x; 15, 0.4).
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The exact probability that the binomial random variable X assumes a given
value x is equal to the area of the bar whose base is centered at x. For example, the
exact probability that X assumes the value 4 is equal to the area of the rectangle
with base centered at x = 4. Using Table A.1, we find this area to be

P (X = 4) = b(4; 15, 0.4) = 0.1268,

which is approximately equal to the area of the shaded region under the normal
curve between the two ordinates x1 = 3.5 and x2 = 4.5 in Figure 6.23. Converting
to z values, we have

z1 =
3.5− 6

1.897
= −1.32 and z2 =

4.5− 6

1.897
= −0.79.

110 1 2 3 4 5 6 7 8 9 13 15
x

Figure 6.23: Normal approximation of b(x; 15, 0.4) and
9∑

x=7
b(x; 15, 0.4).

If X is a binomial random variable and Z a standard normal variable, then

P (X = 4) = b(4; 15, 0.4) ≈ P (−1.32 < Z < −0.79)

= P (Z < −0.79)− P (Z < −1.32) = 0.2148− 0.0934 = 0.1214.

This agrees very closely with the exact value of 0.1268.
The normal approximation is most useful in calculating binomial sums for large

values of n. Referring to Figure 6.23, we might be interested in the probability
that X assumes a value from 7 to 9 inclusive. The exact probability is given by

P (7 ≤ X ≤ 9) =

9∑
x=0

b(x; 15, 0.4)−
6∑

x=0

b(x; 15, 0.4)

= 0.9662− 0.6098 = 0.3564,

which is equal to the sum of the areas of the rectangles with bases centered at
x = 7, 8, and 9. For the normal approximation, we find the area of the shaded
region under the curve between the ordinates x1 = 6.5 and x2 = 9.5 in Figure 6.23.
The corresponding z values are

z1 =
6.5− 6

1.897
= 0.26 and z2 =

9.5− 6

1.897
= 1.85.
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Now,

P (7 ≤ X ≤ 9) ≈ P (0.26 < Z < 1.85) = P (Z < 1.85)− P (Z < 0.26)

= 0.9678− 0.6026 = 0.3652.

Once again, the normal curve approximation provides a value that agrees very
closely with the exact value of 0.3564. The degree of accuracy, which depends on
how well the curve fits the histogram, will increase as n increases. This is particu-
larly true when p is not very close to 1/2 and the histogram is no longer symmetric.
Figures 6.24 and 6.25 show the histograms for b(x; 6, 0.2) and b(x; 15, 0.2), respec-
tively. It is evident that a normal curve would fit the histogram considerably better
when n = 15 than when n = 6.

0 1
x

2 3 4 5 6

Figure 6.24: Histogram for b(x; 6, 0.2).

0
x

1 2 3 4 5 6 7 8 9 11 13 15

Figure 6.25: Histogram for b(x; 15, 0.2).

In our illustrations of the normal approximation to the binomial, it became
apparent that if we seek the area under the normal curve to the left of, say, x,
it is more accurate to use x + 0.5. This is a correction to accommodate the fact
that a discrete distribution is being approximated by a continuous distribution.
The correction +0.5 is called a continuity correction. The foregoing discussion
leads to the following formal normal approximation to the binomial.

Normal
Approximation to

the Binomial
Distribution

Let X be a binomial random variable with parameters n and p. For large n, X
has approximately a normal distribution with μ = np and σ2 = npq = np(1−p)
and

P (X ≤ x) =
x∑

k=0

b(k;n, p)

≈ area under normal curve to the left of x+ 0.5

= P

(
Z ≤ x+ 0.5− np√

npq

)
,

and the approximation will be good if np and n(1− p) are greater than or equal
to 5.

As we indicated earlier, the quality of the approximation is quite good for large
n. If p is close to 1/2, a moderate or small sample size will be sufficient for a
reasonable approximation. We offer Table 6.1 as an indication of the quality of the
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approximation. Both the normal approximation and the true binomial cumulative
probabilities are given. Notice that at p = 0.05 and p = 0.10, the approximation
is fairly crude for n = 10. However, even for n = 10, note the improvement for
p = 0.50. On the other hand, when p is fixed at p = 0.05, note the improvement
of the approximation as we go from n = 20 to n = 100.

Table 6.1: Normal Approximation and True Cumulative Binomial Probabilities

p = 0.05, n = 10 p = 0.10, n = 10 p = 0.50, n = 10
r Binomial Normal Binomial Normal Binomial Normal
0 0.5987 0.5000 0.3487 0.2981 0.0010 0.0022
1 0.9139 0.9265 0.7361 0.7019 0.0107 0.0136
2 0.9885 0.9981 0.9298 0.9429 0.0547 0.0571
3 0.9990 1.0000 0.9872 0.9959 0.1719 0.1711
4 1.0000 1.0000 0.9984 0.9999 0.3770 0.3745
5 1.0000 1.0000 0.6230 0.6255
6 0.8281 0.8289
7 0.9453 0.9429
8 0.9893 0.9864
9 0.9990 0.9978

10 1.0000 0.9997
p = 0.05

n = 20 n = 50 n = 100
r Binomial Normal Binomial Normal Binomial Normal
0 0.3585 0.3015 0.0769 0.0968 0.0059 0.0197
1 0.7358 0.6985 0.2794 0.2578 0.0371 0.0537
2 0.9245 0.9382 0.5405 0.5000 0.1183 0.1251
3 0.9841 0.9948 0.7604 0.7422 0.2578 0.2451
4 0.9974 0.9998 0.8964 0.9032 0.4360 0.4090
5 0.9997 1.0000 0.9622 0.9744 0.6160 0.5910
6 1.0000 1.0000 0.9882 0.9953 0.7660 0.7549
7 0.9968 0.9994 0.8720 0.8749
8 0.9992 0.9999 0.9369 0.9463
9 0.9998 1.0000 0.9718 0.9803

10 1.0000 1.0000 0.9885 0.9941

Example 6.15: The probability that a patient recovers from a rare blood disease is 0.4. If 100
people are known to have contracted this disease, what is the probability that
fewer than 30 survive?

Solution : Let the binomial variable X represent the number of patients who survive. Since
n = 100, we should obtain fairly accurate results using the normal-curve approxi-
mation with

μ = np = (100)(0.4) = 40 and σ =
√
npq =

√
(100)(0.4)(0.6) = 4.899.

To obtain the desired probability, we have to find the area to the left of x = 29.5.
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The z value corresponding to 29.5 is

z =
29.5− 40

4.899
= −2.14,

and the probability of fewer than 30 of the 100 patients surviving is given by the
shaded region in Figure 6.26. Hence,

P (X < 30) ≈ P (Z < −2.14) = 0.0162.

0�2.14
x

 � 1σ

Figure 6.26: Area for Example 6.15.

0 1.16 2.71
x

 � 1σ

Figure 6.27: Area for Example 6.16.

Example 6.16: A multiple-choice quiz has 200 questions, each with 4 possible answers of which
only 1 is correct. What is the probability that sheer guesswork yields from 25 to
30 correct answers for the 80 of the 200 problems about which the student has no
knowledge?

Solution : The probability of guessing a correct answer for each of the 80 questions is p = 1/4.
If X represents the number of correct answers resulting from guesswork, then

P (25 ≤ X ≤ 30) =
30∑

x=25

b(x; 80, 1/4).

Using the normal curve approximation with

μ = np = (80)

(
1

4

)
= 20

and

σ =
√
npq =

√
(80)(1/4)(3/4) = 3.873,

we need the area between x1 = 24.5 and x2 = 30.5. The corresponding z values
are

z1 =
24.5− 20

3.873
= 1.16 and z2 =

30.5− 20

3.873
= 2.71.

The probability of correctly guessing from 25 to 30 questions is given by the shaded
region in Figure 6.27. From Table A.3 we find that

P (25 ≤ X ≤ 30) =
30∑

x=25

b(x; 80, 0.25) ≈ P (1.16 < Z < 2.71)

= P (Z < 2.71)− P (Z < 1.16) = 0.9966− 0.8770 = 0.1196.
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Exercises

6.24 A coin is tossed 400 times. Use the normal curve
approximation to find the probability of obtaining

(a) between 185 and 210 heads inclusive;

(b) exactly 205 heads;

(c) fewer than 176 or more than 227 heads.

6.25 A process for manufacturing an electronic com-
ponent yields items of which 1% are defective. A qual-
ity control plan is to select 100 items from the process,
and if none are defective, the process continues. Use
the normal approximation to the binomial to find

(a) the probability that the process continues given the
sampling plan described;

(b) the probability that the process continues even if
the process has gone bad (i.e., if the frequency
of defective components has shifted to 5.0% defec-
tive).

6.26 A process yields 10% defective items. If 100
items are randomly selected from the process, what
is the probability that the number of defectives

(a) exceeds 13?

(b) is less than 8?

6.27 The probability that a patient recovers from a
delicate heart operation is 0.9. Of the next 100 patients
having this operation, what is the probability that

(a) between 84 and 95 inclusive survive?

(b) fewer than 86 survive?

6.28 Researchers at George Washington University
and the National Institutes of Health claim that ap-
proximately 75% of people believe “tranquilizers work
very well to make a person more calm and relaxed.” Of
the next 80 people interviewed, what is the probability
that

(a) at least 50 are of this opinion?

(b) at most 56 are of this opinion?

6.29 If 20% of the residents in a U.S. city prefer a
white telephone over any other color available, what is
the probability that among the next 1000 telephones
installed in that city

(a) between 170 and 185 inclusive will be white?

(b) at least 210 but not more than 225 will be white?

6.30 A drug manufacturer claims that a certain drug
cures a blood disease, on the average, 80% of the time.
To check the claim, government testers use the drug on

a sample of 100 individuals and decide to accept the
claim if 75 or more are cured.

(a) What is the probability that the claim will be re-
jected when the cure probability is, in fact, 0.8?

(b) What is the probability that the claim will be ac-
cepted by the government when the cure probabil-
ity is as low as 0.7?

6.31 One-sixth of the male freshmen entering a large
state school are out-of-state students. If the students
are assigned at random to dormitories, 180 to a build-
ing, what is the probability that in a given dormitory
at least one-fifth of the students are from out of state?

6.32 A pharmaceutical company knows that approx-
imately 5% of its birth-control pills have an ingredient
that is below the minimum strength, thus rendering
the pill ineffective. What is the probability that fewer
than 10 in a sample of 200 pills will be ineffective?

6.33 Statistics released by the National Highway
Traffic Safety Administration and the National Safety
Council show that on an average weekend night, 1 out
of every 10 drivers on the road is drunk. If 400 drivers
are randomly checked next Saturday night, what is the
probability that the number of drunk drivers will be

(a) less than 32?

(b) more than 49?

(c) at least 35 but less than 47?

6.34 A pair of dice is rolled 180 times. What is the
probability that a total of 7 occurs

(a) at least 25 times?

(b) between 33 and 41 times inclusive?

(c) exactly 30 times?

6.35 A company produces component parts for an en-
gine. Parts specifications suggest that 95% of items
meet specifications. The parts are shipped to cus-
tomers in lots of 100.

(a) What is the probability that more than 2 items in
a given lot will be defective?

(b) What is the probability that more than 10 items in
a lot will be defective?

6.36 A common practice of airline companies is to
sell more tickets for a particular flight than there are
seats on the plane, because customers who buy tickets
do not always show up for the flight. Suppose that
the percentage of no-shows at flight time is 2%. For
a particular flight with 197 seats, a total of 200 tick-
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ets were sold. What is the probability that the airline
overbooked this flight?

6.37 The serum cholesterol level X in 14-year-old
boys has approximately a normal distribution with
mean 170 and standard deviation 30.

(a) Find the probability that the serum cholesterol
level of a randomly chosen 14-year-old boy exceeds
230.

(b) In a middle school there are 300 14-year-old boys.
Find the probability that at least 8 boys have a
serum cholesterol level that exceeds 230.

6.38 A telemarketing company has a special letter-
opening machine that opens and removes the contents
of an envelope. If the envelope is fed improperly into
the machine, the contents of the envelope may not be
removed or may be damaged. In this case, the machine
is said to have “failed.”

(a) If the machine has a probability of failure of 0.01,
what is the probability of more than 1 failure oc-
curring in a batch of 20 envelopes?

(b) If the probability of failure of the machine is 0.01
and a batch of 500 envelopes is to be opened, what
is the probability that more than 8 failures will
occur?

6.6 Gamma and Exponential Distributions

Although the normal distribution can be used to solve many problems in engineer-
ing and science, there are still numerous situations that require different types of
density functions. Two such density functions, the gamma and exponential
distributions, are discussed in this section.

It turns out that the exponential distribution is a special case of the gamma dis-
tribution. Both find a large number of applications. The exponential and gamma
distributions play an important role in both queuing theory and reliability prob-
lems. Time between arrivals at service facilities and time to failure of component
parts and electrical systems often are nicely modeled by the exponential distribu-
tion. The relationship between the gamma and the exponential allows the gamma
to be used in similar types of problems. More details and illustrations will be
supplied later in the section.

The gamma distribution derives its name from the well-known gamma func-
tion, studied in many areas of mathematics. Before we proceed to the gamma
distribution, let us review this function and some of its important properties.

Definition 6.2: The gamma function is defined by

Γ(α) =

∫ ∞

0

xα−1e−x dx, for α > 0.

The following are a few simple properties of the gamma function.

(a) Γ(n) = (n− 1)(n− 2) · · · (1)Γ(1), for a positive integer n.

To see the proof, integrating by parts with u = xα−1 and dv = e−x dx, we obtain

Γ(α) = −e−x xα−1
∣∣∞
0

+

∫ ∞

0

e−x(α− 1)xα−2 dx = (α− 1)

∫ ∞

0

xα−2e−x dx,

for α > 1, which yields the recursion formula

Γ(α) = (α− 1)Γ(α− 1).

The result follows after repeated application of the recursion formula. Using this
result, we can easily show the following two properties.
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(b) Γ(n) = (n− 1)! for a positive integer n.

(c) Γ(1) = 1.

Furthermore, we have the following property of Γ(α), which is left for the reader
to verify (see Exercise 6.39 on page 206).

(d) Γ(1/2) =
√
π.

The following is the definition of the gamma distribution.

Gamma
Distribution

The continuous random variable X has a gamma distribution, with param-
eters α and β, if its density function is given by

f(x;α, β) =

{
1

βαΓ(α)x
α−1e−x/β , x > 0,

0, elsewhere,

where α > 0 and β > 0.

Graphs of several gamma distributions are shown in Figure 6.28 for certain
specified values of the parameters α and β. The special gamma distribution for
which α = 1 is called the exponential distribution.

0 1 2 3 4 5 6

0.5

1.0

f(x)

x

= 1α

β
= 1

= 2α

β
= 1

= 4α

β
= 1

Figure 6.28: Gamma distributions.

Exponential
Distribution

The continuous random variable X has an exponential distribution, with
parameter β, if its density function is given by

f(x;β) =

{
1
β e

−x/β , x > 0,

0, elsewhere,

where β > 0.
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The following theorem and corollary give the mean and variance of the gamma and
exponential distributions.

Theorem 6.4: The mean and variance of the gamma distribution are

μ = αβ and σ2 = αβ2.

The proof of this theorem is found in Appendix A.26.

Corollary 6.1: The mean and variance of the exponential distribution are

μ = β and σ2 = β2.

Relationship to the Poisson Process

We shall pursue applications of the exponential distribution and then return to the
gamma distribution. The most important applications of the exponential distribu-
tion are situations where the Poisson process applies (see Section 5.5). The reader
should recall that the Poisson process allows for the use of the discrete distribu-
tion called the Poisson distribution. Recall that the Poisson distribution is used to
compute the probability of specific numbers of “events” during a particular period
of time or span of space. In many applications, the time period or span of space
is the random variable. For example, an industrial engineer may be interested in
modeling the time T between arrivals at a congested intersection during rush hour
in a large city. An arrival represents the Poisson event.

The relationship between the exponential distribution (often called the negative
exponential) and the Poisson process is quite simple. In Chapter 5, the Poisson
distribution was developed as a single-parameter distribution with parameter λ,
where λ may be interpreted as the mean number of events per unit “time.” Con-
sider now the random variable described by the time required for the first event
to occur. Using the Poisson distribution, we find that the probability of no events
occurring in the span up to time t is given by

p(0;λt) =
e−λt(λt)0

0!
= e−λt.

We can now make use of the above and let X be the time to the first Poisson
event. The probability that the length of time until the first event will exceed x is
the same as the probability that no Poisson events will occur in x. The latter, of
course, is given by e−λx. As a result,

P (X > x) = e−λx.

Thus, the cumulative distribution function for X is given by

P (0 ≤ X ≤ x) = 1− e−λx.

Now, in order that we may recognize the presence of the exponential distribution,
we differentiate the cumulative distribution function above to obtain the density
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function

f(x) = λe−λx,

which is the density function of the exponential distribution with λ = 1/β.

Applications of the Exponential and Gamma Distributions

In the foregoing, we provided the foundation for the application of the exponential
distribution in “time to arrival” or time to Poisson event problems. We will illus-
trate some applications here and then proceed to discuss the role of the gamma
distribution in these modeling applications. Notice that the mean of the exponen-
tial distribution is the parameter β, the reciprocal of the parameter in the Poisson
distribution. The reader should recall that it is often said that the Poisson distri-
bution has no memory, implying that occurrences in successive time periods are
independent. The important parameter β is the mean time between events. In
reliability theory, where equipment failure often conforms to this Poisson process,
β is called mean time between failures. Many equipment breakdowns do follow
the Poisson process, and thus the exponential distribution does apply. Other ap-
plications include survival times in biomedical experiments and computer response
time.

In the following example, we show a simple application of the exponential dis-
tribution to a problem in reliability. The binomial distribution also plays a role in
the solution.

Example 6.17: Suppose that a system contains a certain type of component whose time, in years,
to failure is given by T . The random variable T is modeled nicely by the exponential
distribution with mean time to failure β = 5. If 5 of these components are installed
in different systems, what is the probability that at least 2 are still functioning at
the end of 8 years?

Solution : The probability that a given component is still functioning after 8 years is given
by

P (T > 8) =
1

5

∫ ∞

8

e−t/5 dt = e−8/5 ≈ 0.2.

Let X represent the number of components functioning after 8 years. Then using
the binomial distribution, we have

P (X ≥ 2) =
5∑

x=2

b(x; 5, 0.2) = 1−
1∑

x=0

b(x; 5, 0.2) = 1− 0.7373 = 0.2627.

There are exercises and examples in Chapter 3 where the reader has already
encountered the exponential distribution. Others involving waiting time and reli-
ability include Example 6.24 and some of the exercises and review exercises at the
end of this chapter.

The Memoryless Property and Its Effect on the Exponential Distribution

The types of applications of the exponential distribution in reliability and compo-
nent or machine lifetime problems are influenced by the memoryless (or lack-of-
memory) property of the exponential distribution. For example, in the case of,
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say, an electronic component where lifetime has an exponential distribution, the
probability that the component lasts, say, t hours, that is, P (X ≥ t), is the same
as the conditional probability

P (X ≥ t0 + t | X ≥ t0).

So if the component “makes it” to t0 hours, the probability of lasting an additional
t hours is the same as the probability of lasting t hours. There is no “punish-
ment” through wear that may have ensued for lasting the first t0 hours. Thus,
the exponential distribution is more appropriate when the memoryless property is
justified. But if the failure of the component is a result of gradual or slow wear (as
in mechanical wear), then the exponential does not apply and either the gamma
or the Weibull distribution (Section 6.10) may be more appropriate.

The importance of the gamma distribution lies in the fact that it defines a
family of which other distributions are special cases. But the gamma itself has
important applications in waiting time and reliability theory. Whereas the expo-
nential distribution describes the time until the occurrence of a Poisson event (or
the time between Poisson events), the time (or space) occurring until a specified
number of Poisson events occur is a random variable whose density function is
described by the gamma distribution. This specific number of events is the param-
eter α in the gamma density function. Thus, it becomes easy to understand that
when α = 1, the special case of the exponential distribution occurs. The gamma
density can be developed from its relationship to the Poisson process in much the
same manner as we developed the exponential density. The details are left to the
reader. The following is a numerical example of the use of the gamma distribution
in a waiting-time application.

Example 6.18: Suppose that telephone calls arriving at a particular switchboard follow a Poisson
process with an average of 5 calls coming per minute. What is the probability that
up to a minute will elapse by the time 2 calls have come in to the switchboard?

Solution : The Poisson process applies, with time until 2 Poisson events following a gamma
distribution with β = 1/5 and α = 2. Denote by X the time in minutes that
transpires before 2 calls come. The required probability is given by

P (X ≤ 1) =

∫ 1

0

1

β2
xe−x/β dx = 25

∫ 1

0

xe−5x dx = 1− e−5(1 + 5) = 0.96.

While the origin of the gamma distribution deals in time (or space) until the
occurrence of α Poisson events, there are many instances where a gamma distri-
bution works very well even though there is no clear Poisson structure. This is
particularly true for survival time problems in both engineering and biomedical
applications.

Example 6.19: In a biomedical study with rats, a dose-response investigation is used to determine
the effect of the dose of a toxicant on their survival time. The toxicant is one that
is frequently discharged into the atmosphere from jet fuel. For a certain dose of
the toxicant, the study determines that the survival time, in weeks, has a gamma
distribution with α = 5 and β = 10. What is the probability that a rat survives
no longer than 60 weeks?
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Solution : Let the random variable X be the survival time (time to death). The required
probability is

P (X ≤ 60) =
1

β5

∫ 60

0

xα−1e−x/β

Γ(5)
dx.

The integral above can be solved through the use of the incomplete gamma
function, which becomes the cumulative distribution function for the gamma dis-
tribution. This function is written as

F (x;α) =

∫ x

0

yα−1e−y

Γ(α)
dy.

If we let y = x/β, so x = βy, we have

P (X ≤ 60) =

∫ 6

0

y4e−y

Γ(5)
dy,

which is denoted as F (6; 5) in the table of the incomplete gamma function in
Appendix A.23. Note that this allows a quick computation of probabilities for the
gamma distribution. Indeed, for this problem, the probability that the rat survives
no longer than 60 days is given by

P (X ≤ 60) = F (6; 5) = 0.715.

Example 6.20: It is known, from previous data, that the length of time in months between cus-
tomer complaints about a certain product is a gamma distribution with α = 2
and β = 4. Changes were made to tighten quality control requirements. Following
these changes, 20 months passed before the first complaint. Does it appear as if
the quality control tightening was effective?

Solution : Let X be the time to the first complaint, which, under conditions prior to the
changes, followed a gamma distribution with α = 2 and β = 4. The question
centers around how rare X ≥ 20 is, given that α and β remain at values 2 and 4,
respectively. In other words, under the prior conditions is a “time to complaint”
as large as 20 months reasonable? Thus, following the solution to Example 6.19,

P (X ≥ 20) = 1− 1

βα

∫ 20

0

xα−1e−x/β

Γ(α)
dx.

Again, using y = x/β, we have

P (X ≥ 20) = 1−
∫ 5

0

ye−y

Γ(2)
dy = 1− F (5; 2) = 1− 0.96 = 0.04,

where F (5; 2) = 0.96 is found from Table A.23.
As a result, we could conclude that the conditions of the gamma distribution

with α = 2 and β = 4 are not supported by the data that an observed time to
complaint is as large as 20 months. Thus, it is reasonable to conclude that the
quality control work was effective.

Example 6.21: Consider Exercise 3.31 on page 94. Based on extensive testing, it is determined
that the time Y in years before a major repair is required for a certain washing
machine is characterized by the density function

f(y) =

{
1
4e

−y/4, y ≥ 0,

0, elsewhere.
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Note that Y is an exponential random variable with μ = 4 years. The machine is
considered a bargain if it is unlikely to require a major repair before the sixth year.
What is the probability P (Y > 6)? What is the probability that a major repair is
required in the first year?

Solution : Consider the cumulative distribution function F (y) for the exponential distribution,

F (y) =
1

β

∫ y

0

e−t/β dt = 1− e−y/β .

Then

P (Y > 6) = 1− F (6) = e−3/2 = 0.2231.

Thus, the probability that the washing machine will require major repair after year
six is 0.223. Of course, it will require repair before year six with probability 0.777.
Thus, one might conclude the machine is not really a bargain. The probability
that a major repair is necessary in the first year is

P (Y < 1) = 1− e−1/4 = 1− 0.779 = 0.221.

6.7 Chi-Squared Distribution

Another very important special case of the gamma distribution is obtained by
letting α = v/2 and β = 2, where v is a positive integer. The result is called the
chi-squared distribution. The distribution has a single parameter, v, called the
degrees of freedom.

Chi-Squared
Distribution

The continuous random variable X has a chi-squared distribution, with v
degrees of freedom, if its density function is given by

f(x; v) =

{
1

2v/2Γ(v/2)
xv/2−1e−x/2, x > 0,

0, elsewhere,

where v is a positive integer.

The chi-squared distribution plays a vital role in statistical inference. It has
considerable applications in both methodology and theory. While we do not discuss
applications in detail in this chapter, it is important to understand that Chapters
8, 9, and 16 contain important applications. The chi-squared distribution is an
important component of statistical hypothesis testing and estimation.

Topics dealing with sampling distributions, analysis of variance, and nonpara-
metric statistics involve extensive use of the chi-squared distribution.

Theorem 6.5: The mean and variance of the chi-squared distribution are

μ = v and σ2 = 2v.
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6.8 Beta Distribution

An extension to the uniform distribution is a beta distribution. Let us start by
defining a beta function.

Definition 6.3: A beta function is defined by

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α+ β)
, for α, β > 0,

where Γ(α) is the gamma function.

Beta Distribution The continuous random variable X has a beta distribution with parameters
α > 0 and β > 0 if its density function is given by

f(x) =

{
1

B(α,β)x
α−1(1− x)β−1, 0 < x < 1,

0, elsewhere.

Note that the uniform distribution on (0, 1) is a beta distribution with parameters
α = 1 and β = 1.

Theorem 6.6: The mean and variance of a beta distribution with parameters α and β are

μ =
α

α+ β
and σ2 =

αβ

(α+ β)2(α+ β + 1)
,

respectively.

For the uniform distribution on (0, 1), the mean and variance are

μ =
1

1 + 1
=

1

2
and σ2 =

(1)(1)

(1 + 1)2(1 + 1 + 1)
=

1

12
,

respectively.

6.9 Lognormal Distribution

The lognormal distribution is used for a wide variety of applications. The dis-
tribution applies in cases where a natural log transformation results in a normal
distribution.

Lognormal
Distribution

The continuous random variable X has a lognormal distribution if the ran-
dom variable Y = ln(X) has a normal distribution with mean μ and standard
deviation σ. The resulting density function of X is

f(x;μ, σ) =

{
1√

2πσx
e−

1
2σ2 [ln(x)−μ]2 , x ≥ 0,

0, x < 0.
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Figure 6.29: Lognormal distributions.

The graphs of the lognormal distributions are illustrated in Figure 6.29.

Theorem 6.7: The mean and variance of the lognormal distribution are

μ = eμ+σ2/2 and σ2 = e2μ+σ2

(eσ
2 − 1).

The cumulative distribution function is quite simple due to its relationship to the
normal distribution. The use of the distribution function is illustrated by the
following example.

Example 6.22: Concentrations of pollutants produced by chemical plants historically are known to
exhibit behavior that resembles a lognormal distribution. This is important when
one considers issues regarding compliance with government regulations. Suppose
it is assumed that the concentration of a certain pollutant, in parts per million,
has a lognormal distribution with parameters μ = 3.2 and σ = 1. What is the
probability that the concentration exceeds 8 parts per million?

Solution : Let the random variable X be pollutant concentration. Then

P (X > 8) = 1− P (X ≤ 8).

Since ln(X) has a normal distribution with mean μ = 3.2 and standard deviation
σ = 1,

P (X ≤ 8) = Φ

[
ln(8)− 3.2

1

]
= Φ(−1.12) = 0.1314.

Here, we use Φ to denote the cumulative distribution function of the standard
normal distribution. As a result, the probability that the pollutant concentration
exceeds 8 parts per million is 0.1314.
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Example 6.23: The life, in thousands of miles, of a certain type of electronic control for locomotives
has an approximately lognormal distribution with μ = 5.149 and σ = 0.737. Find
the 5th percentile of the life of such an electronic control.

Solution : From Table A.3, we know that P (Z < −1.645) = 0.05. Denote by X the life
of such an electronic control. Since ln(X) has a normal distribution with mean
μ = 5.149 and σ = 0.737, the 5th percentile of X can be calculated as

ln(x) = 5.149 + (0.737)(−1.645) = 3.937.

Hence, x = 51.265. This means that only 5% of the controls will have lifetimes less
than 51,265 miles.

6.10 Weibull Distribution (Optional)

Modern technology has enabled engineers to design many complicated systems
whose operation and safety depend on the reliability of the various components
making up the systems. For example, a fuse may burn out, a steel column may
buckle, or a heat-sensing device may fail. Identical components subjected to iden-
tical environmental conditions will fail at different and unpredictable times. We
have seen the role that the gamma and exponential distributions play in these
types of problems. Another distribution that has been used extensively in recent
years to deal with such problems is the Weibull distribution, introduced by the
Swedish physicist Waloddi Weibull in 1939.

Weibull
Distribution

The continuous random variable X has a Weibull distribution, with param-
eters α and β, if its density function is given by

f(x;α, β) =

{
αβxβ−1e−αxβ

, x > 0,

0, elsewhere,

where α > 0 and β > 0.

The graphs of the Weibull distribution for α = 1 and various values of the param-
eter β are illustrated in Figure 6.30. We see that the curves change considerably
in shape for different values of the parameter β. If we let β = 1, the Weibull dis-
tribution reduces to the exponential distribution. For values of β > 1, the curves
become somewhat bell shaped and resemble the normal curve but display some
skewness.

The mean and variance of the Weibull distribution are stated in the following
theorem. The reader is asked to provide the proof in Exercise 6.52 on page 206.

Theorem 6.8: The mean and variance of the Weibull distribution are

μ = α−1/βΓ

(
1 +

1

β

)
and σ2 = α−2/β

{
Γ

(
1 +

2

β

)
−
[
Γ

(
1 +

1

β

)]2}
.

Like the gamma and exponential distributions, the Weibull distribution is also
applied to reliability and life-testing problems such as the time to failure or
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Figure 6.30: Weibull distributions (α = 1).

life length of a component, measured from some specified time until it fails.
Let us represent this time to failure by the continuous random variable T , with
probability density function f(t), where f(t) is the Weibull distribution. The
Weibull distribution has inherent flexibility in that it does not require the lack
of memory property of the exponential distribution. The cumulative distribution
function (cdf) for the Weibull can be written in closed form and certainly is useful
in computing probabilities.

cdf for Weibull
Distribution

The cumulative distribution function for the Weibull distribution is
given by

F (x) = 1− e−αxβ

, for x ≥ 0,

for α > 0 and β > 0.

Example 6.24: The length of life X, in hours, of an item in a machine shop has a Weibull distri-
bution with α = 0.01 and β = 2. What is the probability that it fails before eight
hours of usage?

Solution : P (X < 8) = F (8) = 1− e−(0.01)82 = 1− 0.527 = 0.473.

The Failure Rate for the Weibull Distribution

When the Weibull distribution applies, it is often helpful to determine the fail-
ure rate (sometimes called the hazard rate) in order to get a sense of wear or
deterioration of the component. Let us first define the reliability of a component
or product as the probability that it will function properly for at least a specified
time under specified experimental conditions. Therefore, if R(t) is defined to be
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the reliability of the given component at time t, we may write

R(t) = P (T > t) =

∫ ∞

t

f(t) dt = 1− F (t),

where F (t) is the cumulative distribution function of T . The conditional probability
that a component will fail in the interval from T = t to T = t +Δt, given that it
survived to time t, is

F (t+Δt)− F (t)

R(t)
.

Dividing this ratio by Δt and taking the limit as Δt → 0, we get the failure rate,
denoted by Z(t). Hence,

Z(t) = lim
Δt→0

F (t+Δt)− F (t)

Δt

1

R(t)
=

F ′(t)
R(t)

=
f(t)

R(t)
=

f(t)

1− F (t)
,

which expresses the failure rate in terms of the distribution of the time to failure.
Since Z(t) = f(t)/[1− F (t)], the failure rate is given as follows:

Failure Rate for
Weibull

Distribution

The failure rate at time t for the Weibull distribution is given by

Z(t) = αβtβ−1, t > 0.

Interpretation of the Failure Rate

The quantity Z(t) is aptly named as a failure rate since it does quantify the rate
of change over time of the conditional probability that the component lasts an
additional Δt given that it has lasted to time t. The rate of decrease (or increase)
with time is important. The following are crucial points.

(a) If β = 1, the failure rate = α, a constant. This, as indicated earlier, is the
special case of the exponential distribution in which lack of memory prevails.

(b) If β > 1, Z(t) is an increasing function of time t, which indicates that the
component wears over time.

(c) If β < 1, Z(t) is a decreasing function of time t and hence the component
strengthens or hardens over time.

For example, the item in the machine shop in Example 6.24 has β = 2, and
hence it wears over time. In fact, the failure rate function is given by Z(t) = 0.02t.
On the other hand, suppose the parameters were β = 3/4 and α = 2. In that case,
Z(t) = 1.5/t1/4 and hence the component gets stronger over time.
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Exercises

6.39 Use the gamma function with y =
√
2x to show

that Γ(1/2) =
√
π.

6.40 In a certain city, the daily consumption of water
(in millions of liters) follows approximately a gamma
distribution with α = 2 and β = 3. If the daily capac-
ity of that city is 9 million liters of water, what is the
probability that on any given day the water supply is
inadequate?

6.41 If a random variable X has the gamma distribu-
tion with α = 2 and β = 1, find P (1.8 < X < 2.4).

6.42 Suppose that the time, in hours, required to
repair a heat pump is a random variable X having
a gamma distribution with parameters α = 2 and
β = 1/2. What is the probability that on the next
service call

(a) at most 1 hour will be required to repair the heat
pump?

(b) at least 2 hours will be required to repair the heat
pump?

6.43 (a) Find the mean and variance of the daily wa-
ter consumption in Exercise 6.40.

(b) According to Chebyshev’s theorem, there is a prob-
ability of at least 3/4 that the water consumption
on any given day will fall within what interval?

6.44 In a certain city, the daily consumption of elec-
tric power, in millions of kilowatt-hours, is a random
variable X having a gamma distribution with mean
μ = 6 and variance σ2 = 12.

(a) Find the values of α and β.

(b) Find the probability that on any given day the daily
power consumption will exceed 12 million kilowatt-
hours.

6.45 The length of time for one individual to be
served at a cafeteria is a random variable having an ex-
ponential distribution with a mean of 4 minutes. What
is the probability that a person is served in less than 3
minutes on at least 4 of the next 6 days?

6.46 The life, in years, of a certain type of electrical
switch has an exponential distribution with an average
life β = 2. If 100 of these switches are installed in dif-
ferent systems, what is the probability that at most 30
fail during the first year?

6.47 Suppose that the service life, in years, of a hear-
ing aid battery is a random variable having a Weibull
distribution with α = 1/2 and β = 2.

(a) How long can such a battery be expected to last?

(b) What is the probability that such a battery will be
operating after 2 years?

6.48 Derive the mean and variance of the beta distri-
bution.

6.49 Suppose the random variable X follows a beta
distribution with α = 1 and β = 3.

(a) Determine the mean and median of X.

(b) Determine the variance of X.

(c) Find the probability that X > 1/3.

6.50 If the proportion of a brand of television set re-
quiring service during the first year of operation is a
random variable having a beta distribution with α = 3
and β = 2, what is the probability that at least 80% of
the new models of this brand sold this year will require
service during their first year of operation?

6.51 The lives of a certain automobile seal have the
Weibull distribution with failure rate Z(t) =1/

√
t.

Find the probability that such a seal is still intact after
4 years.

6.52 Derive the mean and variance of the Weibull dis-
tribution.

6.53 In a biomedical research study, it was deter-
mined that the survival time, in weeks, of an animal
subjected to a certain exposure of gamma radiation has
a gamma distribution with α = 5 and β = 10.

(a) What is the mean survival time of a randomly se-
lected animal of the type used in the experiment?

(b) What is the standard deviation of survival time?

(c) What is the probability that an animal survives
more than 30 weeks?

6.54 The lifetime, in weeks, of a certain type of tran-
sistor is known to follow a gamma distribution with
mean 10 weeks and standard deviation

√
50 weeks.

(a) What is the probability that a transistor of this
type will last at most 50 weeks?

(b) What is the probability that a transistor of this
type will not survive the first 10 weeks?

6.55 Computer response time is an important appli-
cation of the gamma and exponential distributions.
Suppose that a study of a certain computer system
reveals that the response time, in seconds, has an ex-
ponential distribution with a mean of 3 seconds.
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(a) What is the probability that response time exceeds
5 seconds?

(b) What is the probability that response time exceeds
10 seconds?

6.56 Rate data often follow a lognormal distribution.
Average power usage (dB per hour) for a particular
company is studied and is known to have a lognormal
distribution with parameters μ = 4 and σ = 2. What
is the probability that the company uses more than 270
dB during any particular hour?

6.57 For Exercise 6.56, what is the mean power usage
(average dB per hour)? What is the variance?

6.58 The number of automobiles that arrive at a cer-
tain intersection per minute has a Poisson distribution
with a mean of 5. Interest centers around the time that
elapses before 10 automobiles appear at the intersec-
tion.

(a) What is the probability that more than 10 auto-
mobiles appear at the intersection during any given
minute of time?

(b) What is the probability that more than 2 minutes
elapse before 10 cars arrive?

6.59 Consider the information in Exercise 6.58.

(a) What is the probability that more than 1 minute
elapses between arrivals?

(b) What is the mean number of minutes that elapse
between arrivals?

6.60 Show that the failure-rate function is given by

Z(t) = αβtβ−1, t > 0,

if and only if the time to failure distribution is the
Weibull distribution

f(t) = αβtβ−1e−αtβ , t > 0.

Review Exercises

6.61 According to a study published by a group of so-
ciologists at the University of Massachusetts, approx-
imately 49% of the Valium users in the state of Mas-
sachusetts are white-collar workers. What is the prob-
ability that between 482 and 510, inclusive, of the next
1000 randomly selected Valium users from this state
are white-collar workers?

6.62 The exponential distribution is frequently ap-
plied to the waiting times between successes in a Pois-
son process. If the number of calls received per hour
by a telephone answering service is a Poisson random
variable with parameter λ = 6, we know that the time,
in hours, between successive calls has an exponential
distribution with parameter β =1/6. What is the prob-
ability of waiting more than 15 minutes between any
two successive calls?

6.63 When α is a positive integer n, the gamma dis-
tribution is also known as the Erlang distribution.
Setting α = n in the gamma distribution on page 195,
the Erlang distribution is

f(x) =

{
xn−1e−x/β

βn(n−1)!
, x > 0,

0, elsewhere.

It can be shown that if the times between successive
events are independent, each having an exponential
distribution with parameter β, then the total elapsed
waiting time X until all n events occur has the Erlang
distribution. Referring to Review Exercise 6.62, what

is the probability that the next 3 calls will be received
within the next 30 minutes?

6.64 A manufacturer of a certain type of large ma-
chine wishes to buy rivets from one of two manufac-
turers. It is important that the breaking strength of
each rivet exceed 10,000 psi. Two manufacturers (A
and B) offer this type of rivet and both have rivets
whose breaking strength is normally distributed. The
mean breaking strengths for manufacturers A and B
are 14,000 psi and 13,000 psi, respectively. The stan-
dard deviations are 2000 psi and 1000 psi, respectively.
Which manufacturer will produce, on the average, the
fewest number of defective rivets?

6.65 According to a recent census, almost 65% of all
households in the United States were composed of only
one or two persons. Assuming that this percentage is
still valid today, what is the probability that between
590 and 625, inclusive, of the next 1000 randomly se-
lected households in America consist of either one or
two persons?

6.66 A certain type of device has an advertised fail-
ure rate of 0.01 per hour. The failure rate is constant
and the exponential distribution applies.

(a) What is the mean time to failure?

(b) What is the probability that 200 hours will pass
before a failure is observed?

6.67 In a chemical processing plant, it is important
that the yield of a certain type of batch product stay
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above 80%. If it stays below 80% for an extended pe-
riod of time, the company loses money. Occasional
defective batches are of little concern. But if several
batches per day are defective, the plant shuts down
and adjustments are made. It is known that the yield
is normally distributed with standard deviation 4%.

(a) What is the probability of a “false alarm” (yield
below 80%) when the mean yield is 85%?

(b) What is the probability that a batch will have a
yield that exceeds 80% when in fact the mean yield
is 79%?

6.68 For an electrical component with a failure rate
of once every 5 hours, it is important to consider the
time that it takes for 2 components to fail.

(a) Assuming that the gamma distribution applies,
what is the mean time that it takes for 2 compo-
nents to fail?

(b) What is the probability that 12 hours will elapse
before 2 components fail?

6.69 The elongation of a steel bar under a particular
load has been established to be normally distributed
with a mean of 0.05 inch and σ = 0.01 inch. Find the
probability that the elongation is

(a) above 0.1 inch;

(b) below 0.04 inch;

(c) between 0.025 and 0.065 inch.

6.70 A controlled satellite is known to have an error
(distance from target) that is normally distributed with
mean zero and standard deviation 4 feet. The manu-
facturer of the satellite defines a success as a firing in
which the satellite comes within 10 feet of the target.
Compute the probability that the satellite fails.

6.71 A technician plans to test a certain type of resin
developed in the laboratory to determine the nature
of the time required before bonding takes place. It
is known that the mean time to bonding is 3 hours
and the standard deviation is 0.5 hour. It will be con-
sidered an undesirable product if the bonding time is
either less than 1 hour or more than 4 hours. Com-
ment on the utility of the resin. How often would its
performance be considered undesirable? Assume that
time to bonding is normally distributed.

6.72 Consider the information in Review Exercise
6.66. What is the probability that less than 200 hours
will elapse before 2 failures occur?

6.73 For Review Exercise 6.72, what are the mean
and variance of the time that elapses before 2 failures
occur?

6.74 The average rate of water usage (thousands of
gallons per hour) by a certain community is known
to involve the lognormal distribution with parameters
μ = 5 and σ = 2. It is important for planning purposes
to get a sense of periods of high usage. What is the
probability that, for any given hour, 50,000 gallons of
water are used?

6.75 For Review Exercise 6.74, what is the mean of
the average water usage per hour in thousands of gal-
lons?

6.76 In Exercise 6.54 on page 206, the lifetime of a
transistor is assumed to have a gamma distribution
with mean 10 weeks and standard deviation

√
50 weeks.

Suppose that the gamma distribution assumption is in-
correct. Assume that the distribution is normal.

(a) What is the probability that a transistor will last
at most 50 weeks?

(b) What is the probability that a transistor will not
survive for the first 10 weeks?

(c) Comment on the difference between your results
here and those found in Exercise 6.54 on page 206.

6.77 The beta distribution has considerable applica-
tion in reliability problems in which the basic random
variable is a proportion, as in the practical scenario il-
lustrated in Exercise 6.50 on page 206. In that regard,
consider Review Exercise 3.73 on page 108. Impurities
in batches of product of a chemical process reflect a
serious problem. It is known that the proportion of
impurities Y in a batch has the density function

f(y) =

{
10(1− y)9, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Verify that the above is a valid density function.

(b) What is the probability that a batch is considered
not acceptable (i.e., Y > 0.6)?

(c) What are the parameters α and β of the beta dis-
tribution illustrated here?

(d) The mean of the beta distribution is α
α+β

. What is

the mean proportion of impurities in the batch?

(e) The variance of a beta distributed random variable
is

σ2 =
αβ

(α+ β)2(α+ β + 1)
.

What is the variance of Y in this problem?

6.78 Consider now Review Exercise 3.74 on page 108.
The density function of the time Z in minutes between
calls to an electrical supply store is given by

f(z) =

{
1
10
e−z/10, 0 < z < ∞,

0, elsewhere.
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(a) What is the mean time between calls?

(b) What is the variance in the time between calls?

(c) What is the probability that the time between calls
exceeds the mean?

6.79 Consider Review Exercise 6.78. Given the as-
sumption of the exponential distribution, what is the
mean number of calls per hour? What is the variance
in the number of calls per hour?

6.80 In a human factor experimental project, it has
been determined that the reaction time of a pilot to a
visual stimulus is normally distributed with a mean of
1/2 second and standard deviation of 2/5 second.

(a) What is the probability that a reaction from the
pilot takes more than 0.3 second?

(b) What reaction time is that which is exceeded 95%
of the time?

6.81 The length of time between breakdowns of an es-
sential piece of equipment is important in the decision
of the use of auxiliary equipment. An engineer thinks
that the best model for time between breakdowns of a
generator is the exponential distribution with a mean
of 15 days.

(a) If the generator has just broken down, what is the
probability that it will break down in the next 21
days?

(b) What is the probability that the generator will op-
erate for 30 days without a breakdown?

6.82 The length of life, in hours, of a drill bit in a
mechanical operation has a Weibull distribution with
α = 2 and β = 50. Find the probability that the bit
will fail before 10 hours of usage.

6.83 Derive the cdf for the Weibull distribution.
[Hint: In the definition of a cdf, make the transfor-
mation z = yβ .]

6.84 Explain why the nature of the scenario in Re-
view Exercise 6.82 would likely not lend itself to the
exponential distribution.

6.85 From the relationship between the chi-squared
random variable and the gamma random variable,
prove that the mean of the chi-squared random variable
is v and the variance is 2v.

6.86 The length of time, in seconds, that a computer
user takes to read his or her e-mail is distributed as a
lognormal random variable with μ = 1.8 and σ2 = 4.0.

(a) What is the probability that a user reads e-mail for
more than 20 seconds? More than a minute?

(b) What is the probability that a user reads e-mail for
a length of time that is equal to the mean of the
underlying lognormal distribution?

6.87 Group Project: Have groups of students ob-
serve the number of people who enter a specific coffee
shop or fast food restaurant over the course of an hour,
beginning at the same time every day, for two weeks.
The hour should be a time of peak traffic at the shop
or restaurant. The data collected will be the number
of customers who enter the shop in each half hour of
time. Thus, two data points will be collected each day.
Let us assume that the random variable X, the num-
ber of people entering each half hour, follows a Poisson
distribution. The students should calculate the sam-
ple mean and variance of X using the 28 data points
collected.

(a) What evidence indicates that the Poisson distribu-
tion assumption may or may not be correct?

(b) Given that X is Poisson, what is the distribution of
T , the time between arrivals into the shop during
a half hour period? Give a numerical estimate of
the parameter of that distribution.

(c) Give an estimate of the probability that the time
between two arrivals is less than 15 minutes.

(d) What is the estimated probability that the time
between two arrivals is more than 10 minutes?

(e) What is the estimated probability that 20 minutes
after the start of data collection not one customer
has appeared?

6.11 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

Many of the hazards in the use of material in this chapter are quite similar to
those of Chapter 5. One of the biggest misuses of statistics is the assumption of
an underlying normal distribution in carrying out a type of statistical inference
when indeed it is not normal. The reader will be exposed to tests of hypotheses in
Chapters 10 through 15 in which the normality assumption is made. In addition,
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however, the reader will be reminded that there are tests of goodness of fit as
well as graphical routines discussed in Chapters 8 and 10 that allow for checks on
data to determine if the normality assumption is reasonable.

Similar warnings should be conveyed regarding assumptions that are often made
concerning other distributions, apart from the normal. This chapter has presented
examples in which one is required to calculate probabilities to failure of a certain
item or the probability that one observes a complaint during a certain time period.
Assumptions are made concerning a certain distribution type as well as values of
parameters of the distributions. Note that parameter values (for example, the
value of β for the exponential distribution) were given in the example problems.
However, in real-life problems, parameter values must be estimates from real-life
experience or data. Note the emphasis placed on estimation in the projects that
appear in Chapters 1, 5, and 6. Note also the reference in Chapter 5 to parameter
estimation, which will be discussed extensively beginning in Chapter 9.
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Chapter 7

Functions of Random Variables
(Optional)

7.1 Introduction

This chapter contains a broad spectrum of material. Chapters 5 and 6 deal with
specific types of distributions, both discrete and continuous. These are distribu-
tions that find use in many subject matter applications, including reliability, quality
control, and acceptance sampling. In the present chapter, we begin with a more
general topic, that of distributions of functions of random variables. General tech-
niques are introduced and illustrated by examples. This discussion is followed by
coverage of a related concept, moment-generating functions, which can be helpful
in learning about distributions of linear functions of random variables.

In standard statistical methods, the result of statistical hypothesis testing, es-
timation, or even statistical graphics does not involve a single random variable
but, rather, functions of one or more random variables. As a result, statistical
inference requires the distributions of these functions. For example, the use of
averages of random variables is common. In addition, sums and more general
linear combinations are important. We are often interested in the distribution of
sums of squares of random variables, particularly in the use of analysis of variance
techniques discussed in Chapters 11–14.

7.2 Transformations of Variables

Frequently in statistics, one encounters the need to derive the probability distribu-
tion of a function of one or more random variables. For example, suppose that X is
a discrete random variable with probability distribution f(x), and suppose further
that Y = u(X) defines a one-to-one transformation between the values of X and
Y . We wish to find the probability distribution of Y . It is important to note that
the one-to-one transformation implies that each value x is related to one, and only
one, value y = u(x) and that each value y is related to one, and only one, value
x = w(y), where w(y) is obtained by solving y = u(x) for x in terms of y.

211
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From our discussion of discrete probability distributions in Chapter 3, it is clear
that the random variable Y assumes the value y when X assumes the value w(y).
Consequently, the probability distribution of Y is given by

g(y) = P (Y = y) = P [X = w(y)] = f [w(y)].

Theorem 7.1: Suppose that X is a discrete random variable with probability distribution f(x).
Let Y = u(X) define a one-to-one transformation between the values of X and
Y so that the equation y = u(x) can be uniquely solved for x in terms of y, say
x = w(y). Then the probability distribution of Y is

g(y) = f [w(y)].

Example 7.1: Let X be a geometric random variable with probability distribution

f(x) =
3

4

(
1

4

)x−1

, x = 1, 2, 3, . . . .

Find the probability distribution of the random variable Y = X2.
Solution : Since the values of X are all positive, the transformation defines a one-to-one

correspondence between the x and y values, y = x2 and x =
√
y. Hence

g(y) =

{
f(
√
y) = 3

4

(
1
4

)√y−1
, y = 1, 4, 9, . . . ,

0, elsewhere.

Similarly, for a two-dimension transformation, we have the result in Theorem
7.2.

Theorem 7.2: Suppose that X1 and X2 are discrete random variables with joint probability
distribution f(x1, x2). Let Y1 = u1(X1, X2) and Y2 = u2(X1, X2) define a one-to-
one transformation between the points (x1, x2) and (y1, y2) so that the equations

y1 = u1(x1, x2) and y2 = u2(x1, x2)

may be uniquely solved for x1 and x2 in terms of y1 and y2, say x1 = w1(y1, y2)
and x2 = w2(y1, y2). Then the joint probability distribution of Y1 and Y2 is

g(y1, y2) = f [w1(y1, y2), w2(y1, y2)].

Theorem 7.2 is extremely useful for finding the distribution of some random
variable Y1 = u1(X1, X2), where X1 and X2 are discrete random variables with
joint probability distribution f(x1, x2). We simply define a second function, say
Y2 = u2(X1, X2), maintaining a one-to-one correspondence between the points
(x1, x2) and (y1, y2), and obtain the joint probability distribution g(y1, y2). The
distribution of Y1 is just the marginal distribution of g(y1, y2), found by summing
over the y2 values. Denoting the distribution of Y1 by h(y1), we can then write

h(y1) =
∑
y2

g(y1, y2).
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Example 7.2: Let X1 and X2 be two independent random variables having Poisson distributions
with parameters μ1 and μ2, respectively. Find the distribution of the random
variable Y1 = X1 +X2.

Solution : Since X1 and X2 are independent, we can write

f(x1, x2) = f(x1)f(x2) =
e−μ1μx1

1

x1!

e−μ2μx2
2

x2!
=

e−(μ1+μ2)μx1
1 μx2

2

x1!x2!
,

where x1 = 0, 1, 2, . . . and x2 = 0, 1, 2, . . . . Let us now define a second random
variable, say Y2 = X2. The inverse functions are given by x1 = y1−y2 and x2 = y2.
Using Theorem 7.2, we find the joint probability distribution of Y1 and Y2 to be

g(y1, y2) =
e−(μ1+μ2)μy1−y2

1 μy2

2

(y1 − y2)!y2!
,

where y1 = 0, 1, 2, . . . and y2 = 0, 1, 2, . . . , y1. Note that since x1 > 0, the trans-
formation x1 = y1 − x2 implies that y2 and hence x2 must always be less than or
equal to y1. Consequently, the marginal probability distribution of Y1 is

h(y1) =

y1∑
y2=0

g(y1, y2) = e−(μ1+μ2)

y1∑
y2=0

μy1−y2

1 μy2

2

(y1 − y2)!y2!

=
e−(μ1+μ2)

y1!

y1∑
y2=0

y1!

y2!(y1 − y2)!
μy1−y2

1 μy2

2

=
e−(μ1+μ2)

y1!

y1∑
y2=0

(
y1
y2

)
μy1−y2

1 μy2

2 .

Recognizing this sum as the binomial expansion of (μ1 + μ2)
y1 we obtain

h(y1) =
e−(μ1+μ2)(μ1 + μ2)

y1

y1!
, y1 = 0, 1, 2, . . . ,

from which we conclude that the sum of the two independent random variables
having Poisson distributions, with parameters μ1 and μ2, has a Poisson distribution
with parameter μ1 + μ2.

To find the probability distribution of the random variable Y = u(X) when
X is a continuous random variable and the transformation is one-to-one, we shall
need Theorem 7.3. The proof of the theorem is left to the reader.

Theorem 7.3: Suppose that X is a continuous random variable with probability distribution
f(x). Let Y = u(X) define a one-to-one correspondence between the values of X
and Y so that the equation y = u(x) can be uniquely solved for x in terms of y,
say x = w(y). Then the probability distribution of Y is

g(y) = f [w(y)]|J |,

where J = w′(y) and is called the Jacobian of the transformation.
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Example 7.3: Let X be a continuous random variable with probability distribution

f(x) =

{
x
12 , 1 < x < 5,

0, elsewhere.

Find the probability distribution of the random variable Y = 2X − 3.
Solution : The inverse solution of y = 2x − 3 yields x = (y + 3)/2, from which we obtain

J = w′(y) = dx/dy = 1/2. Therefore, using Theorem 7.3, we find the density
function of Y to be

g(y) =

{
(y+3)/2

12

(
1
2

)
= y+3

48 , −1 < y < 7,

0, elsewhere.

To find the joint probability distribution of the random variables Y1 = u1(X1, X2)
and Y2 = u2(X1, X2) when X1 and X2 are continuous and the transformation is
one-to-one, we need an additional theorem, analogous to Theorem 7.2, which we
state without proof.

Theorem 7.4: Suppose that X1 and X2 are continuous random variables with joint probability
distribution f(x1, x2). Let Y1 = u1(X1, X2) and Y2 = u2(X1, X2) define a one-to-
one transformation between the points (x1, x2) and (y1, y2) so that the equations
y1 = u1(x1, x2) and y2 = u2(x1, x2) may be uniquely solved for x1 and x2 in terms
of y1 and y2, say x1 = w1(yl, y2) and x2 = w2(y1, y2). Then the joint probability
distribution of Y1 and Y2 is

g(y1, y2) = f [w1(y1, y2), w2(y1, y2)]|J |,

where the Jacobian is the 2 × 2 determinant

J =

∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣
and ∂x1

∂y1
is simply the derivative of x1 = w1(y1, y2) with respect to y1 with y2 held

constant, referred to in calculus as the partial derivative of x1 with respect to y1.
The other partial derivatives are defined in a similar manner.

Example 7.4: Let X1 and X2 be two continuous random variables with joint probability distri-
bution

f(x1, x2) =

{
4x1x2, 0 < x1 < 1, 0 < x2 < 1,

0, elsewhere.

Find the joint probability distribution of Y1 = X2
1 and Y2 = X1X2.

Solution : The inverse solutions of y1 = x2
1 and y2 = x1x2 are x1 =

√
y1 and x2 = y2/

√
y1,

from which we obtain

J =

∣∣∣∣ 1/(2√y1) 0

−y2/2y
3/2
1 1/

√
y1

∣∣∣∣ = 1

2y1
.
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To determine the set B of points in the y1y2 plane into which the set A of points
in the x1x2 plane is mapped, we write

x1 =
√
y1 and x2 = y2/

√
y1.

Then setting x1 = 0, x2 = 0, x1 = 1, and x2 = 1, the boundaries of set A
are transformed to y1 = 0, y2 = 0, y1 = 1, and y2 =

√
y1, or y22 = y1. The

two regions are illustrated in Figure 7.1. Clearly, the transformation is one-to-
one, mapping the set A = {(x1, x2) | 0 < x1 < 1, 0 < x2 < 1} into the set
B = {(y1, y2) | y22 < y1 < 1, 0 < y2 < 1}. From Theorem 7.4 the joint probability
distribution of Y1 and Y2 is

g(y1, y2) = 4(
√
y1)

y2√
y1

1

2y1
=

{
2y2

y1
, y22 < y1 < 1, 0 < y2 < 1,

0, elsewhere.

x1

x2

A

0 1

1

x2 = 0

x2 = 1

x
1

=
0

x
1

=
1

y1

y2

B

0 1

1

y2 = 0

y 2
2 =

y 1

y
1

=
0

y
1

=
1

Figure 7.1: Mapping set A into set B.

Problems frequently arise when we wish to find the probability distribution
of the random variable Y = u(X) when X is a continuous random variable and
the transformation is not one-to-one. That is, to each value x there corresponds
exactly one value y, but to each y value there corresponds more than one x value.
For example, suppose that f(x) is positive over the interval −1 < x < 2 and
zero elsewhere. Consider the transformation y = x2. In this case, x = ±√

y for
0 < y < 1 and x =

√
y for 1 < y < 4. For the interval 1 < y < 4, the probability

distribution of Y is found as before, using Theorem 7.3. That is,

g(y) = f [w(y)]|J | = f(
√
y)

2
√
y

, 1 < y < 4.

However, when 0 < y < 1, we may partition the interval −1 < x < 1 to obtain the
two inverse functions

x = −√
y, −1 < x < 0, and x =

√
y, 0 < x < 1.
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Then to every y value there corresponds a single x value for each partition. From
Figure 7.2 we see that

P (a < Y < b) = P (−
√
b < X < −√

a) + P (
√
a < X <

√
b)

=

∫ −√
a

−√
b

f(x) dx+

∫ √
b

√
a

f(x) dx.

x

y

�1 1

a

b

y � x2

�   b �   a a b

Figure 7.2: Decreasing and increasing function.

Changing the variable of integration from x to y, we obtain

P (a < Y < b) =

∫ a

b

f(−√
y)J1 dy +

∫ b

a

f(
√
y)J2 dy

= −
∫ b

a

f(−√
y)J1 dy +

∫ b

a

f(
√
y)J2 dy,

where

J1 =
d(−√

y)

dy
=

−1

2
√
y
= −|J1|

and

J2 =
d(
√
y)

dy
=

1

2
√
y
= |J2|.

Hence, we can write

P (a < Y < b) =

∫ b

a

[f(−√
y)|J1|+ f(

√
y)|J2|] dy,

and then

g(y) = f(−√
y)|J1|+ f(

√
y)|J2| =

f(−√
y) + f(

√
y)

2
√
y

, 0 < y < 1.
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The probability distribution of Y for 0 < y < 4 may now be written

g(y) =

⎧⎪⎪⎨⎪⎪⎩
f(−√

y)+f(
√
y)

2
√
y , 0 < y < 1,

f(
√
y)

2
√
y , 1 < y < 4,

0, elsewhere.

This procedure for finding g(y) when 0 < y < 1 is generalized in Theorem 7.5
for k inverse functions. For transformations not one-to-one of functions of several
variables, the reader is referred to Introduction to Mathematical Statistics by Hogg,
McKean, and Craig (2005; see the Bibliography).

Theorem 7.5: Suppose that X is a continuous random variable with probability distribution
f(x). Let Y = u(X) define a transformation between the values of X and Y that
is not one-to-one. If the interval over which X is defined can be partitioned into
k mutually disjoint sets such that each of the inverse functions

x1 = w1(y), x2 = w2(y), . . . , xk = wk(y)

of y = u(x) defines a one-to-one correspondence, then the probability distribution
of Y is

g(y) =
k∑

i=1

f [wi(y)]|Ji|,
where Ji = w

′
i(y), i = 1, 2, . . . , k.

Example 7.5: Show that Y = (X−μ)2/σ2 has a chi-squared distribution with 1 degree of freedom
when X has a normal distribution with mean μ and variance σ2.

Solution : Let Z = (X − μ)/σ, where the random variable Z has the standard normal distri-
bution

f(z) =
1√
2π

e−z2/2, −∞ < z < ∞.

We shall now find the distribution of the random variable Y = Z2. The inverse
solutions of y = z2 are z = ±√

y. If we designate z1 = −√
y and z2 =

√
y, then

J1 = −1/2
√
y and J2 = 1/2

√
y. Hence, by Theorem 7.5, we have

g(y) =
1√
2π

e−y/2

∣∣∣∣ −1

2
√
y

∣∣∣∣+ 1√
2π

e−y/2

∣∣∣∣ 1

2
√
y

∣∣∣∣ = 1√
2π

y1/2−1e−y/2, y > 0.

Since g(y) is a density function, it follows that

1 =
1√
2π

∫ ∞

0

y1/2−1e−y/2 dy =
Γ(1/2)√

π

∫ ∞

0

y1/2−1e−y/2

√
2Γ(1/2)

dy =
Γ(1/2)√

π
,

the integral being the area under a gamma probability curve with parameters
α = 1/2 and β = 2. Hence,

√
π = Γ(1/2) and the density of Y is given by

g(y) =

{
1√

2Γ(1/2)
y1/2−1e−y/2, y > 0,

0, elsewhere,

which is seen to be a chi-squared distribution with 1 degree of freedom.
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7.3 Moments and Moment-Generating Functions

In this section, we concentrate on applications of moment-generating functions.
The obvious purpose of the moment-generating function is in determining moments
of random variables. However, the most important contribution is to establish
distributions of functions of random variables.

If g(X) = Xr for r = 0, 1, 2, 3, . . . , Definition 7.1 yields an expected value called
the rth moment about the origin of the random variable X, which we denote
by μ′

r.

Definition 7.1: The rth moment about the origin of the random variable X is given by

μ′
r = E(Xr) =

⎧⎨⎩
∑
x
xrf(x), if X is discrete,∫∞

−∞ xrf(x) dx, if X is continuous.

Since the first and second moments about the origin are given by μ′
1 = E(X) and

μ′
2 = E(X2), we can write the mean and variance of a random variable as

μ = μ′
1 and σ2 = μ′

2 − μ2.

Although the moments of a random variable can be determined directly from
Definition 7.1, an alternative procedure exists. This procedure requires us to utilize
a moment-generating function.

Definition 7.2: Themoment-generating function of the random variableX is given by E(etX)
and is denoted by MX(t). Hence,

MX(t) = E(etX) =

⎧⎨⎩
∑
x
etxf(x), if X is discrete,∫∞

−∞ etxf(x) dx, if X is continuous.

Moment-generating functions will exist only if the sum or integral of Definition
7.2 converges. If a moment-generating function of a random variable X does exist,
it can be used to generate all the moments of that variable. The method is described
in Theorem 7.6 without proof.

Theorem 7.6: Let X be a random variable with moment-generating function MX(t). Then

drMX(t)

dtr

∣∣∣∣
t=0

= μ′
r.

Example 7.6: Find the moment-generating function of the binomial random variable X and then
use it to verify that μ = np and σ2 = npq.

Solution : From Definition 7.2 we have

MX(t) =
n∑

x=0

etx
(
n

x

)
pxqn−x =

n∑
x=0

(
n

x

)
(pet)xqn−x.
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Recognizing this last sum as the binomial expansion of (pet + q)n, we obtain

MX(t) = (pet + q)n.

Now

dMX(t)

dt
= n(pet + q)n−1pet

and

d2MX(t)

dt2
= np[et(n− 1)(pet + q)n−2pet + (pet + q)n−1et].

Setting t = 0, we get

μ′
1 = np and μ′

2 = np[(n− 1)p+ 1].

Therefore,

μ = μ′
1 = np and σ2 = μ′

2 − μ2 = np(1− p) = npq,

which agrees with the results obtained in Chapter 5.

Example 7.7: Show that the moment-generating function of the random variable X having a
normal probability distribution with mean μ and variance σ2 is given by

MX(t) = exp

(
μt+

1

2
σ2t2

)
.

Solution : From Definition 7.2 the moment-generating function of the normal random variable
X is

MX(t) =

∫ ∞

−∞
etx

1√
2πσ

exp

[
−1

2

(
x− μ

σ

)2
]
dx

=

∫ ∞

−∞

1√
2πσ

exp

[
−x2 − 2(μ+ tσ2)x+ μ2

2σ2

]
dx.

Completing the square in the exponent, we can write

x2 − 2(μ+ tσ2)x+ μ2 = [x− (μ+ tσ2)]2 − 2μtσ2 − t2σ4

and then

MX(t) =

∫ ∞

−∞

1√
2πσ

exp

{
− [x− (μ+ tσ2)]2 − 2μtσ2 − t2σ4

2σ2

}
dx

= exp

(
2μt+ σ2t2

2

)∫ ∞

−∞

1√
2πσ

exp

{
− [x− (μ+ tσ2)]2

2σ2

}
dx.

Let w = [x− (μ+ tσ2)]/σ; then dx = σ dw and

MX(t) = exp

(
μt+

1

2
σ2t2

)∫ ∞

−∞

1√
2π

e−w2/2 dw = exp

(
μt+

1

2
σ2t2

)
,
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since the last integral represents the area under a standard normal density curve
and hence equals 1.

Although the method of transforming variables provides an effective way of
finding the distribution of a function of several variables, there is an alternative
and often preferred procedure when the function in question is a linear combination
of independent random variables. This procedure utilizes the properties of moment-
generating functions discussed in the following four theorems. In keeping with the
mathematical scope of this book, we state Theorem 7.7 without proof.

Theorem 7.7: (Uniqueness Theorem) Let X and Y be two random variables with moment-
generating functions MX(t) and MY (t), respectively. If MX(t) = MY (t) for all
values of t, then X and Y have the same probability distribution.

Theorem 7.8: MX+a(t) = eatMX(t).

Proof : MX+a(t) = E[et(X+a)] = eatE(etX) = eatMX(t).

Theorem 7.9: MaX(t) = MX(at).

Proof : MaX(t) = E[et(aX)] = E[e(at)X ] = MX(at).

Theorem 7.10: IfX1, X2, . . . , Xn are independent random variables with moment-generating func-
tions MX1(t),MX2(t), . . . ,MXn(t), respectively, and Y = X1+X2+ · · ·+Xn, then

MY (t) = MX1(t)MX2(t) · · ·MXn(t).

The proof of Theorem 7.10 is left for the reader.
Theorems 7.7 through 7.10 are vital for understanding moment-generating func-

tions. An example follows to illustrate. There are many situations in which we need
to know the distribution of the sum of random variables. We may use Theorems
7.7 and 7.10 and the result of Exercise 7.19 on page 224 to find the distribution
of a sum of two independent Poisson random variables with moment-generating
functions given by

MX1(t) = eμ1(e
t−1) and MX2(t) = eμ2(e

t−1),

respectively. According to Theorem 7.10, the moment-generating function of the
random variable Y1 = X1 +X2 is

MY1(t) = MX1(t)MX2(t) = eμ1(e
t−1)eμ2(e

t−1) = e(μ1+μ2)(e
t−1),

which we immediately identify as the moment-generating function of a random
variable having a Poisson distribution with the parameter μ1 +μ2. Hence, accord-
ing to Theorem 7.7, we again conclude that the sum of two independent random
variables having Poisson distributions, with parameters μ1 and μ2, has a Poisson
distribution with parameter μ1 + μ2.
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Linear Combinations of Random Variables

In applied statistics one frequently needs to know the probability distribution of
a linear combination of independent normal random variables. Let us obtain the
distribution of the random variable Y = a1X1+a2X2 when X1 is a normal variable
with mean μ1 and variance σ2

1 and X2 is also a normal variable but independent
of X1 with mean μ2 and variance σ2

2 . First, by Theorem 7.10, we find

MY (t) = Ma1X1(t)Ma2X2(t),

and then, using Theorem 7.9, we find

MY (t) = MX1(a1t)MX2(a2t).

Substituting a1t for t and then a2t for t in a moment-generating function of the
normal distribution derived in Example 7.7, we have

MY (t) = exp(a1μ1t+ a21σ
2
1t

2/2 + a2μ2t+ a22σ
2
2t

2/2)

= exp[(a1μ1 + a2μ2)t+ (a21σ
2
1 + a22σ

2
2)t

2/2],

which we recognize as the moment-generating function of a distribution that is
normal with mean a1μ1 + a2μ2 and variance a21σ

2
1 + a22σ

2
2 .

Generalizing to the case of n independent normal variables, we state the fol-
lowing result.

Theorem 7.11: If X1, X2, . . . , Xn are independent random variables having normal distributions
with means μ1, μ2, . . . , μn and variances σ2

1 , σ
2
2 , . . . , σ

2
n, respectively, then the ran-

dom variable

Y = a1X1 + a2X2 + · · ·+ anXn

has a normal distribution with mean
μY = a1μ1 + a2μ2 + · · ·+ anμn

and variance
σ2
Y = a21σ

2
1 + a22σ

2
2 + · · ·+ a2nσ

2
n.

It is now evident that the Poisson distribution and the normal distribution
possess a reproductive property in that the sum of independent random variables
having either of these distributions is a random variable that also has the same type
of distribution. The chi-squared distribution also has this reproductive property.

Theorem 7.12: If X1, X2, . . . , Xn are mutually independent random variables that have, respec-
tively, chi-squared distributions with v1, v2, . . . , vn degrees of freedom, then the
random variable

Y = X1 +X2 + · · ·+Xn

has a chi-squared distribution with v = v1 + v2 + · · ·+ vn degrees of freedom.

Proof : By Theorem 7.10 and Exercise 7.21,

MY (t) = MX1(t)MX2(t) · · ·MXn(t) and MXi(t) = (1− 2t)−vi/2, i = 1, 2, . . . , n.
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Therefore,

MY (t) = (1− 2t)−v1/2(1− 2t)−v2/2 · · · (1− 2t)−vn/2 = (1− 2t)−(v1+v2+···+vn)/2,

which we recognize as the moment-generating function of a chi-squared distribution
with v = v1 + v2 + · · ·+ vn degrees of freedom.

Corollary 7.1: If X1, X2, . . . , Xn are independent random variables having identical normal dis-
tributions with mean μ and variance σ2, then the random variable

Y =
n∑

i=1

(
Xi − μ

σ

)2

has a chi-squared distribution with v = n degrees of freedom.

This corollary is an immediate consequence of Example 7.5. It establishes a re-
lationship between the very important chi-squared distribution and the normal
distribution. It also should provide the reader with a clear idea of what we mean
by the parameter that we call degrees of freedom. In future chapters, the notion
of degrees of freedom will play an increasingly important role.

Corollary 7.2: If X1, X2, . . . , Xn are independent random variables and Xi follows a normal dis-
tribution with mean μi and variance σ2

i for i = 1, 2, . . . , n, then the random
variable

Y =

n∑
i=1

(
Xi − μi

σi

)2

has a chi-squared distribution with v = n degrees of freedom.

Exercises

7.1 Let X be a random variable with probability

f(x) =

{
1
3
, x = 1, 2, 3,

0, elsewhere.

Find the probability distribution of the random vari-
able Y = 2X − 1.

7.2 Let X be a binomial random variable with prob-
ability distribution

f(x) =

{(
3
x

) (
2
5

)x ( 3
5

)3−x
, x = 0, 1, 2, 3,

0, elsewhere.

Find the probability distribution of the random vari-
able Y = X2.

7.3 Let X1 and X2 be discrete random variables with

the joint multinomial distribution

f(x1, x2)

=

(
2

x1, x2, 2− x1 − x2

)(
1

4

)x1
(
1

3

)x2
(

5

12

)2−x1−x2

for x1 = 0, 1, 2; x2 = 0, 1, 2; x1 + x2 ≤ 2; and zero
elsewhere. Find the joint probability distribution of
Y1 = X1 +X2 and Y2 = X1 −X2.

7.4 Let X1 and X2 be discrete random variables with
joint probability distribution

f(x1, x2) =

{x1x2
18

, x1 = 1, 2; x2 = 1, 2, 3,

0, elsewhere.

Find the probability distribution of the random vari-
able Y = X1X2.
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7.5 Let X have the probability distribution

f(x) =

{
1, 0 < x < 1,

0, elsewhere.

Show that the random variable Y = −2 lnX has a chi-
squared distribution with 2 degrees of freedom.

7.6 Given the random variable X with probability
distribution

f(x) =

{
2x, 0 < x < 1,

0, elsewhere,

find the probability distribution of Y = 8X3.

7.7 The speed of a molecule in a uniform gas at equi-
librium is a random variable V whose probability dis-
tribution is given by

f(v) =

{
kv2e−bv2

, v > 0,

0, elsewhere,

where k is an appropriate constant and b depends on
the absolute temperature and mass of the molecule.
Find the probability distribution of the kinetic energy
of the molecule W , where W = mV 2/2.

7.8 A dealer’s profit, in units of $5000, on a new au-
tomobile is given by Y = X2, where X is a random
variable having the density function

f(x) =

{
2(1− x), 0 < x < 1,

0, elsewhere.

(a) Find the probability density function of the random
variable Y .

(b) Using the density function of Y , find the probabil-
ity that the profit on the next new automobile sold
by this dealership will be less than $500.

7.9 The hospital period, in days, for patients follow-
ing treatment for a certain type of kidney disorder is a
random variable Y = X + 4, where X has the density
function

f(x) =

{
32

(x+4)3
, x > 0,

0, elsewhere.

(a) Find the probability density function of the random
variable Y .

(b) Using the density function of Y , find the probabil-
ity that the hospital period for a patient following
this treatment will exceed 8 days.

7.10 The random variables X and Y , representing
the weights of creams and toffees, respectively, in 1-
kilogram boxes of chocolates containing a mixture of
creams, toffees, and cordials, have the joint density
function

f(x, y) =

{
24xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1,

0, elsewhere.

(a) Find the probability density function of the random
variable Z = X + Y .

(b) Using the density function of Z, find the probabil-
ity that, in a given box, the sum of the weights of
creams and toffees accounts for at least 1/2 but less
than 3/4 of the total weight.

7.11 The amount of kerosene, in thousands of liters,
in a tank at the beginning of any day is a random
amount Y from which a random amount X is sold dur-
ing that day. Assume that the joint density function
of these variables is given by

f(x, y) =

{
2, 0 < x < y, 0 < y < 1,

0, elsewhere.

Find the probability density function for the amount
of kerosene left in the tank at the end of the day.

7.12 LetX1 andX2 be independent random variables
each having the probability distribution

f(x) =

{
e−x, x > 0,

0, elsewhere.

Show that the random variables Y1 and Y2 are inde-
pendent when Y1 = X1 +X2 and Y2 = X1/(X1 +X2).

7.13 A current of I amperes flowing through a resis-
tance of R ohms varies according to the probability
distribution

f(i) =

{
6i(1− i), 0 < i < 1,

0, elsewhere.

If the resistance varies independently of the current ac-
cording to the probability distribution

g(r) =

{
2r, 0 < r < 1,

0, elsewhere,

find the probability distribution for the power W =
I2R watts.

7.14 Let X be a random variable with probability
distribution

f(x) =

{
1+x
2

, −1 < x < 1,

0, elsewhere.

Find the probability distribution of the random vari-
able Y = X2.
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7.15 Let X have the probability distribution

f(x) =

{
2(x+1)

9
, −1 < x < 2,

0, elsewhere.

Find the probability distribution of the random vari-
able Y = X2.

7.16 Show that the rth moment about the origin of
the gamma distribution is

μ′
r =

βrΓ(α+ r)

Γ(α)
.

[Hint: Substitute y = x/β in the integral defining μ′
r

and then use the gamma function to evaluate the inte-
gral.]

7.17 A random variable X has the discrete uniform
distribution

f(x; k) =

{
1
k
, x = 1, 2, . . . , k,

0, elsewhere.

Show that the moment-generating function of X is

MX(t) =
et(1− ekt)

k(1− et)
.

7.18 A random variable X has the geometric distri-
bution g(x; p) = pqx−1 for x = 1, 2, 3, . . . . Show that
the moment-generating function of X is

MX(t) =
pet

1− qet
, t < ln q,

and then use MX(t) to find the mean and variance of
the geometric distribution.

7.19 A random variable X has the Poisson distribu-
tion p(x;μ) = e−μμx/x! for x = 0, 1, 2, . . . . Show that
the moment-generating function of X is

MX(t) = eμ(e
t−1).

Using MX(t), find the mean and variance of the Pois-
son distribution.

7.20 The moment-generating function of a certain
Poisson random variable X is given by

MX(t) = e4(e
t−1).

Find P (μ− 2σ < X < μ+ 2σ).

7.21 Show that the moment-generating function of
the random variable X having a chi-squared distribu-
tion with v degrees of freedom is

MX(t) = (1− 2t)−v/2.

7.22 Using the moment-generating function of Exer-
cise 7.21, show that the mean and variance of the chi-
squared distribution with v degrees of freedom are, re-
spectively, v and 2v.

7.23 If both X and Y , distributed independently, fol-
low exponential distributions with mean parameter 1,
find the distributions of

(a) U = X + Y ;

(b) V = X/(X + Y ).

7.24 By expanding etx in a Maclaurin series and in-
tegrating term by term, show that

MX(t) =

∫ ∞

−∞
etxf(x) dx

= 1 + μt+ μ′
2
t2

2!
+ · · ·+ μ′

r
tr

r!
+ · · · .
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Chapter 8

Fundamental Sampling
Distributions and Data Descriptions

8.1 Random Sampling

The outcome of a statistical experiment may be recorded either as a numerical
value or as a descriptive representation. When a pair of dice is tossed and the total
is the outcome of interest, we record a numerical value. However, if the students
of a certain school are given blood tests and the type of blood is of interest, then a
descriptive representation might be more useful. A person’s blood can be classified
in 8 ways: AB, A, B, or O, each with a plus or minus sign, depending on the
presence or absence of the Rh antigen.

In this chapter, we focus on sampling from distributions or populations and
study such important quantities as the sample mean and sample variance, which
will be of vital importance in future chapters. In addition, we attempt to give the
reader an introduction to the role that the sample mean and variance will play
in statistical inference in later chapters. The use of modern high-speed computers
allows the scientist or engineer to greatly enhance his or her use of formal statistical
inference with graphical techniques. Much of the time, formal inference appears
quite dry and perhaps even abstract to the practitioner or to the manager who
wishes to let statistical analysis be a guide to decision-making.

Populations and Samples

We begin this section by discussing the notions of populations and samples. Both
are mentioned in a broad fashion in Chapter 1. However, much more needs to be
presented about them here, particularly in the context of the concept of random
variables. The totality of observations with which we are concerned, whether their
number be finite or infinite, constitutes what we call a population. There was a
time when the word population referred to observations obtained from statistical
studies about people. Today, statisticians use the term to refer to observations
relevant to anything of interest, whether it be groups of people, animals, or all
possible outcomes from some complicated biological or engineering system.

225
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226 Chapter 8 Fundamental Sampling Distributions and Data Descriptions

Definition 8.1: A population consists of the totality of the observations with which we are
concerned.

The number of observations in the population is defined to be the size of the
population. If there are 600 students in the school whom we classified according
to blood type, we say that we have a population of size 600. The numbers on
the cards in a deck, the heights of residents in a certain city, and the lengths of
fish in a particular lake are examples of populations with finite size. In each case,
the total number of observations is a finite number. The observations obtained by
measuring the atmospheric pressure every day, from the past on into the future,
or all measurements of the depth of a lake, from any conceivable position, are
examples of populations whose sizes are infinite. Some finite populations are so
large that in theory we assume them to be infinite. This is true in the case of the
population of lifetimes of a certain type of storage battery being manufactured for
mass distribution throughout the country.

Each observation in a population is a value of a random variableX having some
probability distribution f(x). If one is inspecting items coming off an assembly line
for defects, then each observation in the population might be a value 0 or 1 of the
Bernoulli random variable X with probability distribution

b(x; 1, p) = pxq1−x, x = 0, 1

where 0 indicates a nondefective item and 1 indicates a defective item. Of course,
it is assumed that p, the probability of any item being defective, remains constant
from trial to trial. In the blood-type experiment, the random variable X represents
the type of blood and is assumed to take on values from 1 to 8. Each student is
given one of the values of the discrete random variable. The lives of the storage
batteries are values assumed by a continuous random variable having perhaps a
normal distribution. When we refer hereafter to a “binomial population,” a “nor-
mal population,” or, in general, the “population f(x),” we shall mean a population
whose observations are values of a random variable having a binomial distribution,
a normal distribution, or the probability distribution f(x). Hence, the mean and
variance of a random variable or probability distribution are also referred to as the
mean and variance of the corresponding population.

In the field of statistical inference, statisticians are interested in arriving at con-
clusions concerning a population when it is impossible or impractical to observe the
entire set of observations that make up the population. For example, in attempting
to determine the average length of life of a certain brand of light bulb, it would
be impossible to test all such bulbs if we are to have any left to sell. Exorbitant
costs can also be a prohibitive factor in studying an entire population. Therefore,
we must depend on a subset of observations from the population to help us make
inferences concerning that same population. This brings us to consider the notion
of sampling.

Definition 8.2: A sample is a subset of a population.

If our inferences from the sample to the population are to be valid, we must
obtain samples that are representative of the population. All too often we are
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tempted to choose a sample by selecting the most convenient members of the
population. Such a procedure may lead to erroneous inferences concerning the
population. Any sampling procedure that produces inferences that consistently
overestimate or consistently underestimate some characteristic of the population is
said to be biased. To eliminate any possibility of bias in the sampling procedure,
it is desirable to choose a random sample in the sense that the observations are
made independently and at random.

In selecting a random sample of size n from a population f(x), let us define the
random variable Xi, i = 1, 2, . . . , n, to represent the ith measurement or sample
value that we observe. The random variables X1, X2, . . . , Xn will then constitute
a random sample from the population f(x) with numerical values x1, x2, . . . , xn if
the measurements are obtained by repeating the experiment n independent times
under essentially the same conditions. Because of the identical conditions under
which the elements of the sample are selected, it is reasonable to assume that the n
random variablesX1, X2, . . . , Xn are independent and that each has the same prob-
ability distribution f(x). That is, the probability distributions of X1, X2, . . . , Xn

are, respectively, f(x1), f(x2), . . . , f(xn), and their joint probability distribution
is f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn). The concept of a random sample is
described formally by the following definition.

Definition 8.3: Let X1, X2, . . . , Xn be n independent random variables, each having the same
probability distribution f(x). Define X1, X2, . . . , Xn to be a random sample of
size n from the population f(x) and write its joint probability distribution as

f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn).

If one makes a random selection of n = 8 storage batteries from a manufacturing
process that has maintained the same specification throughout and records the
length of life for each battery, with the first measurement x1 being a value of X1,
the second measurement x2 a value of X2, and so forth, then x1, x2, . . . , x8 are
the values of the random sample X1, X2, . . . , X8. If we assume the population of
battery lives to be normal, the possible values of any Xi, i = 1, 2, . . . , 8, will be
precisely the same as those in the original population, and hence Xi has the same
identical normal distribution as X.

8.2 Some Important Statistics

Our main purpose in selecting random samples is to elicit information about the
unknown population parameters. Suppose, for example, that we wish to arrive at
a conclusion concerning the proportion of coffee-drinkers in the United States who
prefer a certain brand of coffee. It would be impossible to question every coffee-
drinking American in order to compute the value of the parameter p representing
the population proportion. Instead, a large random sample is selected and the
proportion p̂ of people in this sample favoring the brand of coffee in question is
calculated. The value p̂ is now used to make an inference concerning the true
proportion p.

Now, p̂ is a function of the observed values in the random sample; since many
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random samples are possible from the same population, we would expect p̂ to vary
somewhat from sample to sample. That is, p̂ is a value of a random variable that
we represent by P . Such a random variable is called a statistic.

Definition 8.4: Any function of the random variables constituting a random sample is called a
statistic.

Location Measures of a Sample: The Sample Mean, Median, and Mode

In Chapter 4 we introduced the two parameters μ and σ2, which measure the center
of location and the variability of a probability distribution. These are constant
population parameters and are in no way affected or influenced by the observations
of a random sample. We shall, however, define some important statistics that
describe corresponding measures of a random sample. The most commonly used
statistics for measuring the center of a set of data, arranged in order of magnitude,
are the mean, median, and mode. Although the first two of these statistics were
defined in Chapter 1, we repeat the definitions here. Let X1, X2, . . . , Xn represent
n random variables.

(a) Sample mean:

X̄ =
1

n

n∑
i=1

Xi.

Note that the statistic X̄ assumes the value x̄ = 1
n

n∑
i=1

xi when X1 assumes the

value x1, X2 assumes the value x2, and so forth. The term sample mean is applied
to both the statistic X̄ and its computed value x̄.

(b) Sample median:

x̃ =

{
x(n+1)/2, if n is odd,
1
2 (xn/2 + xn/2+1), if n is even.

The sample median is also a location measure that shows the middle value of the
sample. Examples for both the sample mean and the sample median can be found
in Section 1.3. The sample mode is defined as follows.

(c) The sample mode is the value of the sample that occurs most often.

Example 8.1: Suppose a data set consists of the following observations:

0.32 0.53 0.28 0.37 0.47 0.43 0.36 0.42 0.38 0.43.

The sample mode is 0.43, since this value occurs more than any other value.
As we suggested in Chapter 1, a measure of location or central tendency in a

sample does not by itself give a clear indication of the nature of the sample. Thus,
a measure of variability in the sample must also be considered.
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Variability Measures of a Sample: The Sample Variance, Standard Deviation,
and Range

The variability in a sample displays how the observations spread out from the
average. The reader is referred to Chapter 1 for more discussion. It is possible to
have two sets of observations with the same mean or median that differ considerably
in the variability of their measurements about the average.

Consider the following measurements, in liters, for two samples of orange juice
bottled by companies A and B:

Sample A 0.97 1.00 0.94 1.03 1.06
Sample B 1.06 1.01 0.88 0.91 1.14

Both samples have the same mean, 1.00 liter. It is obvious that company A
bottles orange juice with a more uniform content than company B. We say that
the variability, or the dispersion, of the observations from the average is less
for sample A than for sample B. Therefore, in buying orange juice, we would feel
more confident that the bottle we select will be close to the advertised average if
we buy from company A.

In Chapter 1 we introduced several measures of sample variability, including
the sample variance, sample standard deviation, and sample range. In
this chapter, we will focus mainly on the sample variance. Again, let X1, . . . , Xn

represent n random variables.

(a) Sample variance:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2. (8.2.1)

The computed value of S2 for a given sample is denoted by s2. Note that
S2 is essentially defined to be the average of the squares of the deviations of the
observations from their mean. The reason for using n− 1 as a divisor rather than
the more obvious choice n will become apparent in Chapter 9.

Example 8.2: A comparison of coffee prices at 4 randomly selected grocery stores in San Diego
showed increases from the previous month of 12, 15, 17, and 20 cents for a 1-pound
bag. Find the variance of this random sample of price increases.

Solution : Calculating the sample mean, we get

x̄ =
12 + 15 + 17 + 20

4
= 16 cents.

Therefore,

s2 =
1

3

4∑
i=1

(xi − 16)2 =
(12− 16)2 + (15− 16)2 + (17− 16)2 + (20− 16)2

3

=
(−4)2 + (−1)2 + (1)2 + (4)2

3
=

34

3
.

Whereas the expression for the sample variance best illustrates that S2 is a
measure of variability, an alternative expression does have some merit and thus
the reader should be aware of it. The following theorem contains this expression.
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Theorem 8.1: If S2 is the variance of a random sample of size n, we may write

S2 =
1

n(n− 1)

⎡⎣n n∑
i=1

X2
i −

(
n∑

i=1

Xi

)2
⎤⎦ .

Proof : By definition,

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

n∑
i=1

(X2
i − 2X̄Xi + X̄2)

=
1

n− 1

[
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

]
.

As in Chapter 1, the sample standard deviation and the sample range are
defined below.

(b) Sample standard deviation:

S =
√
S2,

where S2 is the sample variance.

Let Xmax denote the largest of the Xi values and Xmin the smallest.

(c) Sample range:

R = Xmax −Xmin.

Example 8.3: Find the variance of the data 3, 4, 5, 6, 6, and 7, representing the number of trout
caught by a random sample of 6 fishermen on June 19, 1996, at Lake Muskoka.

Solution : We find that
6∑

i=1

x2
i = 171,

6∑
i=1

xi = 31, and n = 6. Hence,

s2 =
1

(6)(5)
[(6)(171)− (31)2] =

13

6
.

Thus, the sample standard deviation s =
√

13/6 = 1.47 and the sample range is
7− 3 = 4.

Exercises

8.1 Define suitable populations from which the fol-
lowing samples are selected:

(a) Persons in 200 homes in the city of Richmond are
called on the phone and asked to name the candi-
date they favor for election to the school board.

(b) A coin is tossed 100 times and 34 tails are recorded.

(c) Two hundred pairs of a new type of tennis shoe
were tested on the professional tour and, on aver-
age, lasted 4 months.

(d) On five different occasions it took a lawyer 21, 26,
24, 22, and 21 minutes to drive from her suburban
home to her midtown office.
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8.2 The lengths of time, in minutes, that 10 patients
waited in a doctor’s office before receiving treatment
were recorded as follows: 5, 11, 9, 5, 10, 15, 6, 10, 5,
and 10. Treating the data as a random sample, find

(a) the mean;

(b) the median;

(c) the mode.

8.3 The reaction times for a random sample of 9 sub-
jects to a stimulant were recorded as 2.5, 3.6, 3.1, 4.3,
2.9. 2.3, 2.6, 4.1, and 3.4 seconds. Calculate

(a) the mean;

(b) the median.

8.4 The number of tickets issued for traffic violations
by 8 state troopers during the Memorial Day weekend
are 5, 4, 7, 7, 6, 3, 8, and 6.

(a) If these values represent the number of tickets is-
sued by a random sample of 8 state troopers from
Montgomery County in Virginia, define a suitable
population.

(b) If the values represent the number of tickets issued
by a random sample of 8 state troopers from South
Carolina, define a suitable population.

8.5 The numbers of incorrect answers on a true-false
competency test for a random sample of 15 students
were recorded as follows: 2, 1, 3, 0, 1, 3, 6, 0, 3, 3, 5,
2, 1, 4, and 2. Find

(a) the mean;

(b) the median;

(c) the mode.

8.6 Find the mean, median, and mode for the sample
whose observations, 15, 7, 8, 95, 19, 12, 8, 22, and 14,
represent the number of sick days claimed on 9 fed-
eral income tax returns. Which value appears to be
the best measure of the center of these data? State
reasons for your preference.

8.7 A random sample of employees from a local man-
ufacturing plant pledged the following donations, in
dollars, to the United Fund: 100, 40, 75, 15, 20, 100,
75, 50, 30, 10, 55, 75, 25, 50, 90, 80, 15, 25, 45, and
100. Calculate

(a) the mean;

(b) the mode.

8.8 According to ecology writer Jacqueline Killeen,
phosphates contained in household detergents pass
right through our sewer systems, causing lakes to turn
into swamps that eventually dry up into deserts. The
following data show the amount of phosphates per load

of laundry, in grams, for a random sample of various
types of detergents used according to the prescribed
directions:

Laundry Phosphates per Load
Detergent (grams)
A & P Blue Sail 48
Dash 47
Concentrated All 42
Cold Water All 42
Breeze 41
Oxydol 34
Ajax 31
Sears 30
Fab 29
Cold Power 29
Bold 29
Rinso 26

For the given phosphate data, find

(a) the mean;

(b) the median;

(c) the mode.

8.9 Consider the data in Exercise 8.2, find

(a) the range;

(b) the standard deviation.

8.10 For the sample of reaction times in Exercise 8.3,
calculate

(a) the range;

(b) the variance, using the formula of form (8.2.1).

8.11 For the data of Exercise 8.5, calculate the vari-
ance using the formula

(a) of form (8.2.1);

(b) in Theorem 8.1.

8.12 The tar contents of 8 brands of cigarettes se-
lected at random from the latest list released by the
Federal Trade Commission are as follows: 7.3, 8.6, 10.4,
16.1, 12.2, 15.1, 14.5, and 9.3 milligrams. Calculate

(a) the mean;

(b) the variance.

8.13 The grade-point averages of 20 college seniors
selected at random from a graduating class are as fol-
lows:

3.2 1.9 2.7 2.4 2.8
2.9 3.8 3.0 2.5 3.3
1.8 2.5 3.7 2.8 2.0
3.2 2.3 2.1 2.5 1.9

Calculate the standard deviation.

8.14 (a) Show that the sample variance is unchanged
if a constant c is added to or subtracted from each
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value in the sample.

(b) Show that the sample variance becomes c2 times
its original value if each observation in the sample
is multiplied by c.

8.15 Verify that the variance of the sample 4, 9, 3,
6, 4, and 7 is 5.1, and using this fact, along with the
results of Exercise 8.14, find

(a) the variance of the sample 12, 27, 9, 18, 12, and 21;

(b) the variance of the sample 9, 14, 8, 11, 9, and 12.

8.16 In the 2004-05 football season, University of
Southern California had the following score differences
for the 13 games it played.

11 49 32 3 6 38 38 30 8 40 31 5 36

Find

(a) the mean score difference;

(b) the median score difference.

8.3 Sampling Distributions

The field of statistical inference is basically concerned with generalizations and
predictions. For example, we might claim, based on the opinions of several people
interviewed on the street, that in a forthcoming election 60% of the eligible voters
in the city of Detroit favor a certain candidate. In this case, we are dealing with
a random sample of opinions from a very large finite population. As a second il-
lustration we might state that the average cost to build a residence in Charleston,
South Carolina, is between $330,000 and $335,000, based on the estimates of 3
contractors selected at random from the 30 now building in this city. The popu-
lation being sampled here is again finite but very small. Finally, let us consider a
soft-drink machine designed to dispense, on average, 240 milliliters per drink. A
company official who computes the mean of 40 drinks obtains x̄ = 236 milliliters
and, on the basis of this value, decides that the machine is still dispensing drinks
with an average content of μ = 240 milliliters. The 40 drinks represent a sam-
ple from the infinite population of possible drinks that will be dispensed by this
machine.

Inference about the Population from Sample Information

In each of the examples above, we computed a statistic from a sample selected from
the population, and from this statistic we made various statements concerning the
values of population parameters that may or may not be true. The company official
made the decision that the soft-drink machine dispenses drinks with an average
content of 240 milliliters, even though the sample mean was 236 milliliters, because
he knows from sampling theory that, if μ = 240 milliliters, such a sample value
could easily occur. In fact, if he ran similar tests, say every hour, he would expect
the values of the statistic x̄ to fluctuate above and below μ = 240 milliliters. Only
when the value of x̄ is substantially different from 240 milliliters will the company
official initiate action to adjust the machine.

Since a statistic is a random variable that depends only on the observed sample,
it must have a probability distribution.

Definition 8.5: The probability distribution of a statistic is called a sampling distribution.

The sampling distribution of a statistic depends on the distribution of the pop-
ulation, the size of the samples, and the method of choosing the samples. In the
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remainder of this chapter we study several of the important sampling distribu-
tions of frequently used statistics. Applications of these sampling distributions to
problems of statistical inference are considered throughout most of the remaining
chapters. The probability distribution of X̄ is called the sampling distribution
of the mean.

What Is the Sampling Distribution of X̄?

We should view the sampling distributions of X̄ and S2 as the mechanisms from
which we will be able to make inferences on the parameters μ and σ2. The sam-
pling distribution of X̄ with sample size n is the distribution that results when
an experiment is conducted over and over (always with sample size n) and
the many values of X̄ result. This sampling distribution, then, describes the
variability of sample averages around the population mean μ. In the case of the
soft-drink machine, knowledge of the sampling distribution of X̄ arms the analyst
with the knowledge of a “typical” discrepancy between an observed x̄ value and
true μ. The same principle applies in the case of the distribution of S2. The sam-
pling distribution produces information about the variability of s2 values around
σ2 in repeated experiments.

8.4 Sampling Distribution of Means and the Central Limit
Theorem

The first important sampling distribution to be considered is that of the mean
X̄. Suppose that a random sample of n observations is taken from a normal
population with mean μ and variance σ2. Each observation Xi, i = 1, 2, . . . , n, of
the random sample will then have the same normal distribution as the population
being sampled. Hence, by the reproductive property of the normal distribution
established in Theorem 7.11, we conclude that

X̄ =
1

n
(X1 +X2 + · · ·+Xn)

has a normal distribution with mean

μX̄ =
1

n
(μ+ μ+ · · ·+ μ︸ ︷︷ ︸

n terms

) = μ and variance σ2
X̄ =

1

n2
(σ2 + σ2 + · · ·+ σ2︸ ︷︷ ︸

n terms

) =
σ2

n
.

If we are sampling from a population with unknown distribution, either finite
or infinite, the sampling distribution of X̄ will still be approximately normal with
mean μ and variance σ2/n, provided that the sample size is large. This amazing
result is an immediate consequence of the following theorem, called the Central
Limit Theorem.

Uploaded By: anonymousSTUDENTS-HUB.com



234 Chapter 8 Fundamental Sampling Distributions and Data Descriptions

The Central Limit Theorem

Theorem 8.2: Central Limit Theorem: If X̄ is the mean of a random sample of size n taken
from a population with mean μ and finite variance σ2, then the limiting form of
the distribution of

Z =
X̄ − μ

σ/
√
n
,

as n → ∞, is the standard normal distribution n(z; 0, 1).

The normal approximation for X̄ will generally be good if n ≥ 30, provided
the population distribution is not terribly skewed. If n < 30, the approximation is
good only if the population is not too different from a normal distribution and, as
stated above, if the population is known to be normal, the sampling distribution
of X̄ will follow a normal distribution exactly, no matter how small the size of the
samples.

The sample size n = 30 is a guideline to use for the Central Limit Theorem.
However, as the statement of the theorem implies, the presumption of normality
on the distribution of X̄ becomes more accurate as n grows larger. In fact, Figure
8.1 illustrates how the theorem works. It shows how the distribution of X̄ becomes
closer to normal as n grows larger, beginning with the clearly nonsymmetric dis-
tribution of an individual observation (n = 1). It also illustrates that the mean of
X̄ remains μ for any sample size and the variance of X̄ gets smaller as n increases.

μ

Large n (near normal)

Small to moderate n

n = 1 (population)

Figure 8.1: Illustration of the Central Limit Theorem (distribution of X̄ for n = 1,
moderate n, and large n).

Example 8.4: An electrical firm manufactures light bulbs that have a length of life that is ap-
proximately normally distributed, with mean equal to 800 hours and a standard
deviation of 40 hours. Find the probability that a random sample of 16 bulbs will
have an average life of less than 775 hours.

Solution : The sampling distribution of X̄ will be approximately normal, with μX̄ = 800 and
σX̄ = 40/

√
16 = 10. The desired probability is given by the area of the shaded
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region in Figure 8.2.

x
775 800

σ x = 10

Figure 8.2: Area for Example 8.4.

Corresponding to x̄ = 775, we find that

z =
775− 800

10
= −2.5,

and therefore

P (X̄ < 775) = P (Z < −2.5) = 0.0062.

Inferences on the Population Mean

One very important application of the Central Limit Theorem is the determination
of reasonable values of the population mean μ. Topics such as hypothesis testing,
estimation, quality control, and many others make use of the Central Limit Theo-
rem. The following example illustrates the use of the Central Limit Theorem with
regard to its relationship with μ, the mean of the population, although the formal
application to the foregoing topics is relegated to future chapters.

In the following case study, an illustration is given which draws an inference
that makes use of the sampling distribution of X̄. In this simple illustration, μ
and σ are both known. The Central Limit Theorem and the general notion of
sampling distributions are often used to produce evidence about some important
aspect of a distribution such as a parameter of the distribution. In the case of the
Central Limit Theorem, the parameter of interest is the mean μ. The inference
made concerning μ may take one of many forms. Often there is a desire on the part
of the analyst that the data (in the form of x̄) support (or not) some predetermined
conjecture concerning the value of μ. The use of what we know about the sampling
distribution can contribute to answering this type of question. In the following case
study, the concept of hypothesis testing leads to a formal objective that we will
highlight in future chapters.

Case Study 8.1: Automobile Parts:An important manufacturing process produces cylindrical com-
ponent parts for the automotive industry. It is important that the process produce
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parts having a mean diameter of 5.0 millimeters. The engineer involved conjec-
tures that the population mean is 5.0 millimeters. An experiment is conducted in
which 100 parts produced by the process are selected randomly and the diameter
measured on each. It is known that the population standard deviation is σ = 0.1
millimeter. The experiment indicates a sample average diameter of x̄ = 5.027 mil-
limeters. Does this sample information appear to support or refute the engineer’s
conjecture?

Solution : This example reflects the kind of problem often posed and solved with hypothesis
testing machinery introduced in future chapters. We will not use the formality
associated with hypothesis testing here, but we will illustrate the principles and
logic used.

Whether the data support or refute the conjecture depends on the probability
that data similar to those obtained in this experiment (x̄ = 5.027) can readily
occur when in fact μ = 5.0 (Figure 8.3). In other words, how likely is it that
one can obtain x̄ ≥ 5.027 with n = 100 if the population mean is μ = 5.0? If
this probability suggests that x̄ = 5.027 is not unreasonable, the conjecture is not
refuted. If the probability is quite low, one can certainly argue that the data do not
support the conjecture that μ = 5.0. The probability that we choose to compute
is given by P (|X̄ − 5| ≥ 0.027).

x
4.973 5.0275.0

Figure 8.3: Area for Case Study 8.1.

In other words, if the mean μ is 5, what is the chance that X̄ will deviate by
as much as 0.027 millimeter?

P (|X̄ − 5| ≥ 0.027) = P (X̄ − 5 ≥ 0.027) + P (X̄ − 5 ≤ −0.027)

= 2P

(
X̄ − 5

0.1/
√
100

≥ 2.7

)
.

Here we are simply standardizing X̄ according to the Central Limit Theorem. If
the conjecture μ = 5.0 is true, X̄−5

0.1/
√
100

should follow N(0, 1). Thus,

2P

(
X̄ − 5

0.1/
√
100

≥ 2.7

)
= 2P (Z ≥ 2.7) = 2(0.0035) = 0.007.
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Therefore, one would experience by chance that an x̄ would be 0.027 millimeter
from the mean in only 7 in 1000 experiments. As a result, this experiment with
x̄ = 5.027 certainly does not give supporting evidence to the conjecture that μ =
5.0. In fact, it strongly refutes the conjecture!

Example 8.5: Traveling between two campuses of a university in a city via shuttle bus takes,
on average, 28 minutes with a standard deviation of 5 minutes. In a given week,
a bus transported passengers 40 times. What is the probability that the average
transport time was more than 30 minutes? Assume the mean time is measured to
the nearest minute.

Solution : In this case, μ = 28 and σ = 3. We need to calculate the probability P (X̄ > 30)
with n = 40. Since the time is measured on a continuous scale to the nearest
minute, an x̄ greater than 30 is equivalent to x̄ ≥ 30.5. Hence,

P (X̄ > 30) = P

(
X̄ − 28

5/
√
40

≥ 30.5− 28

5/
√
40

)
= P (Z ≥ 3.16) = 0.0008.

There is only a slight chance that the average time of one bus trip will exceed 30
minutes. An illustrative graph is shown in Figure 8.4.

x
30.528.0

Figure 8.4: Area for Example 8.5.

Sampling Distribution of the Difference between Two Means

The illustration in Case Study 8.1 deals with notions of statistical inference on a
single mean μ. The engineer was interested in supporting a conjecture regarding
a single population mean. A far more important application involves two popula-
tions. A scientist or engineer may be interested in a comparative experiment in
which two manufacturing methods, 1 and 2, are to be compared. The basis for
that comparison is μ1 − μ2, the difference in the population means.

Suppose that we have two populations, the first with mean μ1 and variance
σ2
1 , and the second with mean μ2 and variance σ2

2 . Let the statistic X̄1 represent
the mean of a random sample of size n1 selected from the first population, and
the statistic X̄2 represent the mean of a random sample of size n2 selected from
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the second population, independent of the sample from the first population. What
can we say about the sampling distribution of the difference X̄1 − X̄2 for repeated
samples of size n1 and n2? According to Theorem 8.2, the variables X̄1 and X̄2

are both approximately normally distributed with means μ1 and μ2 and variances
σ2
1/n1 and σ2

2/n2, respectively. This approximation improves as n1 and n2 increase.
By choosing independent samples from the two populations we ensure that the
variables X̄1 and X̄2 will be independent, and then using Theorem 7.11, with
a1 = 1 and a2 = −1, we can conclude that X̄1 − X̄2 is approximately normally
distributed with mean

μX̄1−X̄2
= μX̄1

− μX̄2
= μ1 − μ2

and variance

σ2
X̄1−X̄2

= σ2
X̄1

+ σ2
X̄2

=
σ2
1

n1
+

σ2
2

n2
.

The Central Limit Theorem can be easily extended to the two-sample, two-population
case.

Theorem 8.3: If independent samples of size n1 and n2 are drawn at random from two popu-
lations, discrete or continuous, with means μ1 and μ2 and variances σ2

1 and σ2
2 ,

respectively, then the sampling distribution of the differences of means, X̄1 − X̄2,
is approximately normally distributed with mean and variance given by

μX̄1−X̄2
= μ1 − μ2 and σ2

X̄1−X̄2
=

σ2
1

n1
+

σ2
2

n2
.

Hence,

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

(σ2
1/n1) + (σ2

2/n2)

is approximately a standard normal variable.

If both n1 and n2 are greater than or equal to 30, the normal approximation
for the distribution of X̄1 − X̄2 is very good when the underlying distributions
are not too far away from normal. However, even when n1 and n2 are less than
30, the normal approximation is reasonably good except when the populations are
decidedly nonnormal. Of course, if both populations are normal, then X̄1− X̄2 has
a normal distribution no matter what the sizes of n1 and n2 are.

The utility of the sampling distribution of the difference between two sample
averages is very similar to that described in Case Study 8.1 on page 235 for the case
of a single mean. Case Study 8.2 that follows focuses on the use of the difference
between two sample means to support (or not) the conjecture that two population
means are the same.

Case Study 8.2: Paint Drying Time: Two independent experiments are run in which two different
types of paint are compared. Eighteen specimens are painted using type A, and
the drying time, in hours, is recorded for each. The same is done with type B.
The population standard deviations are both known to be 1.0.
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Assuming that the mean drying time is equal for the two types of paint, find
P (X̄A− X̄B > 1.0), where X̄A and X̄B are average drying times for samples of size
nA = nB = 18.

Solution : From the sampling distribution of X̄A − X̄B , we know that the distribution is
approximately normal with mean

μX̄A−X̄B
= μA − μB = 0

and variance

σ2
X̄A−X̄B

=
σ2
A

nA
+

σ2
B

nB
=

1

18
+

1

18
=

1

9
.

xA − xB
μ μA − B = 0 1.0

σ XA−XB
= 1 9

Figure 8.5: Area for Case Study 8.2.

The desired probability is given by the shaded region in Figure 8.5. Corre-
sponding to the value X̄A − X̄B = 1.0, we have

z =
1− (μA − μB)√

1/9
=

1− 0√
1/9

= 3.0;

so

P (Z > 3.0) = 1− P (Z < 3.0) = 1− 0.9987 = 0.0013.

What Do We Learn from Case Study 8.2?

The machinery in the calculation is based on the presumption that μA = μB .
Suppose, however, that the experiment is actually conducted for the purpose of
drawing an inference regarding the equality of μA and μB , the two population
mean drying times. If the two averages differ by as much as 1 hour (or more),
this clearly is evidence that would lead one to conclude that the population mean
drying time is not equal for the two types of paint. On the other hand, suppose
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that the difference in the two sample averages is as small as, say, 15 minutes. If
μA = μB,

P [(X̄A − X̄B) > 0.25 hour] = P

(
X̄A − X̄B − 0√

1/9
>

3

4

)

= P

(
Z >

3

4

)
= 1− P (Z < 0.75) = 1− 0.7734 = 0.2266.

Since this probability is not low, one would conclude that a difference in sample
means of 15 minutes can happen by chance (i.e., it happens frequently even though
μA = μB). As a result, that type of difference in average drying times certainly is
not a clear signal that μA �= μB.

As we indicated earlier, a more detailed formalism regarding this and other
types of statistical inference (e.g., hypothesis testing) will be supplied in future
chapters. The Central Limit Theorem and sampling distributions discussed in the
next three sections will also play a vital role.

Example 8.6: The television picture tubes of manufacturer A have a mean lifetime of 6.5 years
and a standard deviation of 0.9 year, while those of manufacturer B have a mean
lifetime of 6.0 years and a standard deviation of 0.8 year. What is the probability
that a random sample of 36 tubes from manufacturer A will have a mean lifetime
that is at least 1 year more than the mean lifetime of a sample of 49 tubes from
manufacturer B?

Solution : We are given the following information:

Population 1 Population 2
μ1 = 6.5 μ2 = 6.0
σ1 = 0.9 σ2 = 0.8
n1 = 36 n2 = 49

If we use Theorem 8.3, the sampling distribution of X̄1 − X̄2 will be approxi-
mately normal and will have a mean and standard deviation

μX̄1−X̄2
= 6.5− 6.0 = 0.5 and σX̄1−X̄2

=

√
0.81

36
+

0.64

49
= 0.189.

The probability that the mean lifetime for 36 tubes from manufacturer A will
be at least 1 year longer than the mean lifetime for 49 tubes from manufacturer B
is given by the area of the shaded region in Figure 8.6. Corresponding to the value
x̄1 − x̄2 = 1.0, we find that

z =
1.0− 0.5

0.189
= 2.65,

and hence

P (X̄1 − X̄2 ≥ 1.0) = P (Z > 2.65) = 1− P (Z < 2.65)

= 1− 0.9960 = 0.0040.
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0.5 1.0
x1 � x2

x1� x2 
� 0.189σ

Figure 8.6: Area for Example 8.6.

More on Sampling Distribution of Means—Normal Approximation to
the Binomial Distribution

Section 6.5 presented the normal approximation to the binomial distribution at
length. Conditions were given on the parameters n and p for which the distribution
of a binomial random variable can be approximated by the normal distribution.
Examples and exercises reflected the importance of the concept of the “normal
approximation.” It turns out that the Central Limit Theorem sheds even more
light on how and why this approximation works. We certainly know that a binomial
random variable is the number X of successes in n independent trials, where the
outcome of each trial is binary. We also illustrated in Chapter 1 that the proportion
computed in such an experiment is an average of a set of 0s and 1s. Indeed, while
the proportion X/n is an average, X is the sum of this set of 0s and 1s, and both
X and X/n are approximately normal if n is sufficiently large. Of course, from
what we learned in Chapter 6, we know that there are conditions on n and p that
affect the quality of the approximation, namely np ≥ 5 and nq ≥ 5.

Exercises

8.17 If all possible samples of size 16 are drawn from
a normal population with mean equal to 50 and stan-
dard deviation equal to 5, what is the probability that a
sample mean X̄ will fall in the interval from μX̄−1.9σX̄

to μX̄ −0.4σX̄? Assume that the sample means can be
measured to any degree of accuracy.

8.18 If the standard deviation of the mean for the
sampling distribution of random samples of size 36
from a large or infinite population is 2, how large must
the sample size become if the standard deviation is to
be reduced to 1.2?

8.19 A certain type of thread is manufactured with a
mean tensile strength of 78.3 kilograms and a standard
deviation of 5.6 kilograms. How is the variance of the

sample mean changed when the sample size is

(a) increased from 64 to 196?

(b) decreased from 784 to 49?

8.20 Given the discrete uniform population

f(x) =

{
1
3
, x = 2, 4, 6,

0, elsewhere,

find the probability that a random sample of size 54,
selected with replacement, will yield a sample mean
greater than 4.1 but less than 4.4. Assume the means
are measured to the nearest tenth.

8.21 A soft-drink machine is regulated so that the
amount of drink dispensed averages 240 milliliters with
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a standard deviation of 15 milliliters. Periodically, the
machine is checked by taking a sample of 40 drinks
and computing the average content. If the mean of the
40 drinks is a value within the interval μX̄ ± 2σX̄ , the
machine is thought to be operating satisfactorily; oth-
erwise, adjustments are made. In Section 8.3, the com-
pany official found the mean of 40 drinks to be x̄ = 236
milliliters and concluded that the machine needed no
adjustment. Was this a reasonable decision?

8.22 The heights of 1000 students are approximately
normally distributed with a mean of 174.5 centimeters
and a standard deviation of 6.9 centimeters. Suppose
200 random samples of size 25 are drawn from this pop-
ulation and the means recorded to the nearest tenth of
a centimeter. Determine

(a) the mean and standard deviation of the sampling
distribution of X̄;

(b) the number of sample means that fall between 172.5
and 175.8 centimeters inclusive;

(c) the number of sample means falling below 172.0
centimeters.

8.23 The random variable X, representing the num-
ber of cherries in a cherry puff, has the following prob-
ability distribution:

x 4 5 6 7
P (X = x) 0.2 0.4 0.3 0.1

(a) Find the mean μ and the variance σ2 of X.

(b) Find the mean μX̄ and the variance σ2
X̄ of the mean

X̄ for random samples of 36 cherry puffs.

(c) Find the probability that the average number of
cherries in 36 cherry puffs will be less than 5.5.

8.24 If a certain machine makes electrical resistors
having a mean resistance of 40 ohms and a standard
deviation of 2 ohms, what is the probability that a
random sample of 36 of these resistors will have a com-
bined resistance of more than 1458 ohms?

8.25 The average life of a bread-making machine is 7
years, with a standard deviation of 1 year. Assuming
that the lives of these machines follow approximately
a normal distribution, find

(a) the probability that the mean life of a random sam-
ple of 9 such machines falls between 6.4 and 7.2
years;

(b) the value of x to the right of which 15% of the
means computed from random samples of size 9
would fall.

8.26 The amount of time that a drive-through bank
teller spends on a customer is a random variable with
a mean μ = 3.2 minutes and a standard deviation
σ = 1.6 minutes. If a random sample of 64 customers

is observed, find the probability that their mean time
at the teller’s window is

(a) at most 2.7 minutes;

(b) more than 3.5 minutes;

(c) at least 3.2 minutes but less than 3.4 minutes.

8.27 In a chemical process, the amount of a certain
type of impurity in the output is difficult to control
and is thus a random variable. Speculation is that the
population mean amount of the impurity is 0.20 gram
per gram of output. It is known that the standard
deviation is 0.1 gram per gram. An experiment is con-
ducted to gain more insight regarding the speculation
that μ = 0.2. The process is run on a lab scale 50
times and the sample average x̄ turns out to be 0.23
gram per gram. Comment on the speculation that the
mean amount of impurity is 0.20 gram per gram. Make
use of the Central Limit Theorem in your work.

8.28 A random sample of size 25 is taken from a nor-
mal population having a mean of 80 and a standard
deviation of 5. A second random sample of size 36
is taken from a different normal population having a
mean of 75 and a standard deviation of 3. Find the
probability that the sample mean computed from the
25 measurements will exceed the sample mean com-
puted from the 36 measurements by at least 3.4 but
less than 5.9. Assume the difference of the means to
be measured to the nearest tenth.

8.29 The distribution of heights of a certain breed of
terrier has a mean of 72 centimeters and a standard de-
viation of 10 centimeters, whereas the distribution of
heights of a certain breed of poodle has a mean of 28
centimeters with a standard deviation of 5 centimeters.
Assuming that the sample means can be measured to
any degree of accuracy, find the probability that the
sample mean for a random sample of heights of 64 ter-
riers exceeds the sample mean for a random sample of
heights of 100 poodles by at most 44.2 centimeters.

8.30 The mean score for freshmen on an aptitude test
at a certain college is 540, with a standard deviation of
50. Assume the means to be measured to any degree
of accuracy. What is the probability that two groups
selected at random, consisting of 32 and 50 students,
respectively, will differ in their mean scores by

(a) more than 20 points?

(b) an amount between 5 and 10 points?

8.31 Consider Case Study 8.2 on page 238. Suppose
18 specimens were used for each type of paint in an
experiment and x̄A− x̄B , the actual difference in mean
drying time, turned out to be 1.0.

(a) Does this seem to be a reasonable result if the
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two population mean drying times truly are equal?
Make use of the result in the solution to Case Study
8.2.

(b) If someone did the experiment 10,000 times un-
der the condition that μA = μB , in how many of
those 10,000 experiments would there be a differ-
ence x̄A − x̄B that was as large as (or larger than)
1.0?

8.32 Two different box-filling machines are used to fill
cereal boxes on an assembly line. The critical measure-
ment influenced by these machines is the weight of the
product in the boxes. Engineers are quite certain that
the variance of the weight of product is σ2 = 1 ounce.
Experiments are conducted using both machines with
sample sizes of 36 each. The sample averages for ma-
chines A and B are x̄A = 4.5 ounces and x̄B = 4.7
ounces. Engineers are surprised that the two sample
averages for the filling machines are so different.

(a) Use the Central Limit Theorem to determine

P (X̄B − X̄A ≥ 0.2)

under the condition that μA = μB .

(b) Do the aforementioned experiments seem to, in any
way, strongly support a conjecture that the popu-
lation means for the two machines are different?
Explain using your answer in (a).

8.33 The chemical benzene is highly toxic to hu-
mans. However, it is used in the manufacture of many
medicine dyes, leather, and coverings. Government
regulations dictate that for any production process in-
volving benzene, the water in the output of the process
must not exceed 7950 parts per million (ppm) of ben-
zene. For a particular process of concern, the water
sample was collected by a manufacturer 25 times ran-
domly and the sample average x̄ was 7960 ppm. It is
known from historical data that the standard deviation
σ is 100 ppm.

(a) What is the probability that the sample average in
this experiment would exceed the government limit
if the population mean is equal to the limit? Use
the Central Limit Theorem.

(b) Is an observed x̄ = 7960 in this experiment firm
evidence that the population mean for the process

exceeds the government limit? Answer your ques-
tion by computing

P (X̄ ≥ 7960 | μ = 7950).

Assume that the distribution of benzene concentra-
tion is normal.

8.34 Two alloys A and B are being used to manufac-
ture a certain steel product. An experiment needs to
be designed to compare the two in terms of maximum
load capacity in tons (the maximum weight that can
be tolerated without breaking). It is known that the
two standard deviations in load capacity are equal at
5 tons each. An experiment is conducted in which 30
specimens of each alloy (A and B) are tested and the
results recorded as follows:

x̄A = 49.5, x̄B = 45.5; x̄A − x̄B = 4.

The manufacturers of alloy A are convinced that this
evidence shows conclusively that μA > μB and strongly
supports the claim that their alloy is superior. Man-
ufacturers of alloy B claim that the experiment could
easily have given x̄A − x̄B = 4 even if the two popula-
tion means are equal. In other words, “the results are
inconclusive!”

(a) Make an argument that manufacturers of alloy B
are wrong. Do it by computing

P (X̄A − X̄B > 4 | μA = μB).

(b) Do you think these data strongly support alloy A?

8.35 Consider the situation described in Example 8.4
on page 234. Do these results prompt you to question
the premise that μ = 800 hours? Give a probabilis-
tic result that indicates how rare an event X̄ ≤ 775 is
when μ = 800. On the other hand, how rare would it
be if μ truly were, say, 760 hours?

8.36 Let X1, X2, . . . , Xn be a random sample from a
distribution that can take on only positive values. Use
the Central Limit Theorem to produce an argument
that if n is sufficiently large, then Y = X1X2 · · ·Xn

has approximately a lognormal distribution.

8.5 Sampling Distribution of S2

In the preceding section we learned about the sampling distribution of X̄. The
Central Limit Theorem allowed us to make use of the fact that

X̄ − μ

σ/
√
n
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tends toward N(0, 1) as the sample size grows large. Sampling distributions of
important statistics allow us to learn information about parameters. Usually, the
parameters are the counterpart to the statistics in question. For example, if an
engineer is interested in the population mean resistance of a certain type of resistor,
the sampling distribution of X̄ will be exploited once the sample information is
gathered. On the other hand, if the variability in resistance is to be studied,
clearly the sampling distribution of S2 will be used in learning about the parametric
counterpart, the population variance σ2.

If a random sample of size n is drawn from a normal population with mean
μ and variance σ2, and the sample variance is computed, we obtain a value of
the statistic S2. We shall proceed to consider the distribution of the statistic
(n− 1)S2/σ2.

By the addition and subtraction of the sample mean X̄, it is easy to see that
n∑

i=1

(Xi − μ)2 =
n∑

i=1

[(Xi − X̄) + (X̄ − μ)]2

=
n∑

i=1

(Xi − X̄)2 +
n∑

i=1

(X̄ − μ)2 + 2(X̄ − μ)
n∑

i=1

(Xi − X̄)

=
n∑

i=1

(Xi − X̄)2 + n(X̄ − μ)2.

Dividing each term of the equality by σ2 and substituting (n−1)S2 for
n∑

i=1

(Xi−X̄)2,

we obtain

1

σ2

n∑
i=1

(Xi − μ)2 =
(n− 1)S2

σ2
+

(X̄ − μ)2

σ2/n
.

Now, according to Corollary 7.1 on page 222, we know that
n∑

i=1

(Xi − μ)2

σ2

is a chi-squared random variable with n degrees of freedom. We have a chi-squared
random variable with n degrees of freedom partitioned into two components. Note
that in Section 6.7 we showed that a chi-squared distribution is a special case of
a gamma distribution. The second term on the right-hand side is Z2, which is
a chi-squared random variable with 1 degree of freedom, and it turns out that
(n − 1)S2/σ2 is a chi-squared random variable with n − 1 degree of freedom. We
formalize this in the following theorem.

Theorem 8.4: If S2 is the variance of a random sample of size n taken from a normal population
having the variance σ2, then the statistic

χ2 =
(n− 1)S2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

has a chi-squared distribution with v = n− 1 degrees of freedom.

The values of the random variable χ2 are calculated from each sample by the
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formula

χ2 =
(n− 1)s2

σ2
.

The probability that a random sample produces a χ2 value greater than some
specified value is equal to the area under the curve to the right of this value. It is
customary to let χ2

α represent the χ2 value above which we find an area of α. This
is illustrated by the shaded region in Figure 8.7.

0
χ

χ

2  

2

α

α

Figure 8.7: The chi-squared distribution.

Table A.5 gives values of χ2
α for various values of α and v. The areas, α, are

the column headings; the degrees of freedom, v, are given in the left column; and
the table entries are the χ2 values. Hence, the χ2 value with 7 degrees of freedom,
leaving an area of 0.05 to the right, is χ2

0.05 = 14.067. Owing to lack of symmetry,
we must also use the tables to find χ2

0.95 = 2.167 for v = 7.
Exactly 95% of a chi-squared distribution lies between χ2

0.975 and χ2
0.025. A χ2

value falling to the right of χ2
0.025 is not likely to occur unless our assumed value of

σ2 is too small. Similarly, a χ2 value falling to the left of χ2
0.975 is unlikely unless

our assumed value of σ2 is too large. In other words, it is possible to have a χ2

value to the left of χ2
0.975 or to the right of χ2

0.025 when σ2 is correct, but if this
should occur, it is more probable that the assumed value of σ2 is in error.

Example 8.7: A manufacturer of car batteries guarantees that the batteries will last, on average,
3 years with a standard deviation of 1 year. If five of these batteries have lifetimes
of 1.9, 2.4, 3.0, 3.5, and 4.2 years, should the manufacturer still be convinced that
the batteries have a standard deviation of 1 year? Assume that the battery lifetime
follows a normal distribution.

Solution : We first find the sample variance using Theorem 8.1,

s2 =
(5)(48.26)− (15)2

(5)(4)
= 0.815.

Then

χ2 =
(4)(0.815)

1
= 3.26
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is a value from a chi-squared distribution with 4 degrees of freedom. Since 95%
of the χ2 values with 4 degrees of freedom fall between 0.484 and 11.143, the
computed value with σ2 = 1 is reasonable, and therefore the manufacturer has no
reason to suspect that the standard deviation is other than 1 year.

Degrees of Freedom as a Measure of Sample Information

Recall from Corollary 7.1 in Section 7.3 that

n∑
i=1

(Xi − μ)2

σ2

has a χ2-distribution with n degrees of freedom. Note also Theorem 8.4, which
indicates that the random variable

(n− 1)S2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

has a χ2-distribution with n−1 degrees of freedom. The reader may also recall that
the term degrees of freedom, used in this identical context, is discussed in Chapter
1.

As we indicated earlier, the proof of Theorem 8.4 will not be given. However,
the reader can view Theorem 8.4 as indicating that when μ is not known and one
considers the distribution of

n∑
i=1

(Xi − X̄)2

σ2
,

there is 1 less degree of freedom, or a degree of freedom is lost in the estimation
of μ (i.e., when μ is replaced by x̄). In other words, there are n degrees of free-
dom, or independent pieces of information, in the random sample from the normal
distribution. When the data (the values in the sample) are used to compute the
mean, there is 1 less degree of freedom in the information used to estimate σ2.

8.6 t-Distribution

In Section 8.4, we discussed the utility of the Central Limit Theorem. Its applica-
tions revolve around inferences on a population mean or the difference between two
population means. Use of the Central Limit Theorem and the normal distribution
is certainly helpful in this context. However, it was assumed that the population
standard deviation is known. This assumption may not be unreasonable in situ-
ations where the engineer is quite familiar with the system or process. However,
in many experimental scenarios, knowledge of σ is certainly no more reasonable
than knowledge of the population mean μ. Often, in fact, an estimate of σ must
be supplied by the same sample information that produced the sample average x̄.
As a result, a natural statistic to consider to deal with inferences on μ is

T =
X̄ − μ

S/
√
n
,
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since S is the sample analog to σ. If the sample size is small, the values of S2 fluc-
tuate considerably from sample to sample (see Exercise 8.43 on page 259) and the
distribution of T deviates appreciably from that of a standard normal distribution.

If the sample size is large enough, say n ≥ 30, the distribution of T does not
differ considerably from the standard normal. However, for n < 30, it is useful to
deal with the exact distribution of T . In developing the sampling distribution of T ,
we shall assume that our random sample was selected from a normal population.
We can then write

T =
(X̄ − μ)/(σ/

√
n)√

S2/σ2
=

Z√
V/(n− 1)

,

where

Z =
X̄ − μ

σ/
√
n

has the standard normal distribution and

V =
(n− 1)S2

σ2

has a chi-squared distribution with v = n−1 degrees of freedom. In sampling from
normal populations, we can show that X̄ and S2 are independent, and consequently
so are Z and V . The following theorem gives the definition of a random variable
T as a function of Z (standard normal) and χ2. For completeness, the density
function of the t-distribution is given.

Theorem 8.5: Let Z be a standard normal random variable and V a chi-squared random variable
with v degrees of freedom. If Z and V are independent, then the distribution of
the random variable T , where

T =
Z√
V/v

,

is given by the density function

h(t) =
Γ[(v + 1)/2]

Γ(v/2)
√
πv

(
1 +

t2

v

)−(v+1)/2

, −∞ < t < ∞.

This is known as the t-distribution with v degrees of freedom.

From the foregoing and the theorem above we have the following corollary.
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Corollary 8.1: Let X1, X2, . . . , Xn be independent random variables that are all normal with
mean μ and standard deviation σ. Let

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Then the random variable T = X̄−μ
S/

√
n
has a t-distribution with v = n − 1 degrees

of freedom.

The probability distribution of T was first published in 1908 in a paper written
by W. S. Gosset. At the time, Gosset was employed by an Irish brewery that
prohibited publication of research by members of its staff. To circumvent this re-
striction, he published his work secretly under the name “Student.” Consequently,
the distribution of T is usually called the Student t-distribution or simply the t-
distribution. In deriving the equation of this distribution, Gosset assumed that the
samples were selected from a normal population. Although this would seem to be a
very restrictive assumption, it can be shown that nonnormal populations possess-
ing nearly bell-shaped distributions will still provide values of T that approximate
the t-distribution very closely.

What Does the t-Distribution Look Like?

The distribution of T is similar to the distribution of Z in that they both are
symmetric about a mean of zero. Both distributions are bell shaped, but the t-
distribution is more variable, owing to the fact that the T -values depend on the
fluctuations of two quantities, X̄ and S2, whereas the Z-values depend only on the
changes in X̄ from sample to sample. The distribution of T differs from that of Z
in that the variance of T depends on the sample size n and is always greater than
1. Only when the sample size n → ∞ will the two distributions become the same.
In Figure 8.8, we show the relationship between a standard normal distribution
(v = ∞) and t-distributions with 2 and 5 degrees of freedom. The percentage
points of the t-distribution are given in Table A.4.

�2 �1 0 1 2

v � 2

v � �

v � 5

Figure 8.8: The t-distribution curves for v = 2, 5,
and ∞.

t
t1�  

� �t t0
ααα

Figure 8.9: Symmetry property (about 0) of the
t-distribution.
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It is customary to let tα represent the t-value above which we find an area equal
to α. Hence, the t-value with 10 degrees of freedom leaving an area of 0.025 to
the right is t = 2.228. Since the t-distribution is symmetric about a mean of zero,
we have t1−α = −tα; that is, the t-value leaving an area of 1− α to the right and
therefore an area of α to the left is equal to the negative t-value that leaves an area
of α in the right tail of the distribution (see Figure 8.9). That is, t0.95 = −t0.05,
t0.99 = −t0.01, and so forth.

Example 8.8: The t-value with v = 14 degrees of freedom that leaves an area of 0.025 to the left,
and therefore an area of 0.975 to the right, is

t0.975 = −t0.025 = −2.145.

Example 8.9: Find P (−t0.025 < T < t0.05).
Solution : Since t0.05 leaves an area of 0.05 to the right, and −t0.025 leaves an area of 0.025

to the left, we find a total area of

1− 0.05− 0.025 = 0.925

between −t0.025 and t0.05. Hence

P (−t0.025 < T < t0.05) = 0.925.

Example 8.10: Find k such that P (k < T < −1.761) = 0.045 for a random sample of size 15

selected from a normal distribution and X−μ
s/

√
n
.

t
0k − t0.005

0.045

Figure 8.10: The t-values for Example 8.10.

Solution : From Table A.4 we note that 1.761 corresponds to t0.05 when v = 14. Therefore,
−t0.05 = −1.761. Since k in the original probability statement is to the left of
−t0.05 = −1.761, let k = −tα. Then, from Figure 8.10, we have

0.045 = 0.05− α, or α = 0.005.

Hence, from Table A.4 with v = 14,

k = −t0.005 = −2.977 and P (−2.977 < T < −1.761) = 0.045.
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Exactly 95% of the values of a t-distribution with v = n− 1 degrees of freedom
lie between −t0.025 and t0.025. Of course, there are other t-values that contain 95%
of the distribution, such as −t0.02 and t0.03, but these values do not appear in Table
A.4, and furthermore, the shortest possible interval is obtained by choosing t-values
that leave exactly the same area in the two tails of our distribution. A t-value that
falls below −t0.025 or above t0.025 would tend to make us believe either that a very
rare event has taken place or that our assumption about μ is in error. Should this
happen, we shall make the the decision that our assumed value of μ is in error.
In fact, a t-value falling below −t0.01 or above t0.01 would provide even stronger
evidence that our assumed value of μ is quite unlikely. General procedures for
testing claims concerning the value of the parameter μ will be treated in Chapter
10. A preliminary look into the foundation of these procedure is illustrated by the
following example.

Example 8.11: A chemical engineer claims that the population mean yield of a certain batch
process is 500 grams per milliliter of raw material. To check this claim he samples
25 batches each month. If the computed t-value falls between −t0.05 and t0.05, he
is satisfied with this claim. What conclusion should he draw from a sample that
has a mean x̄ = 518 grams per milliliter and a sample standard deviation s = 40
grams? Assume the distribution of yields to be approximately normal.

Solution : From Table A.4 we find that t0.05 = 1.711 for 24 degrees of freedom. Therefore, the
engineer can be satisfied with his claim if a sample of 25 batches yields a t-value
between −1.711 and 1.711. If μ= 500, then

t =
518− 500

40/
√
25

= 2.25,

a value well above 1.711. The probability of obtaining a t-value, with v = 24, equal
to or greater than 2.25 is approximately 0.02. If μ > 500, the value of t computed
from the sample is more reasonable. Hence, the engineer is likely to conclude that
the process produces a better product than he thought.

What Is the t-Distribution Used For?

The t-distribution is used extensively in problems that deal with inference about
the population mean (as illustrated in Example 8.11) or in problems that involve
comparative samples (i.e., in cases where one is trying to determine if means from
two samples are significantly different). The use of the distribution will be extended
in Chapters 9, 10, 11, and 12. The reader should note that use of the t-distribution
for the statistic

T =
X̄ − μ

S/
√
n

requires that X1, X2, . . . , Xn be normal. The use of the t-distribution and the
sample size consideration do not relate to the Central Limit Theorem. The use
of the standard normal distribution rather than T for n ≥ 30 merely implies that
S is a sufficiently good estimator of σ in this case. In chapters that follow the
t-distribution finds extensive usage.
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8.7 F -Distribution

We have motivated the t-distribution in part by its application to problems in which
there is comparative sampling (i.e., a comparison between two sample means).
For example, some of our examples in future chapters will take a more formal
approach, chemical engineer collects data on two catalysts, biologist collects data
on two growth media, or chemist gathers data on two methods of coating material
to inhibit corrosion. While it is of interest to let sample information shed light
on two population means, it is often the case that a comparison of variability is
equally important, if not more so. The F -distribution finds enormous application
in comparing sample variances. Applications of the F -distribution are found in
problems involving two or more samples.

The statistic F is defined to be the ratio of two independent chi-squared random
variables, each divided by its number of degrees of freedom. Hence, we can write

F =
U/v1
V/v2

,

where U and V are independent random variables having chi-squared distributions
with v1 and v2 degrees of freedom, respectively. We shall now state the sampling
distribution of F .

Theorem 8.6: Let U and V be two independent random variables having chi-squared distributions
with v1 and v2 degrees of freedom, respectively. Then the distribution of the

random variable F = U/v1

V/v2
is given by the density function

h(f) =

{
Γ[(v1+v2)/2](v1/v2)

v1/2

Γ(v1/2)Γ(v2/2)
f(v1/2)−1

(1+v1f/v2)(v1+v2)/2 , f > 0,

0, f ≤ 0.

This is known as the F-distribution with v1 and v2 degrees of freedom (d.f.).

We will make considerable use of the random variable F in future chapters. How-
ever, the density function will not be used and is given only for completeness. The
curve of the F -distribution depends not only on the two parameters v1 and v2 but
also on the order in which we state them. Once these two values are given, we can
identify the curve. Typical F -distributions are shown in Figure 8.11.

Let fα be the f -value above which we find an area equal to α. This is illustrated
by the shaded region in Figure 8.12. Table A.6 gives values of fα only for α = 0.05
and α = 0.01 for various combinations of the degrees of freedom v1 and v2. Hence,
the f -value with 6 and 10 degrees of freedom, leaving an area of 0.05 to the right,
is f0.05 = 3.22. By means of the following theorem, Table A.6 can also be used to
find values of f0.95 and f0.99. The proof is left for the reader.

Uploaded By: anonymousSTUDENTS-HUB.com



252 Chapter 8 Fundamental Sampling Distributions and Data Descriptions

f
0

d.f. � (6, 10)

d.f. � (10, 30)

Figure 8.11: Typical F -distributions.

f
0 f

α

α

Figure 8.12: Illustration of the fα for the F -
distribution.

Theorem 8.7: Writing fα(v1, v2) for fα with v1 and v2 degrees of freedom, we obtain

f1−α(v1, v2) =
1

fα(v2, v1)
.

Thus, the f -value with 6 and 10 degrees of freedom, leaving an area of 0.95 to the
right, is

f0.95(6, 10) =
1

f0.05(10, 6)
=

1

4.06
= 0.246.

The F -Distribution with Two Sample Variances

Suppose that random samples of size n1 and n2 are selected from two normal
populations with variances σ2

1 and σ2
2 , respectively. From Theorem 8.4, we know

that

χ2
1 =

(n1 − 1)S2
1

σ2
1

and χ2
2 =

(n2 − 1)S2
2

σ2
2

are random variables having chi-squared distributions with v1 = n1 − 1 and v2 =
n2 − 1 degrees of freedom. Furthermore, since the samples are selected at random,
we are dealing with independent random variables. Then, using Theorem 8.6 with
χ2
1 = U and χ2

2 = V , we obtain the following result.

Theorem 8.8: If S2
1 and S2

2 are the variances of independent random samples of size n1 and n2

taken from normal populations with variances σ2
1 and σ2

2 , respectively, then

F =
S2
1/σ

2
1

S2
2/σ

2
2

=
σ2
2S

2
1

σ2
1S

2
2

has an F -distribution with v1 = n1 − 1 and v2 = n2 − 1 degrees of freedom.
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What Is the F -Distribution Used For?

We answered this question, in part, at the beginning of this section. The F -
distribution is used in two-sample situations to draw inferences about the pop-
ulation variances. This involves the application of Theorem 8.8. However, the
F -distribution can also be applied to many other types of problems involving sam-
ple variances. In fact, the F -distribution is called the variance ratio distribution.
As an illustration, consider Case Study 8.2, in which two paints, A and B, were
compared with regard to mean drying time. The normal distribution applies nicely
(assuming that σA and σB are known). However, suppose that there are three types
of paints to compare, say A, B, and C. We wish to determine if the population
means are equivalent. Suppose that important summary information from the
experiment is as follows:

Paint Sample Mean Sample Variance Sample Size

A X̄A = 4.5 s2A = 0.20 10

B X̄B = 5.5 s2B = 0.14 10

C X̄C = 6.5 s2C = 0.11 10

The problem centers around whether or not the sample averages (x̄A, x̄B , x̄C)
are far enough apart. The implication of “far enough apart” is very important.
It would seem reasonable that if the variability between sample averages is larger
than what one would expect by chance, the data do not support the conclusion
that μA = μB = μC . Whether these sample averages could have occurred by
chance depends on the variability within samples, as quantified by s2A, s2B , and
s2C . The notion of the important components of variability is best seen through
some simple graphics. Consider the plot of raw data from samples A, B, and C,
shown in Figure 8.13. These data could easily have generated the above summary
information.

4.5 5.5 6.5
A A A A A A A A A AB B B B B B B BB BCC C C CC C C C C

xA xB xC

Figure 8.13: Data from three distinct samples.

It appears evident that the data came from distributions with different pop-
ulation means, although there is some overlap between the samples. An analysis
that involves all of the data would attempt to determine if the variability between
the sample averages and the variability within the samples could have occurred
jointly if in fact the populations have a common mean. Notice that the key to this
analysis centers around the two following sources of variability.

(1) Variability within samples (between observations in distinct samples)

(2) Variability between samples (between sample averages)

Clearly, if the variability in (1) is considerably larger than that in (2), there will be
considerable overlap in the sample data, a signal that the data could all have come
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from a common distribution. An example is found in the data set shown in Figure
8.14. On the other hand, it is very unlikely that data from distributions with a
common mean could have variability between sample averages that is considerably
larger than the variability within samples.

A A A A A A A A A AB B B B B B B B B BC C C C C C C C C C

xA xBxC

Figure 8.14: Data that easily could have come from the same population.

The sources of variability in (1) and (2) above generate important ratios of
sample variances, and ratios are used in conjunction with the F -distribution. The
general procedure involved is called analysis of variance. It is interesting that
in the paint example described here, we are dealing with inferences on three pop-
ulation means, but two sources of variability are used. We will not supply details
here, but in Chapters 13 through 15 we make extensive use of analysis of variance,
and, of course, the F -distribution plays an important role.

8.8 Quantile and Probability Plots

In Chapter 1 we introduced the reader to empirical distributions. The motivation is
to use creative displays to extract information about properties of a set of data. For
example, stem-and-leaf plots provide the viewer with a look at symmetry and other
properties of the data. In this chapter we deal with samples, which, of course, are
collections of experimental data from which we draw conclusions about populations.
Often the appearance of the sample provides information about the distribution
from which the data are taken. For example, in Chapter 1 we illustrated the general
nature of pairs of samples with point plots that displayed a relative comparison
between central tendency and variability in two samples.

In chapters that follow, we often make the assumption that a distribution is
normal. Graphical information regarding the validity of this assumption can be
retrieved from displays like stem-and-leaf plots and frequency histograms. In ad-
dition, we will introduce the notion of normal probability plots and quantile plots
in this section. These plots are used in studies that have varying degrees of com-
plexity, with the main objective of the plots being to provide a diagnostic check on
the assumption that the data came from a normal distribution.

We can characterize statistical analysis as the process of drawing conclusions
about systems in the presence of system variability. For example, an engineer’s
attempt to learn about a chemical process is often clouded by process variability.
A study involving the number of defective items in a production process is often
made more difficult by variability in the method of manufacture of the items. In
what has preceded, we have learned about samples and statistics that express center
of location and variability in the sample. These statistics provide single measures,
whereas a graphical display adds additional information through a picture.

One type of plot that can be particularly useful in characterizing the nature of
a data set is the quantile plot. As in the case of the box-and-whisker plot (Section
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1.6), one can use the basic ideas in the quantile plot to compare samples of data,
where the goal of the analyst is to draw distinctions. Further illustrations of this
type of usage of quantile plots will be given in future chapters where the formal
statistical inference associated with comparing samples is discussed. At that point,
case studies will expose the reader to both the formal inference and the diagnostic
graphics for the same data set.

Quantile Plot

The purpose of the quantile plot is to depict, in sample form, the cumulative
distribution function discussed in Chapter 3.

Definition 8.6: A quantile of a sample, q(f), is a value for which a specified fraction f of the
data values is less than or equal to q(f).

Obviously, a quantile represents an estimate of a characteristic of a population,
or rather, the theoretical distribution. The sample median is q(0.5). The 75th
percentile (upper quartile) is q(0.75) and the lower quartile is q(0.25).

A quantile plot simply plots the data values on the vertical axis against an
empirical assessment of the fraction of observations exceeded by the data value. For
theoretical purposes, this fraction is computed as

fi =
i− 3

8

n+ 1
4

,

where i is the order of the observations when they are ranked from low to high. In
other words, if we denote the ranked observations as

y(1) ≤ y(2) ≤ y(3) ≤ · · · ≤ y(n−1) ≤ y(n),

then the quantile plot depicts a plot of y(i) against fi. In Figure 8.15, the quantile
plot is given for the paint can ear data discussed previously.

Unlike the box-and-whisker plot, the quantile plot actually shows all observa-
tions. All quantiles, including the median and the upper and lower quantile, can
be approximated visually. For example, we readily observe a median of 35 and
an upper quartile of about 36. Relatively large clusters around specific values are
indicated by slopes near zero, while sparse data in certain areas produce steeper
slopes. Figure 8.15 depicts sparsity of data from the values 28 through 30 but
relatively high density at 36 through 38. In Chapters 9 and 10 we pursue quantile
plotting further by illustrating useful ways of comparing distinct samples.

It should be somewhat evident to the reader that detection of whether or not
a data set came from a normal distribution can be an important tool for the data
analyst. As we indicated earlier in this section, we often make the assumption that
all or subsets of observations in a data set are realizations of independent identically
distributed normal random variables. Once again, the diagnostic plot can often
nicely augment (for display purposes) a formal goodness-of-fit test on the data.
Goodness-of-fit tests are discussed in Chapter 10. Readers of a scientific paper or
report tend to find diagnostic information much clearer, less dry, and perhaps less
boring than a formal analysis. In later chapters (Chapters 9 through 13), we focus
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Figure 8.15: Quantile plot for paint data.

again on methods of detecting deviations from normality as an augmentation of
formal statistical inference. Quantile plots are useful in detection of distribution
types. There are also situations in both model building and design of experiments
in which the plots are used to detect important model terms or effects that
are active. In other situations, they are used to determine whether or not the
underlying assumptions made by the scientist or engineer in building the model
are reasonable. Many examples with illustrations will be encountered in Chapters
11, 12, and 13. The following subsection provides a discussion and illustration of
a diagnostic plot called the normal quantile-quantile plot.

Normal Quantile-Quantile Plot

The normal quantile-quantile plot takes advantage of what is known about the
quantiles of the normal distribution. The methodology involves a plot of the em-
pirical quantiles recently discussed against the corresponding quantile of the normal
distribution. Now, the expression for a quantile of an N(μ, σ) random variable is
very complicated. However, a good approximation is given by

qμ,σ(f) = μ+ σ{4.91[f0.14 − (1− f)0.14]}.

The expression in braces (the multiple of σ) is the approximation for the corre-
sponding quantile for the N(0, 1) random variable, that is,

q0,1(f) = 4.91[f0.14 − (1− f)0.14].
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8.8 Quantile and Probability Plots 257

Definition 8.7: The normal quantile-quantile plot is a plot of y(i) (ordered observations)

against q0,1(fi), where fi =
i− 3

8

n+ 1
4

.

A nearly straight-line relationship suggests that the data came from a normal
distribution. The intercept on the vertical axis is an estimate of the population
mean μ and the slope is an estimate of the standard deviation σ. Figure 8.16 shows
a normal quantile-quantile plot for the paint can data.
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Figure 8.16: Normal quantile-quantile plot for paint data.

Normal Probability Plotting

Notice how the deviation from normality becomes clear from the appearance of the
plot. The asymmetry exhibited in the data results in changes in the slope.

The ideas of probability plotting are manifested in plots other than the normal
quantile-quantile plot discussed here. For example, much attention is given to the
so-called normal probability plot, in which f is plotted against the ordered data
values on special paper and the scale used results in a straight line. In addition,
an alternative plot makes use of the expected values of the ranked observations for
the normal distribution and plots the ranked observations against their expected
value, under the assumption of data from N(μ, σ). Once again, the straight line
is the graphical yardstick used. We continue to suggest that the foundation in
graphical analytical methods developed in this section will aid in understanding
formal methods of distinguishing between distinct samples of data.

Uploaded By: anonymousSTUDENTS-HUB.com



258 Chapter 8 Fundamental Sampling Distributions and Data Descriptions

Example 8.12: Consider the data in Exercise 10.41 on page 358 in Chapter 10. In a study “Nu-
trient Retention and Macro Invertebrate Community Response to Sewage Stress
in a Stream Ecosystem,” conducted in the Department of Zoology at the Virginia
Polytechnic Institute and State University, data were collected on density measure-
ments (number of organisms per square meter) at two different collecting stations.
Details are given in Chapter 10 regarding analytical methods of comparing samples
to determine if both are from the same N(μ, σ) distribution. The data are given
in Table 8.1.

Table 8.1: Data for Example 8.12

Number of Organisms per Square Meter
Station 1 Station 2

5, 030
13, 700
10, 730
11, 400

860
2, 200
4, 250

15, 040

4, 980
11, 910
8, 130
26, 850
17, 660
22, 800
1, 130
1, 690

2, 800
4, 670
6, 890
7, 720
7, 030
7, 330

2, 810
1, 330
3, 320
1, 230
2, 130
2, 190

Construct a normal quantile-quantile plot and draw conclusions regarding whether
or not it is reasonable to assume that the two samples are from the same n(x;μ, σ)
distribution.
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Figure 8.17: Normal quantile-quantile plot for density data of Example 8.12.
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Solution : Figure 8.17 shows the normal quantile-quantile plot for the density measurements.
The plot is far from a single straight line. In fact, the data from station 1 reflect
a few values in the lower tail of the distribution and several in the upper tail.
The “clustering” of observations would make it seem unlikely that the two samples
came from a common N(μ, σ) distribution.

Although we have concentrated our development and illustration on probability
plotting for the normal distribution, we could focus on any distribution. We would
merely need to compute quantities analytically for the theoretical distribution in
question.

Exercises

8.37 For a chi-squared distribution, find

(a) χ2
0.025 when v = 15;

(b) χ2
0.01 when v = 7;

(c) χ2
0.05 when v = 24.

8.38 For a chi-squared distribution, find

(a) χ2
0.005 when v = 5;

(b) χ2
0.05 when v = 19;

(c) χ2
0.01 when v = 12.

8.39 For a chi-squared distribution, find χ2
α such that

(a) P (X2 > χ2
α) = 0.99 when v = 4;

(b) P (X2 > χ2
α) = 0.025 when v = 19;

(c) P (37.652 < X2 < χ2
α) = 0.045 when v = 25.

8.40 For a chi-squared distribution, find χ2
α such that

(a) P (X2 > χ2
α) = 0.01 when v = 21;

(b) P (X2 < χ2
α) = 0.95 when v = 6;

(c) P (χ2
α < X2 < 23.209) = 0.015 when v = 10.

8.41 Assume the sample variances to be continuous
measurements. Find the probability that a random
sample of 25 observations, from a normal population
with variance σ2 = 6, will have a sample variance S2

(a) greater than 9.1;

(b) between 3.462 and 10.745.

8.42 The scores on a placement test given to college
freshmen for the past five years are approximately nor-
mally distributed with a mean μ = 74 and a variance
σ2 = 8. Would you still consider σ2 = 8 to be a valid
value of the variance if a random sample of 20 students
who take the placement test this year obtain a value of
s2 = 20?

8.43 Show that the variance of S2 for random sam-
ples of size n from a normal population decreases as
n becomes large. [Hint: First find the variance of
(n− 1)S2/σ2.]

8.44 (a) Find t0.025 when v = 14.

(b) Find −t0.10 when v = 10.

(c) Find t0.995 when v = 7.

8.45 (a) Find P (T < 2.365) when v = 7.

(b) Find P (T > 1.318) when v = 24.

(c) Find P (−1.356 < T < 2.179) when v = 12.

(d) Find P (T > −2.567) when v = 17.

8.46 (a) Find P (−t0.005 < T < t0.01) for v = 20.

(b) Find P (T > −t0.025).

8.47 Given a random sample of size 24 from a normal
distribution, find k such that

(a) P (−2.069 < T < k) = 0.965;

(b) P (k < T < 2.807) = 0.095;

(c) P (−k < T < k) = 0.90.

8.48 A manufacturing firm claims that the batteries
used in their electronic games will last an average of
30 hours. To maintain this average, 16 batteries are
tested each month. If the computed t-value falls be-
tween −t0.025 and t0.025, the firm is satisfied with its
claim. What conclusion should the firm draw from a
sample that has a mean of x̄ = 27.5 hours and a stan-
dard deviation of s = 5 hours? Assume the distribution
of battery lives to be approximately normal.

8.49 A normal population with unknown variance has
a mean of 20. Is one likely to obtain a random sample
of size 9 from this population with a mean of 24 and
a standard deviation of 4.1? If not, what conclusion
would you draw?
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8.50 A maker of a certain brand of low-fat cereal bars
claims that the average saturated fat content is 0.5
gram. In a random sample of 8 cereal bars of this
brand, the saturated fat content was 0.6, 0.7, 0.7, 0.3,
0.4, 0.5, 0.4, and 0.2. Would you agree with the claim?
Assume a normal distribution.

8.51 For an F -distribution, find

(a) f0.05 with v1 = 7 and v2 = 15;

(b) f0.05 with v1 = 15 and v2 = 7:

(c) f0.01 with v1 = 24 and v2 = 19;

(d) f0.95 with v1 = 19 and v2 = 24;

(e) f0.99 with v1 = 28 and v2 = 12.

8.52 Pull-strength tests on 10 soldered leads for a
semiconductor device yield the following results, in
pounds of force required to rupture the bond:

19.8 12.7 13.2 16.9 10.6
18.8 11.1 14.3 17.0 12.5

Another set of 8 leads was tested after encapsulation
to determine whether the pull strength had been in-
creased by encapsulation of the device, with the fol-
lowing results:

24.9 22.8 23.6 22.1 20.4 21.6 21.8 22.5
Comment on the evidence available concerning equal-
ity of the two population variances.

8.53 Consider the following measurements of the
heat-producing capacity of the coal produced by two

mines (in millions of calories per ton):
Mine 1: 8260 8130 8350 8070 8340
Mine 2: 7950 7890 7900 8140 7920 7840

Can it be concluded that the two population variances
are equal?

8.54 Construct a quantile plot of these data, which
represent the lifetimes, in hours, of fifty 40-watt, 110-
volt internally frosted incandescent lamps taken from
forced life tests:

919 1196 785 1126 936 918
1156 920 948 1067 1092 1162
1170 929 950 905 972 1035
1045 855 1195 1195 1340 1122
938 970 1237 956 1102 1157
978 832 1009 1157 1151 1009
765 958 902 1022 1333 811

1217 1085 896 958 1311 1037
702 923

8.55 Construct a normal quantile-quantile plot of
these data, which represent the diameters of 36 rivet
heads in 1/100 of an inch:

6.72 6.77 6.82 6.70 6.78 6.70 6.62
6.75 6.66 6.66 6.64 6.76 6.73 6.80
6.72 6.76 6.76 6.68 6.66 6.62 6.72
6.76 6.70 6.78 6.76 6.67 6.70 6.72
6.74 6.81 6.79 6.78 6.66 6.76 6.76
6.72

Review Exercises

8.56 Consider the data displayed in Exercise 1.20 on
page 31. Construct a box-and-whisker plot and com-
ment on the nature of the sample. Compute the sample
mean and sample standard deviation.

8.57 If X1, X2, . . . , Xn are independent random vari-
ables having identical exponential distributions with
parameter θ, show that the density function of the ran-
dom variable Y = X1+X2+· · ·+Xn is that of a gamma
distribution with parameters α = n and β = θ.

8.58 In testing for carbon monoxide in a certain
brand of cigarette, the data, in milligrams per
cigarette, were coded by subtracting 12 from each ob-
servation. Use the results of Exercise 8.14 on page 231
to find the standard deviation for the carbon monox-
ide content of a random sample of 15 cigarettes of this
brand if the coded measurements are 3.8, −0.9, 5.4,
4.5, 5.2, 5.6, 2.7, −0.1, −0.3, −1.7, 5.7, 3.3, 4.4, −0.5,
and 1.9.

8.59 If S2
1 and S2

2 represent the variances of indepen-

dent random samples of size n1 = 8 and n2 = 12,
taken from normal populations with equal variances,
find P (S2

1/S
2
2 < 4.89).

8.60 A random sample of 5 bank presidents indi-
cated annual salaries of $395,000, $521,000, $483,000,
$479,000, and $510,000. Find the variance of this set.

8.61 If the number of hurricanes that hit a certain
area of the eastern United States per year is a random
variable having a Poisson distribution with μ = 6, find
the probability that this area will be hit by

(a) exactly 15 hurricanes in 2 years;

(b) at most 9 hurricanes in 2 years.

8.62 A taxi company tests a random sample of 10
steel-belted radial tires of a certain brand and records
the following tread wear: 48,000, 53,000, 45,000,
61,000, 59,000, 56,000, 63,000, 49,000, 53,000, and
54,000 kilometers. Use the results of Exercise 8.14 on
page 231 to find the standard deviation of this set of
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data by first dividing each observation by 1000 and
then subtracting 55.

8.63 Consider the data of Exercise 1.19 on page 31.
Construct a box-and-whisker plot. Comment. Com-
pute the sample mean and sample standard deviation.

8.64 If S2
1 and S2

2 represent the variances of indepen-
dent random samples of size n1 = 25 and n2 = 31,
taken from normal populations with variances σ2

1 = 10
and σ2

2 = 15, respectively, find

P (S2
1/S

2
2 > 1.26).

8.65 Consider Example 1.5 on page 25. Comment on
any outliers.

8.66 Consider Review Exercise 8.56. Comment on
any outliers in the data.

8.67 The breaking strength X of a certain rivet used
in a machine engine has a mean 5000 psi and stan-
dard deviation 400 psi. A random sample of 36 rivets
is taken. Consider the distribution of X̄, the sample
mean breaking strength.

(a) What is the probability that the sample mean falls
between 4800 psi and 5200 psi?

(b) What sample n would be necessary in order to have

P (4900 < X̄ < 5100) = 0.99?

8.68 Consider the situation of Review Exercise 8.62.
If the population from which the sample was taken has
population mean μ = 53, 000 kilometers, does the sam-
ple information here seem to support that claim? In
your answer, compute

t =
x̄− 53, 000

s/
√
10

and determine from Table A.4 (with 9 d.f.) whether
the computed t-value is reasonable or appears to be a
rare event.

8.69 Two distinct solid fuel propellants, type A and
type B, are being considered for a space program activ-
ity. Burning rates of the propellant are crucial. Ran-
dom samples of 20 specimens of the two propellants
are taken with sample means 20.5 cm/sec for propel-
lant A and 24.50 cm/sec for propellant B. It is gen-
erally assumed that the variability in burning rate is
roughly the same for the two propellants and is given
by a population standard deviation of 5 cm/sec. As-
sume that the burning rates for each propellant are
approximately normal and hence make use of the Cen-
tral Limit Theorem. Nothing is known about the two

population mean burning rates, and it is hoped that
this experiment might shed some light on them.

(a) If, indeed, μA = μB , what is P (X̄B − X̄A ≥ 4.0)?

(b) Use your answer in (a) to shed some light on the
proposition that μA = μB .

8.70 The concentration of an active ingredient in the
output of a chemical reaction is strongly influenced by
the catalyst that is used in the reaction. It is felt that
when catalyst A is used, the population mean concen-
tration exceeds 65%. The standard deviation is known
to be σ = 5%. A sample of outputs from 30 inde-
pendent experiments gives the average concentration
of x̄A = 64.5%.

(a) Does this sample information with an average con-
centration of x̄A = 64.5% provide disturbing in-
formation that perhaps μA is not 65%, but less
than 65%? Support your answer with a probability
statement.

(b) Suppose a similar experiment is done with the use
of another catalyst, catalyst B. The standard devi-
ation σ is still assumed to be 5% and x̄B turns out
to be 70%. Comment on whether or not the sample
information on catalyst B strongly suggests that
μB is truly greater than μA. Support your answer
by computing

P (X̄B − X̄A ≥ 5.5 | μB = μA).

(c) Under the condition that μA = μB = 65%, give the
approximate distribution of the following quantities
(with mean and variance of each). Make use of the
Central Limit Theorem.

i)X̄B ;
ii)X̄A − X̄B ;

iii) X̄A−X̄B

σ
√

2/30
.

8.71 From the information in Review Exercise 8.70,
compute (assuming μB = 65%) P (X̄B ≥ 70).

8.72 Given a normal random variable X with mean
20 and variance 9, and a random sample of size n taken
from the distribution, what sample size n is necessary
in order that

P (19.9 ≤ X̄ ≤ 20.1) = 0.95?

8.73 In Chapter 9, the concept of parameter esti-
mation will be discussed at length. Suppose X is a
random variable with mean μ and variance σ2 = 1.0.
Suppose also that a random sample of size n is to be
taken and x̄ is to be used as an estimate of μ. When
the data are taken and the sample mean is measured,
we wish it to be within 0.05 unit of the true mean with
probability 0.99. That is, we want there to be a good
chance that the computed x̄ from the sample is “very
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close” to the population mean (wherever it is!), so we
wish

P (|X̄ − μ| > 0.05) = 0.99.

What sample size is required?

8.74 Suppose a filling machine is used to fill cartons
with a liquid product. The specification that is strictly
enforced for the filling machine is 9 ± 1.5 oz. If any car-
ton is produced with weight outside these bounds, it is
considered by the supplier to be defective. It is hoped
that at least 99% of cartons will meet these specifica-
tions. With the conditions μ = 9 and σ = 1, what
proportion of cartons from the process are defective?
If changes are made to reduce variability, what must
σ be reduced to in order to meet specifications with
probability 0.99? Assume a normal distribution for
the weight.

8.75 Consider the situation in Review Exercise 8.74.
Suppose a considerable effort is conducted to “tighten”
the variability in the system. Following the effort, a
random sample of size 40 is taken from the new assem-
bly line and the sample variance is s2 = 0.188 ounces2.

Do we have strong numerical evidence that σ2 has been
reduced below 1.0? Consider the probability

P (S2 ≤ 0.188 | σ2 = 1.0),

and give your conclusion.

8.76 Group Project: The class should be divided
into groups of four people. The four students in each
group should go to the college gym or a local fit-
ness center. The students should ask each person who
comes through the door his or her height in inches.
Each group will then divide the height data by gender
and work together to answer the following questions.

(a) Construct a normal quantile-quantile plot of the
data. Based on the plot, do the data appear to
follow a normal distribution?

(b) Use the estimated sample variance as the true vari-
ance for each gender. Assume that the popula-
tion mean height for male students is actually three
inches larger than that of female students. What is
the probability that the average height of the male
students will be 4 inches larger than that of the
female students in your sample?

(c) What factors could render these results misleading?

8.9 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The Central Limit Theorem is one of the most powerful tools in all of statistics, and
even though this chapter is relatively short, it contains a wealth of fundamental
information about tools that will be used throughout the balance of the text.

The notion of a sampling distribution is one of the most important fundamental
concepts in all of statistics, and the student at this point in his or her training
should gain a clear understanding of it before proceeding beyond this chapter. All
chapters that follow will make considerable use of sampling distributions. Suppose
one wants to use the statistic X̄ to draw inferences about the population mean
μ. This will be done by using the observed value x̄ from a single sample of size
n. Then any inference made must be accomplished by taking into account not
just the single value but rather the theoretical structure, or distribution of all x̄
values that could be observed from samples of size n. Thus, the concept of
a sampling distribution comes to the surface. This distribution is the basis for the
Central Limit Theorem. The t, χ2, and F-distributions are also used in the context
of sampling distributions. For example, the t-distribution, pictured in Figure 8.8,
represents the structure that occurs if all of the values of x̄−μ

s/
√
n
are formed, where

x̄ and s are taken from samples of size n from a n(x;μ, σ) distribution. Similar
remarks can be made about χ2 and F , and the reader should not forget that the
sample information forming the statistics for all of these distributions is the normal.
So it can be said that where there is a t, F, or χ2, the source was a sample
from a normal distribution.
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The three distributions described above may appear to have been introduced in
a rather self-contained fashion with no indication of what they are about. However,
they will appear in practical problem-solving throughout the balance of the text.

Now, there are three things that one must bear in mind, lest confusion set in
regarding these fundamental sampling distributions:

(i) One cannot use the Central Limit Theorem unless σ is known. When σ is not
known, it should be replaced by s, the sample standard deviation, in order to
use the Central Limit Theorem.

(ii) The T statistic is not a result of the Central Limit Theorem and x1, x2, . . . , xn

must come from a n(x;μ, σ) distribution in order for x̄−μ
s/

√
n
to be a t-distribution;

s is, of course, merely an estimate of σ.

(iii) While the notion of degrees of freedom is new at this point, the concept
should be very intuitive, since it is reasonable that the nature of the distri-
bution of S and also t should depend on the amount of information in the
sample x1, x2, . . . , xn.
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Chapter 9

One- and Two-Sample
Estimation Problems

9.1 Introduction

In previous chapters, we emphasized sampling properties of the sample mean and
variance. We also emphasized displays of data in various forms. The purpose of
these presentations is to build a foundation that allows us to draw conclusions about
the population parameters from experimental data. For example, the Central Limit
Theorem provides information about the distribution of the sample mean X̄. The
distribution involves the population mean μ. Thus, any conclusions concerning μ
drawn from an observed sample average must depend on knowledge of this sampling
distribution. Similar comments apply to S2 and σ2. Clearly, any conclusions we
draw about the variance of a normal distribution will likely involve the sampling
distribution of S2.

In this chapter, we begin by formally outlining the purpose of statistical in-
ference. We follow this by discussing the problem of estimation of population
parameters. We confine our formal developments of specific estimation proce-
dures to problems involving one and two samples.

9.2 Statistical Inference

In Chapter 1, we discussed the general philosophy of formal statistical inference.
Statistical inference consists of those methods by which one makes inferences or
generalizations about a population. The trend today is to distinguish between the
classical method of estimating a population parameter, whereby inferences are
based strictly on information obtained from a random sample selected from the
population, and the Bayesian method, which utilizes prior subjective knowledge
about the probability distribution of the unknown parameters in conjunction with
the information provided by the sample data. Throughout most of this chapter,
we shall use classical methods to estimate unknown population parameters such as
the mean, the proportion, and the variance by computing statistics from random

265

Uploaded By: anonymousSTUDENTS-HUB.com
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samples and applying the theory of sampling distributions, much of which was
covered in Chapter 8. Bayesian estimation will be discussed in Chapter 18.

Statistical inference may be divided into two major areas: estimation and
tests of hypotheses. We treat these two areas separately, dealing with theory
and applications of estimation in this chapter and hypothesis testing in Chapter
10. To distinguish clearly between the two areas, consider the following examples.
A candidate for public office may wish to estimate the true proportion of voters
favoring him by obtaining opinions from a random sample of 100 eligible voters.
The fraction of voters in the sample favoring the candidate could be used as an
estimate of the true proportion in the population of voters. A knowledge of the
sampling distribution of a proportion enables one to establish the degree of accuracy
of such an estimate. This problem falls in the area of estimation.

Now consider the case in which one is interested in finding out whether brand
A floor wax is more scuff-resistant than brand B floor wax. He or she might
hypothesize that brandA is better than brandB and, after proper testing, accept or
reject this hypothesis. In this example, we do not attempt to estimate a parameter,
but instead we try to arrive at a correct decision about a prestated hypothesis.
Once again we are dependent on sampling theory and the use of data to provide
us with some measure of accuracy for our decision.

9.3 Classical Methods of Estimation

A point estimate of some population parameter θ is a single value θ̂ of a statistic
Θ̂. For example, the value x̄ of the statistic X̄, computed from a sample of size n,
is a point estimate of the population parameter μ. Similarly, p̂ = x/n is a point
estimate of the true proportion p for a binomial experiment.

An estimator is not expected to estimate the population parameter without
error. We do not expect X̄ to estimate μ exactly, but we certainly hope that it is
not far off. For a particular sample, it is possible to obtain a closer estimate of μ
by using the sample median X̃ as an estimator. Consider, for instance, a sample
consisting of the values 2, 5, and 11 from a population whose mean is 4 but is
supposedly unknown. We would estimate μ to be x̄ = 6, using the sample mean
as our estimate, or x̃ = 5, using the sample median as our estimate. In this case,
the estimator X̃ produces an estimate closer to the true parameter than does the
estimator X̄. On the other hand, if our random sample contains the values 2, 6,
and 7, then x̄ = 5 and x̃ = 6, so X̄ is the better estimator. Not knowing the true
value of μ, we must decide in advance whether to use X̄ or X̃ as our estimator.

Unbiased Estimator

What are the desirable properties of a “good” decision function that would influ-
ence us to choose one estimator rather than another? Let Θ̂ be an estimator whose
value θ̂ is a point estimate of some unknown population parameter θ. Certainly, we
would like the sampling distribution of Θ̂ to have a mean equal to the parameter
estimated. An estimator possessing this property is said to be unbiased.
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Definition 9.1: A statistic Θ̂ is said to be an unbiased estimator of the parameter θ if

μΘ̂ = E(Θ̂) = θ.

Example 9.1: Show that S2 is an unbiased estimator of the parameter σ2.
Solution : In Section 8.5 on page 244, we showed that

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2.

Now

E(S2) = E

[
1

n− 1

n∑
i=1

(Xi − X̄)2

]

=
1

n− 1

[
n∑

i=1

E(Xi − μ)2 − nE(X̄ − μ)2

]
=

1

n− 1

(
n∑

i=1

σ2
Xi

− nσ2
X̄

)
.

However,

σ2
Xi

= σ2, for i = 1, 2, . . . , n, and σ2
X̄ =

σ2

n
.

Therefore,

E(S2) =
1

n− 1

(
nσ2 − n

σ2

n

)
= σ2.

Although S2 is an unbiased estimator of σ2, S, on the other hand, is usually a
biased estimator of σ, with the bias becoming insignificant for large samples. This
example illustrates why we divide by n − 1 rather than n when the variance is
estimated.

Variance of a Point Estimator

If Θ̂1 and Θ̂2 are two unbiased estimators of the same population parameter θ, we
want to choose the estimator whose sampling distribution has the smaller variance.
Hence, if σ2

θ̂1
< σ2

θ̂2
, we say that Θ̂1 is a more efficient estimator of θ than Θ̂2.

Definition 9.2: If we consider all possible unbiased estimators of some parameter θ, the one with
the smallest variance is called the most efficient estimator of θ.

Figure 9.1 illustrates the sampling distributions of three different estimators,
Θ̂1, Θ̂2, and Θ̂3, all estimating θ. It is clear that only Θ̂1 and Θ̂2 are unbiased,
since their distributions are centered at θ. The estimator Θ̂1 has a smaller variance
than Θ̂2 and is therefore more efficient. Hence, our choice for an estimator of θ,
among the three considered, would be Θ̂1.

For normal populations, one can show that both X̄ and X̃ are unbiased estima-
tors of the population mean μ, but the variance of X̄ is smaller than the variance
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Figure 9.1: Sampling distributions of different estimators of θ.

of X̃. Thus, both estimates x̄ and x̃ will, on average, equal the population mean
μ, but x̄ is likely to be closer to μ for a given sample, and thus X̄ is more efficient
than X̃.

Interval Estimation

Even the most efficient unbiased estimator is unlikely to estimate the population
parameter exactly. It is true that estimation accuracy increases with large samples,
but there is still no reason we should expect a point estimate from a given sample
to be exactly equal to the population parameter it is supposed to estimate. There
are many situations in which it is preferable to determine an interval within which
we would expect to find the value of the parameter. Such an interval is called an
interval estimate.

An interval estimate of a population parameter θ is an interval of the form
θ̂L < θ < θ̂U , where θ̂L and θ̂U depend on the value of the statistic Θ̂ for a
particular sample and also on the sampling distribution of Θ̂. For example, a
random sample of SAT verbal scores for students in the entering freshman class
might produce an interval from 530 to 550, within which we expect to find the
true average of all SAT verbal scores for the freshman class. The values of the
endpoints, 530 and 550, will depend on the computed sample mean x̄ and the
sampling distribution of X̄. As the sample size increases, we know that σ2

X̄
= σ2/n

decreases, and consequently our estimate is likely to be closer to the parameter μ,
resulting in a shorter interval. Thus, the interval estimate indicates, by its length,
the accuracy of the point estimate. An engineer will gain some insight into the
population proportion defective by taking a sample and computing the sample
proportion defective. But an interval estimate might be more informative.

Interpretation of Interval Estimates

Since different samples will generally yield different values of Θ̂ and, therefore,
different values for θ̂L and θ̂U , these endpoints of the interval are values of corre-
sponding random variables Θ̂L and Θ̂U . From the sampling distribution of Θ̂ we
shall be able to determine Θ̂L and Θ̂U such that P (Θ̂L < θ < Θ̂U ) is equal to any

Uploaded By: anonymousSTUDENTS-HUB.com



9.4 Single Sample: Estimating the Mean 269

positive fractional value we care to specify. If, for instance, we find Θ̂L and Θ̂U

such that

P (Θ̂L < θ < Θ̂U ) = 1− α,

for 0 < α < 1, then we have a probability of 1−α of selecting a random sample that
will produce an interval containing θ. The interval θ̂L < θ < θ̂U , computed from
the selected sample, is called a 100(1 − α)% confidence interval, the fraction
1 − α is called the confidence coefficient or the degree of confidence, and
the endpoints, θ̂L and θ̂U , are called the lower and upper confidence limits.
Thus, when α = 0.05, we have a 95% confidence interval, and when α = 0.01, we
obtain a wider 99% confidence interval. The wider the confidence interval is, the
more confident we can be that the interval contains the unknown parameter. Of
course, it is better to be 95% confident that the average life of a certain television
transistor is between 6 and 7 years than to be 99% confident that it is between 3
and 10 years. Ideally, we prefer a short interval with a high degree of confidence.
Sometimes, restrictions on the size of our sample prevent us from achieving short
intervals without sacrificing some degree of confidence.

In the sections that follow, we pursue the notions of point and interval esti-
mation, with each section presenting a different special case. The reader should
notice that while point and interval estimation represent different approaches to
gaining information regarding a parameter, they are related in the sense that con-
fidence interval estimators are based on point estimators. In the following section,
for example, we will see that X̄ is a very reasonable point estimator of μ. As a
result, the important confidence interval estimator of μ depends on knowledge of
the sampling distribution of X̄.

We begin the following section with the simplest case of a confidence interval.
The scenario is simple and yet unrealistic. We are interested in estimating a popu-
lation mean μ and yet σ is known. Clearly, if μ is unknown, it is quite unlikely that
σ is known. Any historical results that produced enough information to allow the
assumption that σ is known would likely have produced similar information about
μ. Despite this argument, we begin with this case because the concepts and indeed
the resulting mechanics associated with confidence interval estimation remain the
same for the more realistic situations presented later in Section 9.4 and beyond.

9.4 Single Sample: Estimating the Mean

The sampling distribution of X̄ is centered at μ, and in most applications the
variance is smaller than that of any other estimators of μ. Thus, the sample
mean x̄ will be used as a point estimate for the population mean μ. Recall that
σ2
X̄

= σ2/n, so a large sample will yield a value of X̄ that comes from a sampling
distribution with a small variance. Hence, x̄ is likely to be a very accurate estimate
of μ when n is large.

Let us now consider the interval estimate of μ. If our sample is selected from
a normal population or, failing this, if n is sufficiently large, we can establish a
confidence interval for μ by considering the sampling distribution of X̄.

According to the Central Limit Theorem, we can expect the sampling distri-
bution of X̄ to be approximately normally distributed with mean μX̄ = μ and
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standard deviation σX̄ = σ/
√
n. Writing zα/2 for the z-value above which we find

an area of α/2 under the normal curve, we can see from Figure 9.2 that

P (−zα/2 < Z < zα/2) = 1− α,

where

Z =
X̄ − μ

σ/
√
n
.

Hence,

P

(
−zα/2 <

X̄ − μ

σ/
√
n

< zα/2

)
= 1− α.

z

1 −

−z
α /2 0 z

α /2

α /2
α /2

α

Figure 9.2: P (−zα/2 < Z < zα/2) = 1− α.

Multiplying each term in the inequality by σ/
√
n and then subtracting X̄ from each

term and multiplying by −1 (reversing the sense of the inequalities), we obtain

P

(
X̄ − zα/2

σ√
n
< μ < X̄ + zα/2

σ√
n

)
= 1− α.

A random sample of size n is selected from a population whose variance σ2 is known,
and the mean x̄ is computed to give the 100(1−α)% confidence interval below. It
is important to emphasize that we have invoked the Central Limit Theorem above.
As a result, it is important to note the conditions for applications that follow.

Confidence
Interval on μ, σ2

Known

If x̄ is the mean of a random sample of size n from a population with known
variance σ2, a 100(1− α)% confidence interval for μ is given by

x̄− zα/2
σ√
n
< μ < x̄+ zα/2

σ√
n
,

where zα/2 is the z-value leaving an area of α/2 to the right.

For small samples selected from nonnormal populations, we cannot expect our
degree of confidence to be accurate. However, for samples of size n ≥ 30, with
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the shape of the distributions not too skewed, sampling theory guarantees good
results.

Clearly, the values of the random variables Θ̂L and Θ̂U , defined in Section 9.3,
are the confidence limits

θ̂L = x̄− zα/2
σ√
n

and θ̂U = x̄+ zα/2
σ√
n
.

Different samples will yield different values of x̄ and therefore produce different
interval estimates of the parameter μ, as shown in Figure 9.3. The dot at the
center of each interval indicates the position of the point estimate x̄ for that random
sample. Note that all of these intervals are of the same width, since their widths
depend only on the choice of zα/2 once x̄ is determined. The larger the value we
choose for zα/2, the wider we make all the intervals and the more confident we
can be that the particular sample selected will produce an interval that contains
the unknown parameter μ. In general, for a selection of zα/2, 100(1 − α)% of the
intervals will cover μ.

1

2

3

4

5

6

7

8

9

10

μ

x

S
am
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e

Figure 9.3: Interval estimates of μ for different samples.

Example 9.2: The average zinc concentration recovered from a sample of measurements taken
in 36 different locations in a river is found to be 2.6 grams per milliliter. Find
the 95% and 99% confidence intervals for the mean zinc concentration in the river.
Assume that the population standard deviation is 0.3 gram per milliliter.

Solution : The point estimate of μ is x̄ = 2.6. The z-value leaving an area of 0.025 to the
right, and therefore an area of 0.975 to the left, is z0.025 = 1.96 (Table A.3). Hence,
the 95% confidence interval is

2.6− (1.96)

(
0.3√
36

)
< μ < 2.6 + (1.96)

(
0.3√
36

)
,
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which reduces to 2.50 < μ < 2.70. To find a 99% confidence interval, we find the
z-value leaving an area of 0.005 to the right and 0.995 to the left. From Table A.3
again, z0.005 = 2.575, and the 99% confidence interval is

2.6− (2.575)

(
0.3√
36

)
< μ < 2.6 + (2.575)

(
0.3√
36

)
,

or simply

2.47 < μ < 2.73.

We now see that a longer interval is required to estimate μ with a higher degree of
confidence.

The 100(1−α)% confidence interval provides an estimate of the accuracy of our
point estimate. If μ is actually the center value of the interval, then x̄ estimates
μ without error. Most of the time, however, x̄ will not be exactly equal to μ and
the point estimate will be in error. The size of this error will be the absolute value
of the difference between μ and x̄, and we can be 100(1− α)% confident that this
difference will not exceed zα/2

σ√
n
. We can readily see this if we draw a diagram of

a hypothetical confidence interval, as in Figure 9.4.

x μ

Error

x �z σ σn x � z n/2α /2α
/ /

Figure 9.4: Error in estimating μ by x̄.

Theorem 9.1: If x̄ is used as an estimate of μ, we can be 100(1 − α)% confident that the error
will not exceed zα/2

σ√
n
.

In Example 9.2, we are 95% confident that the sample mean x̄ = 2.6 differs
from the true mean μ by an amount less than (1.96)(0.3)/

√
36 = 0.1 and 99%

confident that the difference is less than (2.575)(0.3)/
√
36 = 0.13.

Frequently, we wish to know how large a sample is necessary to ensure that
the error in estimating μ will be less than a specified amount e. By Theorem 9.1,
we must choose n such that zα/2

σ√
n
= e. Solving this equation gives the following

formula for n.

Theorem 9.2: If x̄ is used as an estimate of μ, we can be 100(1 − α)% confident that the error
will not exceed a specified amount e when the sample size is

n =
(zα/2σ

e

)2
.

When solving for the sample size, n, we round all fractional values up to the
next whole number. By adhering to this principle, we can be sure that our degree
of confidence never falls below 100(1− α)%.
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Strictly speaking, the formula in Theorem 9.2 is applicable only if we know
the variance of the population from which we select our sample. Lacking this
information, we could take a preliminary sample of size n ≥ 30 to provide an
estimate of σ. Then, using s as an approximation for σ in Theorem 9.2, we could
determine approximately how many observations are needed to provide the desired
degree of accuracy.

Example 9.3: How large a sample is required if we want to be 95% confident that our estimate
of μ in Example 9.2 is off by less than 0.05?

Solution : The population standard deviation is σ = 0.3. Then, by Theorem 9.2,

n =

[
(1.96)(0.3)

0.05

]2
= 138.3.

Therefore, we can be 95% confident that a random sample of size 139 will provide
an estimate x̄ differing from μ by an amount less than 0.05.

One-Sided Confidence Bounds

The confidence intervals and resulting confidence bounds discussed thus far are
two-sided (i.e., both upper and lower bounds are given). However, there are many
applications in which only one bound is sought. For example, if the measurement
of interest is tensile strength, the engineer receives better information from a lower
bound only. This bound communicates the worst-case scenario. On the other
hand, if the measurement is something for which a relatively large value of μ is not
profitable or desirable, then an upper confidence bound is of interest. An example
would be a case in which inferences need to be made concerning the mean mercury
composition in a river. An upper bound is very informative in this case.

One-sided confidence bounds are developed in the same fashion as two-sided
intervals. However, the source is a one-sided probability statement that makes use
of the Central Limit Theorem:

P

(
X̄ − μ

σ/
√
n

< zα

)
= 1− α.

One can then manipulate the probability statement much as before and obtain

P (μ > X̄ − zασ/
√
n) = 1− α.

Similar manipulation of P
(

X̄−μ
σ/

√
n
> −zα

)
= 1− α gives

P (μ < X̄ + zασ/
√
n) = 1− α.

As a result, the upper and lower one-sided bounds follow.

One-Sided
Confidence

Bounds on μ, σ2

Known

If X̄ is the mean of a random sample of size n from a population with variance
σ2, the one-sided 100(1− α)% confidence bounds for μ are given by

upper one-sided bound: x̄+ zασ/
√
n;

lower one-sided bound: x̄− zασ/
√
n.
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Example 9.4: In a psychological testing experiment, 25 subjects are selected randomly and their
reaction time, in seconds, to a particular stimulus is measured. Past experience
suggests that the variance in reaction times to these types of stimuli is 4 sec2 and
that the distribution of reaction times is approximately normal. The average time
for the subjects is 6.2 seconds. Give an upper 95% bound for the mean reaction
time.

Solution : The upper 95% bound is given by

x̄+ zασ/
√
n = 6.2 + (1.645)

√
4/25 = 6.2 + 0.658

= 6.858 seconds.

Hence, we are 95% confident that the mean reaction time is less than 6.858
seconds.

The Case of σ Unknown

Frequently, we must attempt to estimate the mean of a population when the vari-
ance is unknown. The reader should recall learning in Chapter 8 that if we have a
random sample from a normal distribution, then the random variable

T =
X̄ − μ

S/
√
n

has a Student t-distribution with n − 1 degrees of freedom. Here S is the sample
standard deviation. In this situation, with σ unknown, T can be used to construct
a confidence interval on μ. The procedure is the same as that with σ known except
that σ is replaced by S and the standard normal distribution is replaced by the
t-distribution. Referring to Figure 9.5, we can assert that

P (−tα/2 < T < tα/2) = 1− α,

where tα/2 is the t-value with n−1 degrees of freedom, above which we find an area
of α/2. Because of symmetry, an equal area of α/2 will fall to the left of −tα/2.
Substituting for T , we write

P

(
−tα/2 <

X̄ − μ

S/
√
n

< tα/2

)
= 1− α.

Multiplying each term in the inequality by S/
√
n, and then subtracting X̄ from

each term and multiplying by −1, we obtain

P

(
X̄ − tα/2

S√
n
< μ < X̄ + tα/2

S√
n

)
= 1− α.

For a particular random sample of size n, the mean x̄ and standard deviation s are
computed and the following 100(1− α)% confidence interval for μ is obtained.

Uploaded By: anonymousSTUDENTS-HUB.com



9.4 Single Sample: Estimating the Mean 275
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Figure 9.5: P (−tα/2 < T < tα/2) = 1− α.

Confidence
Interval on μ, σ2

Unknown

If x̄ and s are the mean and standard deviation of a random sample from a
normal population with unknown variance σ2, a 100(1−α)% confidence interval
for μ is

x̄− tα/2
s√
n
< μ < x̄+ tα/2

s√
n
,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

We have made a distinction between the cases of σ known and σ unknown in
computing confidence interval estimates. We should emphasize that for σ known
we exploited the Central Limit Theorem, whereas for σ unknown we made use
of the sampling distribution of the random variable T . However, the use of the t-
distribution is based on the premise that the sampling is from a normal distribution.
As long as the distribution is approximately bell shaped, confidence intervals can
be computed when σ2 is unknown by using the t-distribution and we may expect
very good results.

Computed one-sided confidence bounds for μ with σ unknown are as the reader
would expect, namely

x̄+ tα
s√
n

and x̄− tα
s√
n
.

They are the upper and lower 100(1 − α)% bounds, respectively. Here tα is the
t-value having an area of α to the right.

Example 9.5: The contents of seven similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8,
10.0, 10.2, and 9.6 liters. Find a 95% confidence interval for the mean contents of
all such containers, assuming an approximately normal distribution.

Solution : The sample mean and standard deviation for the given data are

x̄ = 10.0 and s = 0.283.

Using Table A.4, we find t0.025 = 2.447 for v = 6 degrees of freedom. Hence, the
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95% confidence interval for μ is

10.0− (2.447)

(
0.283√

7

)
< μ < 10.0 + (2.447)

(
0.283√

7

)
,

which reduces to 9.74 < μ < 10.26.

Concept of a Large-Sample Confidence Interval

Often statisticians recommend that even when normality cannot be assumed, σ is
unknown, and n ≥ 30, s can replace σ and the confidence interval

x̄± zα/2
s√
n

may be used. This is often referred to as a large-sample confidence interval. The
justification lies only in the presumption that with a sample as large as 30 and
the population distribution not too skewed, s will be very close to the true σ and
thus the Central Limit Theorem prevails. It should be emphasized that this is only
an approximation and the quality of the result becomes better as the sample size
grows larger.

Example 9.6: Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500 high
school seniors in the state of Texas are collected, and the sample mean and standard
deviation are found to be 501 and 112, respectively. Find a 99% confidence interval
on the mean SAT mathematics score for seniors in the state of Texas.

Solution : Since the sample size is large, it is reasonable to use the normal approximation.
Using Table A.3, we find z0.005 = 2.575. Hence, a 99% confidence interval for μ is

501± (2.575)

(
112√
500

)
= 501± 12.9,

which yields 488.1 < μ < 513.9.

9.5 Standard Error of a Point Estimate

We have made a rather sharp distinction between the goal of a point estimate
and that of a confidence interval estimate. The former supplies a single number
extracted from a set of experimental data, and the latter provides an interval that
is reasonable for the parameter, given the experimental data; that is, 100(1− α)%
of such computed intervals “cover” the parameter.

These two approaches to estimation are related to each other. The common
thread is the sampling distribution of the point estimator. Consider, for example,
the estimator X̄ of μ with σ known. We indicated earlier that a measure of the
quality of an unbiased estimator is its variance. The variance of X̄ is

σ2
X̄ =

σ2

n
.
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Thus, the standard deviation of X̄, or standard error of X̄, is σ/
√
n. Simply put,

the standard error of an estimator is its standard deviation. For X̄, the computed
confidence limit

x̄± zα/2
σ√
n

is written as x̄± zα/2 s.e.(x̄),

where “s.e.” is the “standard error.” The important point is that the width of the
confidence interval on μ is dependent on the quality of the point estimator through
its standard error. In the case where σ is unknown and sampling is from a normal
distribution, s replaces σ and the estimated standard error s/

√
n is involved. Thus,

the confidence limits on μ are

Confidence
Limits on μ, σ2

Unknown

x̄± tα/2
s√
n
= x̄± tα/2 s.e.(x̄)

Again, the confidence interval is no better (in terms of width) than the quality of
the point estimate, in this case through its estimated standard error. Computer
packages often refer to estimated standard errors simply as “standard errors.”

As we move to more complex confidence intervals, there is a prevailing notion
that widths of confidence intervals become shorter as the quality of the correspond-
ing point estimate becomes better, although it is not always quite as simple as we
have illustrated here. It can be argued that a confidence interval is merely an
augmentation of the point estimate to take into account the precision of the point
estimate.

9.6 Prediction Intervals

The point and interval estimations of the mean in Sections 9.4 and 9.5 provide
good information about the unknown parameter μ of a normal distribution or a
nonnormal distribution from which a large sample is drawn. Sometimes, other
than the population mean, the experimenter may also be interested in predicting
the possible value of a future observation. For instance, in quality control, the
experimenter may need to use the observed data to predict a new observation. A
process that produces a metal part may be evaluated on the basis of whether the
part meets specifications on tensile strength. On certain occasions, a customer may
be interested in purchasing a single part. In this case, a confidence interval on the
mean tensile strength does not capture the required information. The customer
requires a statement regarding the uncertainty of a single observation. This type
of requirement is nicely fulfilled by the construction of a prediction interval.

It is quite simple to obtain a prediction interval for the situations we have
considered so far. Assume that the random sample comes from a normal population
with unknown mean μ and known variance σ2. A natural point estimator of a
new observation is X̄. It is known, from Section 8.4, that the variance of X̄ is
σ2/n. However, to predict a new observation, not only do we need to account
for the variation due to estimating the mean, but also we should account for the
variation of a future observation. From the assumption, we know that the
variance of the random error in a new observation is σ2. The development of a
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prediction interval is best illustrated by beginning with a normal random variable
x0 − x̄, where x0 is the new observation and x̄ comes from the sample. Since x0

and x̄ are independent, we know that

z =
x0 − x̄√
σ2 + σ2/n

=
x0 − x̄

σ
√
1 + 1/n

is n(z; 0, 1). As a result, if we use the probability statement

P (−zα/2 < Z < zα/2) = 1− α

with the z-statistic above and place x0 in the center of the probability statement,
we have the following event occurring with probability 1− α:

x̄− zα/2σ
√
1 + 1/n < x0 < x̄+ zα/2σ

√
1 + 1/n.

As a result, computation of the prediction interval is formalized as follows.

Prediction
Interval of a

Future
Observation, σ2

Known

For a normal distribution of measurements with unknown mean μ and known
variance σ2, a 100(1− α)% prediction interval of a future observation x0 is

x̄− zα/2σ
√
1 + 1/n < x0 < x̄+ zα/2σ

√
1 + 1/n,

where zα/2 is the z-value leaving an area of α/2 to the right.

Example 9.7: Due to the decrease in interest rates, the First Citizens Bank received a lot of
mortgage applications. A recent sample of 50 mortgage loans resulted in an average
loan amount of $257,300. Assume a population standard deviation of $25,000. For
the next customer who fills out a mortgage application, find a 95% prediction
interval for the loan amount.

Solution : The point prediction of the next customer’s loan amount is x̄ = $257, 300. The
z-value here is z0.025 = 1.96. Hence, a 95% prediction interval for the future loan
amount is

257, 300− (1.96)(25, 000)
√
1 + 1/50 < x0 < 257, 300 + (1.96)(25, 000)

√
1 + 1/50,

which gives the interval ($207,812.43, $306,787.57).
The prediction interval provides a good estimate of the location of a future

observation, which is quite different from the estimate of the sample mean value.
It should be noted that the variation of this prediction is the sum of the variation
due to an estimation of the mean and the variation of a single observation. However,
as in the past, we first consider the case with known variance. It is also important
to deal with the prediction interval of a future observation in the situation where
the variance is unknown. Indeed a Student t-distribution may be used in this case,
as described in the following result. The normal distribution is merely replaced by
the t-distribution.
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Prediction
Interval of a

Future
Observation, σ2

Unknown

For a normal distribution of measurements with unknown mean μ and unknown
variance σ2, a 100(1− α)% prediction interval of a future observation x0 is

x̄− tα/2s
√
1 + 1/n < x0 < x̄+ tα/2s

√
1 + 1/n,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

One-sided prediction intervals can also be constructed. Upper prediction bounds
apply in cases where focus must be placed on future large observations. Concern
over future small observations calls for the use of lower prediction bounds. The
upper bound is given by

x̄+ tαs
√

1 + 1/n

and the lower bound by

x̄− tαs
√
1 + 1/n.

Example 9.8: A meat inspector has randomly selected 30 packs of 95% lean beef. The sample
resulted in a mean of 96.2% with a sample standard deviation of 0.8%. Find a 99%
prediction interval for the leanness of a new pack. Assume normality.

Solution : For v = 29 degrees of freedom, t0.005 = 2.756. Hence, a 99% prediction interval for
a new observation x0 is

96.2− (2.756)(0.8)

√
1 +

1

30
< x0 < 96.2 + (2.756)(0.8)

√
1 +

1

30
,

which reduces to (93.96, 98.44).

Use of Prediction Limits for Outlier Detection

To this point in the text very little attention has been paid to the concept of
outliers, or aberrant observations. The majority of scientific investigators are
keenly sensitive to the existence of outlying observations or so-called faulty or
“bad data.” We deal with the concept of outlier detection extensively in Chapter
12. However, it is certainly of interest here since there is an important relationship
between outlier detection and prediction intervals.

It is convenient for our purposes to view an outlying observation as one that
comes from a population with a mean that is different from the mean that governs
the rest of the sample of size n being studied. The prediction interval produces a
bound that “covers” a future single observation with probability 1− α if it comes
from the population from which the sample was drawn. As a result, a methodol-
ogy for outlier detection involves the rule that an observation is an outlier if
it falls outside the prediction interval computed without including the
questionable observation in the sample. As a result, for the prediction inter-
val of Example 9.8, if a new pack of beef is measured and its leanness is outside
the interval (93.96, 98.44), that observation can be viewed as an outlier.
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9.7 Tolerance Limits

As discussed in Section 9.6, the scientist or engineer may be less interested in esti-
mating parameters than in gaining a notion about where an individual observation
or measurement might fall. Such situations call for the use of prediction intervals.
However, there is yet a third type of interval that is of interest in many applica-
tions. Once again, suppose that interest centers around the manufacturing of a
component part and specifications exist on a dimension of that part. In addition,
there is little concern about the mean of the dimension. But unlike in the scenario
in Section 9.6, one may be less interested in a single observation and more inter-
ested in where the majority of the population falls. If process specifications are
important, the manager of the process is concerned about long-range performance,
not the next observation. One must attempt to determine bounds that, in some
probabilistic sense, “cover” values in the population (i.e., the measured values of
the dimension).

One method of establishing the desired bounds is to determine a confidence
interval on a fixed proportion of the measurements. This is best motivated by
visualizing a situation in which we are doing random sampling from a normal
distribution with known mean μ and variance σ2. Clearly, a bound that covers the
middle 95% of the population of observations is

μ± 1.96σ.

This is called a tolerance interval, and indeed its coverage of 95% of measured
observations is exact. However, in practice, μ and σ are seldom known; thus, the
user must apply

x̄± ks.

Now, of course, the interval is a random variable, and hence the coverage of a
proportion of the population by the interval is not exact. As a result, a 100(1−γ)%
confidence interval must be used since x̄ ± ks cannot be expected to cover any
specified proportion all the time. As a result, we have the following definition.

Tolerance Limits For a normal distribution of measurements with unknown mean μ and unknown
standard deviation σ, tolerance limits are given by x̄ ± ks, where k is de-
termined such that one can assert with 100(1 − γ)% confidence that the given
limits contain at least the proportion 1− α of the measurements.

Table A.7 gives values of k for 1 − α = 0.90, 0.95, 0.99; γ = 0.05, 0.01; and
selected values of n from 2 to 300.

Example 9.9: Consider Example 9.8. With the information given, find a tolerance interval that
gives two-sided 95% bounds on 90% of the distribution of packages of 95% lean
beef. Assume the data came from an approximately normal distribution.

Solution : Recall from Example 9.8 that n = 30, the sample mean is 96.2%, and the sample
standard deviation is 0.8%. From Table A.7, k = 2.14. Using

x̄± ks = 96.2± (2.14)(0.8),
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we find that the lower and upper bounds are 94.5 and 97.9.
We are 95% confident that the above range covers the central 90% of the dis-

tribution of 95% lean beef packages.

Distinction among Confidence Intervals, Prediction Intervals,
and Tolerance Intervals

It is important to reemphasize the difference among the three types of intervals dis-
cussed and illustrated in the preceding sections. The computations are straightfor-
ward, but interpretation can be confusing. In real-life applications, these intervals
are not interchangeable because their interpretations are quite distinct.

In the case of confidence intervals, one is attentive only to the population
mean. For example, Exercise 9.13 on page 283 deals with an engineering process
that produces shearing pins. A specification will be set on Rockwell hardness,
below which a customer will not accept any pins. Here, a population parameter
must take a backseat. It is important that the engineer know where the majority
of the values of Rockwell hardness are going to be. Thus, tolerance limits should be
used. Surely, when tolerance limits on any process output are tighter than process
specifications, that is good news for the process manager.

It is true that the tolerance limit interpretation is somewhat related to the
confidence interval. The 100(1−α)% tolerance interval on, say, the proportion 0.95
can be viewed as a confidence interval on the middle 95% of the corresponding
normal distribution. One-sided tolerance limits are also relevant. In the case of
the Rockwell hardness problem, it is desirable to have a lower bound of the form
x̄ − ks such that there is 99% confidence that at least 99% of Rockwell hardness
values will exceed the computed value.

Prediction intervals are applicable when it is important to determine a bound
on a single value. The mean is not the issue here, nor is the location of the
majority of the population. Rather, the location of a single new observation is
required.

Case Study 9.1: Machine Quality: A machine produces metal pieces that are cylindrical in shape.
A sample of these pieces is taken and the diameters are found to be 1.01, 0.97,
1.03, 1.04, 0.99, 0.98, 0.99, 1.01, and 1.03 centimeters. Use these data to calculate
three interval types and draw interpretations that illustrate the distinction between
them in the context of the system. For all computations, assume an approximately
normal distribution. The sample mean and standard deviation for the given data
are x̄ = 1.0056 and s = 0.0246.

(a) Find a 99% confidence interval on the mean diameter.

(b) Compute a 99% prediction interval on a measured diameter of a single metal
piece taken from the machine.

(c) Find the 99% tolerance limits that will contain 95% of the metal pieces pro-
duced by this machine.

Solution : (a) The 99% confidence interval for the mean diameter is given by

x̄± t0.005s/
√
n = 1.0056± (3.355)(0.0246/3) = 1.0056± 0.0275.
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Thus, the 99% confidence bounds are 0.9781 and 1.0331.

(b) The 99% prediction interval for a future observation is given by

x̄± t0.005s
√

1 + 1/n = 1.0056± (3.355)(0.0246)
√

1 + 1/9,

with the bounds being 0.9186 and 1.0926.

(c) From Table A.7, for n = 9, 1− γ = 0.99, and 1− α = 0.95, we find k = 4.550
for two-sided limits. Hence, the 99% tolerance limits are given by

x̄+ ks = 1.0056± (4.550)(0.0246),

with the bounds being 0.8937 and 1.1175. We are 99% confident that the
tolerance interval from 0.8937 to 1.1175 will contain the central 95% of the
distribution of diameters produced.

This case study illustrates that the three types of limits can give appreciably dif-
ferent results even though they are all 99% bounds. In the case of the confidence
interval on the mean, 99% of such intervals cover the population mean diameter.
Thus, we say that we are 99% confident that the mean diameter produced by the
process is between 0.9781 and 1.0331 centimeters. Emphasis is placed on the mean,
with less concern about a single reading or the general nature of the distribution
of diameters in the population. In the case of the prediction limits, the bounds
0.9186 and 1.0926 are based on the distribution of a single “new” metal piece
taken from the process, and again 99% of such limits will cover the diameter of
a new measured piece. On the other hand, the tolerance limits, as suggested in
the previous section, give the engineer a sense of where the “majority,” say the
central 95%, of the diameters of measured pieces in the population reside. The
99% tolerance limits, 0.8937 and 1.1175, are numerically quite different from the
other two bounds. If these bounds appear alarmingly wide to the engineer, it re-
flects negatively on process quality. On the other hand, if the bounds represent a
desirable result, the engineer may conclude that a majority (95% in here) of the
diameters are in a desirable range. Again, a confidence interval interpretation may
be used: namely, 99% of such calculated bounds will cover the middle 95% of the
population of diameters.

Exercises

9.1 A UCLA researcher claims that the life span of
mice can be extended by as much as 25% when the
calories in their diet are reduced by approximately 40%
from the time they are weaned. The restricted diet
is enriched to normal levels by vitamins and protein.
Assuming that it is known from previous studies that
σ = 5.8 months, how many mice should be included
in our sample if we wish to be 99% confident that the
mean life span of the sample will be within 2 months
of the population mean for all mice subjected to this
reduced diet?

9.2 An electrical firm manufactures light bulbs that
have a length of life that is approximately normally
distributed with a standard deviation of 40 hours. If
a sample of 30 bulbs has an average life of 780 hours,
find a 96% confidence interval for the population mean
of all bulbs produced by this firm.

9.3 Many cardiac patients wear an implanted pace-
maker to control their heartbeat. A plastic connec-
tor module mounts on the top of the pacemaker. As-
suming a standard deviation of 0.0015 inch and an ap-
proximately normal distribution, find a 95% confidence
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interval for the mean of the depths of all connector
modules made by a certain manufacturing company.
A random sample of 75 modules has an average depth
of 0.310 inch.

9.4 The heights of a random sample of 50 college stu-
dents showed a mean of 174.5 centimeters and a stan-
dard deviation of 6.9 centimeters.

(a) Construct a 98% confidence interval for the mean
height of all college students.

(b) What can we assert with 98% confidence about the
possible size of our error if we estimate the mean
height of all college students to be 174.5 centime-
ters?

9.5 A random sample of 100 automobile owners in the
state of Virginia shows that an automobile is driven on
average 23,500 kilometers per year with a standard de-
viation of 3900 kilometers. Assume the distribution of
measurements to be approximately normal.

(a) Construct a 99% confidence interval for the aver-
age number of kilometers an automobile is driven
annually in Virginia.

(b) What can we assert with 99% confidence about the
possible size of our error if we estimate the aver-
age number of kilometers driven by car owners in
Virginia to be 23,500 kilometers per year?

9.6 How large a sample is needed in Exercise 9.2 if we
wish to be 96% confident that our sample mean will be
within 10 hours of the true mean?

9.7 How large a sample is needed in Exercise 9.3 if we
wish to be 95% confident that our sample mean will be
within 0.0005 inch of the true mean?

9.8 An efficiency expert wishes to determine the av-
erage time that it takes to drill three holes in a certain
metal clamp. How large a sample will she need to be
95% confident that her sample mean will be within 15
seconds of the true mean? Assume that it is known
from previous studies that σ = 40 seconds.

9.9 Regular consumption of presweetened cereals con-
tributes to tooth decay, heart disease, and other degen-
erative diseases, according to studies conducted by Dr.
W. H. Bowen of the National Institute of Health and
Dr. J. Yudben, Professor of Nutrition and Dietetics at
the University of London. In a random sample con-
sisting of 20 similar single servings of Alpha-Bits, the
average sugar content was 11.3 grams with a standard
deviation of 2.45 grams. Assuming that the sugar con-
tents are normally distributed, construct a 95% con-
fidence interval for the mean sugar content for single
servings of Alpha-Bits.

9.10 A random sample of 12 graduates of a certain
secretarial school typed an average of 79.3 words per
minute with a standard deviation of 7.8 words per
minute. Assuming a normal distribution for the num-
ber of words typed per minute, find a 95% confidence
interval for the average number of words typed by all
graduates of this school.

9.11 A machine produces metal pieces that are cylin-
drical in shape. A sample of pieces is taken, and the
diameters are found to be 1.01, 0.97, 1.03, 1.04, 0.99,
0.98, 0.99, 1.01, and 1.03 centimeters. Find a 99% con-
fidence interval for the mean diameter of pieces from
this machine, assuming an approximately normal dis-
tribution.

9.12 A random sample of 10 chocolate energy bars of
a certain brand has, on average, 230 calories per bar,
with a standard deviation of 15 calories. Construct a
99% confidence interval for the true mean calorie con-
tent of this brand of energy bar. Assume that the dis-
tribution of the calorie content is approximately nor-
mal.

9.13 A random sample of 12 shearing pins is taken
in a study of the Rockwell hardness of the pin head.
Measurements on the Rockwell hardness are made for
each of the 12, yielding an average value of 48.50 with
a sample standard deviation of 1.5. Assuming the mea-
surements to be normally distributed, construct a 90%
confidence interval for the mean Rockwell hardness.

9.14 The following measurements were recorded for
the drying time, in hours, of a certain brand of latex
paint:

3.4 2.5 4.8 2.9 3.6
2.8 3.3 5.6 3.7 2.8
4.4 4.0 5.2 3.0 4.8

Assuming that the measurements represent a random
sample from a normal population, find a 95% predic-
tion interval for the drying time for the next trial of
the paint.

9.15 Referring to Exercise 9.5, construct a 99% pre-
diction interval for the kilometers traveled annually by
an automobile owner in Virginia.

9.16 Consider Exercise 9.10. Compute the 95% pre-
diction interval for the next observed number of words
per minute typed by a graduate of the secretarial
school.

9.17 Consider Exercise 9.9. Compute a 95% predic-
tion interval for the sugar content of the next single
serving of Alpha-Bits.

9.18 Referring to Exercise 9.13, construct a 95% tol-
erance interval containing 90% of the measurements.
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9.19 A random sample of 25 tablets of buffered as-
pirin contains, on average, 325.05 mg of aspirin per
tablet, with a standard deviation of 0.5 mg. Find the
95% tolerance limits that will contain 90% of the tablet
contents for this brand of buffered aspirin. Assume
that the aspirin content is normally distributed.

9.20 Consider the situation of Exercise 9.11. Esti-
mation of the mean diameter, while important, is not
nearly as important as trying to pin down the loca-
tion of the majority of the distribution of diameters.
Find the 95% tolerance limits that contain 95% of the
diameters.

9.21 In a study conducted by the Department of
Zoology at Virginia Tech, fifteen samples of water were
collected from a certain station in the James River in
order to gain some insight regarding the amount of or-
thophosphorus in the river. The concentration of the
chemical is measured in milligrams per liter. Let us
suppose that the mean at the station is not as impor-
tant as the upper extreme of the distribution of the
concentration of the chemical at the station. Concern
centers around whether the concentration at the ex-
treme is too large. Readings for the fifteen water sam-
ples gave a sample mean of 3.84 milligrams per liter
and a sample standard deviation of 3.07 milligrams
per liter. Assume that the readings are a random sam-
ple from a normal distribution. Calculate a prediction
interval (upper 95% prediction limit) and a tolerance
limit (95% upper tolerance limit that exceeds 95% of
the population of values). Interpret both; that is, tell
what each communicates about the upper extreme of
the distribution of orthophosphorus at the sampling
station.

9.22 A type of thread is being studied for its ten-
sile strength properties. Fifty pieces were tested under
similar conditions, and the results showed an average
tensile strength of 78.3 kilograms and a standard devi-
ation of 5.6 kilograms. Assuming a normal distribution
of tensile strengths, give a lower 95% prediction limit
on a single observed tensile strength value. In addi-
tion, give a lower 95% tolerance limit that is exceeded
by 99% of the tensile strength values.

9.23 Refer to Exercise 9.22. Why are the quantities
requested in the exercise likely to be more important to
the manufacturer of the thread than, say, a confidence
interval on the mean tensile strength?

9.24 Refer to Exercise 9.22 again. Suppose that spec-
ifications by a buyer of the thread are that the tensile
strength of the material must be at least 62 kilograms.
The manufacturer is satisfied if at most 5% of the man-
ufactured pieces have tensile strength less than 62 kilo-
grams. Is there cause for concern? Use a one-sided 99%
tolerance limit that is exceeded by 95% of the tensile
strength values.

9.25 Consider the drying time measurements in Ex-
ercise 9.14. Suppose the 15 observations in the data
set are supplemented by a 16th value of 6.9 hours. In
the context of the original 15 observations, is the 16th
value an outlier? Show work.

9.26 Consider the data in Exercise 9.13. Suppose the
manufacturer of the shearing pins insists that the Rock-
well hardness of the product be less than or equal to
44.0 only 5% of the time. What is your reaction? Use
a tolerance limit calculation as the basis for your judg-
ment.

9.27 Consider the situation of Case Study 9.1 on page
281 with a larger sample of metal pieces. The di-
ameters are as follows: 1.01, 0.97, 1.03, 1.04, 0.99,
0.98, 1.01, 1.03, 0.99, 1.00, 1.00, 0.99, 0.98, 1.01, 1.02,
0.99 centimeters. Once again the normality assump-
tion may be made. Do the following and compare your
results to those of the case study. Discuss how they
are different and why.

(a) Compute a 99% confidence interval on the mean
diameter.

(b) Compute a 99% prediction interval on the next di-
ameter to be measured.

(c) Compute a 99% tolerance interval for coverage of
the central 95% of the distribution of diameters.

9.28 In Section 9.3, we emphasized the notion of
“most efficient estimator” by comparing the variance

of two unbiased estimators Θ̂1 and Θ̂2. However, this
does not take into account bias in case one or both
estimators are not unbiased. Consider the quantity

MSE = E(Θ̂− θ),

where MSE denotes mean squared error. The

MSE is often used to compare two estimators Θ̂1 and

Θ̂2 of θ when either or both is unbiased because (i) it
is intuitively reasonable and (ii) it accounts for bias.
Show that MSE can be written

MSE = E[Θ̂− E(Θ̂)]2 + [E(Θ̂− θ)]2

= Var(Θ̂) + [Bias(Θ̂)]2.

9.29 Let us define S′2 =
n∑

i=1

(Xi − X̄)2/n. Show that

E(S′2) = [(n− 1)/n]σ2,

and hence S′2 is a biased estimator for σ2.

9.30 Consider S′2, the estimator of σ2, from Exer-
cise 9.29. Analysts often use S′2 rather than dividing
n∑

i=1

(Xi − X̄)2 by n − 1, the degrees of freedom in the

sample.
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(a) What is the bias of S′2?

(b) Show that the bias of S′2 approaches zero as n →
∞.

9.31 If X is a binomial random variable, show that

(a) P̂ = X/n is an unbiased estimator of p;

(b) P ′ = X+
√

n/2

n+
√
n

is a biased estimator of p.

9.32 Show that the estimator P ′ of Exercise 9.31(b)
becomes unbiased as n → ∞.

9.33 Compare S2 and S′2 (see Exercise 9.29), the

two estimators of σ2, to determine which is more
efficient. Assume these estimators are found using
X1, X2, . . . , Xn, independent random variables from
n(x;μ, σ). Which estimator is more efficient consid-
ering only the variance of the estimators? [Hint: Make
use of Theorem 8.4 and the fact that the variance of
χ2
v is 2v, from Section 6.7.]

9.34 Consider Exercise 9.33. Use the MSE discussed
in Exercise 9.28 to determine which estimator is more
efficient. Write out

MSE(S2)

MSE(S′2)
.

9.8 Two Samples: Estimating the Difference
between Two Means

If we have two populations with means μ1 and μ2 and variances σ2
1 and σ2

2 , re-
spectively, a point estimator of the difference between μ1 and μ2 is given by the
statistic X̄1 − X̄2. Therefore, to obtain a point estimate of μ1 − μ2, we shall select
two independent random samples, one from each population, of sizes n1 and n2,
and compute x̄1−x̄2, the difference of the sample means. Clearly, we must consider
the sampling distribution of X̄1 − X̄2.

According to Theorem 8.3, we can expect the sampling distribution of X̄1 −
X̄2 to be approximately normally distributed with mean μX̄1−X̄2

= μ1 − μ2 and

standard deviation σX̄1−X̄2
=
√
σ2
1/n1 + σ2

2/n2. Therefore, we can assert with a
probability of 1− α that the standard normal variable

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2
1/n1 + σ2

2/n2

will fall between −zα/2 and zα/2. Referring once again to Figure 9.2, we write

P (−zα/2 < Z < zα/2) = 1− α.

Substituting for Z, we state equivalently that

P

(
−zα/2 <

(X̄1 − X̄2)− (μ1 − μ2)√
σ2
1/n1 + σ2

2/n2

< zα/2

)
= 1− α,

which leads to the following 100(1− α)% confidence interval for μ1 − μ2.

Confidence
Interval for

μ1 − μ2, σ
2
1 and

σ2
2 Known

If x̄1 and x̄2 are means of independent random samples of sizes n1 and n2

from populations with known variances σ2
1 and σ2

2 , respectively, a 100(l − α)%
confidence interval for μ1 − μ2 is given by

(x̄1 − x̄2)− zα/2

√
σ2
1

n1
+

σ2
2

n2
< μ1 − μ2 < (x̄1 − x̄2) + zα/2

√
σ2
1

n1
+

σ2
2

n2
,

where zα/2 is the z-value leaving an area of α/2 to the right.
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The degree of confidence is exact when samples are selected from normal popula-
tions. For nonnormal populations, the Central Limit Theorem allows for a good
approximation for reasonable size samples.

The Experimental Conditions and the Experimental Unit

For the case of confidence interval estimation on the difference between two means,
we need to consider the experimental conditions in the data-taking process. It is
assumed that we have two independent random samples from distributions with
means μ1 and μ2, respectively. It is important that experimental conditions emu-
late this ideal described by these assumptions as closely as possible. Quite often,
the experimenter should plan the strategy of the experiment accordingly. For al-
most any study of this type, there is a so-called experimental unit, which is that
part of the experiment that produces experimental error and is responsible for the
population variance we refer to as σ2. In a drug study, the experimental unit is
the patient or subject. In an agricultural experiment, it may be a plot of ground.
In a chemical experiment, it may be a quantity of raw materials. It is important
that differences between the experimental units have minimal impact on the re-
sults. The experimenter will have a degree of insurance that experimental units
will not bias results if the conditions that define the two populations are randomly
assigned to the experimental units. We shall again focus on randomization in future
chapters that deal with hypothesis testing.

Example 9.10: A study was conducted in which two types of engines, A and B, were compared.
Gas mileage, in miles per gallon, was measured. Fifty experiments were conducted
using engine type A and 75 experiments were done with engine type B. The
gasoline used and other conditions were held constant. The average gas mileage
was 36 miles per gallon for engine A and 42 miles per gallon for engine B. Find a
96% confidence interval on μB − μA, where μA and μB are population mean gas
mileages for engines A and B, respectively. Assume that the population standard
deviations are 6 and 8 for engines A and B, respectively.

Solution : The point estimate of μB − μA is x̄B − x̄A = 42− 36 = 6. Using α = 0.04, we find
z0.02 = 2.05 from Table A.3. Hence, with substitution in the formula above, the
96% confidence interval is

6− 2.05

√
64

75
+

36

50
< μB − μA < 6 + 2.05

√
64

75
+

36

50
,

or simply 3.43 < μB − μA < 8.57.
This procedure for estimating the difference between two means is applicable

if σ2
1 and σ2

2 are known. If the variances are not known and the two distributions
involved are approximately normal, the t-distribution becomes involved, as in the
case of a single sample. If one is not willing to assume normality, large samples (say
greater than 30) will allow the use of s1 and s2 in place of σ1 and σ2, respectively,
with the rationale that s1 ≈ σ1 and s2 ≈ σ2. Again, of course, the confidence
interval is an approximate one.
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Variances Unknown but Equal

Consider the case where σ2
1 and σ2

2 are unknown. If σ2
1 = σ2

2 = σ2, we obtain a
standard normal variable of the form

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2[(1/n1) + (1/n2)]
.

According to Theorem 8.4, the two random variables

(n1 − 1)S2
1

σ2
and

(n2 − 1)S2
2

σ2

have chi-squared distributions with n1 − 1 and n2 − 1 degrees of freedom, respec-
tively. Furthermore, they are independent chi-squared variables, since the random
samples were selected independently. Consequently, their sum

V =
(n1 − 1)S2

1

σ2
+

(n2 − 1)S2
2

σ2
=

(n1 − 1)S2
1 + (n2 − 1)S2

2

σ2

has a chi-squared distribution with v = n1 + n2 − 2 degrees of freedom.
Since the preceding expressions for Z and V can be shown to be independent,

it follows from Theorem 8.5 that the statistic

T =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2[(1/n1) + (1/n2)]

/√
(n1 − 1)S2

1 + (n2 − 1)S2
2

σ2(n1 + n2 − 2)

has the t-distribution with v = n1 + n2 − 2 degrees of freedom.
A point estimate of the unknown common variance σ2 can be obtained by

pooling the sample variances. Denoting the pooled estimator by S2
p , we have the

following.

Pooled Estimate
of Variance S2

p =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

Substituting S2
p in the T statistic, we obtain the less cumbersome form

T =
(X̄1 − X̄2)− (μ1 − μ2)

Sp

√
(1/n1) + (1/n2)

.

Using the T statistic, we have

P (−tα/2 < T < tα/2) = 1− α,

where tα/2 is the t-value with n1 + n2 − 2 degrees of freedom, above which we find
an area of α/2. Substituting for T in the inequality, we write

P

[
−tα/2 <

(X̄1 − X̄2)− (μ1 − μ2)

Sp

√
(1/n1) + (1/n2)

< tα/2

]
= 1− α.

After the usual mathematical manipulations, the difference of the sample means
x̄1 − x̄2 and the pooled variance are computed and then the following 100(1−α)%
confidence interval for μ1 − μ2 is obtained.

The value of s2p is easily seen to be a weighted average of the two sample
variances s21 and s22, where the weights are the degrees of freedom.
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Confidence
Interval for

μ1 − μ2, σ
2
1 = σ2

2

but Both
Unknown

If x̄1 and x̄2 are the means of independent random samples of sizes n1 and n2,
respectively, from approximately normal populations with unknown but equal
variances, a 100(1− α)% confidence interval for μ1 − μ2 is given by

(x̄1 − x̄2)− tα/2sp

√
1

n1
+

1

n2
< μ1 − μ2 < (x̄1 − x̄2) + tα/2sp

√
1

n1
+

1

n2
,

where sp is the pooled estimate of the population standard deviation and tα/2
is the t-value with v = n1 + n2 − 2 degrees of freedom, leaving an area of α/2
to the right.

Example 9.11: The article “Macroinvertebrate Community Structure as an Indicator of Acid Mine
Pollution,” published in the Journal of Environmental Pollution, reports on an in-
vestigation undertaken in Cane Creek, Alabama, to determine the relationship
between selected physiochemical parameters and different measures of macroinver-
tebrate community structure. One facet of the investigation was an evaluation of
the effectiveness of a numerical species diversity index to indicate aquatic degrada-
tion due to acid mine drainage. Conceptually, a high index of macroinvertebrate
species diversity should indicate an unstressed aquatic system, while a low diversity
index should indicate a stressed aquatic system.

Two independent sampling stations were chosen for this study, one located
downstream from the acid mine discharge point and the other located upstream.
For 12 monthly samples collected at the downstream station, the species diversity
index had a mean value x̄1 = 3.11 and a standard deviation s1 = 0.771, while
10 monthly samples collected at the upstream station had a mean index value
x̄2 = 2.04 and a standard deviation s2 = 0.448. Find a 90% confidence interval for
the difference between the population means for the two locations, assuming that
the populations are approximately normally distributed with equal variances.

Solution : Let μ1 and μ2 represent the population means, respectively, for the species diversity
indices at the downstream and upstream stations. We wish to find a 90% confidence
interval for μ1 − μ2. Our point estimate of μ1 − μ2 is

x̄1 − x̄2 = 3.11− 2.04 = 1.07.

The pooled estimate, s2p, of the common variance, σ2, is

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
=

(11)(0.7712) + (9)(0.4482)

12 + 10− 2
= 0.417.

Taking the square root, we obtain sp = 0.646. Using α = 0.1, we find in Table A.4
that t0.05 = 1.725 for v = n1+n2− 2 = 20 degrees of freedom. Therefore, the 90%
confidence interval for μ1 − μ2 is

1.07− (1.725)(0.646)

√
1

12
+

1

10
< μ1 − μ2 < 1.07 + (1.725)(0.646)

√
1

12
+

1

10
,

which simplifies to 0.593 < μ1 − μ2 < 1.547.
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Interpretation of the Confidence Interval

For the case of a single parameter, the confidence interval simply provides error
bounds on the parameter. Values contained in the interval should be viewed as
reasonable values given the experimental data. In the case of a difference between
two means, the interpretation can be extended to one of comparing the two means.
For example, if we have high confidence that a difference μ1 − μ2 is positive, we
would certainly infer that μ1 > μ2 with little risk of being in error. For example, in
Example 9.11, we are 90% confident that the interval from 0.593 to 1.547 contains
the difference of the population means for values of the species diversity index at
the two stations. The fact that both confidence limits are positive indicates that,
on the average, the index for the station located downstream from the discharge
point is greater than the index for the station located upstream.

Equal Sample Sizes

The procedure for constructing confidence intervals for μ1 − μ2 with σ1 = σ2 = σ
unknown requires the assumption that the populations are normal. Slight depar-
tures from either the equal variance or the normality assumption do not seriously
alter the degree of confidence for our interval. (A procedure is presented in Chap-
ter 10 for testing the equality of two unknown population variances based on the
information provided by the sample variances.) If the population variances are
considerably different, we still obtain reasonable results when the populations are
normal, provided that n1 = n2. Therefore, in planning an experiment, one should
make every effort to equalize the size of the samples.

Unknown and Unequal Variances

Let us now consider the problem of finding an interval estimate of μ1 − μ2 when
the unknown population variances are not likely to be equal. The statistic most
often used in this case is

T ′ =
(X̄1 − X̄2)− (μ1 − μ2)√

(S2
1/n1) + (S2

2/n2)
,

which has approximately a t-distribution with v degrees of freedom, where

v =
(s21/n1 + s22/n2)

2

[(s21/n1)2/(n1 − 1)] + [(s22/n2)2/(n2 − 1)]
.

Since v is seldom an integer, we round it down to the nearest whole number. The
above estimate of the degrees of freedom is called the Satterthwaite approximation
(Satterthwaite, 1946, in the Bibliography).

Using the statistic T ′, we write

P (−tα/2 < T ′ < tα/2) ≈ 1− α,

where tα/2 is the value of the t-distribution with v degrees of freedom, above which
we find an area of α/2. Substituting for T ′ in the inequality and following the
same steps as before, we state the final result.
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Confidence
Interval for

μ1 − μ2, σ
2
1 �= σ2

2

and Both
Unknown

If x̄1 and s21 and x̄2 and s22 are the means and variances of independent random
samples of sizes n1 and n2, respectively, from approximately normal populations
with unknown and unequal variances, an approximate 100(1 − α)% confidence
interval for μ1 − μ2 is given by

(x̄1 − x̄2)− tα/2

√
s21
n1

+
s22
n2

< μ1 − μ2 < (x̄1 − x̄2) + tα/2

√
s21
n1

+
s22
n2

,

where tα/2 is the t-value with

v =
(s21/n1 + s22/n2)

2

[(s21/n1)2/(n1 − 1)] + [(s22/n2)2/(n2 − 1)]

degrees of freedom, leaving an area of α/2 to the right.

Note that the expression for v above involves random variables, and thus v is
an estimate of the degrees of freedom. In applications, this estimate will not result
in a whole number, and thus the analyst must round down to the nearest integer
to achieve the desired confidence.

Before we illustrate the above confidence interval with an example, we should
point out that all the confidence intervals on μ1 − μ2 are of the same general form
as those on a single mean; namely, they can be written as

point estimate ± tα/2 ŝ.e.(point estimate)

or

point estimate ± zα/2 s.e.(point estimate).

For example, in the case where σ1 = σ2 = σ, the estimated standard error of
x̄1 − x̄2 is sp

√
1/n1 + 1/n2. For the case where σ2

1 �= σ2
2 ,

ŝ.e.(x̄1 − x̄2) =

√
s21
n1

+
s22
n2

.

Example 9.12: A study was conducted by the Department of Zoology at the Virginia Tech to
estimate the difference in the amounts of the chemical orthophosphorus measured
at two different stations on the James River. Orthophosphorus was measured in
milligrams per liter. Fifteen samples were collected from station 1, and 12 samples
were obtained from station 2. The 15 samples from station 1 had an average
orthophosphorus content of 3.84 milligrams per liter and a standard deviation of
3.07 milligrams per liter, while the 12 samples from station 2 had an average
content of 1.49 milligrams per liter and a standard deviation of 0.80 milligram
per liter. Find a 95% confidence interval for the difference in the true average
orthophosphorus contents at these two stations, assuming that the observations
came from normal populations with different variances.

Solution : For station 1, we have x̄1 = 3.84, s1 = 3.07, and n1 = 15. For station 2, x̄2 = 1.49,
s2 = 0.80, and n2 = 12. We wish to find a 95% confidence interval for μ1 − μ2.
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Since the population variances are assumed to be unequal, we can only find an
approximate 95% confidence interval based on the t-distribution with v degrees of
freedom, where

v =
(3.072/15 + 0.802/12)2

[(3.072/15)2/14] + [(0.802/12)2/11]
= 16.3 ≈ 16.

Our point estimate of μ1 − μ2 is

x̄1 − x̄2 = 3.84− 1.49 = 2.35.

Using α = 0.05, we find in Table A.4 that t0.025 = 2.120 for v = 16 degrees of
freedom. Therefore, the 95% confidence interval for μ1 − μ2 is

2.35− 2.120

√
3.072

15
+

0.802

12
< μ1 − μ2 < 2.35 + 2.120

√
3.072

15
+

0.802

12
,

which simplifies to 0.60 < μ1 − μ2 < 4.10. Hence, we are 95% confident that the
interval from 0.60 to 4.10 milligrams per liter contains the difference of the true
average orthophosphorus contents for these two locations.

When two population variances are unknown, the assumption of equal vari-
ances or unequal variances may be precarious. In Section 10.10, a procedure will
be introduced that will aid in discriminating between the equal variance and the
unequal variance situation.

9.9 Paired Observations

At this point, we shall consider estimation procedures for the difference of two
means when the samples are not independent and the variances of the two popu-
lations are not necessarily equal. The situation considered here deals with a very
special experimental condition, namely that of paired observations. Unlike in the
situation described earlier, the conditions of the two populations are not assigned
randomly to experimental units. Rather, each homogeneous experimental unit re-
ceives both population conditions; as a result, each experimental unit has a pair
of observations, one for each population. For example, if we run a test on a new
diet using 15 individuals, the weights before and after going on the diet form the
information for our two samples. The two populations are “before” and “after,”
and the experimental unit is the individual. Obviously, the observations in a pair
have something in common. To determine if the diet is effective, we consider the
differences d1, d2, . . . , dn in the paired observations. These differences are the val-
ues of a random sample D1, D2, . . . , Dn from a population of differences that we
shall assume to be normally distributed with mean μD = μ1 −μ2 and variance σ2

D.
We estimate σ2

D by s2d, the variance of the differences that constitute our sample.
The point estimator of μD is given by D̄.

When Should Pairing Be Done?

Pairing observations in an experiment is a strategy that can be employed in many
fields of application. The reader will be exposed to this concept in material related
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to hypothesis testing in Chapter 10 and experimental design issues in Chapters 13
and 15. Selecting experimental units that are relatively homogeneous (within the
units) and allowing each unit to experience both population conditions reduces the
effective experimental error variance (in this case, σ2

D). The reader may visualize
the ith pair difference as

Di = X1i −X2i.

Since the two observations are taken on the sample experimental unit, they are not
independent and, in fact,

Var(Di) = Var(X1i −X2i) = σ2
1 + σ2

2 − 2 Cov(X1i, X2i).

Now, intuitively, we expect that σ2
D should be reduced because of the similarity in

nature of the “errors” of the two observations within a given experimental unit,
and this comes through in the expression above. One certainly expects that if the
unit is homogeneous, the covariance is positive. As a result, the gain in quality of
the confidence interval over that obtained without pairing will be greatest when
there is homogeneity within units and large differences as one goes from unit to
unit. One should keep in mind that the performance of the confidence interval will
depend on the standard error of D̄, which is, of course, σD/

√
n, where n is the

number of pairs. As we indicated earlier, the intent of pairing is to reduce σD.

Tradeoff between Reducing Variance and Losing Degrees of Freedom

Comparing the confidence intervals obtained with and without pairing makes ap-
parent that there is a tradeoff involved. Although pairing should indeed reduce
variance and hence reduce the standard error of the point estimate, the degrees of
freedom are reduced by reducing the problem to a one-sample problem. As a result,
the tα/2 point attached to the standard error is adjusted accordingly. Thus, pair-
ing may be counterproductive. This would certainly be the case if one experienced
only a modest reduction in variance (through σ2

D) by pairing.
Another illustration of pairing involves choosing n pairs of subjects, with each

pair having a similar characteristic such as IQ, age, or breed, and then selecting
one member of each pair at random to yield a value of X1, leaving the other
member to provide the value of X2. In this case, X1 and X2 might represent
the grades obtained by two individuals of equal IQ when one of the individuals is
assigned at random to a class using the conventional lecture approach while the
other individual is assigned to a class using programmed materials.

A 100(1− α)% confidence interval for μD can be established by writing

P (−tα/2 < T < tα/2) = 1− α,

where T = D̄−μD

Sd/
√
n
and tα/2, as before, is a value of the t-distribution with n − 1

degrees of freedom.
It is now a routine procedure to replace T by its definition in the inequality

above and carry out the mathematical steps that lead to the following 100(1−α)%
confidence interval for μ1 − μ2 = μD.
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Confidence
Interval for

μD = μ1 − μ2 for
Paired

Observations

If d̄ and sd are the mean and standard deviation, respectively, of the normally
distributed differences of n random pairs of measurements, a 100(1− α)% con-
fidence interval for μD = μ1 − μ2 is

d̄− tα/2
sd√
n
< μD < d̄+ tα/2

sd√
n
,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of
α/2 to the right.

Example 9.13: A study published in Chemosphere reported the levels of the dioxin TCDD of 20
Massachusetts Vietnam veterans who were possibly exposed to Agent Orange. The
TCDD levels in plasma and in fat tissue are listed in Table 9.1.

Find a 95% confidence interval for μ1 − μ2, where μ1 and μ2 represent the
true mean TCDD levels in plasma and in fat tissue, respectively. Assume the
distribution of the differences to be approximately normal.

Table 9.1: Data for Example 9.13

TCDD TCDD TCDD TCDD
Levels in Levels in Levels in Levels in

Veteran Plasma Fat Tissue di Veteran Plasma Fat Tissue di

1
2
3
4
5
6
7
8
9
10

2.5
3.1
2.1
3.5
3.1
1.8
6.0
3.0
36.0
4.7

4.9
5.9
4.4
6.9
7.0
4.2
10.0
5.5
41.0
4.4

−2.4
−2.8
−2.3
−3.4
−3.9
−2.4
−4.0
−2.5
−5.0
0.3

11
12
13
14
15
16
17
18
19
20

6.9
3.3
4.6
1.6
7.2
1.8
20.0
2.0
2.5
4.1

7.0
2.9
4.6
1.4
7.7
1.1

11.0
2.5
2.3
2.5

−0.1
0.4
0.0
0.2

−0.5
0.7
9.0

−0.5
0.2
1.6

Source: Schecter, A. et al. “Partitioning of 2,3,7,8-chlorinated dibenzo-p-dioxins and dibenzofurans between
adipose tissue and plasma lipid of 20 Massachusetts Vietnam veterans,” Chemosphere, Vol. 20, Nos. 7–9,
1990, pp. 954–955 (Tables I and II).

Solution : We wish to find a 95% confidence interval for μ1 − μ2. Since the observations
are paired, μ1 − μ2 = μD. The point estimate of μD is d̄ = −0.87. The standard
deviation, sd, of the sample differences is

sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2 =

√
168.4220

19
= 2.9773.

Using α = 0.05, we find in Table A.4 that t0.025 = 2.093 for v = n−1 = 19 degrees
of freedom. Therefore, the 95% confidence interval is

−0.8700− (2.093)

(
2.9773√

20

)
< μD < −0.8700 + (2.093)

(
2.9773√

20

)
,
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or simply −2.2634 < μD < 0.5234, from which we can conclude that there is no
significant difference between the mean TCDD level in plasma and the mean TCDD
level in fat tissue.

Exercises

9.35 A random sample of size n1 = 25, taken from a
normal population with a standard deviation σ1 = 5,
has a mean x̄1 = 80. A second random sample of size
n2 = 36, taken from a different normal population with
a standard deviation σ2 = 3, has a mean x̄2 = 75. Find
a 94% confidence interval for μ1 − μ2.

9.36 Two kinds of thread are being compared for
strength. Fifty pieces of each type of thread are tested
under similar conditions. Brand A has an average ten-
sile strength of 78.3 kilograms with a standard devi-
ation of 5.6 kilograms, while brand B has an average
tensile strength of 87.2 kilograms with a standard de-
viation of 6.3 kilograms. Construct a 95% confidence
interval for the difference of the population means.

9.37 A study was conducted to determine if a cer-
tain treatment has any effect on the amount of metal
removed in a pickling operation. A random sample of
100 pieces was immersed in a bath for 24 hours without
the treatment, yielding an average of 12.2 millimeters
of metal removed and a sample standard deviation of
1.1 millimeters. A second sample of 200 pieces was
exposed to the treatment, followed by the 24-hour im-
mersion in the bath, resulting in an average removal
of 9.1 millimeters of metal with a sample standard de-
viation of 0.9 millimeter. Compute a 98% confidence
interval estimate for the difference between the popu-
lation means. Does the treatment appear to reduce the
mean amount of metal removed?

9.38 Two catalysts in a batch chemical process, are
being compared for their effect on the output of the
process reaction. A sample of 12 batches was prepared
using catalyst 1, and a sample of 10 batches was pre-
pared using catalyst 2. The 12 batches for which cat-
alyst 1 was used in the reaction gave an average yield
of 85 with a sample standard deviation of 4, and the
10 batches for which catalyst 2 was used gave an aver-
age yield of 81 and a sample standard deviation of 5.
Find a 90% confidence interval for the difference be-
tween the population means, assuming that the pop-
ulations are approximately normally distributed with
equal variances.

9.39 Students may choose between a 3-semester-hour
physics course without labs and a 4-semester-hour
course with labs. The final written examination is the
same for each section. If 12 students in the section with

labs made an average grade of 84 with a standard devi-
ation of 4, and 18 students in the section without labs
made an average grade of 77 with a standard deviation
of 6, find a 99% confidence interval for the difference
between the average grades for the two courses. As-
sume the populations to be approximately normally
distributed with equal variances.

9.40 In a study conducted at Virginia Tech on the
development of ectomycorrhizal, a symbiotic relation-
ship between the roots of trees and a fungus, in which
minerals are transferred from the fungus to the trees
and sugars from the trees to the fungus, 20 northern
red oak seedlings exposed to the fungus Pisolithus tinc-
torus were grown in a greenhouse. All seedlings were
planted in the same type of soil and received the same
amount of sunshine and water. Half received no ni-
trogen at planting time, to serve as a control, and the
other half received 368 ppm of nitrogen in the form
NaNO3. The stem weights, in grams, at the end of 140
days were recorded as follows:

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

Construct a 95% confidence interval for the difference
in the mean stem weight between seedlings that re-
ceive no nitrogen and those that receive 368 ppm of
nitrogen. Assume the populations to be normally dis-
tributed with equal variances.

9.41 The following data represent the length of time,
in days, to recovery for patients randomly treated with
one of two medications to clear up severe bladder in-
fections:

Medication 1 Medication 2
n1 = 14 n2 = 16
x̄1 = 17 x̄2 = 19
s21 = 1.5 s22 = 1.8

Find a 99% confidence interval for the difference μ2−μ1
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in the mean recovery times for the two medications, as-
suming normal populations with equal variances.

9.42 An experiment reported in Popular Science
compared fuel economies for two types of similarly
equipped diesel mini-trucks. Let us suppose that 12
Volkswagen and 10 Toyota trucks were tested in 90-
kilometer-per-hour steady-paced trials. If the 12 Volks-
wagen trucks averaged 16 kilometers per liter with a
standard deviation of 1.0 kilometer per liter and the 10
Toyota trucks averaged 11 kilometers per liter with a
standard deviation of 0.8 kilometer per liter, construct
a 90% confidence interval for the difference between the
average kilometers per liter for these two mini-trucks.
Assume that the distances per liter for the truck mod-
els are approximately normally distributed with equal
variances.

9.43 A taxi company is trying to decide whether to
purchase brand A or brand B tires for its fleet of taxis.
To estimate the difference in the two brands, an exper-
iment is conducted using 12 of each brand. The tires
are run until they wear out. The results are

Brand A: x̄1 = 36, 300 kilometers,
s1 = 5000 kilometers.

Brand B: x̄2 = 38, 100 kilometers,
s2 = 6100 kilometers.

Compute a 95% confidence interval for μA − μB as-
suming the populations to be approximately normally
distributed. You may not assume that the variances
are equal.

9.44 Referring to Exercise 9.43, find a 99% confidence
interval for μ1 − μ2 if tires of the two brands are as-
signed at random to the left and right rear wheels of
8 taxis and the following distances, in kilometers, are
recorded:

Taxi Brand A Brand B
1 34,400 36,700
2 45,500 46,800
3 36,700 37,700
4 32,000 31,100
5 48,400 47,800
6 32,800 36,400
7 38,100 38,900
8 30,100 31,500

Assume that the differences of the distances are ap-
proximately normally distributed.

9.45 The federal government awarded grants to the
agricultural departments of 9 universities to test the
yield capabilities of two new varieties of wheat. Each
variety was planted on a plot of equal area at each
university, and the yields, in kilograms per plot, were
recorded as follows:

University

Variety 1 2 3 4 5 6 7 8 9
1 38 23 35 41 44 29 37 31 38
2 45 25 31 38 50 33 36 40 43

Find a 95% confidence interval for the mean difference
between the yields of the two varieties, assuming the
differences of yields to be approximately normally dis-
tributed. Explain why pairing is necessary in this prob-
lem.

9.46 The following data represent the running times
of films produced by two motion-picture companies.

Company Time (minutes)
I 103 94 110 87 98
II 97 82 123 92 175 88 118

Compute a 90% confidence interval for the difference
between the average running times of films produced by
the two companies. Assume that the running-time dif-
ferences are approximately normally distributed with
unequal variances.

9.47 Fortune magazine (March 1997) reported the to-
tal returns to investors for the 10 years prior to 1996
and also for 1996 for 431 companies. The total returns
for 10 of the companies are listed below. Find a 95%
confidence interval for the mean change in percent re-
turn to investors.

Total Return
to Investors

Company 1986–96 1996

Coca-Cola 29.8% 43.3%
Mirage Resorts 27.9% 25.4%
Merck 22.1% 24.0%
Microsoft 44.5% 88.3%
Johnson & Johnson 22.2% 18.1%
Intel 43.8% 131.2%
Pfizer 21.7% 34.0%
Procter & Gamble 21.9% 32.1%
Berkshire Hathaway 28.3% 6.2%
S&P 500 11.8% 20.3%

9.48 An automotive company is considering two
types of batteries for its automobile. Sample infor-
mation on battery life is collected for 20 batteries of
type A and 20 batteries of type B. The summary
statistics are x̄A = 32.91, x̄B = 30.47, sA = 1.57,
and sB = 1.74. Assume the data on each battery are
normally distributed and assume σA = σB .

(a) Find a 95% confidence interval on μA − μB .

(b) Draw a conclusion from (a) that provides insight
into whether A or B should be adopted.

9.49 Two different brands of latex paint are being
considered for use. Fifteen specimens of each type of
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paint were selected, and the drying times, in hours,
were as follows:

Paint A Paint B
3.5 2.7 3.9 4.2 3.6 4.7 3.9 4.5 5.5 4.0
2.7 3.3 5.2 4.2 2.9 5.3 4.3 6.0 5.2 3.7
4.4 5.2 4.0 4.1 3.4 5.5 6.2 5.1 5.4 4.8

Assume the drying time is normally distributed with
σA = σB . Find a 95% confidence interval on μB − μA,
where μA and μB are the mean drying times.

9.50 Two levels (low and high) of insulin doses are
given to two groups of diabetic rats to check the insulin-
binding capacity, yielding the following data:

Low dose: n1 = 8 x̄1 = 1.98 s1 = 0.51
High dose: n2 = 13 x̄2 = 1.30 s2 = 0.35

Assume that the variances are equal. Give a 95% con-
fidence interval for the difference in the true average
insulin-binding capacity between the two samples.

9.10 Single Sample: Estimating a Proportion

A point estimator of the proportion p in a binomial experiment is given by the
statistic P̂ = X/n, where X represents the number of successes in n trials. There-
fore, the sample proportion p̂ = x/n will be used as the point estimate of the
parameter p.

If the unknown proportion p is not expected to be too close to 0 or 1, we can
establish a confidence interval for p by considering the sampling distribution of
P̂ . Designating a failure in each binomial trial by the value 0 and a success by
the value 1, the number of successes, x, can be interpreted as the sum of n values
consisting only of 0 and 1s, and p̂ is just the sample mean of these n values. Hence,
by the Central Limit Theorem, for n sufficiently large, P̂ is approximately normally
distributed with mean

μP̂ = E(P̂ ) = E

(
X

n

)
=

np

n
= p

and variance

σ2
P̂
= σ2

X/n =
σ2
X

n2
=

npq

n2
=

pq

n
.

Therefore, we can assert that

P (−zα/2 < Z < zα/2) = 1− α, with Z =
P̂ − p√
pq/n

,

and zα/2 is the value above which we find an area of α/2 under the standard normal
curve. Substituting for Z, we write

P

(
−zα/2 <

P̂ − p√
pq/n

< zα/2

)
= 1− α.

When n is large, very little error is introduced by substituting the point estimate
p̂ = x/n for the p under the radical sign. Then we can write

P

(
P̂ − zα/2

√
p̂q̂

n
< p < P̂ + zα/2

√
p̂q̂

n

)
≈ 1− α.
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On the other hand, by solving for p in the quadratic inequality above,

−zα/2 <
P̂ − p√
pq/n

< zα/2,

we obtain another form of the confidence interval for p with limits

p̂+
z2
α/2

2n

1 +
z2
α/2

n

± zα/2

1 +
z2
α/2

n

√
p̂q̂

n
+

z2α/2

4n2
.

For a random sample of size n, the sample proportion p̂ = x/n is computed, and
the following approximate 100(1−α)% confidence intervals for p can be obtained.

Large-Sample
Confidence

Intervals for p

If p̂ is the proportion of successes in a random sample of size n and q̂ = 1 − p̂,
an approximate 100(1− α)% confidence interval, for the binomial parameter p
is given by (method 1)

p̂− zα/2

√
p̂q̂

n
< p < p̂+ zα/2

√
p̂q̂

n

or by (method 2)

p̂+
z2
α/2

2n

1 +
z2
α/2

n

− zα/2

1 +
z2
α/2

n

√
p̂q̂

n
+

z2α/2

4n2
< p <

p̂+
z2
α/2

2n

1 +
z2
α/2

n

+
zα/2

1 +
z2
α/2

n

√
p̂q̂

n
+

z2α/2

4n2
,

where zα/2 is the z-value leaving an area of α/2 to the right.

When n is small and the unknown proportion p is believed to be close to 0 or to
1, the confidence-interval procedure established here is unreliable and, therefore,
should not be used. To be on the safe side, one should require both np̂ and nq̂
to be greater than or equal to 5. The methods for finding a confidence interval
for the binomial parameter p are also applicable when the binomial distribution
is being used to approximate the hypergeometric distribution, that is, when n is
small relative to N , as illustrated by Example 9.14.

Note that although method 2 yields more accurate results, it is more compli-
cated to calculate, and the gain in accuracy that it provides diminishes when the
sample size is large enough. Hence, method 1 is commonly used in practice.

Example 9.14: In a random sample of n = 500 families owning television sets in the city of Hamil-
ton, Canada, it is found that x = 340 subscribe to HBO. Find a 95% confidence
interval for the actual proportion of families with television sets in this city that
subscribe to HBO.

Solution : The point estimate of p is p̂ = 340/500 = 0.68. Using Table A.3, we find that
z0.025 = 1.96. Therefore, using method 1, the 95% confidence interval for p is

0.68− 1.96

√
(0.68)(0.32)

500
< p < 0.68 + 1.96

√
(0.68)(0.32)

500
,

which simplifies to 0.6391 < p < 0.7209.
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If we use method 2, we can obtain

0.68 + 1.962

(2)(500)

1 + 1.962

500

± 1.96

1 + 1.962

500

√
(0.68)(0.32)

500
+

1.962

(4)(5002)
= 0.6786± 0.0408,

which simplifies to 0.6378 < p < 0.7194. Apparently, when n is large (500 here),
both methods yield very similar results.

If p is the center value of a 100(1−α)% confidence interval, then p̂ estimates p
without error. Most of the time, however, p̂ will not be exactly equal to p and the
point estimate will be in error. The size of this error will be the positive difference
that separates p and p̂, and we can be 100(1 − α)% confident that this difference
will not exceed zα/2

√
p̂q̂/n. We can readily see this if we draw a diagram of a

typical confidence interval, as in Figure 9.6. Here we use method 1 to estimate the
error.

p̂ p

Error

^ ^p �z ^ ^p q /n p �z ^ ^p q /n/2α /2α

Figure 9.6: Error in estimating p by p̂.

Theorem 9.3: If p̂ is used as an estimate of p, we can be 100(1 − α)% confident that the error
will not exceed zα/2

√
p̂q̂/n.

In Example 9.14, we are 95% confident that the sample proportion p̂ = 0.68
differs from the true proportion p by an amount not exceeding 0.04.

Choice of Sample Size

Let us now determine how large a sample is necessary to ensure that the error in
estimating p will be less than a specified amount e. By Theorem 9.3, we must
choose n such that zα/2

√
p̂q̂/n = e.

Theorem 9.4: If p̂ is used as an estimate of p, we can be 100(1 − α)% confident that the error
will be less than a specified amount e when the sample size is approximately

n =
z2α/2p̂q̂

e2
.

Theorem 9.4 is somewhat misleading in that we must use p̂ to determine the
sample size n, but p̂ is computed from the sample. If a crude estimate of p can
be made without taking a sample, this value can be used to determine n. Lacking
such an estimate, we could take a preliminary sample of size n ≥ 30 to provide
an estimate of p. Using Theorem 9.4, we could determine approximately how
many observations are needed to provide the desired degree of accuracy. Note that
fractional values of n are rounded up to the next whole number.
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Example 9.15: How large a sample is required if we want to be 95% confident that our estimate
of p in Example 9.14 is within 0.02 of the true value?

Solution : Let us treat the 500 families as a preliminary sample, providing an estimate p̂ =
0.68. Then, by Theorem 9.4,

n =
(1.96)2(0.68)(0.32)

(0.02)2
= 2089.8 ≈ 2090.

Therefore, if we base our estimate of p on a random sample of size 2090, we can be
95% confident that our sample proportion will not differ from the true proportion
by more than 0.02.

Occasionally, it will be impractical to obtain an estimate of p to be used for
determining the sample size for a specified degree of confidence. If this happens,
an upper bound for n is established by noting that p̂q̂ = p̂(1 − p̂), which must
be at most 1/4, since p̂ must lie between 0 and 1. This fact may be verified by
completing the square. Hence

p̂(1− p̂) = −(p̂2 − p̂) =
1

4
−
(
p̂2 − p̂+

1

4

)
=

1

4
−
(
p̂− 1

2

)2

,

which is always less than 1/4 except when p̂ = 1/2, and then p̂q̂ = 1/4. Therefore,
if we substitute p̂ = 1/2 into the formula for n in Theorem 9.4 when, in fact, p
actually differs from l/2, n will turn out to be larger than necessary for the specified
degree of confidence; as a result, our degree of confidence will increase.

Theorem 9.5: If p̂ is used as an estimate of p, we can be at least 100(1 − α)% confident that
the error will not exceed a specified amount e when the sample size is

n =
z2α/2

4e2
.

Example 9.16: How large a sample is required if we want to be at least 95% confident that our
estimate of p in Example 9.14 is within 0.02 of the true value?

Solution : Unlike in Example 9.15, we shall now assume that no preliminary sample has been
taken to provide an estimate of p. Consequently, we can be at least 95% confident
that our sample proportion will not differ from the true proportion by more than
0.02 if we choose a sample of size

n =
(1.96)2

(4)(0.02)2
= 2401.

Comparing the results of Examples 9.15 and 9.16, we see that information concern-
ing p, provided by a preliminary sample or from experience, enables us to choose
a smaller sample while maintaining our required degree of accuracy.
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9.11 Two Samples: Estimating the Difference between
Two Proportions

Consider the problem where we wish to estimate the difference between two bino-
mial parameters p1 and p2. For example, p1 might be the proportion of smokers
with lung cancer and p2 the proportion of nonsmokers with lung cancer, and the
problem is to estimate the difference between these two proportions. First, we
select independent random samples of sizes n1 and n2 from the two binomial pop-
ulations with means n1p1 and n2p2 and variances n1p1q1 and n2p2q2, respectively;
then we determine the numbers x1 and x2 of people in each sample with lung can-
cer and form the proportions p̂1 = x1/n and p̂2 = x2/n. A point estimator of the

difference between the two proportions, p1 − p2, is given by the statistic P̂1 − P̂2.
Therefore, the difference of the sample proportions, p̂1 − p̂2, will be used as the
point estimate of p1 − p2.

A confidence interval for p1 − p2 can be established by considering the sam-
pling distribution of P̂1 − P̂2. From Section 9.10 we know that P̂1 and P̂2 are each
approximately normally distributed, with means p1 and p2 and variances p1q1/n1

and p2q2/n2, respectively. Choosing independent samples from the two popula-

tions ensures that the variables P̂1 and P̂2 will be independent, and then by the
reproductive property of the normal distribution established in Theorem 7.11, we
conclude that P̂1 − P̂2 is approximately normally distributed with mean

μP̂1−P̂2
= p1 − p2

and variance

σ2
P̂1−P̂2

=
p1q1
n1

+
p2q2
n2

.

Therefore, we can assert that

P (−zα/2 < Z < zα/2) = 1− α,

where

Z =
(P̂1 − P̂2)− (p1 − p2)√

p1q1/n1 + p2q2/n2

and zα/2 is the value above which we find an area of α/2 under the standard normal
curve. Substituting for Z, we write

P

[
−zα/2 <

(P̂1 − P̂2)− (p1 − p2)√
p1q1/n1 + p2q2/n2

< zα/2

]
= 1− α.

After performing the usual mathematical manipulations, we replace p1, p2,
q1, and q2 under the radical sign by their estimates p̂1 = x1/n1, p̂2 = x2/n2,
q̂1 = 1 − p̂1, and q̂2 = 1 − p̂2, provided that n1p̂1, n1q̂1, n2p̂2, and n2q̂2 are all
greater than or equal to 5, and the following approximate 100(1− α)% confidence
interval for p1 − p2 is obtained.

Uploaded By: anonymousSTUDENTS-HUB.com



9.11 Two Samples: Estimating the Difference between Two Proportions 301

Large-Sample
Confidence
Interval for

p1 − p2

If p̂1 and p̂2 are the proportions of successes in random samples of sizes n1 and
n2, respectively, q̂1 = 1 − p̂1, and q̂2 = 1 − p̂2, an approximate 100(1 − α)%
confidence interval for the difference of two binomial parameters, p1 − p2, is
given by

(p̂1 − p̂2)− zα/2

√
p̂1q̂1
n1

+
p̂2q̂2
n2

< p1 − p2 < (p̂1 − p̂2) + zα/2

√
p̂1q̂1
n1

+
p̂2q̂2
n2

,

where zα/2 is the z-value leaving an area of α/2 to the right.

Example 9.17: A certain change in a process for manufacturing component parts is being con-
sidered. Samples are taken under both the existing and the new process so as
to determine if the new process results in an improvement. If 75 of 1500 items
from the existing process are found to be defective and 80 of 2000 items from the
new process are found to be defective, find a 90% confidence interval for the true
difference in the proportion of defectives between the existing and the new process.

Solution : Let p1 and p2 be the true proportions of defectives for the existing and new pro-
cesses, respectively. Hence, p̂1 = 75/1500 = 0.05 and p̂2 = 80/2000 = 0.04, and
the point estimate of p1 − p2 is

p̂1 − p̂2 = 0.05− 0.04 = 0.01.

Using Table A.3, we find z0.05 = 1.645. Therefore, substituting into the formula,
with

1.645

√
(0.05)(0.95)

1500
+

(0.04)(0.96)

2000
= 0.0117,

we find the 90% confidence interval to be −0.0017 < p1 − p2 < 0.0217. Since the
interval contains the value 0, there is no reason to believe that the new process
produces a significant decrease in the proportion of defectives over the existing
method.

Up to this point, all confidence intervals presented were of the form

point estimate ± K s.e.(point estimate),

where K is a constant (either t or normal percent point). This form is valid when
the parameter is a mean, a difference between means, a proportion, or a difference
between proportions, due to the symmetry of the t- and Z-distributions. However,
it does not extend to variances and ratios of variances, which will be discussed in
Sections 9.12 and 9.13.
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Exercises

In this set of exercises, for estimation concern-
ing one proportion, use only method 1 to obtain
the confidence intervals, unless instructed oth-
erwise.

9.51 In a random sample of 1000 homes in a certain
city, it is found that 228 are heated by oil. Find 99%
confidence intervals for the proportion of homes in this
city that are heated by oil using both methods pre-
sented on page 297.

9.52 Compute 95% confidence intervals, using both
methods on page 297, for the proportion of defective
items in a process when it is found that a sample of
size 100 yields 8 defectives.

9.53 (a) A random sample of 200 voters in a town is
selected, and 114 are found to support an annexa-
tion suit. Find the 96% confidence interval for the
fraction of the voting population favoring the suit.

(b) What can we assert with 96% confidence about the
possible size of our error if we estimate the fraction
of voters favoring the annexation suit to be 0.57?

9.54 A manufacturer of MP3 players conducts a set
of comprehensive tests on the electrical functions of its
product. All MP3 players must pass all tests prior to
being sold. Of a random sample of 500 MP3 players, 15
failed one or more tests. Find a 90% confidence interval
for the proportion of MP3 players from the population
that pass all tests.

9.55 A new rocket-launching system is being consid-
ered for deployment of small, short-range rockets. The
existing system has p = 0.8 as the probability of a suc-
cessful launch. A sample of 40 experimental launches
is made with the new system, and 34 are successful.

(a) Construct a 95% confidence interval for p.

(b) Would you conclude that the new system is better?

9.56 A geneticist is interested in the proportion of
African males who have a certain minor blood disor-
der. In a random sample of 100 African males, 24 are
found to be afflicted.

(a) Compute a 99% confidence interval for the propor-
tion of African males who have this blood disorder.

(b) What can we assert with 99% confidence about the
possible size of our error if we estimate the propor-
tion of African males with this blood disorder to be
0.24?

9.57 (a) According to a report in the Roanoke Times
& World-News, approximately 2/3 of 1600 adults

polled by telephone said they think the space shut-
tle program is a good investment for the country.
Find a 95% confidence interval for the proportion of
American adults who think the space shuttle pro-
gram is a good investment for the country.

(b) What can we assert with 95% confidence about the
possible size of our error if we estimate the propor-
tion of American adults who think the space shuttle
program is a good investment to be 2/3?

9.58 In the newspaper article referred to in Exercise
9.57, 32% of the 1600 adults polled said the U.S. space
program should emphasize scientific exploration. How
large a sample of adults is needed for the poll if one
wishes to be 95% confident that the estimated per-
centage will be within 2% of the true percentage?

9.59 How large a sample is needed if we wish to be
96% confident that our sample proportion in Exercise
9.53 will be within 0.02 of the true fraction of the vot-
ing population?

9.60 How large a sample is needed if we wish to be
99% confident that our sample proportion in Exercise
9.51 will be within 0.05 of the true proportion of homes
in the city that are heated by oil?

9.61 How large a sample is needed in Exercise 9.52 if
we wish to be 98% confident that our sample propor-
tion will be within 0.05 of the true proportion defec-
tive?

9.62 A conjecture by a faculty member in the micro-
biology department at Washington University School
of Dental Medicine in St. Louis, Missouri, states that
a couple of cups of either green or oolong tea each
day will provide sufficient fluoride to protect your teeth
from decay. How large a sample is needed to estimate
the percentage of citizens in a certain town who favor
having their water fluoridated if one wishes to be at
least 99% confident that the estimate is within 1% of
the true percentage?

9.63 A study is to be made to estimate the percent-
age of citizens in a town who favor having their water
fluoridated. How large a sample is needed if one wishes
to be at least 95% confident that the estimate is within
1% of the true percentage?

9.64 A study is to be made to estimate the propor-
tion of residents of a certain city and its suburbs who
favor the construction of a nuclear power plant near
the city. How large a sample is needed if one wishes to
be at least 95% confident that the estimate is within
0.04 of the true proportion of residents who favor the
construction of the nuclear power plant?
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9.65 A certain geneticist is interested in the propor-
tion of males and females in the population who have
a minor blood disorder. In a random sample of 1000
males, 250 are found to be afflicted, whereas 275 of
1000 females tested appear to have the disorder. Com-
pute a 95% confidence interval for the difference be-
tween the proportions of males and females who have
the blood disorder.

9.66 Ten engineering schools in the United States
were surveyed. The sample contained 250 electrical
engineers, 80 being women; 175 chemical engineers, 40
being women. Compute a 90% confidence interval for
the difference between the proportions of women in
these two fields of engineering. Is there a significant
difference between the two proportions?

9.67 A clinical trial was conducted to determine if a
certain type of inoculation has an effect on the inci-
dence of a certain disease. A sample of 1000 rats was
kept in a controlled environment for a period of 1 year,
and 500 of the rats were given the inoculation. In the
group not inoculated, there were 120 incidences of the
disease, while 98 of the rats in the inoculated group
contracted it. If p1 is the probability of incidence of
the disease in uninoculated rats and p2 the probability
of incidence in inoculated rats, compute a 90% confi-
dence interval for p1 − p2.

9.68 In the study Germination and Emergence of
Broccoli, conducted by the Department of Horticulture
at Virginia Tech, a researcher found that at 5◦C, 10
broccoli seeds out of 20 germinated, while at 15◦C, 15
out of 20 germinated. Compute a 95% confidence in-
terval for the difference between the proportions of ger-
mination at the two different temperatures and decide
if there is a significant difference.

9.69 A survey of 1000 students found that 274 chose
professional baseball team A as their favorite team. In
a similar survey involving 760 students, 240 of them
chose team A as their favorite. Compute a 95% con-
fidence interval for the difference between the propor-
tions of students favoring team A in the two surveys.
Is there a significant difference?

9.70 According to USA Today (March 17, 1997),
women made up 33.7% of the editorial staff at local
TV stations in the United States in 1990 and 36.2% in
1994. Assume 20 new employees were hired as editorial
staff.

(a) Estimate the number that would have been women
in 1990 and 1994, respectively.

(b) Compute a 95% confidence interval to see if there
is evidence that the proportion of women hired as
editorial staff was higher in 1994 than in 1990.

9.12 Single Sample: Estimating the Variance

If a sample of size n is drawn from a normal population with variance σ2 and
the sample variance s2 is computed, we obtain a value of the statistic S2. This
computed sample variance is used as a point estimate of σ2. Hence, the statistic
S2 is called an estimator of σ2.

An interval estimate of σ2 can be established by using the statistic

X2 =
(n− 1)S2

σ2
.

According to Theorem 8.4, the statistic X2 has a chi-squared distribution with
n− 1 degrees of freedom when samples are chosen from a normal population. We
may write (see Figure 9.7)

P (χ2
1−α/2 < X2 < χ2

α/2) = 1− α,

where χ2
1−α/2 and χ2

α/2 are values of the chi-squared distribution with n−1 degrees

of freedom, leaving areas of 1−α/2 and α/2, respectively, to the right. Substituting
for X2, we write

P

[
χ2
1−α/2 <

(n− 1)S2

σ2
< χ2

α/2

]
= 1− α.
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Figure 9.7: P (χ2
1−α/2 < X2 < χ2

α/2) = 1− α.

Dividing each term in the inequality by (n − 1)S2 and then inverting each term
(thereby changing the sense of the inequalities), we obtain

P

[
(n− 1)S2

χ2
α/2

< σ2 <
(n− 1)S2

χ2
1−α/2

]
= 1− α.

For a random sample of size n from a normal population, the sample variance s2

is computed, and the following 100(1−α)% confidence interval for σ2 is obtained.

Confidence
Interval for σ2

If s2 is the variance of a random sample of size n from a normal population, a
100(1− α)% confidence interval for σ2 is

(n− 1)s2

χ2
α/2

< σ2 <
(n− 1)s2

χ2
1−α/2

,

where χ2
α/2 and χ2

1−α/2 are χ2-values with v = n−1 degrees of freedom, leaving

areas of α/2 and 1− α/2, respectively, to the right.

An approximate 100(1 − α)% confidence interval for σ is obtained by taking
the square root of each endpoint of the interval for σ2.

Example 9.18: The following are the weights, in decagrams, of 10 packages of grass seed distributed
by a certain company: 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and 46.0.
Find a 95% confidence interval for the variance of the weights of all such packages
of grass seed distributed by this company, assuming a normal population.

Solution : First we find

s2 =

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

n(n− 1)

=
(10)(21, 273.12)− (461.2)2

(10)(9)
= 0.286.
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To obtain a 95% confidence interval, we choose α = 0.05. Then, using Table
A.5 with v = 9 degrees of freedom, we find χ2

0.025 = 19.023 and χ2
0.975 = 2.700.

Therefore, the 95% confidence interval for σ2 is

(9)(0.286)

19.023
< σ2 <

(9)(0.286)

2.700
,

or simply 0.135 < σ2 < 0.953.

9.13 Two Samples: Estimating the Ratio of Two Variances

A point estimate of the ratio of two population variances σ2
1/σ

2
2 is given by the ratio

s21/s
2
2 of the sample variances. Hence, the statistic S2

1/S
2
2 is called an estimator of

σ2
1/σ

2
2 .

If σ2
1 and σ2

2 are the variances of normal populations, we can establish an
interval estimate of σ2

1/σ
2
2 by using the statistic

F =
σ2
2S

2
1

σ2
1S

2
2

.

According to Theorem 8.8, the random variable F has an F -distribution with
v1 = n1 − 1 and v2 = n2 − 1 degrees of freedom. Therefore, we may write (see
Figure 9.8)

P [f1−α/2(v1, v2) < F < fα/2(v1, v2)] = 1− α,

where f1−α/2(v1, v2) and fα/2(v1, v2) are the values of the F -distribution with v1
and v2 degrees of freedom, leaving areas of 1 − α/2 and α/2, respectively, to the
right.

ff1�
f0

/2

1 � α

α /2α

/2α/2α

Figure 9.8: P [f1−α/2(v1, v2) < F < fα/2(v1, v2)] = 1− α.
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Substituting for F , we write

P

[
f1−α/2(v1, v2) <

σ2
2S

2
1

σ2
1S

2
2

< fα/2(v1, v2)

]
= 1− α.

Multiplying each term in the inequality by S2
2/S

2
1 and then inverting each term,

we obtain

P

[
S2
1

S2
2

1

fα/2(v1, v2)
<

σ2
1

σ2
2

<
S2
1

S2
2

1

f1−α/2(v1, v2)

]
= 1− α.

The results of Theorem 8.7 enable us to replace the quantity f1−α/2(v1, v2) by
1/fα/2(v2, v1). Therefore,

P

[
S2
1

S2
2

1

fα/2(v1, v2)
<

σ2
1

σ2
2

<
S2
1

S2
2

fα/2(v2, v1)

]
= 1− α.

For any two independent random samples of sizes n1 and n2 selected from two
normal populations, the ratio of the sample variances s21/s

2
2 is computed, and the

following 100(1− α)% confidence interval for σ2
1/σ

2
2 is obtained.

Confidence
Interval for σ2

1/σ
2
2

If s21 and s22 are the variances of independent samples of sizes n1 and n2, re-
spectively, from normal populations, then a 100(1−α)% confidence interval for
σ2
1/σ

2
2 is

s21
s22

1

fα/2(v1, v2)
<

σ2
1

σ2
2

<
s21
s22

fα/2(v2, v1),

where fα/2(v1, v2) is an f -value with v1 = n1 − 1 and v2 = n2 − 1 degrees of
freedom, leaving an area of α/2 to the right, and fα/2(v2, v1) is a similar f -value
with v2 = n2 − 1 and v1 = n1 − 1 degrees of freedom.

As in Section 9.12, an approximate 100(1− α)% confidence interval for σ1/σ2

is obtained by taking the square root of each endpoint of the interval for σ2
1/σ

2
2 .

Example 9.19: A confidence interval for the difference in the mean orthophosphorus contents,
measured in milligrams per liter, at two stations on the James River was con-
structed in Example 9.12 on page 290 by assuming the normal population variance
to be unequal. Justify this assumption by constructing 98% confidence intervals
for σ2

1/σ
2
2 and for σ1/σ2, where σ2

1 and σ2
2 are the variances of the populations of

orthophosphorus contents at station 1 and station 2, respectively.
Solution : From Example 9.12, we have n1 = 15, n2 = 12, s1 = 3.07, and s2 = 0.80.

For a 98% confidence interval, α = 0.02. Interpolating in Table A.6, we find
f0.01(14, 11) ≈ 4.30 and f0.01(11, 14) ≈ 3.87. Therefore, the 98% confidence interval
for σ2

1/σ
2
2 is (

3.072

0.802

)(
1

4.30

)
<

σ2
1

σ2
2

<

(
3.072

0.802

)
(3.87),
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which simplifies to 3.425 <
σ2
1

σ2
2
< 56.991. Taking square roots of the confidence

limits, we find that a 98% confidence interval for σ1/σ2 is

1.851 <
σ1

σ2
< 7.549.

Since this interval does not allow for the possibility of σ1/σ2 being equal to 1, we
were correct in assuming that σ1 �= σ2 or σ2

1 �= σ2
2 in Example 9.12.

Exercises

9.71 A manufacturer of car batteries claims that the
batteries will last, on average, 3 years with a variance
of 1 year. If 5 of these batteries have lifetimes of 1.9,
2.4, 3.0, 3.5, and 4.2 years, construct a 95% confidence
interval for σ2 and decide if the manufacturer’s claim
that σ2 = 1 is valid. Assume the population of battery
lives to be approximately normally distributed.

9.72 A random sample of 20 students yielded a mean
of x̄ = 72 and a variance of s2 = 16 for scores on a
college placement test in mathematics. Assuming the
scores to be normally distributed, construct a 98% con-
fidence interval for σ2.

9.73 Construct a 95% confidence interval for σ2 in
Exercise 9.9 on page 283.

9.74 Construct a 99% confidence interval for σ2 in
Exercise 9.11 on page 283.

9.75 Construct a 99% confidence interval for σ in Ex-
ercise 9.12 on page 283.

9.76 Construct a 90% confidence interval for σ in Ex-
ercise 9.13 on page 283.

9.77 Construct a 98% confidence interval for σ1/σ2

in Exercise 9.42 on page 295, where σ1 and σ2 are,
respectively, the standard deviations for the distances
traveled per liter of fuel by the Volkswagen and Toyota
mini-trucks.

9.78 Construct a 90% confidence interval for σ2
1/σ

2
2 in

Exercise 9.43 on page 295. Were we justified in assum-
ing that σ2

1 �= σ2
2 when we constructed the confidence

interval for μ1 − μ2?

9.79 Construct a 90% confidence interval for σ2
1/σ

2
2

in Exercise 9.46 on page 295. Should we have assumed
σ2
1 = σ2

2 in constructing our confidence interval for
μI − μII?

9.80 Construct a 95% confidence interval for σ2
A/σ

2
B

in Exercise 9.49 on page 295. Should the equal-variance
assumption be used?

9.14 Maximum Likelihood Estimation (Optional)

Often the estimators of parameters have been those that appeal to intuition. The
estimator X̄ certainly seems reasonable as an estimator of a population mean μ.
The virtue of S2 as an estimator of σ2 is underscored through the discussion of
unbiasedness in Section 9.3. The estimator for a binomial parameter p is merely a
sample proportion, which, of course, is an average and appeals to common sense.
But there are many situations in which it is not at all obvious what the proper
estimator should be. As a result, there is much to be learned by the student
of statistics concerning different philosophies that produce different methods of
estimation. In this section, we deal with the method of maximum likelihood.

Maximum likelihood estimation is one of the most important approaches to
estimation in all of statistical inference. We will not give a thorough development of
the method. Rather, we will attempt to communicate the philosophy of maximum
likelihood and illustrate with examples that relate to other estimation problems
discussed in this chapter.
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The Likelihood Function

As the name implies, the method of maximum likelihood is that for which the like-
lihood function is maximized. The likelihood function is best illustrated through
the use of an example with a discrete distribution and a single parameter. Denote
by X1, X2, . . . , Xn the independent random variables taken from a discrete prob-
ability distribution represented by f(x, θ), where θ is a single parameter of the
distribution. Now

L(x1, x2, . . . , xn; θ) = f(x1, x2, . . . , xn; θ)

= f(x1, θ)f(x2, θ) · · · f(xn, θ)

is the joint distribution of the random variables, often referred to as the likelihood
function. Note that the variable of the likelihood function is θ, not x. Denote by
x1, x2, . . . , xn the observed values in a sample. In the case of a discrete random
variable, the interpretation is very clear. The quantity L(x1, x2, . . . , xn; θ), the
likelihood of the sample, is the following joint probability:

P (X1 = x1, X2 = x2, . . . , Xn = xn | θ),

which is the probability of obtaining the sample values x1, x2, . . . , xn. For the
discrete case, the maximum likelihood estimator is one that results in a maximum
value for this joint probability or maximizes the likelihood of the sample.

Consider a fictitious example where three items from an assembly line are
inspected. The items are ruled either defective or nondefective, and thus the
Bernoulli process applies. Testing the three items results in two nondefective items
followed by a defective item. It is of interest to estimate p, the proportion non-
defective in the process. The likelihood of the sample for this illustration is given
by

p · p · q = p2q = p2 − p3,

where q = 1 − p. Maximum likelihood estimation would give an estimate of p for
which the likelihood is maximized. It is clear that if we differentiate the likelihood
with respect to p, set the derivative to zero, and solve, we obtain the value

p̂ =
2

3
.

Now, of course, in this situation p̂ = 2/3 is the sample proportion defective
and is thus a reasonable estimator of the probability of a defective. The reader
should attempt to understand that the philosophy of maximum likelihood estima-
tion evolves from the notion that the reasonable estimator of a parameter based
on sample information is that parameter value that produces the largest probability
of obtaining the sample. This is, indeed, the interpretation for the discrete case,
since the likelihood is the probability of jointly observing the values in the sample.

Now, while the interpretation of the likelihood function as a joint probability
is confined to the discrete case, the notion of maximum likelihood extends to the
estimation of parameters of a continuous distribution. We now present a formal
definition of maximum likelihood estimation.
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Definition 9.3: Given independent observations x1, x2, . . . , xn from a probability density func-
tion (continuous case) or probability mass function (discrete case) f(x; θ), the

maximum likelihood estimator θ̂ is that which maximizes the likelihood function

L(x1, x2, . . . , xn; θ) = f(x; θ) = f(x1, θ)f(x2, θ) · · · f(xn, θ).

Quite often it is convenient to work with the natural log of the likelihood
function in finding the maximum of that function. Consider the following example
dealing with the parameter μ of a Poisson distribution.

Example 9.20: Consider a Poisson distribution with probability mass function

f(x|μ) = e−μμx

x!
, x = 0, 1, 2, . . . .

Suppose that a random sample x1, x2, . . . , xn is taken from the distribution. What
is the maximum likelihood estimate of μ?

Solution : The likelihood function is

L(x1, x2, . . . , xn;μ) =

n∏
i=1

f(xi|μ) = e−nμμ

n∑
i=1

xi∏n
i=1 xi!

.

Now consider

lnL(x1, x2, . . . , xn;μ) = −nμ+

n∑
i=1

xi lnμ− ln

n∏
i=1

xi!

∂ lnL(x1, x2, . . . , xn;μ)

∂μ
= −n+

n∑
i=1

xi

μ
.

Solving for μ̂, the maximum likelihood estimator, involves setting the derivative to
zero and solving for the parameter. Thus,

μ̂ =

n∑
i=1

xi

n
= x̄.

The second derivative of the log-likelihood function is negative, which implies that
the solution above indeed is a maximum. Since μ is the mean of the Poisson
distribution (Chapter 5), the sample average would certainly seem like a reasonable
estimator.

The following example shows the use of the method of maximum likelihood for
finding estimates of two parameters. We simply find the values of the parameters
that maximize (jointly) the likelihood function.

Example 9.21: Consider a random sample x1, x2, . . . , xn from a normal distribution N(μ, σ). Find
the maximum likelihood estimators for μ and σ2.
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Solution : The likelihood function for the normal distribution is

L(x1, x2, . . . , xn;μ, σ
2) =

1

(2π)n/2(σ2)n/2
exp

[
−1

2

n∑
i=1

(
xi − μ

σ

)2
]
.

Taking logarithms gives us

lnL(x1, x2, . . . , xn;μ, σ
2) = −n

2
ln(2π)− n

2
lnσ2 − 1

2

n∑
i=1

(
xi − μ

σ

)2

.

Hence,

∂ lnL

∂μ
=

n∑
i=1

(
xi − μ

σ2

)
and

∂ lnL

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − μ)2.

Setting both derivatives equal to 0, we obtain

n∑
i=1

xi − nμ = 0 and nσ2 =
n∑

i=1

(xi − μ)2.

Thus, the maximum likelihood estimator of μ is given by

μ̂ =
1

n

n∑
i=1

xi = x̄,

which is a pleasing result since x̄ has played such an important role in this chapter
as a point estimate of μ. On the other hand, the maximum likelihood estimator of
σ2 is

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2.

Checking the second-order partial derivative matrix confirms that the solution
results in a maximum of the likelihood function.

It is interesting to note the distinction between the maximum likelihood esti-
mator of σ2 and the unbiased estimator S2 developed earlier in this chapter. The
numerators are identical, of course, and the denominator is the degrees of freedom
n−1 for the unbiased estimator and n for the maximum likelihood estimator. Max-
imum likelihood estimators do not necessarily enjoy the property of unbiasedness.
However, they do have very important asymptotic properties.

Example 9.22: Suppose 10 rats are used in a biomedical study where they are injected with cancer
cells and then given a cancer drug that is designed to increase their survival rate.
The survival times, in months, are 14, 17, 27, 18, 12, 8, 22, 13, 19, and 12. Assume
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that the exponential distribution applies. Give a maximum likelihood estimate of
the mean survival time.

Solution : From Chapter 6, we know that the probability density function for the exponential
random variable X is

f(x, β) =

{
1
β e

−x/β , x > 0,

0, elsewhere.

Thus, the log-likelihood function for the data, given n = 10, is

lnL(x1, x2, . . . , x10;β) = −10 lnβ − 1

β

10∑
i=1

xi.

Setting

∂ lnL

∂β
= −10

β
+

1

β2

10∑
i=1

xi = 0

implies that

β̂ =
1

10

10∑
i=1

xi = x̄ = 16.2.

Evaluating the second derivative of the log-likelihood function at the value β̂ above
yields a negative value. As a result, the estimator of the parameter β, the popula-
tion mean, is the sample average x̄.

The following example shows the maximum likelihood estimator for a distribu-
tion that does not appear in previous chapters.

Example 9.23: It is known that a sample consisting of the values 12, 11.2, 13.5, 12.3, 13.8, and
11.9 comes from a population with the density function

f(x; θ) =

{
θ

xθ+1 , x > 1,

0, elsewhere,

where θ > 0. Find the maximum likelihood estimate of θ.
Solution : The likelihood function of n observations from this population can be written as

L(x1, x2, . . . , x10; θ) =
n∏

i=1

θ

xθ+1
i

=
θn

(
∏n

i=1 xi)θ+1
,

which implies that

lnL(x1, x2, . . . , x10; θ) = n ln(θ)− (θ + 1)

n∑
i=1

ln(xi).
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Setting 0 = ∂ lnL
∂θ = n

θ −
n∑

i=1

ln(xi) results in

θ̂ =
n

n∑
i=1

ln(xi)

=
6

ln(12) + ln(11.2) + ln(13.5) + ln(12.3) + ln(13.8) + ln(11.9)
= 0.3970.

Since the second derivative of L is −n/θ2, which is always negative, the likelihood

function does achieve its maximum value at θ̂.

Additional Comments Concerning Maximum Likelihood Estimation

A thorough discussion of the properties of maximum likelihood estimation is be-
yond the scope of this book and is usually a major topic of a course in the theory
of statistical inference. The method of maximum likelihood allows the analyst to
make use of knowledge of the distribution in determining an appropriate estima-
tor. The method of maximum likelihood cannot be applied without knowledge of the
underlying distribution. We learned in Example 9.21 that the maximum likelihood
estimator is not necessarily unbiased. The maximum likelihood estimator is unbi-
ased asymptotically or in the limit; that is, the amount of bias approaches zero as
the sample size becomes large. Earlier in this chapter the notion of efficiency was
discussed, efficiency being linked to the variance property of an estimator. Maxi-
mum likelihood estimators possess desirable variance properties in the limit. The
reader should consult Lehmann and D’Abrera (1998) for details.

Exercises

9.81 Suppose that there are n trials x1, x2, . . . , xn

from a Bernoulli process with parameter p, the prob-
ability of a success. That is, the probability of r suc-
cesses is given by

(
n
r

)
pr(1− p)n−r. Work out the max-

imum likelihood estimator for the parameter p.

9.82 Consider the lognormal distribution with the
density function given in Section 6.9. Suppose we have
a random sample x1, x2, . . . , xn from a lognormal dis-
tribution.

(a) Write out the likelihood function.

(b) Develop the maximum likelihood estimators of μ
and σ2.

9.83 Consider a random sample of x1, . . . , xn coming
from the gamma distribution discussed in Section 6.6.
Suppose the parameter α is known, say 5, and deter-
mine the maximum likelihood estimation for parameter
β.

9.84 Consider a random sample of x1, x2, . . . , xn ob-

servations from a Weibull distribution with parameters
α and β and density function

f(x) =

{
αβxβ−1e−αxβ

, x > 0,

0, elsewhere,

for α, β > 0.

(a) Write out the likelihood function.

(b) Write out the equations that, when solved, give the
maximum likelihood estimators of α and β.

9.85 Consider a random sample of x1, . . . , xn from a
uniform distribution U(0, θ) with unknown parameter
θ, where θ > 0. Determine the maximum likelihood
estimator of θ.

9.86 Consider the independent observations
x1, x2, . . . , xn from the gamma distribution discussed
in Section 6.6.

(a) Write out the likelihood function.
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(b) Write out a set of equations that, when solved, give
the maximum likelihood estimators of α and β.

9.87 Consider a hypothetical experiment where a
man with a fungus uses an antifungal drug and is cured.
Consider this, then, a sample of one from a Bernoulli
distribution with probability function

f(x) = pxq1−x, x = 0, 1,

where p is the probability of a success (cure) and
q = 1 − p. Now, of course, the sample information
gives x = 1. Write out a development that shows that
p̂ = 1.0 is the maximum likelihood estimator of the
probability of a cure.

9.88 Consider the observation X from the negative
binomial distribution given in Section 5.4. Find the
maximum likelihood estimator for p, assuming k is
known.

Review Exercises

9.89 Consider two estimators of σ2 for a sample
x1, x2, . . . , xn, which is drawn from a normal distri-
bution with mean μ and variance σ2. The estimators

are the unbiased estimator s2 = 1
n−1

n∑
i=1

(xi − x̄)2 and

the maximum likelihood estimator σ̂2 = 1
n

n∑
i=1

(xi− x̄)2.

Discuss the variance properties of these two estimators.

9.90 According to the Roanoke Times, McDonald’s
sold 42.1% of the market share of hamburgers. A ran-
dom sample of 75 burgers sold resulted in 28 of them
being from McDonald’s. Use material in Section 9.10
to determine if this information supports the claim in
the Roanoke Times.

9.91 It is claimed that a new diet will reduce a per-
son’s weight by 4.5 kilograms on average in a period
of 2 weeks. The weights of 7 women who followed this
diet were recorded before and after the 2-week period.

Woman Weight Before Weight After
1 58.5 60.0
2 60.3 54.9
3 61.7 58.1
4 69.0 62.1
5 64.0 58.5
6 62.6 59.9
7 56.7 54.4

Test the claim about the diet by computing a 95% con-
fidence interval for the mean difference in weights. As-
sume the differences of weights to be approximately
normally distributed.

9.92 A study was undertaken at Virginia Tech to de-
termine if fire can be used as a viable management tool
to increase the amount of forage available to deer dur-
ing the critical months in late winter and early spring.
Calcium is a required element for plants and animals.
The amount taken up and stored in plants is closely
correlated to the amount present in the soil. It was
hypothesized that a fire may change the calcium levels

present in the soil and thus affect the amount avail-
able to deer. A large tract of land in the Fishburn
Forest was selected for a prescribed burn. Soil samples
were taken from 12 plots of equal area just prior to the
burn and analyzed for calcium. Postburn calcium lev-
els were analyzed from the same plots. These values,
in kilograms per plot, are presented in the following
table:

Calcium Level (kg/plot)
Plot Preburn Postburn

1
2
3
4
5
6
7
8
9

10
11
12

50
50
82
64
82
73
77
54
23
45
36
54

9
18
45
18
18
9

32
9

18
9
9
9

Construct a 95% confidence interval for the mean dif-
ference in calcium levels in the soil prior to and after
the prescribed burn. Assume the distribution of differ-
ences in calcium levels to be approximately normal.

9.93 A health spa claims that a new exercise pro-
gram will reduce a person’s waist size by 2 centimeters
on average over a 5-day period. The waist sizes, in
centimeters, of 6 men who participated in this exercise
program are recorded before and after the 5-day period
in the following table:

Man Waist Size Before Waist Size After
1
2
3
4
5
6

90.4
95.5
98.7

115.9
104.0
85.6

91.7
93.9
97.4

112.8
101.3
84.0
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By computing a 95% confidence interval for the mean
reduction in waist size, determine whether the health
spa’s claim is valid. Assume the distribution of differ-
ences in waist sizes before and after the program to be
approximately normal.

9.94 The Department of Civil Engineering at Virginia
Tech compared a modified (M-5 hr) assay technique for
recovering fecal coliforms in stormwater runoff from an
urban area to a most probable number (MPN) tech-
nique. A total of 12 runoff samples were collected and
analyzed by the two techniques. Fecal coliform counts
per 100 milliliters are recorded in the following table.

Sample MPN Count M-5 hr Count
1
2
3
4
5
6
7
8
9

10
11
12

2300
1200
450
210
270
450
154
179
192
230
340
194

2010
930
400
436

4100
2090
219
169
194
174
274
183

Construct a 90% confidence interval for the difference
in the mean fecal coliform counts between the M-5 hr
and the MPN techniques. Assume that the count dif-
ferences are approximately normally distributed.

9.95 An experiment was conducted to determine
whether surface finish has an effect on the endurance
limit of steel. There is a theory that polishing in-
creases the average endurance limit (for reverse bend-
ing). From a practical point of view, polishing should
not have any effect on the standard deviation of the
endurance limit, which is known from numerous en-
durance limit experiments to be 4000 psi. An ex-
periment was performed on 0.4% carbon steel using
both unpolished and polished smooth-turned speci-
mens. The data are as follows:

Endurance Limit (psi)

Polished Unpolished
0.4% Carbon 0.4% Carbon

85,500 82,600
91,900 82,400
89,400 81,700
84,000 79,500
89,900 79,400
78,700 69,800
87,500 79,900
83,100 83,400

Find a 95% confidence interval for the difference be-
tween the population means for the two methods, as-

suming that the populations are approximately nor-
mally distributed.

9.96 An anthropologist is interested in the proportion
of individuals in two Indian tribes with double occipi-
tal hair whorls. Suppose that independent samples are
taken from each of the two tribes, and it is found that
24 of 100 Indians from tribe A and 36 of 120 Indians
from tribe B possess this characteristic. Construct a
95% confidence interval for the difference pB − pA be-
tween the proportions of these two tribes with occipital
hair whorls.

9.97 A manufacturer of electric irons produces these
items in two plants. Both plants have the same suppli-
ers of small parts. A saving can be made by purchasing
thermostats for plant B from a local supplier. A sin-
gle lot was purchased from the local supplier, and a
test was conducted to see whether or not these new
thermostats were as accurate as the old. The ther-
mostats were tested on tile irons on the 550◦F setting,
and the actual temperatures were read to the nearest
0.1◦F with a thermocouple. The data are as follows:

New Supplier (◦F)
530.3 559.3 549.4 544.0 551.7 566.3
549.9 556.9 536.7 558.8 538.8 543.3
559.1 555.0 538.6 551.1 565.4 554.9
550.0 554.9 554.7 536.1 569.1

Old Supplier (◦F)
559.7 534.7 554.8 545.0 544.6 538.0
550.7 563.1 551.1 553.8 538.8 564.6
554.5 553.0 538.4 548.3 552.9 535.1
555.0 544.8 558.4 548.7 560.3

Find 95% confidence intervals for σ2
1/σ

2
2 and for σ1/σ2,

where σ2
1 and σ2

2 are the population variances of the
thermostat readings for the new and old suppliers, re-
spectively.

9.98 It is argued that the resistance of wire A is
greater than the resistance of wire B. An experiment
on the wires shows the following results (in ohms):

Wire A Wire B
0.140 0.135
0.138 0.140
0.143 0.136
0.142 0.142
0.144 0.138
0.137 0.140

Assuming equal variances, what conclusions do you
draw? Justify your answer.

9.99 An alternative form of estimation is accom-
plished through the method of moments. This method
involves equating the population mean and variance to
the corresponding sample mean x̄ and sample variance
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s2 and solving for the parameters, the results being
the moment estimators. In the case of a single pa-
rameter, only the means are used. Give an argument
that in the case of the Poisson distribution the maxi-
mum likelihood estimator and moment estimators are
the same.

9.100 Specify the moment estimators for μ and σ2

for the normal distribution.

9.101 Specify the moment estimators for μ and σ2

for the lognormal distribution.

9.102 Specify the moment estimators for α and β for
the gamma distribution.

9.103 A survey was done with the hope of comparing
salaries of chemical plant managers employed in two
areas of the country, the northern and west central re-
gions. An independent random sample of 300 plant
managers was selected from each of the two regions.
These managers were asked their annual salaries. The
results are as follows

North West Central

x̄1 = $102, 300 x̄2 = $98, 500
s1 = $5700 s2 = $3800

(a) Construct a 99% confidence interval for μ1 − μ2,
the difference in the mean salaries.

(b) What assumption did you make in (a) about the
distribution of annual salaries for the two regions?
Is the assumption of normality necessary? Why or
why not?

(c) What assumption did you make about the two vari-
ances? Is the assumption of equality of variances
reasonable? Explain!

9.104 Consider Review Exercise 9.103. Let us assume
that the data have not been collected yet and that pre-
vious statistics suggest that σ1 = σ2 = $4000. Are
the sample sizes in Review Exercise 9.103 sufficient to
produce a 95% confidence interval on μ1 −μ2 having a
width of only $1000? Show all work.

9.105 A labor union is becoming defensive about
gross absenteeism by its members. The union lead-
ers had always claimed that, in a typical month, 95%
of its members were absent less than 10 hours. The
union decided to check this by monitoring a random
sample of 300 of its members. The number of hours
absent was recorded for each of the 300 members. The
results were x̄ = 6.5 hours and s = 2.5 hours. Use the
data to respond to this claim, using a one-sided toler-
ance limit and choosing the confidence level to be 99%.
Be sure to interpret what you learn from the tolerance
limit calculation.

9.106 A random sample of 30 firms dealing in wireless
products was selected to determine the proportion of
such firms that have implemented new software to im-
prove productivity. It turned out that 8 of the 30 had
implemented such software. Find a 95% confidence in-
terval on p, the true proportion of such firms that have
implemented new software.

9.107 Refer to Review Exercise 9.106. Suppose there
is concern about whether the point estimate p̂ = 8/30
is accurate enough because the confidence interval
around p is not sufficiently narrow. Using p̂ as the
estimate of p, how many companies would need to be
sampled in order to have a 95% confidence interval with
a width of only 0.05?

9.108 A manufacturer turns out a product item that
is labeled either “defective” or “not defective.” In order
to estimate the proportion defective, a random sam-
ple of 100 items is taken from production, and 10 are
found to be defective. Following implementation of a
quality improvement program, the experiment is con-
ducted again. A new sample of 100 is taken, and this
time only 6 are found to be defective.

(a) Give a 95% confidence interval on p1 − p2, where
p1 is the population proportion defective before im-
provement and p2 is the proportion defective after
improvement.

(b) Is there information in the confidence interval
found in (a) that would suggest that p1 > p2? Ex-
plain.

9.109 A machine is used to fill boxes with product
in an assembly line operation. Much concern centers
around the variability in the number of ounces of prod-
uct in a box. The standard deviation in weight of prod-
uct is known to be 0.3 ounce. An improvement is im-
plemented, after which a random sample of 20 boxes is
selected and the sample variance is found to be 0.045
ounce2. Find a 95% confidence interval on the variance
in the weight of the product. Does it appear from the
range of the confidence interval that the improvement
of the process enhanced quality as far as variability is
concerned? Assume normality on the distribution of
weights of product.

9.110 A consumer group is interested in comparing
operating costs for two different types of automobile
engines. The group is able to find 15 owners whose
cars have engine type A and 15 whose cars have engine
type B. All 30 owners bought their cars at roughly the
same time, and all have kept good records for a cer-
tain 12-month period. In addition, these owners drove
roughly the same number of miles. The cost statistics
are ȳA = $87.00/1000 miles, ȳB = $75.00/1000 miles,
sA = $5.99, and sB = $4.85. Compute a 95% confi-
dence interval to estimate μA − μB , the difference in
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the mean operating costs. Assume normality and equal
variances.

9.111 Consider the statistic S2
p , the pooled estimate

of σ2 discussed in Section 9.8. It is used when one is
willing to assume that σ2

1 = σ2
2 = σ2. Show that the es-

timator is unbiased for σ2 [i.e., show that E(S2
p) = σ2].

You may make use of results from any theorem or ex-
ample in this chapter.

9.112 A group of human factor researchers are con-
cerned about reaction to a stimulus by airplane pilots
in a certain cockpit arrangement. An experiment was
conducted in a simulation laboratory, and 15 pilots
were used with average reaction time of 3.2 seconds
with a sample standard deviation of 0.6 second. It is
of interest to characterize the extreme (i.e., worst case
scenario). To that end, do the following:

(a) Give a particular important one-sided 99% confi-
dence bound on the mean reaction time. What
assumption, if any, must you make on the distribu-
tion of reaction times?

(b) Give a 99% one-sided prediction interval and give
an interpretation of what it means. Must you make

an assumption about the distribution of reaction
times to compute this bound?

(c) Compute a one-sided tolerance bound with 99%
confidence that involves 95% of reaction times.
Again, give an interpretation and assumptions
about the distribution, if any. (Note: The one-
sided tolerance limit values are also included in Ta-
ble A.7.)

9.113 A certain supplier manufactures a type of rub-
ber mat that is sold to automotive companies. The
material used to produce the mats must have certain
hardness characteristics. Defective mats are occasion-
ally discovered and rejected. The supplier claims that
the proportion defective is 0.05. A challenge was made
by one of the clients who purchased the mats, so an ex-
periment was conducted in which 400 mats are tested
and 17 were found defective.

(a) Compute a 95% two-sided confidence interval on
the proportion defective.

(b) Compute an appropriate 95% one-sided confidence
interval on the proportion defective.

(c) Interpret both intervals from (a) and (b) and com-
ment on the claim made by the supplier.

9.15 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

The concept of a large-sample confidence interval on a population is often confusing
to the beginning student. It is based on the notion that even when σ is unknown
and one is not convinced that the distribution being sampled is normal, a confidence
interval on μ can be computed from

x̄ ± zα/2
s√
n
.

In practice, this formula is often used when the sample is too small. The genesis of
this large sample interval is, of course, the Central Limit Theorem (CLT), under
which normality is not necessary. Here the CLT requires a known σ, of which s
is only an estimate. Thus, n must be at least as large as 30 and the underly-
ing distribution must be close to symmetric, in which case the interval is still an
approximation.

There are instances in which the appropriateness of the practical application
of material in this chapter depends very much on the specific context. One very
important illustration is the use of the t-distribution for the confidence interval
on μ when σ is unknown. Strictly speaking, the use of the t-distribution requires
that the distribution sampled from be normal. However, it is well known that
any application of the t-distribution is reasonably insensitive (i.e., robust) to the
normality assumption. This represents one of those fortunate situations which

Uploaded By: anonymousSTUDENTS-HUB.com



9.15 Potential Misconceptions and Hazards 317

occur often in the field of statistics in which a basic assumption does not hold
and yet “everything turns out all right!” However, one population from which
the sample is drawn cannot deviate substantially from normal. Thus, the normal
probability plots discussed in Chapter 8 and the goodness-of-fit tests introduced
in Chapter 10 often need be called upon to ascertain some sense of “nearness to
normality.” This idea of “robustness to normality” will reappear in Chapter 10.

It is our experience that one of the most serious “misuses of statistics” in prac-
tice evolves from confusion about distinctions in the interpretation of the types of
statistical intervals. Thus, the subsection in this chapter where differences among
the three types of intervals are discussed is important. It is very likely that in
practice the confidence interval is heavily overused. That is, it is used when
there is really no interest in the mean; rather, the question is “Where is the next
observation going to fall?” or often, more importantly, “Where is the large bulk of
the distribution?” These are crucial questions that are not answered by comput-
ing an interval on the mean. The interpretation of a confidence interval is often
misunderstood. It is tempting to conclude that the parameter falls inside the in-
terval with probability 0.95. While this is a correct interpretation of a Bayesian
posterior interval (readers are referred to Chapter 18 for more information on
Bayesian inference), it is not the proper frequency interpretation.

A confidence interval merely suggests that if the experiment is conducted and
data are observed again and again, about 95% of such intervals will contain the
true parameter. Any beginning student of practical statistics should be very clear
on the difference among these statistical intervals.

Another potential serious misuse of statistics centers around the use of the
χ2-distribution for a confidence interval on a single variance. Again, normality of
the distribution from which the sample is drawn is assumed. Unlike the use of the
t-distribution, the use of the χ2 test for this application is not robust to the nor-

mality assumption (i.e., the sampling distribution of (n−1)S2

σ2 deviates far from
χ2 if the underlying distribution is not normal). Thus, strict use of goodness-of-fit
(Chapter 10) tests and/or normal probability plotting can be extremely important
in such contexts. More information about this general issue will be given in future
chapters.
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Chapter 10

One- and Two-Sample Tests of
Hypotheses

10.1 Statistical Hypotheses: General Concepts

Often, the problem confronting the scientist or engineer is not so much the es-
timation of a population parameter, as discussed in Chapter 9, but rather the
formation of a data-based decision procedure that can produce a conclusion about
some scientific system. For example, a medical researcher may decide on the basis
of experimental evidence whether coffee drinking increases the risk of cancer in
humans; an engineer might have to decide on the basis of sample data whether
there is a difference between the accuracy of two kinds of gauges; or a sociologist
might wish to collect appropriate data to enable him or her to decide whether
a person’s blood type and eye color are independent variables. In each of these
cases, the scientist or engineer postulates or conjectures something about a system.
In addition, each must make use of experimental data and make a decision based
on the data. In each case, the conjecture can be put in the form of a statistical
hypothesis. Procedures that lead to the acceptance or rejection of statistical hy-
potheses such as these comprise a major area of statistical inference. First, let us
define precisely what we mean by a statistical hypothesis.

Definition 10.1: A statistical hypothesis is an assertion or conjecture concerning one or more
populations.

The truth or falsity of a statistical hypothesis is never known with absolute
certainty unless we examine the entire population. This, of course, would be im-
practical in most situations. Instead, we take a random sample from the population
of interest and use the data contained in this sample to provide evidence that either
supports or does not support the hypothesis. Evidence from the sample that is
inconsistent with the stated hypothesis leads to a rejection of the hypothesis.

319
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320 Chapter 10 One- and Two-Sample Tests of Hypotheses

The Role of Probability in Hypothesis Testing

It should be made clear to the reader that the decision procedure must include an
awareness of the probability of a wrong conclusion. For example, suppose that the
hypothesis postulated by the engineer is that the fraction defective p in a certain
process is 0.10. The experiment is to observe a random sample of the product
in question. Suppose that 100 items are tested and 12 items are found defective.
It is reasonable to conclude that this evidence does not refute the condition that
the binomial parameter p = 0.10, and thus it may lead one not to reject the
hypothesis. However, it also does not refute p = 0.12 or perhaps even p = 0.15.
As a result, the reader must be accustomed to understanding that rejection of a
hypothesis implies that the sample evidence refutes it. Put another way,
rejection means that there is a small probability of obtaining the sample
information observed when, in fact, the hypothesis is true. For example,
for our proportion-defective hypothesis, a sample of 100 revealing 20 defective items
is certainly evidence for rejection. Why? If, indeed, p = 0.10, the probability of
obtaining 20 or more defectives is approximately 0.002. With the resulting small
risk of a wrong conclusion, it would seem safe to reject the hypothesis that
p = 0.10. In other words, rejection of a hypothesis tends to all but “rule out” the
hypothesis. On the other hand, it is very important to emphasize that acceptance
or, rather, failure to reject does not rule out other possibilities. As a result, the
firm conclusion is established by the data analyst when a hypothesis is rejected.

The formal statement of a hypothesis is often influenced by the structure of the
probability of a wrong conclusion. If the scientist is interested in strongly supporting
a contention, he or she hopes to arrive at the contention in the form of rejection of a
hypothesis. If the medical researcher wishes to show strong evidence in favor of the
contention that coffee drinking increases the risk of cancer, the hypothesis tested
should be of the form “there is no increase in cancer risk produced by drinking
coffee.” As a result, the contention is reached via a rejection. Similarly, to support
the claim that one kind of gauge is more accurate than another, the engineer tests
the hypothesis that there is no difference in the accuracy of the two kinds of gauges.

The foregoing implies that when the data analyst formalizes experimental evi-
dence on the basis of hypothesis testing, the formal statement of the hypothesis
is very important.

The Null and Alternative Hypotheses

The structure of hypothesis testing will be formulated with the use of the term
null hypothesis, which refers to any hypothesis we wish to test and is denoted
by H0. The rejection of H0 leads to the acceptance of an alternative hypoth-
esis, denoted by H1. An understanding of the different roles played by the null
hypothesis (H0) and the alternative hypothesis (H1) is crucial to one’s understand-
ing of the rudiments of hypothesis testing. The alternative hypothesis H1 usually
represents the question to be answered or the theory to be tested, and thus its spec-
ification is crucial. The null hypothesis H0 nullifies or opposes H1 and is often the
logical complement to H1. As the reader gains more understanding of hypothesis
testing, he or she should note that the analyst arrives at one of the two following
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conclusions:

reject H0 in favor of H1 because of sufficient evidence in the data or

fail to reject H0 because of insufficient evidence in the data.

Note that the conclusions do not involve a formal and literal “accept H0.” The
statement of H0 often represents the “status quo” in opposition to the new idea,
conjecture, and so on, stated in H1, while failure to reject H0 represents the proper
conclusion. In our binomial example, the practical issue may be a concern that
the historical defective probability of 0.10 no longer is true. Indeed, the conjecture
may be that p exceeds 0.10. We may then state

H0: p = 0.10,

H1: p > 0.10.

Now 12 defective items out of 100 does not refute p = 0.10, so the conclusion is
“fail to reject H0.” However, if the data produce 20 out of 100 defective items,
then the conclusion is “reject H0” in favor of H1: p > 0.10.

Though the applications of hypothesis testing are quite abundant in scientific
and engineering work, perhaps the best illustration for a novice lies in the predica-
ment encountered in a jury trial. The null and alternative hypotheses are

H0: defendant is innocent,

H1: defendant is guilty.

The indictment comes because of suspicion of guilt. The hypothesis H0 (the status
quo) stands in opposition to H1 and is maintained unless H1 is supported by
evidence “beyond a reasonable doubt.” However, “failure to reject H0” in this case
does not imply innocence, but merely that the evidence was insufficient to convict.
So the jury does not necessarily accept H0 but fails to reject H0.

10.2 Testing a Statistical Hypothesis

To illustrate the concepts used in testing a statistical hypothesis about a popula-
tion, we present the following example. A certain type of cold vaccine is known to
be only 25% effective after a period of 2 years. To determine if a new and some-
what more expensive vaccine is superior in providing protection against the same
virus for a longer period of time, suppose that 20 people are chosen at random and
inoculated. (In an actual study of this type, the participants receiving the new
vaccine might number several thousand. The number 20 is being used here only
to demonstrate the basic steps in carrying out a statistical test.) If more than 8 of
those receiving the new vaccine surpass the 2-year period without contracting the
virus, the new vaccine will be considered superior to the one presently in use. The
requirement that the number exceed 8 is somewhat arbitrary but appears reason-
able in that it represents a modest gain over the 5 people who could be expected to
receive protection if the 20 people had been inoculated with the vaccine already in
use. We are essentially testing the null hypothesis that the new vaccine is equally
effective after a period of 2 years as the one now commonly used. The alternative
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hypothesis is that the new vaccine is in fact superior. This is equivalent to testing
the hypothesis that the binomial parameter for the probability of a success on a
given trial is p = 1/4 against the alternative that p > 1/4. This is usually written
as follows:

H0: p = 0.25,

H1: p > 0.25.

The Test Statistic

The test statistic on which we base our decision is X, the number of individuals
in our test group who receive protection from the new vaccine for a period of at
least 2 years. The possible values of X, from 0 to 20, are divided into two groups:
those numbers less than or equal to 8 and those greater than 8. All possible scores
greater than 8 constitute the critical region. The last number that we observe
in passing into the critical region is called the critical value. In our illustration,
the critical value is the number 8. Therefore, if x > 8, we reject H0 in favor of the
alternative hypothesis H1. If x ≤ 8, we fail to reject H0. This decision criterion is
illustrated in Figure 10.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x

Do not reject H0
(p � 0.25)

Reject H0
(p 	 0.25)

Figure 10.1: Decision criterion for testing p = 0.25 versus p > 0.25.

The Probability of a Type I Error

The decision procedure just described could lead to either of two wrong conclusions.
For instance, the new vaccine may be no better than the one now in use (H0 true)
and yet, in this particular randomly selected group of individuals, more than 8
surpass the 2-year period without contracting the virus. We would be committing
an error by rejecting H0 in favor of H1 when, in fact, H0 is true. Such an error is
called a type I error.

Definition 10.2: Rejection of the null hypothesis when it is true is called a type I error.

A second kind of error is committed if 8 or fewer of the group surpass the 2-year
period successfully and we are unable to conclude that the vaccine is better when
it actually is better (H1 true). Thus, in this case, we fail to reject H0 when in fact
H0 is false. This is called a type II error.

Definition 10.3: Nonrejection of the null hypothesis when it is false is called a type II error.

In testing any statistical hypothesis, there are four possible situations that
determine whether our decision is correct or in error. These four situations are
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summarized in Table 10.1.

Table 10.1: Possible Situations for Testing a Statistical Hypothesis

H0 is true H0 is false
Do not reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

The probability of committing a type I error, also called the level of signif-
icance, is denoted by the Greek letter α. In our illustration, a type I error will
occur when more than 8 individuals inoculated with the new vaccine surpass the
2-year period without contracting the virus and researchers conclude that the new
vaccine is better when it is actually equivalent to the one in use. Hence, if X is
the number of individuals who remain free of the virus for at least 2 years,

α = P (type I error) = P

(
X > 8 when p =

1

4

)
=

20∑
x=9

b

(
x; 20,

1

4

)

= 1−
8∑

x=0

b

(
x; 20,

1

4

)
= 1− 0.9591 = 0.0409.

We say that the null hypothesis, p = 1/4, is being tested at the α = 0.0409 level of
significance. Sometimes the level of significance is called the size of the test. A
critical region of size 0.0409 is very small, and therefore it is unlikely that a type
I error will be committed. Consequently, it would be most unusual for more than
8 individuals to remain immune to a virus for a 2-year period using a new vaccine
that is essentially equivalent to the one now on the market.

The Probability of a Type II Error

The probability of committing a type II error, denoted by β, is impossible to com-
pute unless we have a specific alternative hypothesis. If we test the null hypothesis
that p = 1/4 against the alternative hypothesis that p = 1/2, then we are able
to compute the probability of not rejecting H0 when it is false. We simply find
the probability of obtaining 8 or fewer in the group that surpass the 2-year period
when p = 1/2. In this case,

β = P (type II error) = P

(
X ≤ 8 when p =

1

2

)
=

8∑
x=0

b

(
x; 20,

1

2

)
= 0.2517.

This is a rather high probability, indicating a test procedure in which it is quite
likely that we shall reject the new vaccine when, in fact, it is superior to what is
now in use. Ideally, we like to use a test procedure for which the type I and type
II error probabilities are both small.

It is possible that the director of the testing program is willing to make a type
II error if the more expensive vaccine is not significantly superior. In fact, the only
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time he wishes to guard against the type II error is when the true value of p is at
least 0.7. If p = 0.7, this test procedure gives

β = P (type II error) = P (X ≤ 8 when p = 0.7)

=

8∑
x=0

b(x; 20, 0.7) = 0.0051.

With such a small probability of committing a type II error, it is extremely unlikely
that the new vaccine would be rejected when it was 70% effective after a period of
2 years. As the alternative hypothesis approaches unity, the value of β diminishes
to zero.

The Role of α, β, and Sample Size

Let us assume that the director of the testing program is unwilling to commit a
type II error when the alternative hypothesis p = 1/2 is true, even though we have
found the probability of such an error to be β = 0.2517. It is always possible to
reduce β by increasing the size of the critical region. For example, consider what
happens to the values of α and β when we change our critical value to 7 so that
all scores greater than 7 fall in the critical region and those less than or equal to
7 fall in the nonrejection region. Now, in testing p = 1/4 against the alternative
hypothesis that p = 1/2, we find that

α =
20∑
x=8

b

(
x; 20,

1

4

)
= 1−

7∑
x=0

b

(
x; 20,

1

4

)
= 1− 0.8982 = 0.1018

and

β =
7∑

x=0

b

(
x; 20,

1

2

)
= 0.1316.

By adopting a new decision procedure, we have reduced the probability of com-
mitting a type II error at the expense of increasing the probability of committing
a type I error. For a fixed sample size, a decrease in the probability of one error
will usually result in an increase in the probability of the other error. Fortunately,
the probability of committing both types of error can be reduced by
increasing the sample size. Consider the same problem using a random sample
of 100 individuals. If more than 36 of the group surpass the 2-year period, we
reject the null hypothesis that p = 1/4 and accept the alternative hypothesis that
p > 1/4. The critical value is now 36. All possible scores above 36 constitute the
critical region, and all possible scores less than or equal to 36 fall in the acceptance
region.

To determine the probability of committing a type I error, we shall use the
normal curve approximation with

μ = np = (100)

(
1

4

)
= 25 and σ =

√
npq =

√
(100)(1/4)(3/4) = 4.33.

Referring to Figure 10.2, we need the area under the normal curve to the right of
x = 36.5. The corresponding z-value is

z =
36.5− 25

4.33
= 2.66.
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x
36.5

� 4.33

 � 25

α

μ

σ

Figure 10.2: Probability of a type I error.

From Table A.3 we find that

α = P (type I error) = P

(
X > 36 when p =

1

4

)
≈ P (Z > 2.66)

= 1− P (Z < 2.66) = 1− 0.9961 = 0.0039.

If H0 is false and the true value of H1 is p = 1/2, we can determine the
probability of a type II error using the normal curve approximation with

μ = np = (100)(1/2) = 50 and σ =
√
npq =

√
(100)(1/2)(1/2) = 5.

The probability of a value falling in the nonrejection region when H0 is true is
given by the area of the shaded region to the left of x = 36.5 in Figure 10.3. The
z-value corresponding to x = 36.5 is

z =
36.5− 50

5
= −2.7.

x
25 36.5 50

� 4.33 � 5

H0

H1

σ σ

Figure 10.3: Probability of a type II error.

Therefore,

β = P (type II error) = P

(
X ≤ 36 when p =

1

2

)
≈ P (Z < −2.7) = 0.0035.
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Obviously, the type I and type II errors will rarely occur if the experiment consists
of 100 individuals.

The illustration above underscores the strategy of the scientist in hypothesis
testing. After the null and alternative hypotheses are stated, it is important to
consider the sensitivity of the test procedure. By this we mean that there should
be a determination, for a fixed α, of a reasonable value for the probability of
wrongly accepting H0 (i.e., the value of β) when the true situation represents some
important deviation from H0. A value for the sample size can usually be determined
for which there is a reasonable balance between the values of α and β computed
in this fashion. The vaccine problem provides an illustration.

Illustration with a Continuous Random Variable

The concepts discussed here for a discrete population can be applied equally well
to continuous random variables. Consider the null hypothesis that the average
weight of male students in a certain college is 68 kilograms against the alternative
hypothesis that it is unequal to 68. That is, we wish to test

H0: μ = 68,

H1: μ �= 68.

The alternative hypothesis allows for the possibility that μ < 68 or μ > 68.
A sample mean that falls close to the hypothesized value of 68 would be consid-

ered evidence in favor ofH0. On the other hand, a sample mean that is considerably
less than or more than 68 would be evidence inconsistent with H0 and therefore
favoring H1. The sample mean is the test statistic in this case. A critical region
for the test statistic might arbitrarily be chosen to be the two intervals x̄ < 67
and x̄ > 69. The nonrejection region will then be the interval 67 ≤ x̄ ≤ 69. This
decision criterion is illustrated in Figure 10.4.

67 68 69
x

Reject H0
(  � 68)

Reject H0
(   � 68)

Do not reject H0
(   � 68)μ μμ 
 


Figure 10.4: Critical region (in blue).

Let us now use the decision criterion of Figure 10.4 to calculate the probabilities
of committing type I and type II errors when testing the null hypothesis that μ = 68
kilograms against the alternative that μ �= 68 kilograms.

Assume the standard deviation of the population of weights to be σ = 3.6. For
large samples, we may substitute s for σ if no other estimate of σ is available.
Our decision statistic, based on a random sample of size n = 36, will be X̄, the
most efficient estimator of μ. From the Central Limit Theorem, we know that
the sampling distribution of X̄ is approximately normal with standard deviation
σX̄ = σ/

√
n = 3.6/6 = 0.6.

Uploaded By: anonymousSTUDENTS-HUB.com



10.2 Testing a Statistical Hypothesis 327

The probability of committing a type I error, or the level of significance of our
test, is equal to the sum of the areas that have been shaded in each tail of the
distribution in Figure 10.5. Therefore,

α = P (X̄ < 67 when μ = 68) + P (X̄ > 69 when μ = 68).

x
67  � 68 69

/2
μ

α /2α

Figure 10.5: Critical region for testing μ = 68 versus μ �= 68.

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when H0 is true are

z1 =
67− 68

0.6
= −1.67 and z2 =

69− 68

0.6
= 1.67.

Therefore,

α = P (Z < −1.67) + P (Z > 1.67) = 2P (Z < −1.67) = 0.0950.

Thus, 9.5% of all samples of size 36 would lead us to reject μ = 68 kilograms when,
in fact, it is true. To reduce α, we have a choice of increasing the sample size
or widening the fail-to-reject region. Suppose that we increase the sample size to
n = 64. Then σX̄ = 3.6/8 = 0.45. Now

z1 =
67− 68

0.45
= −2.22 and z2 =

69− 68

0.45
= 2.22.

Hence,

α = P (Z < −2.22) + P (Z > 2.22) = 2P (Z < −2.22) = 0.0264.

The reduction in α is not sufficient by itself to guarantee a good testing proce-
dure. We must also evaluate β for various alternative hypotheses. If it is important
to reject H0 when the true mean is some value μ ≥ 70 or μ ≤ 66, then the prob-
ability of committing a type II error should be computed and examined for the
alternatives μ = 66 and μ = 70. Because of symmetry, it is only necessary to
consider the probability of not rejecting the null hypothesis that μ = 68 when the
alternative μ = 70 is true. A type II error will result when the sample mean x̄ falls
between 67 and 69 when H1 is true. Therefore, referring to Figure 10.6, we find
that

β = P (67 ≤ X̄ ≤ 69 when μ = 70).
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67 68 69 70 71
x

H0 H1

Figure 10.6: Probability of type II error for testing μ = 68 versus μ = 70.

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when H1 is true are

z1 =
67− 70

0.45
= −6.67 and z2 =

69− 70

0.45
= −2.22.

Therefore,

β = P (−6.67 < Z < −2.22) = P (Z < −2.22)− P (Z < −6.67)

= 0.0132− 0.0000 = 0.0132.

If the true value of μ is the alternative μ = 66, the value of β will again be
0.0132. For all possible values of μ < 66 or μ > 70, the value of β will be even
smaller when n = 64, and consequently there would be little chance of not rejecting
H0 when it is false.

The probability of committing a type II error increases rapidly when the true
value of μ approaches, but is not equal to, the hypothesized value. Of course, this
is usually the situation where we do not mind making a type II error. For example,
if the alternative hypothesis μ = 68.5 is true, we do not mind committing a type
II error by concluding that the true answer is μ = 68. The probability of making
such an error will be high when n = 64. Referring to Figure 10.7, we have

β = P (67 ≤ X̄ ≤ 69 when μ = 68.5).

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when μ = 68.5 are

z1 =
67− 68.5

0.45
= −3.33 and z2 =

69− 68.5

0.45
= 1.11.

Therefore,

β = P (−3.33 < Z < 1.11) = P (Z < 1.11)− P (Z < −3.33)

= 0.8665− 0.0004 = 0.8661.

The preceding examples illustrate the following important properties:
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67 68 6968.5
x

H0 H1

Figure 10.7: Type II error for testing μ = 68 versus μ = 68.5.

Important
Properties of a

Test of
Hypothesis

1. The type I error and type II error are related. A decrease in the probability
of one generally results in an increase in the probability of the other.

2. The size of the critical region, and therefore the probability of committing
a type I error, can always be reduced by adjusting the critical value(s).

3. An increase in the sample size n will reduce α and β simultaneously.

4. If the null hypothesis is false, β is a maximum when the true value of a
parameter approaches the hypothesized value. The greater the distance
between the true value and the hypothesized value, the smaller β will be.

One very important concept that relates to error probabilities is the notion of
the power of a test.

Definition 10.4: The power of a test is the probability of rejecting H0 given that a specific alter-
native is true.

The power of a test can be computed as 1 − β. Often different types of
tests are compared by contrasting power properties. Consider the previous
illustration, in which we were testing H0 : μ = 68 and H1 : μ �= 68. As before,
suppose we are interested in assessing the sensitivity of the test. The test is gov-
erned by the rule that we do not reject H0 if 67 ≤ x̄ ≤ 69. We seek the capability
of the test to properly reject H0 when indeed μ = 68.5. We have seen that the
probability of a type II error is given by β = 0.8661. Thus, the power of the test
is 1 − 0.8661 = 0.1339. In a sense, the power is a more succinct measure of how
sensitive the test is for detecting differences between a mean of 68 and a mean
of 68.5. In this case, if μ is truly 68.5, the test as described will properly reject
H0 only 13.39% of the time. As a result, the test would not be a good one if it
was important that the analyst have a reasonable chance of truly distinguishing
between a mean of 68.0 (specified by H0) and a mean of 68.5. From the foregoing,
it is clear that to produce a desirable power (say, greater than 0.8), one must either
increase α or increase the sample size.

So far in this chapter, much of the discussion of hypothesis testing has focused
on foundations and definitions. In the sections that follow, we get more specific
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330 Chapter 10 One- and Two-Sample Tests of Hypotheses

and put hypotheses in categories as well as discuss tests of hypotheses on various
parameters of interest. We begin by drawing the distinction between a one-sided
and a two-sided hypothesis.

One- and Two-Tailed Tests

A test of any statistical hypothesis where the alternative is one sided, such as

H0: θ = θ0,

H1: θ > θ0

or perhaps

H0: θ = θ0,

H1: θ < θ0,

is called a one-tailed test. Earlier in this section, we referred to the test statistic
for a hypothesis. Generally, the critical region for the alternative hypothesis θ > θ0
lies in the right tail of the distribution of the test statistic, while the critical region
for the alternative hypothesis θ < θ0 lies entirely in the left tail. (In a sense,
the inequality symbol points in the direction of the critical region.) A one-tailed
test was used in the vaccine experiment to test the hypothesis p = 1/4 against
the one-sided alternative p > 1/4 for the binomial distribution. The one-tailed
critical region is usually obvious; the reader should visualize the behavior of the
test statistic and notice the obvious signal that would produce evidence supporting
the alternative hypothesis.

A test of any statistical hypothesis where the alternative is two sided, such as

H0: θ = θ0,

H1: θ �= θ0,

is called a two-tailed test, since the critical region is split into two parts, often
having equal probabilities, in each tail of the distribution of the test statistic. The
alternative hypothesis θ �= θ0 states that either θ < θ0 or θ > θ0. A two-tailed
test was used to test the null hypothesis that μ = 68 kilograms against the two-
sided alternative μ �= 68 kilograms in the example of the continuous population of
student weights.

How Are the Null and Alternative Hypotheses Chosen?

The null hypothesis H0 will often be stated using the equality sign. With this
approach, it is clear how the probability of type I error is controlled. However,
there are situations in which “do not reject H0” implies that the parameter θ might
be any value defined by the natural complement to the alternative hypothesis. For
example, in the vaccine example, where the alternative hypothesis is H1: p > 1/4,
it is quite possible that nonrejection of H0 cannot rule out a value of p less than
1/4. Clearly though, in the case of one-tailed tests, the statement of the alternative
is the most important consideration.
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Whether one sets up a one-tailed or a two-tailed test will depend on the con-
clusion to be drawn if H0 is rejected. The location of the critical region can be
determined only after H1 has been stated. For example, in testing a new drug, one
sets up the hypothesis that it is no better than similar drugs now on the market and
tests this against the alternative hypothesis that the new drug is superior. Such
an alternative hypothesis will result in a one-tailed test with the critical region
in the right tail. However, if we wish to compare a new teaching technique with
the conventional classroom procedure, the alternative hypothesis should allow for
the new approach to be either inferior or superior to the conventional procedure.
Hence, the test is two-tailed with the critical region divided equally so as to fall in
the extreme left and right tails of the distribution of our statistic.

Example 10.1: A manufacturer of a certain brand of rice cereal claims that the average saturated
fat content does not exceed 1.5 grams per serving. State the null and alternative
hypotheses to be used in testing this claim and determine where the critical region
is located.

Solution : The manufacturer’s claim should be rejected only if μ is greater than 1.5 milligrams
and should not be rejected if μ is less than or equal to 1.5 milligrams. We test

H0: μ = 1.5,

H1: μ > 1.5.

Nonrejection of H0 does not rule out values less than 1.5 milligrams. Since we
have a one-tailed test, the greater than symbol indicates that the critical region
lies entirely in the right tail of the distribution of our test statistic X̄.

Example 10.2: A real estate agent claims that 60% of all private residences being built today are
3-bedroom homes. To test this claim, a large sample of new residences is inspected;
the proportion of these homes with 3 bedrooms is recorded and used as the test
statistic. State the null and alternative hypotheses to be used in this test and
determine the location of the critical region.

Solution : If the test statistic were substantially higher or lower than p = 0.6, we would reject
the agent’s claim. Hence, we should make the hypothesis

H0: p = 0.6,

H1: p �= 0.6.

The alternative hypothesis implies a two-tailed test with the critical region divided
equally in both tails of the distribution of P̂ , our test statistic.

10.3 The Use of P -Values for Decision Making in Testing
Hypotheses

In testing hypotheses in which the test statistic is discrete, the critical region may
be chosen arbitrarily and its size determined. If α is too large, it can be reduced
by making an adjustment in the critical value. It may be necessary to increase the
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sample size to offset the decrease that occurs automatically in the power of the
test.

Over a number of generations of statistical analysis, it had become customary
to choose an α of 0.05 or 0.01 and select the critical region accordingly. Then, of
course, strict rejection or nonrejection of H0 would depend on that critical region.
For example, if the test is two tailed and α is set at the 0.05 level of significance
and the test statistic involves, say, the standard normal distribution, then a z-value
is observed from the data and the critical region is

z > 1.96 or z < −1.96,

where the value 1.96 is found as z0.025 in Table A.3. A value of z in the critical
region prompts the statement “The value of the test statistic is significant,” which
we can then translate into the user’s language. For example, if the hypothesis is
given by

H0: μ = 10,

H1: μ �= 10,

one might say, “The mean differs significantly from the value 10.”

Preselection of a Significance Level

This preselection of a significance level α has its roots in the philosophy that
the maximum risk of making a type I error should be controlled. However, this
approach does not account for values of test statistics that are “close” to the
critical region. Suppose, for example, in the illustration with H0 : μ = 10 versus
H1: μ �= 10, a value of z = 1.87 is observed; strictly speaking, with α = 0.05, the
value is not significant. But the risk of committing a type I error if one rejects H0

in this case could hardly be considered severe. In fact, in a two-tailed scenario, one
can quantify this risk as

P = 2P (Z > 1.87 when μ = 10) = 2(0.0307) = 0.0614.

As a result, 0.0614 is the probability of obtaining a value of z as large as or larger
(in magnitude) than 1.87 when in fact μ = 10. Although this evidence against H0

is not as strong as that which would result from rejection at an α = 0.05 level, it
is important information to the user. Indeed, continued use of α = 0.05 or 0.01 is
only a result of what standards have been passed down through the generations.
The P-value approach has been adopted extensively by users of applied
statistics. The approach is designed to give the user an alternative (in terms
of a probability) to a mere “reject” or “do not reject” conclusion. The P -value
computation also gives the user important information when the z-value falls well
into the ordinary critical region. For example, if z is 2.73, it is informative for the
user to observe that

P = 2(0.0032) = 0.0064,

and thus the z-value is significant at a level considerably less than 0.05. It is
important to know that under the condition of H0, a value of z = 2.73 is an
extremely rare event. That is, a value at least that large in magnitude would only
occur 64 times in 10,000 experiments.
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A Graphical Demonstration of a P-Value

One very simple way of explaining a P -value graphically is to consider two distinct
samples. Suppose that two materials are being considered for coating a particular
type of metal in order to inhibit corrosion. Specimens are obtained, and one
collection is coated with material 1 and one collection coated with material 2. The
sample sizes are n1 = n2 = 10, and corrosion is measured in percent of surface
area affected. The hypothesis is that the samples came from common distributions
with mean μ = 10. Let us assume that the population variance is 1.0. Then we
are testing

H0: μ1 = μ2 = 10.

Let Figure 10.8 represent a point plot of the data; the data are placed on the
distribution stated by the null hypothesis. Let us assume that the “×” data refer to
material 1 and the “◦” data refer to material 2. Now it seems clear that the data do
refute the null hypothesis. But how can this be summarized in one number? The
P-value can be viewed as simply the probability of obtaining these data
given that both samples come from the same distribution. Clearly, this
probability is quite small, say 0.00000001! Thus, the small P -value clearly refutes
H0, and the conclusion is that the population means are significantly different.

 � 10μ

Figure 10.8: Data that are likely generated from populations having two different
means.

Use of the P -value approach as an aid in decision-making is quite natural, and
nearly all computer packages that provide hypothesis-testing computation print
out P -values along with values of the appropriate test statistic. The following is a
formal definition of a P -value.

Definition 10.5: A P -value is the lowest level (of significance) at which the observed value of the
test statistic is significant.

How Does the Use of P-Values Differ from Classic Hypothesis Testing?

It is tempting at this point to summarize the procedures associated with testing,
say, H0 : θ = θ0. However, the student who is a novice in this area should un-
derstand that there are differences in approach and philosophy between the classic
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fixed α approach that is climaxed with either a “reject H0” or a “do not reject H0”
conclusion and the P -value approach. In the latter, no fixed α is determined and
conclusions are drawn on the basis of the size of the P -value in harmony with the
subjective judgment of the engineer or scientist. While modern computer software
will output P -values, nevertheless it is important that readers understand both
approaches in order to appreciate the totality of the concepts. Thus, we offer a
brief list of procedural steps for both the classical and the P -value approach.

Approach to
Hypothesis

Testing with
Fixed Probability
of Type I Error

1. State the null and alternative hypotheses.
2. Choose a fixed significance level α.
3. Choose an appropriate test statistic and establish the critical region based
on α.
4. Reject H0 if the computed test statistic is in the critical region. Otherwise,
do not reject.
5. Draw scientific or engineering conclusions.

Significance
Testing (P -Value

Approach)

1. State null and alternative hypotheses.
2. Choose an appropriate test statistic.
3. Compute the P -value based on the computed value of the test statistic.
4. Use judgment based on the P -value and knowledge of the scientific system.

In later sections of this chapter and chapters that follow, many examples and
exercises emphasize the P -value approach to drawing scientific conclusions.

Exercises

10.1 Suppose that an allergist wishes to test the hy-
pothesis that at least 30% of the public is allergic to
some cheese products. Explain how the allergist could
commit

(a) a type I error;

(b) a type II error.

10.2 A sociologist is concerned about the effective-
ness of a training course designed to get more drivers
to use seat belts in automobiles.

(a) What hypothesis is she testing if she commits a
type I error by erroneously concluding that the
training course is ineffective?

(b) What hypothesis is she testing if she commits a
type II error by erroneously concluding that the
training course is effective?

10.3 A large manufacturing firm is being charged
with discrimination in its hiring practices.

(a) What hypothesis is being tested if a jury commits
a type I error by finding the firm guilty?

(b) What hypothesis is being tested if a jury commits
a type II error by finding the firm guilty?

10.4 A fabric manufacturer believes that the propor-
tion of orders for raw material arriving late is p = 0.6.
If a random sample of 10 orders shows that 3 or fewer
arrived late, the hypothesis that p = 0.6 should be
rejected in favor of the alternative p < 0.6. Use the
binomial distribution.

(a) Find the probability of committing a type I error
if the true proportion is p = 0.6.

(b) Find the probability of committing a type II error
for the alternatives p = 0.3, p = 0.4, and p = 0.5.

10.5 Repeat Exercise 10.4 but assume that 50 orders
are selected and the critical region is defined to be
x ≤ 24, where x is the number of orders in the sample
that arrived late. Use the normal approximation.

10.6 The proportion of adults living in a small town
who are college graduates is estimated to be p = 0.6.
To test this hypothesis, a random sample of 15 adults
is selected. If the number of college graduates in the
sample is anywhere from 6 to 12, we shall not reject
the null hypothesis that p = 0.6; otherwise, we shall
conclude that p �= 0.6.

(a) Evaluate α assuming that p = 0.6. Use the bino-
mial distribution.
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(b) Evaluate β for the alternatives p = 0.5 and p = 0.7.

(c) Is this a good test procedure?

10.7 Repeat Exercise 10.6 but assume that 200 adults
are selected and the fail-to-reject region is defined to
be 110 ≤ x ≤ 130, where x is the number of college
graduates in our sample. Use the normal approxima-
tion.

10.8 In Relief from Arthritis published by Thorsons
Publishers, Ltd., John E. Croft claims that over 40%
of those who suffer from osteoarthritis receive measur-
able relief from an ingredient produced by a particular
species of mussel found off the coast of New Zealand.
To test this claim, the mussel extract is to be given to
a group of 7 osteoarthritic patients. If 3 or more of
the patients receive relief, we shall not reject the null
hypothesis that p = 0.4; otherwise, we conclude that
p < 0.4.

(a) Evaluate α, assuming that p = 0.4.

(b) Evaluate β for the alternative p = 0.3.

10.9 A dry cleaning establishment claims that a new
spot remover will remove more than 70% of the spots
to which it is applied. To check this claim, the spot
remover will be used on 12 spots chosen at random. If
fewer than 11 of the spots are removed, we shall not
reject the null hypothesis that p = 0.7; otherwise, we
conclude that p > 0.7.

(a) Evaluate α, assuming that p = 0.7.

(b) Evaluate β for the alternative p = 0.9.

10.10 Repeat Exercise 10.9 but assume that 100
spots are treated and the critical region is defined to
be x > 82, where x is the number of spots removed.

10.11 Repeat Exercise 10.8 but assume that 70 pa-
tients are given the mussel extract and the critical re-
gion is defined to be x < 24, where x is the number of
osteoarthritic patients who receive relief.

10.12 A random sample of 400 voters in a certain city
are asked if they favor an additional 4% gasoline sales
tax to provide badly needed revenues for street repairs.
If more than 220 but fewer than 260 favor the sales tax,
we shall conclude that 60% of the voters are for it.

(a) Find the probability of committing a type I error
if 60% of the voters favor the increased tax.

(b) What is the probability of committing a type II er-
ror using this test procedure if actually only 48%
of the voters are in favor of the additional gasoline
tax?

10.13 Suppose, in Exercise 10.12, we conclude that
60% of the voters favor the gasoline sales tax if more
than 214 but fewer than 266 voters in our sample fa-
vor it. Show that this new critical region results in a
smaller value for α at the expense of increasing β.

10.14 A manufacturer has developed a new fishing
line, which the company claims has a mean breaking
strength of 15 kilograms with a standard deviation of
0.5 kilogram. To test the hypothesis that μ = 15 kilo-
grams against the alternative that μ < 15 kilograms, a
random sample of 50 lines will be tested. The critical
region is defined to be x̄ < 14.9.

(a) Find the probability of committing a type I error
when H0 is true.

(b) Evaluate β for the alternatives μ = 14.8 and μ =
14.9 kilograms.

10.15 A soft-drink machine at a steak house is reg-
ulated so that the amount of drink dispensed is ap-
proximately normally distributed with a mean of 200
milliliters and a standard deviation of 15 milliliters.
The machine is checked periodically by taking a sam-
ple of 9 drinks and computing the average content. If
x̄ falls in the interval 191 < x̄ < 209, the machine is
thought to be operating satisfactorily; otherwise, we
conclude that μ �= 200 milliliters.

(a) Find the probability of committing a type I error
when μ = 200 milliliters.

(b) Find the probability of committing a type II error
when μ = 215 milliliters.

10.16 Repeat Exercise 10.15 for samples of size n =
25. Use the same critical region.

10.17 A new curing process developed for a certain
type of cement results in a mean compressive strength
of 5000 kilograms per square centimeter with a stan-
dard deviation of 120 kilograms. To test the hypothesis
that μ = 5000 against the alternative that μ < 5000,
a random sample of 50 pieces of cement is tested. The
critical region is defined to be x̄ < 4970.

(a) Find the probability of committing a type I error
when H0 is true.

(b) Evaluate β for the alternatives μ = 4970 and
μ = 4960.

10.18 If we plot the probabilities of failing to reject
H0 corresponding to various alternatives for μ (includ-
ing the value specified by H0) and connect all the
points by a smooth curve, we obtain the operating
characteristic curve of the test criterion, or simply
the OC curve. Note that the probability of failing to
reject H0 when it is true is simply 1 − α. Operating
characteristic curves are widely used in industrial ap-
plications to provide a visual display of the merits of
the test criterion. With reference to Exercise 10.15,
find the probabilities of failing to reject H0 for the fol-
lowing 9 values of μ and plot the OC curve: 184, 188,
192, 196, 200, 204, 208, 212, and 216.
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10.4 Single Sample: Tests Concerning a Single Mean

In this section, we formally consider tests of hypotheses on a single population
mean. Many of the illustrations from previous sections involved tests on the mean,
so the reader should already have insight into some of the details that are outlined
here.

Tests on a Single Mean (Variance Known)

We should first describe the assumptions on which the experiment is based. The
model for the underlying situation centers around an experiment with X1, X2, . . . ,
Xn representing a random sample from a distribution with mean μ and variance
σ2 > 0. Consider first the hypothesis

H0: μ = μ0,

H1: μ �= μ0.

The appropriate test statistic should be based on the random variable X̄. In
Chapter 8, the Central Limit Theorem was introduced, which essentially states
that despite the distribution of X, the random variable X̄ has approximately a
normal distribution with mean μ and variance σ2/n for reasonably large sample
sizes. So, μX̄ = μ and σ2

X̄
= σ2/n. We can then determine a critical region based

on the computed sample average, x̄. It should be clear to the reader by now that
there will be a two-tailed critical region for the test.

Standardization of X̄

It is convenient to standardize X̄ and formally involve the standard normal
random variable Z, where

Z =
X̄ − μ

σ/
√
n
.

We know that under H0, that is, if μ = μ0,
√
n(X̄ − μ0)/σ follows an n(x; 0, 1)

distribution, and hence the expression

P

(
−zα/2 <

X̄ − μ0

σ/
√
n

< zα/2

)
= 1− α

can be used to write an appropriate nonrejection region. The reader should keep
in mind that, formally, the critical region is designed to control α, the probability
of type I error. It should be obvious that a two-tailed signal of evidence is needed
to support H1. Thus, given a computed value x̄, the formal test involves rejecting
H0 if the computed test statistic z falls in the critical region described next.
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Test Procedure
for a Single Mean

(Variance
Known)

z =
x̄− μ0

σ/
√
n

> zα/2 or z =
x̄− μ0

σ/
√
n

< −zα/2

If −zα/2 < z < zα/2, do not reject H0. Rejection of H0, of course, implies
acceptance of the alternative hypothesis μ �= μ0. With this definition of the
critical region, it should be clear that there will be probability α of rejecting H0

(falling into the critical region) when, indeed, μ = μ0.

Although it is easier to understand the critical region written in terms of z,
we can write the same critical region in terms of the computed average x̄. The
following can be written as an identical decision procedure:

reject H0 if x̄ < a or x̄ > b,

where

a = μ0 − zα/2
σ√
n
, b = μ0 + zα/2

σ√
n
.

Hence, for a significance level α, the critical values of the random variable z and x̄
are both depicted in Figure 10.9.

x
a μ b

1 � 

/2

α

α /2α

Figure 10.9: Critical region for the alternative hypothesis μ �= μ0.

Tests of one-sided hypotheses on the mean involve the same statistic described
in the two-sided case. The difference, of course, is that the critical region is only
in one tail of the standard normal distribution. For example, suppose that we seek
to test

H0: μ = μ0,

H1: μ > μ0.

The signal that favorsH1 comes from large values of z. Thus, rejection ofH0 results
when the computed z > zα. Obviously, if the alternative is H1: μ < μ0, the critical
region is entirely in the lower tail and thus rejection results from z < −zα. Although
in a one-sided testing case the null hypothesis can be written as H0 : μ ≤ μ0 or
H0: μ ≥ μ0, it is usually written as H0: μ = μ0.

The following two examples illustrate tests on means for the case in which σ is
known.
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Example 10.3: A random sample of 100 recorded deaths in the United States during the past
year showed an average life span of 71.8 years. Assuming a population standard
deviation of 8.9 years, does this seem to indicate that the mean life span today is
greater than 70 years? Use a 0.05 level of significance.

Solution : 1. H0: μ = 70 years.

2. H1: μ > 70 years.

3. α = 0.05.

4. Critical region: z > 1.645, where z = x̄−μ0

σ/
√
n
.

5. Computations: x̄ = 71.8 years, σ = 8.9 years, and hence z = 71.8−70
8.9/

√
100

= 2.02.

6. Decision: Reject H0 and conclude that the mean life span today is greater
than 70 years.

The P -value corresponding to z = 2.02 is given by the area of the shaded region
in Figure 10.10.

Using Table A.3, we have

P = P (Z > 2.02) = 0.0217.

As a result, the evidence in favor of H1 is even stronger than that suggested by a
0.05 level of significance.

Example 10.4: A manufacturer of sports equipment has developed a new synthetic fishing line that
the company claims has a mean breaking strength of 8 kilograms with a standard
deviation of 0.5 kilogram. Test the hypothesis that μ = 8 kilograms against the
alternative that μ �= 8 kilograms if a random sample of 50 lines is tested and found
to have a mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance.

Solution : 1. H0: μ = 8 kilograms.

2. H1: μ �= 8 kilograms.

3. α = 0.01.

4. Critical region: z < −2.575 and z > 2.575, where z = x̄−μ0

σ/
√
n
.

5. Computations: x̄ = 7.8 kilograms, n = 50, and hence z = 7.8−8
0.5/

√
50

= −2.83.

6. Decision: Reject H0 and conclude that the average breaking strength is not
equal to 8 but is, in fact, less than 8 kilograms.

Since the test in this example is two tailed, the desired P -value is twice the
area of the shaded region in Figure 10.11 to the left of z = −2.83. Therefore, using
Table A.3, we have

P = P (|Z| > 2.83) = 2P (Z < −2.83) = 0.0046,

which allows us to reject the null hypothesis that μ = 8 kilograms at a level of
significance smaller than 0.01.
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z
0 2.02

P

Figure 10.10: P -value for Example 10.3.

z
−2.83 0 2.83

P /2 P /2

Figure 10.11: P -value for Example 10.4.

Relationship to Confidence Interval Estimation

The reader should realize by now that the hypothesis-testing approach to statistical
inference in this chapter is very closely related to the confidence interval approach in
Chapter 9. Confidence interval estimation involves computation of bounds within
which it is “reasonable” for the parameter in question to lie. For the case of a
single population mean μ with σ2 known, the structure of both hypothesis testing
and confidence interval estimation is based on the random variable

Z =
X̄ − μ

σ/
√
n
.

It turns out that the testing of H0: μ = μ0 against H1: μ �= μ0 at a significance level
α is equivalent to computing a 100(1− α)% confidence interval on μ and rejecting
H0 if μ0 is outside the confidence interval. If μ0 is inside the confidence interval,
the hypothesis is not rejected. The equivalence is very intuitive and quite simple to
illustrate. Recall that with an observed value x̄, failure to reject H0 at significance
level α implies that

−zα/2 ≤ x̄− μ0

σ/
√
n

≤ zα/2,

which is equivalent to

x̄− zα/2
σ√
n
≤ μ0 ≤ x̄+ zα/2

σ√
n
.

The equivalence of confidence interval estimation to hypothesis testing extends
to differences between two means, variances, ratios of variances, and so on. As a
result, the student of statistics should not consider confidence interval estimation
and hypothesis testing as separate forms of statistical inference. For example,
consider Example 9.2 on page 271. The 95% confidence interval on the mean is
given by the bounds (2.50, 2.70). Thus, with the same sample information, a two-
sided hypothesis on μ involving any hypothesized value between 2.50 and 2.70 will
not be rejected. As we turn to different areas of hypothesis testing, the equivalence
to the confidence interval estimation will continue to be exploited.
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Tests on a Single Sample (Variance Unknown)

One would certainly suspect that tests on a population mean μ with σ2 unknown,
like confidence interval estimation, should involve the use of Student t-distribution.
Strictly speaking, the application of Student t for both confidence intervals and
hypothesis testing is developed under the following assumptions. The random
variables X1, X2, . . . , Xn represent a random sample from a normal distribution
with unknown μ and σ2. Then the random variable

√
n(X̄ − μ)/S has a Student

t-distribution with n−1 degrees of freedom. The structure of the test is identical to
that for the case of σ known, with the exception that the value σ in the test statistic
is replaced by the computed estimate S and the standard normal distribution is
replaced by a t-distribution.

The t-Statistic
for a Test on a

Single Mean
(Variance
Unknown)

For the two-sided hypothesis

H0: μ = μ0,

H1: μ �= μ0,

we reject H0 at significance level α when the computed t-statistic

t =
x̄− μ0

s/
√
n

exceeds tα/2,n−1 or is less than −tα/2,n−1.

The reader should recall from Chapters 8 and 9 that the t-distribution is symmetric
around the value zero. Thus, this two-tailed critical region applies in a fashion
similar to that for the case of known σ. For the two-sided hypothesis at significance
level α, the two-tailed critical regions apply. For H1: μ > μ0, rejection results when
t > tα,n−1. For H1: μ < μ0, the critical region is given by t < −tα,n−1.

Example 10.5: The Edison Electric Institute has published figures on the number of kilowatt hours
used annually by various home appliances. It is claimed that a vacuum cleaner uses
an average of 46 kilowatt hours per year. If a random sample of 12 homes included
in a planned study indicates that vacuum cleaners use an average of 42 kilowatt
hours per year with a standard deviation of 11.9 kilowatt hours, does this suggest
at the 0.05 level of significance that vacuum cleaners use, on average, less than 46
kilowatt hours annually? Assume the population of kilowatt hours to be normal.

Solution : 1. H0: μ = 46 kilowatt hours.

2. H1: μ < 46 kilowatt hours.

3. α = 0.05.

4. Critical region: t < −1.796, where t = x̄−μ0

s/
√
n
with 11 degrees of freedom.

5. Computations: x̄ = 42 kilowatt hours, s = 11.9 kilowatt hours, and n = 12.
Hence,

t =
42− 46

11.9/
√
12

= −1.16, P = P (T < −1.16) ≈ 0.135.

Uploaded By: anonymousSTUDENTS-HUB.com



10.4 Single Sample: Tests Concerning a Single Mean 341

6. Decision: Do not reject H0 and conclude that the average number of kilowatt
hours used annually by home vacuum cleaners is not significantly less than
46.

Comment on the Single-Sample t-Test

The reader has probably noticed that the equivalence of the two-tailed t-test for
a single mean and the computation of a confidence interval on μ with σ replaced
by s is maintained. For example, consider Example 9.5 on page 275. Essentially,
we can view that computation as one in which we have found all values of μ0, the
hypothesized mean volume of containers of sulfuric acid, for which the hypothesis
H0: μ = μ0 will not be rejected at α = 0.05. Again, this is consistent with the
statement “Based on the sample information, values of the population mean volume
between 9.74 and 10.26 liters are not unreasonable.”

Comments regarding the normality assumption are worth emphasizing at this
point. We have indicated that when σ is known, the Central Limit Theorem
allows for the use of a test statistic or a confidence interval which is based on Z,
the standard normal random variable. Strictly speaking, of course, the Central
Limit Theorem, and thus the use of the standard normal distribution, does not
apply unless σ is known. In Chapter 8, the development of the t-distribution was
given. There we pointed out that normality on X1, X2, . . . , Xn was an underlying
assumption. Thus, strictly speaking, the Student’s t-tables of percentage points for
tests or confidence intervals should not be used unless it is known that the sample
comes from a normal population. In practice, σ can rarely be assumed to be known.
However, a very good estimate may be available from previous experiments. Many
statistics textbooks suggest that one can safely replace σ by s in the test statistic

z =
x̄− μ0

σ/
√
n

when n ≥ 30 with a bell-shaped population and still use the Z-tables for the
appropriate critical region. The implication here is that the Central Limit Theorem
is indeed being invoked and one is relying on the fact that s ≈ σ. Obviously, when
this is done, the results must be viewed as approximate. Thus, a computed P -
value (from the Z-distribution) of 0.15 may be 0.12 or perhaps 0.17, or a computed
confidence interval may be a 93% confidence interval rather than a 95% interval
as desired. Now what about situations where n ≤ 30? The user cannot rely on s
being close to σ, and in order to take into account the inaccuracy of the estimate,
the confidence interval should be wider or the critical value larger in magnitude.
The t-distribution percentage points accomplish this but are correct only when the
sample is from a normal distribution. Of course, normal probability plots can be
used to ascertain some sense of the deviation of normality in a data set.

For small samples, it is often difficult to detect deviations from a normal dis-
tribution. (Goodness-of-fit tests are discussed in a later section of this chapter.)
For bell-shaped distributions of the random variables X1, X2, . . . , Xn, the use of
the t-distribution for tests or confidence intervals is likely to produce quite good
results. When in doubt, the user should resort to nonparametric procedures, which
are presented in Chapter 16.
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Annotated Computer Printout for Single-Sample t-Test

It should be of interest for the reader to see an annotated computer printout
showing the result of a single-sample t-test. Suppose that an engineer is interested
in testing the bias in a pH meter. Data are collected on a neutral substance (pH
= 7.0). A sample of the measurements were taken with the data as follows:

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08

It is, then, of interest to test

H0: μ = 7.0,

H1: μ �= 7.0.

In this illustration, we use the computer package MINITAB to illustrate the anal-
ysis of the data set above. Notice the key components of the printout shown in
Figure 10.12. Of course, the mean ȳ is 7.0250, StDev is simply the sample standard
deviation s = 0.044, and SE Mean is the estimated standard error of the mean and
is computed as s/

√
n = 0.0139. The t-value is the ratio

(7.0250− 7)/0.0139 = 1.80.

pH-meter

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08

MTB > Onet ’pH-meter’; SUBC> Test 7.

One-Sample T: pH-meter Test of mu = 7 vs not = 7

Variable N Mean StDev SE Mean 95% CI T P

pH-meter 10 7.02500 0.04403 0.01392 (6.99350, 7.05650) 1.80 0.106

Figure 10.12: MINITAB printout for one sample t-test for pH meter.

The P -value of 0.106 suggests results that are inconclusive. There is no evi-
dence suggesting a strong rejection of H0 (based on an α of 0.05 or 0.10), yet one
certainly cannot truly conclude that the pH meter is unbiased. Notice
that the sample size of 10 is rather small. An increase in sample size (perhaps an-
other experiment) may sort things out. A discussion regarding appropriate sample
size appears in Section 10.6.

10.5 Two Samples: Tests on Two Means

The reader should now understand the relationship between tests and confidence
intervals, and can only heavily rely on details supplied by the confidence interval
material in Chapter 9. Tests concerning two means represent a set of very impor-
tant analytical tools for the scientist or engineer. The experimental setting is very
much like that described in Section 9.8. Two independent random samples of sizes
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n1 and n2, respectively, are drawn from two populations with means μ1 and μ2

and variances σ2
1 and σ2

2 . We know that the random variable

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2
1/n1 + σ2

2/n2

has a standard normal distribution. Here we are assuming that n1 and n2 are
sufficiently large that the Central Limit Theorem applies. Of course, if the two
populations are normal, the statistic above has a standard normal distribution
even for small n1 and n2. Obviously, if we can assume that σ1 = σ2 = σ, the
statistic above reduces to

Z =
(X̄1 − X̄2)− (μ1 − μ2)

σ
√
1/n1 + 1/n2

.

The two statistics above serve as a basis for the development of the test procedures
involving two means. The equivalence between tests and confidence intervals, along
with the technical detail involving tests on one mean, allow a simple transition to
tests on two means.

The two-sided hypothesis on two means can be written generally as

H0: μ1 − μ2 = d0.

Obviously, the alternative can be two sided or one sided. Again, the distribu-
tion used is the distribution of the test statistic under H0. Values x̄1 and x̄2 are
computed and, for σ1 and σ2 known, the test statistic is given by

z =
(x̄1 − x̄2)− d0√
σ2
1/n1 + σ2

2/n2

,

with a two-tailed critical region in the case of a two-sided alternative. That is,
reject H0 in favor of H1: μ1 −μ2 �= d0 if z > zα/2 or z < −zα/2. One-tailed critical
regions are used in the case of the one-sided alternatives. The reader should, as
before, study the test statistic and be satisfied that for, say, H1: μ1 − μ2 > d0, the
signal favoring H1 comes from large values of z. Thus, the upper-tailed critical
region applies.

Unknown But Equal Variances

The more prevalent situations involving tests on two means are those in which
variances are unknown. If the scientist involved is willing to assume that both
distributions are normal and that σ1 = σ2 = σ, the pooled t-test (often called the
two-sample t-test) may be used. The test statistic (see Section 9.8) is given by the
following test procedure.
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Two-Sample
Pooled t-Test

For the two-sided hypothesis

H0: μ1 = μ2,

H1: μ1 �= μ2,

we reject H0 at significance level α when the computed t-statistic

t =
(x̄1 − x̄2)− d0

sp
√

1/n1 + 1/n2

,

where

s2p =
s21(n1 − 1) + s22(n2 − 1)

n1 + n2 − 2

exceeds tα/2,n1+n2−2 or is less than −tα/2,n1+n2−2.

Recall from Chapter 9 that the degrees of freedom for the t-distribution are a
result of pooling of information from the two samples to estimate σ2. One-sided
alternatives suggest one-sided critical regions, as one might expect. For example,
for H1: μ1 − μ2 > d0, reject H1: μ1 − μ2 = d0 when t > tα,n1+n2−2.

Example 10.6: An experiment was performed to compare the abrasive wear of two different lami-
nated materials. Twelve pieces of material 1 were tested by exposing each piece to
a machine measuring wear. Ten pieces of material 2 were similarly tested. In each
case, the depth of wear was observed. The samples of material 1 gave an average
(coded) wear of 85 units with a sample standard deviation of 4, while the samples
of material 2 gave an average of 81 with a sample standard deviation of 5. Can
we conclude at the 0.05 level of significance that the abrasive wear of material 1
exceeds that of material 2 by more than 2 units? Assume the populations to be
approximately normal with equal variances.

Solution : Let μ1 and μ2 represent the population means of the abrasive wear for material 1
and material 2, respectively.

1. H0: μ1 − μ2 = 2.

2. H1: μ1 − μ2 > 2.

3. α = 0.05.

4. Critical region: t > 1.725, where t = (x̄1−x̄2)−d0

sp
√

1/n1+1/n2

with v = 20 degrees of

freedom.

5. Computations:

x̄1 = 85, s1 = 4, n1 = 12,

x̄2 = 81, s2 = 5, n2 = 10.
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Hence

sp =

√
(11)(16) + (9)(25)

12 + 10− 2
= 4.478,

t =
(85− 81)− 2

4.478
√
1/12 + 1/10

= 1.04,

P = P (T > 1.04) ≈ 0.16. (See Table A.4.)

6. Decision: Do not reject H0. We are unable to conclude that the abrasive wear
of material 1 exceeds that of material 2 by more than 2 units.

Unknown But Unequal Variances

There are situations where the analyst is not able to assume that σ1 = σ2. Recall
from Section 9.8 that, if the populations are normal, the statistic

T ′ =
(X̄1 − X̄2)− d0√
s21/n1 + s22/n2

has an approximate t-distribution with approximate degrees of freedom

v =
(s21/n1 + s22/n2)

2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)
.

As a result, the test procedure is to not reject H0 when

−tα/2,v < t′ < tα/2,v,

with v given as above. Again, as in the case of the pooled t-test, one-sided alter-
natives suggest one-sided critical regions.

Paired Observations

A study of the two-sample t-test or confidence interval on the difference between
means should suggest the need for experimental design. Recall the discussion of
experimental units in Chapter 9, where it was suggested that the conditions of
the two populations (often referred to as the two treatments) should be assigned
randomly to the experimental units. This is done to avoid biased results due to
systematic differences between experimental units. In other words, in hypothesis-
testing jargon, it is important that any significant difference found between means
be due to the different conditions of the populations and not due to the exper-
imental units in the study. For example, consider Exercise 9.40 in Section 9.9.
The 20 seedlings play the role of the experimental units. Ten of them are to be
treated with nitrogen and 10 with no nitrogen. It may be very important that
this assignment to the “nitrogen” and “no-nitrogen” treatments be random to en-
sure that systematic differences between the seedlings do not interfere with a valid
comparison between the means.

In Example 10.6, time of measurement is the most likely choice for the experi-
mental unit. The 22 pieces of material should be measured in random order. We
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need to guard against the possibility that wear measurements made close together
in time might tend to give similar results. Systematic (nonrandom) differences
in experimental units are not expected. However, random assignments guard
against the problem.

References to planning of experiments, randomization, choice of sample size,
and so on, will continue to influence much of the development in Chapters 13, 14,
and 15. Any scientist or engineer whose interest lies in analysis of real data should
study this material. The pooled t-test is extended in Chapter 13 to cover more
than two means.

Testing of two means can be accomplished when data are in the form of paired
observations, as discussed in Chapter 9. In this pairing structure, the conditions
of the two populations (treatments) are assigned randomly within homogeneous
units. Computation of the confidence interval for μ1 − μ2 in the situation with
paired observations is based on the random variable

T =
D̄ − μD

Sd/
√
n
,

where D̄ and Sd are random variables representing the sample mean and standard
deviation of the differences of the observations in the experimental units. As in the
case of the pooled t-test, the assumption is that the observations from each popu-
lation are normal. This two-sample problem is essentially reduced to a one-sample
problem by using the computed differences d1, d2, . . . , dn. Thus, the hypothesis
reduces to

H0: μD = d0.

The computed test statistic is then given by

t =
d− d0
sd/

√
n
.

Critical regions are constructed using the t-distribution with n− 1 degrees of free-
dom.

Problem of Interaction in a Paired t-Test

Not only will the case study that follows illustrate the use of the paired t-test but
the discussion will shed considerable light on the difficulties that arise when there
is an interaction between the treatments and the experimental units in the paired
t structure. Recall that interaction between factors was introduced in Section 1.7
in a discussion of general types of statistical studies. The concept of interaction
will be an important issue from Chapter 13 through Chapter 15.

There are some types of statistical tests in which the existence of interaction
results in difficulty. The paired t-test is one such example. In Section 9.9, the paired
structure was used in the computation of a confidence interval on the difference
between two means, and the advantage in pairing was revealed for situations in
which the experimental units are homogeneous. The pairing results in a reduction
in σD, the standard deviation of a difference Di = X1i − X2i, as discussed in
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Section 9.9. If interaction exists between treatments and experimental units, the
advantage gained in pairing may be substantially reduced. Thus, in Example 9.13
on page 293, the no interaction assumption allowed the difference in mean TCDD
levels (plasma vs. fat tissue) to be the same across veterans. A quick glance at the
data would suggest that there is no significant violation of the assumption of no
interaction.

In order to demonstrate how interaction influences Var(D) and hence the quality
of the paired t-test, it is instructive to revisit the ith difference given by Di = X1i−
X2i = (μ1 − μ2) + (ε1 − ε2), where X1i and X2i are taken on the ith experimental
unit. If the pairing unit is homogeneous, the errors in X1i and in X2i should be
similar and not independent. We noted in Chapter 9 that the positive covariance
between the errors results in a reduced Var(D). Thus, the size of the difference in
the treatments and the relationship between the errors in X1i and X2i contributed
by the experimental unit will tend to allow a significant difference to be detected.

What Conditions Result in Interaction?

Let us consider a situation in which the experimental units are not homogeneous.
Rather, consider the ith experimental unit with random variables X1i and X2i that
are not similar. Let ε1i and ε2i be random variables representing the errors in the
values X1i and X2i, respectively, at the ith unit. Thus, we may write

X1i = μ1 + ε1i and X2i = μ2 + ε2i.

The errors with expectation zero may tend to cause the response values X1i and
X2i to move in opposite directions, resulting in a negative value for Cov(ε1i, ε2i)
and hence negative Cov(X1i, X2i). In fact, the model may be complicated even
more by the fact that σ2

1 = Var(ε1i) �= σ2
2 = Var(ε2i). The variance and covari-

ance parameters may vary among the n experimental units. Thus, unlike in the
homogeneous case, Di will tend to be quite different across experimental units due
to the heterogeneous nature of the difference in ε1 − ε2 among the units. This
produces the interaction between treatments and units. In addition, for a specific
experimental unit (see Theorem 4.9),

σ2
D = Var(D) = Var(ε1) + Var(ε2)− 2 Cov(ε1, ε2)

is inflated by the negative covariance term, and thus the advantage gained in pairing
in the homogeneous unit case is lost in the case described here. While the inflation
in Var(D) will vary from case to case, there is a danger in some cases that the
increase in variance may neutralize any difference that exists between μ1 and μ2.
Of course, a large value of d̄ in the t-statistic may reflect a treatment difference
that overcomes the inflated variance estimate, s2d.

Case Study 10.1: Blood Sample Data: In a study conducted in the Forestry and Wildlife De-
partment at Virginia Tech, J. A. Wesson examined the influence of the drug suc-
cinylcholine on the circulation levels of androgens in the blood. Blood samples
were taken from wild, free-ranging deer immediately after they had received an
intramuscular injection of succinylcholine administered using darts and a capture
gun. A second blood sample was obtained from each deer 30 minutes after the
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first sample, after which the deer was released. The levels of androgens at time of
capture and 30 minutes later, measured in nanograms per milliliter (ng/mL), for
15 deer are given in Table 10.2.

Assuming that the populations of androgen levels at time of injection and 30
minutes later are normally distributed, test at the 0.05 level of significance whether
the androgen concentrations are altered after 30 minutes.

Table 10.2: Data for Case Study 10.1

Androgen (ng/mL)
Deer At Time of Injection 30 Minutes after Injection di

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

2.76
5.18
2.68
3.05
4.10
7.05
6.60
4.79
7.39
7.30
11.78
3.90
26.00
67.48
17.04

7.02
3.10
5.44
3.99
5.21

10.26
13.91
18.53
7.91
4.85

11.10
3.74

94.03
94.03
41.70

4.26
−2.08
2.76
0.94
1.11
3.21
7.31
13.74
0.52

−2.45
−0.68
−0.16
68.03
26.55
24.66

Solution : Let μ1 and μ2 be the average androgen concentration at the time of injection and
30 minutes later, respectively. We proceed as follows:

1. H0: μ1 = μ2 or μD = μ1 − μ2 = 0.

2. H1: μ1 �= μ2 or μD = μ1 − μ2 �= 0.

3. α = 0.05.

4. Critical region: t < −2.145 and t > 2.145, where t = d−d0

sD/
√
n

with v = 14

degrees of freedom.

5. Computations: The sample mean and standard deviation for the di are

d = 9.848 and sd = 18.474.

Therefore,

t =
9.848− 0

18.474/
√
15

= 2.06.

6. Though the t-statistic is not significant at the 0.05 level, from Table A.4,

P = P (|T | > 2.06) ≈ 0.06.

As a result, there is some evidence that there is a difference in mean circulating
levels of androgen.
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The assumption of no interaction would imply that the effect on androgen
levels of the deer is roughly the same in the data for both treatments, i.e., at the
time of injection of succinylcholine and 30 minutes following injection. This can
be expressed with the two factors switching roles; for example, the difference in
treatments is roughly the same across the units (i.e., the deer). There certainly are
some deer/treatment combinations for which the no interaction assumption seems
to hold, but there is hardly any strong evidence that the experimental units are
homogeneous. However, the nature of the interaction and the resulting increase in
Var(D̄) appear to be dominated by a substantial difference in the treatments. This
is further demonstrated by the fact that 11 of the 15 deer exhibited positive signs
for the computed di and the negative di (for deer 2, 10, 11, and 12) are small in
magnitude compared to the 12 positive ones. Thus, it appears that the mean level
of androgen is significantly higher 30 minutes following injection than at injection,
and the conclusions may be stronger than p = 0.06 would suggest.

Annotated Computer Printout for Paired t-Test

Figure 10.13 displays a SAS computer printout for a paired t-test using the data
of Case Study 10.1. Notice that the printout looks like that for a single sample
t-test and, of course, that is exactly what is accomplished, since the test seeks to
determine if d is significantly different from zero.

Analysis Variable : Diff

N Mean Std Error t Value Pr > |t|

---------------------------------------------------------

15 9.8480000 4.7698699 2.06 0.0580

---------------------------------------------------------

Figure 10.13: SAS printout of paired t-test for data of Case Study 10.1.

Summary of Test Procedures

As we complete the formal development of tests on population means, we offer
Table 10.3, which summarizes the test procedure for the cases of a single mean and
two means. Notice the approximate procedure when distributions are normal and
variances are unknown but not assumed to be equal. This statistic was introduced
in Chapter 9.

10.6 Choice of Sample Size for Testing Means

In Section 10.2, we demonstrated how the analyst can exploit relationships among
the sample size, the significance level α, and the power of the test to achieve
a certain standard of quality. In most practical circumstances, the experiment
should be planned, with a choice of sample size made prior to the data-taking
process if possible. The sample size is usually determined to achieve good power
for a fixed α and fixed specific alternative. This fixed alternative may be in the
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Table 10.3: Tests Concerning Means

H0 Value of Test Statistic H1 Critical Region

μ = μ0 z =
x̄− μ0

σ/
√
n
; σ known

μ < μ0

μ > μ0

μ �= μ0

z < −zα
z > zα
z < −zα/2 or z > zα/2

μ = μ0
t =

x̄− μ0

s/
√
n
; v = n− 1,

σ unknown

μ < μ0

μ > μ0

μ �= μ0

t < −tα
t > tα
t < −tα/2 or t > tα/2

μ1 − μ2 = d0
z =

(x̄1 − x̄2)− d0√
σ2
1/n1 + σ2

2/n2

;

σ1 and σ2 known

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

z < −zα
z > zα
z < −zα/2 or z > zα/2

μ1 − μ2 = d0

t =
(x̄1 − x̄2)− d0

sp
√

1/n1 + 1/n2

;

v = n1 + n2 − 2,
σ1 = σ2 but unknown,

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

t < −tα
t > tα
t < −tα/2 or t > tα/2

μ1 − μ2 = d0

t′ =
(x̄1 − x̄2)− d0√
s21/n1 + s22/n2

;

v =
(s21/n1 + s22/n2)

2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

,

σ1 �= σ2 and unknown

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

t′ < −tα
t′ > tα
t′ < −tα/2 or t′ > tα/2

μD = d0
paired
observations

t =
d− d0
sd/

√
n
;

v = n− 1

μD < d0
μD > d0
μD �= d0

t < −tα
t > tα
t < −tα/2 or t > tα/2

form of μ−μ0 in the case of a hypothesis involving a single mean or μ1−μ2 in the
case of a problem involving two means. Specific cases will provide illustrations.

Suppose that we wish to test the hypothesis

H0 : μ = μ0,

H1 : μ > μ0,

with a significance level α, when the variance σ2 is known. For a specific alternative,
say μ = μ0 + δ, the power of our test is shown in Figure 10.14 to be

1− β = P (X̄ > a when μ = μ0 + δ).

Therefore,

β = P (X̄ < a when μ = μ0 + δ)

= P

[
X̄ − (μ0 + δ)

σ/
√
n

<
a− (μ0 + δ)

σ/
√
n

when μ = μ0 + δ

]
.
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x
a +μ0 μ0 δ

αβ

Figure 10.14: Testing μ = μ0 versus μ = μ0 + δ.

Under the alternative hypothesis μ = μ0 + δ, the statistic

X̄ − (μ0 + δ)

σ/
√
n

is the standard normal variable Z. So

β = P

(
Z <

a− μ0

σ/
√
n

− δ

σ/
√
n

)
= P

(
Z < zα − δ

σ/
√
n

)
,

from which we conclude that

−zβ = zα − δ
√
n

σ
,

and hence

Choice of sample size: n =
(zα + zβ)

2σ2

δ2
,

a result that is also true when the alternative hypothesis is μ < μ0.
In the case of a two-tailed test, we obtain the power 1 − β for a specified

alternative when

n ≈ (zα/2 + zβ)
2σ2

δ2
.

Example 10.7: Suppose that we wish to test the hypothesis

H0: μ = 68 kilograms,

H1: μ > 68 kilograms

for the weights of male students at a certain college, using an α = 0.05 level of
significance, when it is known that σ = 5. Find the sample size required if the
power of our test is to be 0.95 when the true mean is 69 kilograms.
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Solution : Since α = β = 0.05, we have zα = zβ = 1.645. For the alternative β = 69, we take
δ = 1 and then

n =
(1.645 + 1.645)2(25)

1
= 270.6.

Therefore, 271 observations are required if the test is to reject the null hypothesis
95% of the time when, in fact, μ is as large as 69 kilograms.

Two-Sample Case

A similar procedure can be used to determine the sample size n = n1 = n2 required
for a specific power of the test in which two population means are being compared.
For example, suppose that we wish to test the hypothesis

H0: μ1 − μ2 = d0,

H1: μ1 − μ2 �= d0,

when σ1 and σ2 are known. For a specific alternative, say μ1 − μ2 = d0 + δ, the
power of our test is shown in Figure 10.15 to be

1− β = P (|X̄1 − X̄2| > a when μ1 − μ2 = d0 + δ).

x
a +−a d0 d0 δ

α 2β
α 2

Figure 10.15: Testing μ1 − μ2 = d0 versus μ1 − μ2 = d0 + δ.

Therefore,

β = P (−a < X̄1 − X̄2 < a when μ1 − μ2 = d0 + δ)

= P

[
−a− (d0 + δ)√
(σ2

1 + σ2
2)/n

<
(X̄1 − X̄2)− (d0 + δ)√

(σ2
1 + σ2

2)/n

<
a− (d0 + δ)√
(σ2

1 + σ2
2)/n

when μ1 − μ2 = d0 + δ

]
.

Under the alternative hypothesis μ1 − μ2 = d0 + δ, the statistic

X̄1 − X̄2 − (d0 + δ)√
(σ2

1 + σ2
2)/n
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is the standard normal variable Z. Now, writing

−zα/2 =
−a− d0√
(σ2

1 + σ2
2)/n

and zα/2 =
a− d0√

(σ2
1 + σ2

2)/n
,

we have

β = P

[
−zα/2 − δ√

(σ2
1 + σ2

2)/n
< Z < zα/2 − δ√

(σ2
1 + σ2

2)/n

]
,

from which we conclude that

−zβ ≈ zα/2 − δ√
(σ2

1 + σ2
2)/n

,

and hence

n ≈ (zα/2 + zβ)
2(σ2

1 + σ2
2)

δ2
.

For the one-tailed test, the expression for the required sample size when n = n1 =
n2 is

Choice of sample size: n =
(zα + zβ)

2(σ2
1 + σ2

2)

δ2
.

When the population variance (or variances, in the two-sample situation) is un-
known, the choice of sample size is not straightforward. In testing the hypothesis
μ = μ0 when the true value is μ = μ0 + δ, the statistic

X̄ − (μ0 + δ)

S/
√
n

does not follow the t-distribution, as one might expect, but instead follows the
noncentral t-distribution. However, tables or charts based on the noncentral
t-distribution do exist for determining the appropriate sample size if some estimate
of σ is available or if δ is a multiple of σ. Table A.8 gives the sample sizes needed
to control the values of α and β for various values of

Δ =
|δ|
σ

=
|μ− μ0|

σ

for both one- and two-tailed tests. In the case of the two-sample t-test in which the
variances are unknown but assumed equal, we obtain the sample sizes n = n1 = n2

needed to control the values of α and β for various values of

Δ =
|δ|
σ

=
|μ1 − μ2 − d0|

σ

from Table A.9.

Example 10.8: In comparing the performance of two catalysts on the effect of a reaction yield, a
two-sample t-test is to be conducted with α = 0.05. The variances in the yields
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are considered to be the same for the two catalysts. How large a sample for each
catalyst is needed to test the hypothesis

H0: μ1 = μ2,

H1: μ1 �= μ2

if it is essential to detect a difference of 0.8σ between the catalysts with probability
0.9?

Solution : From Table A.9, with α = 0.05 for a two-tailed test, β = 0.1, and

Δ =
|0.8σ|
σ

= 0.8,

we find the required sample size to be n = 34.
In practical situations, it might be difficult to force a scientist or engineer

to make a commitment on information from which a value of Δ can be found.
The reader is reminded that the Δ-value quantifies the kind of difference between
the means that the scientist considers important, that is, a difference considered
significant from a scientific, not a statistical, point of view. Example 10.8 illustrates
how this choice is often made, namely, by selecting a fraction of σ. Obviously, if
the sample size is based on a choice of |δ| that is a small fraction of σ, the resulting
sample size may be quite large compared to what the study allows.

10.7 Graphical Methods for Comparing Means

In Chapter 1, considerable attention was directed to displaying data in graphical
form, such as stem-and-leaf plots and box-and-whisker plots. In Section 8.8, quan-
tile plots and quantile-quantile normal plots were used to provide a “picture” to
summarize a set of experimental data. Many computer software packages produce
graphical displays. As we proceed to other forms of data analysis (e.g., regression
analysis and analysis of variance), graphical methods become even more informa-
tive.

Graphical aids cannot be used as a replacement for the test procedure itself.
Certainly, the value of the test statistic indicates the proper type of evidence in
support of H0 or H1. However, a pictorial display provides a good illustration and
is often a better communicator of evidence to the beneficiary of the analysis. Also,
a picture will often clarify why a significant difference was found. Failure of an
important assumption may be exposed by a summary type of graphical tool.

For the comparison of means, side-by-side box-and-whisker plots provide a
telling display. The reader should recall that these plots display the 25th per-
centile, 75th percentile, and the median in a data set. In addition, the whiskers
display the extremes in a data set. Consider Exercise 10.40 at the end of this sec-
tion. Plasma ascorbic acid levels were measured in two groups of pregnant women,
smokers and nonsmokers. Figure 10.16 shows the box-and-whisker plots for both
groups of women. Two things are very apparent. Taking into account variability,
there appears to be a negligible difference in the sample means. In addition, the
variability in the two groups appears to be somewhat different. Of course, the
analyst must keep in mind the rather sizable differences between the sample sizes
in this case.
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Figure 10.16: Two box-and-whisker plots of
plasma ascorbic acid in smokers and nonsmokers.
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Figure 10.17: Two box-and-whisker plots of
seedling data.

Consider Exercise 9.40 in Section 9.9. Figure 10.17 shows the multiple box-
and-whisker plot for the data on 10 seedlings, half given nitrogen and half given
no nitrogen. The display reveals a smaller variability for the group containing no
nitrogen. In addition, the lack of overlap of the box plots suggests a significant
difference between the mean stem weights for the two groups. It would appear
that the presence of nitrogen increases the stem weights and perhaps increases the
variability in the weights.

There are no certain rules of thumb regarding when two box-and-whisker plots
give evidence of significant difference between the means. However, a rough guide-
line is that if the 25th percentile line for one sample exceeds the median line for
the other sample, there is strong evidence of a difference between means.

More emphasis is placed on graphical methods in a real-life case study presented
later in this chapter.

Annotated Computer Printout for Two-Sample t-Test

Consider once again Exercise 9.40 on page 294, where seedling data under condi-
tions of nitrogen and no nitrogen were collected. Test

H0: μNIT = μNON,

H1: μNIT > μNON,

where the population means indicate mean weights. Figure 10.18 is an annotated
computer printout generated using the SAS package. Notice that sample standard
deviation and standard error are shown for both samples. The t-statistics under the
assumption of equal variance and unequal variance are both given. From the box-
and-whisker plot of Figure 10.17 it would certainly appear that the equal variance
assumption is violated. A P -value of 0.0229 suggests a conclusion of unequal means.
This concurs with the diagnostic information given in Figure 10.18. Incidentally,
notice that t and t′ are equal in this case, since n1 = n2.
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TTEST Procedure

Variable Weight

Mineral N Mean Std Dev Std Err

No nitrogen 10 0.3990 0.0728 0.0230

Nitrogen 10 0.5650 0.1867 0.0591

Variances DF t Value Pr > |t|

Equal 18 2.62 0.0174

Unequal 11.7 2.62 0.0229

Test the Equality of Variances

Variable Num DF Den DF F Value Pr > F

Weight 9 9 6.58 0.0098

Figure 10.18: SAS printout for two-sample t-test.

Exercises

10.19 In a research report, Richard H. Weindruch of
the UCLA Medical School claims that mice with an
average life span of 32 months will live to be about 40
months old when 40% of the calories in their diet are
replaced by vitamins and protein. Is there any reason
to believe that μ < 40 if 64 mice that are placed on
this diet have an average life of 38 months with a stan-
dard deviation of 5.8 months? Use a P -value in your
conclusion.

10.20 A random sample of 64 bags of white ched-
dar popcorn weighed, on average, 5.23 ounces with a
standard deviation of 0.24 ounce. Test the hypothesis
that μ = 5.5 ounces against the alternative hypothesis,
μ < 5.5 ounces, at the 0.05 level of significance.

10.21 An electrical firm manufactures light bulbs
that have a lifetime that is approximately normally
distributed with a mean of 800 hours and a standard
deviation of 40 hours. Test the hypothesis that μ = 800
hours against the alternative, μ �= 800 hours, if a ran-
dom sample of 30 bulbs has an average life of 788 hours.
Use a P -value in your answer.

10.22 In the American Heart Association journal Hy-
pertension, researchers report that individuals who
practice Transcendental Meditation (TM) lower their
blood pressure significantly. If a random sample of 225
male TM practitioners meditate for 8.5 hours per week
with a standard deviation of 2.25 hours, does that sug-
gest that, on average, men who use TM meditate more
than 8 hours per week? Quote a P -value in your con-
clusion.

10.23 Test the hypothesis that the average content
of containers of a particular lubricant is 10 liters if the

contents of a random sample of 10 containers are 10.2,
9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, and 9.8 liters.
Use a 0.01 level of significance and assume that the
distribution of contents is normal.

10.24 The average height of females in the freshman
class of a certain college has historically been 162.5 cen-
timeters with a standard deviation of 6.9 centimeters.
Is there reason to believe that there has been a change
in the average height if a random sample of 50 females
in the present freshman class has an average height of
165.2 centimeters? Use a P -value in your conclusion.
Assume the standard deviation remains the same.

10.25 It is claimed that automobiles are driven on
average more than 20,000 kilometers per year. To test
this claim, 100 randomly selected automobile owners
are asked to keep a record of the kilometers they travel.
Would you agree with this claim if the random sample
showed an average of 23,500 kilometers and a standard
deviation of 3900 kilometers? Use a P -value in your
conclusion.

10.26 According to a dietary study, high sodium in-
take may be related to ulcers, stomach cancer, and
migraine headaches. The human requirement for salt
is only 220 milligrams per day, which is surpassed in
most single servings of ready-to-eat cereals. If a ran-
dom sample of 20 similar servings of a certain cereal
has a mean sodium content of 244 milligrams and a
standard deviation of 24.5 milligrams, does this sug-
gest at the 0.05 level of significance that the average
sodium content for a single serving of such cereal is
greater than 220 milligrams? Assume the distribution
of sodium contents to be normal.

Uploaded By: anonymousSTUDENTS-HUB.com



/ /

Exercises 357

10.27 A study at the University of Colorado at Boul-
der shows that running increases the percent resting
metabolic rate (RMR) in older women. The average
RMR of 30 elderly women runners was 34.0% higher
than the average RMR of 30 sedentary elderly women,
and the standard deviations were reported to be 10.5
and 10.2%, respectively. Was there a significant in-
crease in RMR of the women runners over the seden-
tary women? Assume the populations to be approxi-
mately normally distributed with equal variances. Use
a P -value in your conclusions.

10.28 According to Chemical Engineering, an impor-
tant property of fiber is its water absorbency. The aver-
age percent absorbency of 25 randomly selected pieces
of cotton fiber was found to be 20 with a standard de-
viation of 1.5. A random sample of 25 pieces of acetate
yielded an average percent of 12 with a standard devi-
ation of 1.25. Is there strong evidence that the popula-
tion mean percent absorbency is significantly higher for
cotton fiber than for acetate? Assume that the percent
absorbency is approximately normally distributed and
that the population variances in percent absorbency
for the two fibers are the same. Use a significance level
of 0.05.

10.29 Past experience indicates that the time re-
quired for high school seniors to complete a standard-
ized test is a normal random variable with a mean of 35
minutes. If a random sample of 20 high school seniors
took an average of 33.1 minutes to complete this test
with a standard deviation of 4.3 minutes, test the hy-
pothesis, at the 0.05 level of significance, that μ = 35
minutes against the alternative that μ < 35 minutes.

10.30 A random sample of size n1 = 25, taken from a
normal population with a standard deviation σ1 = 5.2,
has a mean x̄1 = 81. A second random sample of size
n2 = 36, taken from a different normal population with
a standard deviation σ2 = 3.4, has a mean x̄2 = 76.
Test the hypothesis that μ1 = μ2 against the alterna-
tive, μ1 �= μ2. Quote a P -value in your conclusion.

10.31 A manufacturer claims that the average ten-
sile strength of thread A exceeds the average tensile
strength of thread B by at least 12 kilograms. To test
this claim, 50 pieces of each type of thread were tested
under similar conditions. Type A thread had an aver-
age tensile strength of 86.7 kilograms with a standard
deviation of 6.28 kilograms, while type B thread had
an average tensile strength of 77.8 kilograms with a
standard deviation of 5.61 kilograms. Test the manu-
facturer’s claim using a 0.05 level of significance.

10.32 Amstat News (December 2004) lists median
salaries for associate professors of statistics at research
institutions and at liberal arts and other institutions
in the United States. Assume that a sample of 200

associate professors from research institutions has an
average salary of $70,750 per year with a standard de-
viation of $6000. Assume also that a sample of 200 as-
sociate professors from other types of institutions has
an average salary of $65,200 with a standard deviation
of $5000. Test the hypothesis that the mean salary
for associate professors in research institutions is $2000
higher than for those in other institutions. Use a 0.01
level of significance.

10.33 A study was conducted to see if increasing the
substrate concentration has an appreciable effect on
the velocity of a chemical reaction. With a substrate
concentration of 1.5 moles per liter, the reaction was
run 15 times, with an average velocity of 7.5 micro-
moles per 30 minutes and a standard deviation of 1.5.
With a substrate concentration of 2.0 moles per liter,
12 runs were made, yielding an average velocity of 8.8
micromoles per 30 minutes and a sample standard de-
viation of 1.2. Is there any reason to believe that this
increase in substrate concentration causes an increase
in the mean velocity of the reaction of more than 0.5
micromole per 30 minutes? Use a 0.01 level of signifi-
cance and assume the populations to be approximately
normally distributed with equal variances.

10.34 A study was made to determine if the subject
matter in a physics course is better understood when a
lab constitutes part of the course. Students were ran-
domly selected to participate in either a 3-semester-
hour course without labs or a 4-semester-hour course
with labs. In the section with labs, 11 students made
an average grade of 85 with a standard deviation of 4.7,
and in the section without labs, 17 students made an
average grade of 79 with a standard deviation of 6.1.
Would you say that the laboratory course increases the
average grade by as much as 8 points? Use a P -value in
your conclusion and assume the populations to be ap-
proximately normally distributed with equal variances.

10.35 To find out whether a new serum will arrest
leukemia, 9 mice, all with an advanced stage of the
disease, are selected. Five mice receive the treatment
and 4 do not. Survival times, in years, from the time
the experiment commenced are as follows:

Treatment 2.1 5.3 1.4 4.6 0.9
No Treatment 1.9 0.5 2.8 3.1

At the 0.05 level of significance, can the serum be said
to be effective? Assume the two populations to be nor-
mally distributed with equal variances.

10.36 Engineers at a large automobile manufactur-
ing company are trying to decide whether to purchase
brand A or brand B tires for the company’s new mod-
els. To help them arrive at a decision, an experiment
is conducted using 12 of each brand. The tires are run
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until they wear out. The results are as follows:

Brand A : x̄1 = 37,900 kilometers,

s1 = 5100 kilometers.

Brand B : x̄1 = 39,800 kilometers,

s2 = 5900 kilometers.

Test the hypothesis that there is no difference in the
average wear of the two brands of tires. Assume the
populations to be approximately normally distributed
with equal variances. Use a P -value.

10.37 In Exercise 9.42 on page 295, test the hypoth-
esis that the fuel economy of Volkswagen mini-trucks,
on average, exceeds that of similarly equipped Toyota
mini-trucks by 4 kilometers per liter. Use a 0.10 level
of significance.

10.38 A UCLA researcher claims that the average life
span of mice can be extended by as much as 8 months
when the calories in their diet are reduced by approx-
imately 40% from the time they are weaned. The re-
stricted diets are enriched to normal levels by vitamins
and protein. Suppose that a random sample of 10 mice
is fed a normal diet and has an average life span of 32.1
months with a standard deviation of 3.2 months, while
a random sample of 15 mice is fed the restricted diet
and has an average life span of 37.6 months with a
standard deviation of 2.8 months. Test the hypothesis,
at the 0.05 level of significance, that the average life
span of mice on this restricted diet is increased by 8
months against the alternative that the increase is less
than 8 months. Assume the distributions of life spans
for the regular and restricted diets are approximately
normal with equal variances.

10.39 The following data represent the running times
of films produced by two motion-picture companies:

Company Time (minutes)
1 102 86 98 109 92
2 81 165 97 134 92 87 114

Test the hypothesis that the average running time of
films produced by company 2 exceeds the average run-
ning time of films produced by company 1 by 10 min-
utes against the one-sided alternative that the differ-
ence is less than 10 minutes. Use a 0.1 level of sig-
nificance and assume the distributions of times to be
approximately normal with unequal variances.

10.40 In a study conducted at Virginia Tech, the
plasma ascorbic acid levels of pregnant women were
compared for smokers versus nonsmokers. Thirty-two
women in the last three months of pregnancy, free of
major health disorders and ranging in age from 15 to
32 years, were selected for the study. Prior to the col-
lection of 20 ml of blood, the participants were told to
avoid breakfast, forgo their vitamin supplements, and
avoid foods high in ascorbic acid content. From the

blood samples, the following plasma ascorbic acid val-
ues were determined, in milligrams per 100 milliliters:

Plasma Ascorbic Acid Values
Nonsmokers Smokers
0.97 1.16 0.48
0.72 0.86 0.71
1.00 0.85 0.98
0.81 0.58 0.68
0.62 0.57 1.18
1.32 0.64 1.36
1.24 0.98 0.78
0.99 1.09 1.64
0.90 0.92
0.74 0.78
0.88 1.24
0.94 1.18

Is there sufficient evidence to conclude that there is a
difference between plasma ascorbic acid levels of smok-
ers and nonsmokers? Assume that the two sets of data
came from normal populations with unequal variances.
Use a P -value.

10.41 A study was conducted by the Department of
Zoology at Virginia Tech to determine if there is a
significant difference in the density of organisms at
two different stations located on Cedar Run, a sec-
ondary stream in the Roanoke River drainage basin.
Sewage from a sewage treatment plant and overflow
from the Federal Mogul Corporation settling pond en-
ter the stream near its headwaters. The following data
give the density measurements, in number of organisms
per square meter, at the two collecting stations:

Number of Organisms per Square Meter
Station 1 Station 2

5030 4980 2800 2810
13,700 11,910 4670 1330
10,730 8130 6890 3320
11,400 26,850 7720 1230

860 17,660 7030 2130
2200 22,800 7330 2190
4250 1130

15,040 1690
Can we conclude, at the 0.05 level of significance, that
the average densities at the two stations are equal?
Assume that the observations come from normal pop-
ulations with different variances.

10.42 Five samples of a ferrous-type substance were
used to determine if there is a difference between a
laboratory chemical analysis and an X-ray fluorescence
analysis of the iron content. Each sample was split into
two subsamples and the two types of analysis were ap-
plied. Following are the coded data showing the iron
content analysis:
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Sample
Analysis 1 2 3 4 5
X-ray 2.0 2.0 2.3 2.1 2.4
Chemical 2.2 1.9 2.5 2.3 2.4

Assuming that the populations are normal, test at the
0.05 level of significance whether the two methods of
analysis give, on the average, the same result.

10.43 According to published reports, practice un-
der fatigued conditions distorts mechanisms that gov-
ern performance. An experiment was conducted using
15 college males, who were trained to make a continu-
ous horizontal right-to-left arm movement from a mi-
croswitch to a barrier, knocking over the barrier co-
incident with the arrival of a clock sweephand to the
6 o’clock position. The absolute value of the differ-
ence between the time, in milliseconds, that it took to
knock over the barrier and the time for the sweephand
to reach the 6 o’clock position (500 msec) was recorded.
Each participant performed the task five times under
prefatigue and postfatigue conditions, and the sums of
the absolute differences for the five performances were
recorded.

Absolute Time Differences
Subject Prefatigue Postfatigue

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

158
92
65
98
33
89

148
58

142
117
74
66

109
57
85

91
59

215
226
223
91
92

177
134
116
153
219
143
164
100

An increase in the mean absolute time difference when
the task is performed under postfatigue conditions
would support the claim that practice under fatigued
conditions distorts mechanisms that govern perfor-
mance. Assuming the populations to be normally dis-
tributed, test this claim.

10.44 In a study conducted by the Department of
Human Nutrition and Foods at Virginia Tech, the fol-
lowing data were recorded on sorbic acid residuals, in
parts per million, in ham immediately after dipping in
a sorbate solution and after 60 days of storage:

Sorbic Acid Residuals in Ham
Slice Before Storage After Storage
1
2
3
4
5
6
7
8

224
270
400
444
590
660

1400
680

116
96

239
329
437
597
689
576

Assuming the populations to be normally distributed,
is there sufficient evidence, at the 0.05 level of signifi-
cance, to say that the length of storage influences sorbic
acid residual concentrations?

10.45 A taxi company manager is trying to decide
whether the use of radial tires instead of regular
belted tires improves fuel economy. Twelve cars were
equipped with radial tires and driven over a prescribed
test course. Without changing drivers, the same cars
were then equipped with regular belted tires and driven
once again over the test course. The gasoline consump-
tion, in kilometers per liter, was recorded as follows:

Kilometers per Liter
Car Radial Tires Belted Tires
1 4.2 4.1
2 4.7 4.9
3 6.6 6.2
4 7.0 6.9
5 6.7 6.8
6 4.5 4.4
7 5.7 5.7
8 6.0 5.8
9 7.4 6.9
10 4.9 4.7
11 6.1 6.0
12 5.2 4.9

Can we conclude that cars equipped with radial tires
give better fuel economy than those equipped with
belted tires? Assume the populations to be normally
distributed. Use a P -value in your conclusion.

10.46 In Review Exercise 9.91 on page 313, use the t-
distribution to test the hypothesis that the diet reduces
a woman’s weight by 4.5 kilograms on average against
the alternative hypothesis that the mean difference in
weight is less than 4.5 kilograms. Use a P -value.

10.47 How large a sample is required in Exercise
10.20 if the power of the test is to be 0.90 when the
true mean is 5.20? Assume that σ = 0.24.

10.48 If the distribution of life spans in Exercise 10.19
is approximately normal, how large a sample is re-
quired in order that the probability of committing a
type II error be 0.1 when the true mean is 35.9 months?
Assume that σ = 5.8 months.
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10.49 How large a sample is required in Exercise
10.24 if the power of the test is to be 0.95 when the
true average height differs from 162.5 by 3.1 centime-
ters? Use α = 0.02.

10.50 How large should the samples be in Exercise
10.31 if the power of the test is to be 0.95 when the
true difference between thread types A and B is 8 kilo-
grams?

10.51 How large a sample is required in Exercise
10.22 if the power of the test is to be 0.8 when the
true mean meditation time exceeds the hypothesized
value by 1.2σ? Use α = 0.05.

10.52 For testing

H0: μ = 14,

H1: μ �= 14,

an α = 0.05 level t-test is being considered. What sam-
ple size is necessary in order for the probability to be
0.1 of falsely failing to reject H0 when the true popula-
tion mean differs from 14 by 0.5? From a preliminary
sample we estimate σ to be 1.25.

10.53 A study was conducted at the Department of
Veterinary Medicine at Virginia Tech to determine if
the “strength” of a wound from surgical incision is af-
fected by the temperature of the knife. Eight dogs
were used in the experiment. “Hot” and “cold” in-
cisions were made on the abdomen of each dog, and
the strength was measured. The resulting data appear
below.

Dog Knife Strength
1
1
2
2
3
3
4
4

Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold

5120
8200

10, 000
8600

10, 000
9200

10, 000
6200

Dog Knife Strength
5
5
6
6
7
7
8
8

Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold

10, 000
10, 000
7900
5200
510
885

1020
460

(a) Write an appropriate hypothesis to determine if
there is a significant difference in strength between
the hot and cold incisions.

(b) Test the hypothesis using a paired t-test. Use a
P -value in your conclusion.

10.54 Nine subjects were used in an experiment to
determine if exposure to carbon monoxide has an im-
pact on breathing capability. The data were collected
by personnel in the Health and Physical Education De-
partment at Virginia Tech and were analyzed in the
Statistics Consulting Center at Hokie Land. The sub-
jects were exposed to breathing chambers, one of which
contained a high concentration of CO. Breathing fre-
quency measures were made for each subject for each
chamber. The subjects were exposed to the breath-
ing chambers in random sequence. The data give the
breathing frequency, in number of breaths taken per
minute. Make a one-sided test of the hypothesis that
mean breathing frequency is the same for the two en-
vironments. Use α = 0.05. Assume that breathing
frequency is approximately normal.

Subject With CO Without CO
1 30 30
2 45 40
3 26 25
4 25 23
5 34 30
6 51 49
7 46 41
8 32 35
9 30 28

10.8 One Sample: Test on a Single Proportion

Tests of hypotheses concerning proportions are required in many areas. Politicians
are certainly interested in knowing what fraction of the voters will favor them in
the next election. All manufacturing firms are concerned about the proportion of
defective items when a shipment is made. Gamblers depend on a knowledge of the
proportion of outcomes that they consider favorable.

We shall consider the problem of testing the hypothesis that the proportion
of successes in a binomial experiment equals some specified value. That is, we
are testing the null hypothesis H0 that p = p0, where p is the parameter of the
binomial distribution. The alternative hypothesis may be one of the usual one-sided
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or two-sided alternatives:

p < p0, p > p0, or p �= p0.

The appropriate random variable on which we base our decision criterion is
the binomial random variable X, although we could just as well use the statistic
p̂ = X/n. Values of X that are far from the mean μ = np0 will lead to the rejection
of the null hypothesis. Because X is a discrete binomial variable, it is unlikely that
a critical region can be established whose size is exactly equal to a prespecified
value of α. For this reason it is preferable, in dealing with small samples, to base
our decisions on P -values. To test the hypothesis

H0: p = p0,

H1: p < p0,

we use the binomial distribution to compute the P -value

P = P (X ≤ x when p = p0).

The value x is the number of successes in our sample of size n. If this P -value is
less than or equal to α, our test is significant at the α level and we reject H0 in
favor of H1. Similarly, to test the hypothesis

H0: p = p0,

H1: p > p0,

at the α-level of significance, we compute

P = P (X ≥ x when p = p0)

and reject H0 in favor of H1 if this P -value is less than or equal to α. Finally, to
test the hypothesis

H0: p = p0,

H1: p �= p0,
at the α-level of significance, we compute

P = 2P (X ≤ x when p = p0) if x < np0

or

P = 2P (X ≥ x when p = p0) if x > np0

and reject H0 in favor of H1 if the computed P -value is less than or equal to α.
The steps for testing a null hypothesis about a proportion against various al-

ternatives using the binomial probabilities of Table A.1 are as follows:

Testing a
Proportion

(Small Samples)

1. H0: p = p0.
2. One of the alternatives H1: p < p0, p > p0, or p �= p0.
3. Choose a level of significance equal to α.
4. Test statistic: Binomial variable X with p = p0.
5. Computations: Find x, the number of successes, and compute the appropri-
ate P -value.
6. Decision: Draw appropriate conclusions based on the P -value.
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Example 10.9: A builder claims that heat pumps are installed in 70% of all homes being con-
structed today in the city of Richmond, Virginia. Would you agree with this claim
if a random survey of new homes in this city showed that 8 out of 15 had heat
pumps installed? Use a 0.10 level of significance.

Solution : 1. H0: p = 0.7.

2. H1: p �= 0.7.

3. α = 0.10.

4. Test statistic: Binomial variable X with p = 0.7 and n = 15.

5. Computations: x = 8 and np0 = (15)(0.7) = 10.5. Therefore, from Table A.1,
the computed P -value is

P = 2P (X ≤ 8 when p = 0.7) = 2
8∑

x=0

b(x; 15, 0.7) = 0.2622 > 0.10.

6. Decision: Do not reject H0. Conclude that there is insufficient reason to
doubt the builder’s claim.

In Section 5.2, we saw that binomial probabilities can be obtained from the
actual binomial formula or from Table A.1 when n is small. For large n, approxi-
mation procedures are required. When the hypothesized value p0 is very close to 0
or 1, the Poisson distribution, with parameter μ = np0, may be used. However, the
normal curve approximation, with parameters μ = np0 and σ2 = np0q0, is usually
preferred for large n and is very accurate as long as p0 is not extremely close to 0
or to 1. If we use the normal approximation, the z-value for testing p = p0 is
given by

z =
x− np0√
np0q0

=
p̂− p0√
p0q0/n

,

which is a value of the standard normal variable Z. Hence, for a two-tailed test
at the α-level of significance, the critical region is z < −zα/2 or z > zα/2. For the
one-sided alternative p < p0, the critical region is z < −zα, and for the alternative
p > p0, the critical region is z > zα.

Example 10.10: A commonly prescribed drug for relieving nervous tension is believed to be only
60% effective. Experimental results with a new drug administered to a random
sample of 100 adults who were suffering from nervous tension show that 70 received
relief. Is this sufficient evidence to conclude that the new drug is superior to the
one commonly prescribed? Use a 0.05 level of significance.

Solution : 1. H0: p = 0.6.

2. H1: p > 0.6.

3. α = 0.05.

4. Critical region: z > 1.645.
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5. Computations: x = 70, n = 100, p̂ = 70/100 = 0.7, and

z =
0.7− 0.6√

(0.6)(0.4)/100
= 2.04, P = P (Z > 2.04) < 0.0207.

6. Decision: Reject H0 and conclude that the new drug is superior.

10.9 Two Samples: Tests on Two Proportions

Situations often arise where we wish to test the hypothesis that two proportions
are equal. For example, we might want to show evidence that the proportion of
doctors who are pediatricians in one state is equal to the proportion in another
state. A person may decide to give up smoking only if he or she is convinced that
the proportion of smokers with lung cancer exceeds the proportion of nonsmokers
with lung cancer.

In general, we wish to test the null hypothesis that two proportions, or bino-
mial parameters, are equal. That is, we are testing p1 = p2 against one of the
alternatives p1 < p2, p1 > p2, or p1 �= p2. Of course, this is equivalent to testing
the null hypothesis that p1 − p2 = 0 against one of the alternatives p1 − p2 < 0,
p1 − p2 > 0, or p1 − p2 �= 0. The statistic on which we base our decision is the
random variable P̂1 − P̂2. Independent samples of sizes n1 and n2 are selected at
random from two binomial populations and the proportions of successes P̂1 and P̂2

for the two samples are computed.
In our construction of confidence intervals for p1 and p2 we noted, for n1 and n2

sufficiently large, that the point estimator P̂1 minus P̂2 was approximately normally
distributed with mean

μP̂1−P̂2
= p1 − p2

and variance

σ2
P̂1−P̂2

=
p1q1
n1

+
p2q2
n2

.

Therefore, our critical region(s) can be established by using the standard normal
variable

Z =
(P̂1 − P̂2)− (p1 − p2)√

p1q1/n1 + p2q2/n2

.

When H0 is true, we can substitute p1 = p2 = p and q1 = q2 = q (where p and
q are the common values) in the preceding formula for Z to give the form

Z =
P̂1 − P̂2√

pq(1/n1 + 1/n2)
.

To compute a value of Z, however, we must estimate the parameters p and q that
appear in the radical. Upon pooling the data from both samples, the pooled
estimate of the proportion p is

p̂ =
x1 + x2

n1 + n2
,
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where x1 and x2 are the numbers of successes in each of the two samples. Substi-
tuting p̂ for p and q̂ = 1− p̂ for q, the z-value for testing p1= p2 is determined
from the formula

z =
p̂1 − p̂2√

p̂q̂(1/n1 + 1/n2)
.

The critical regions for the appropriate alternative hypotheses are set up as before,
using critical points of the standard normal curve. Hence, for the alternative
p1 �= p2 at the α-level of significance, the critical region is z < −zα/2 or z > zα/2.
For a test where the alternative is p1 < p2, the critical region is z < −zα, and
when the alternative is p1 > p2, the critical region is z > zα.

Example 10.11: A vote is to be taken among the residents of a town and the surrounding county
to determine whether a proposed chemical plant should be constructed. The con-
struction site is within the town limits, and for this reason many voters in the
county believe that the proposal will pass because of the large proportion of town
voters who favor the construction. To determine if there is a significant difference
in the proportions of town voters and county voters favoring the proposal, a poll is
taken. If 120 of 200 town voters favor the proposal and 240 of 500 county residents
favor it, would you agree that the proportion of town voters favoring the proposal is
higher than the proportion of county voters? Use an α = 0.05 level of significance.

Solution : Let p1 and p2 be the true proportions of voters in the town and county, respectively,
favoring the proposal.

1. H0: p1 = p2.

2. H1: p1 > p2.

3. α = 0.05.

4. Critical region: z > 1.645.

5. Computations:

p̂1 =
x1

n1
=

120

200
= 0.60, p̂2 =

x2

n2
=

240

500
= 0.48, and

p̂ =
x1 + x2

n1 + n2
=

120 + 240

200 + 500
= 0.51.

Therefore,

z =
0.60− 0.48√

(0.51)(0.49)(1/200 + 1/500)
= 2.9,

P = P (Z > 2.9) = 0.0019.

6. Decision: Reject H0 and agree that the proportion of town voters favoring
the proposal is higher than the proportion of county voters.
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Exercises

10.55 A marketing expert for a pasta-making com-
pany believes that 40% of pasta lovers prefer lasagna.
If 9 out of 20 pasta lovers choose lasagna over other pas-
tas, what can be concluded about the expert’s claim?
Use a 0.05 level of significance.

10.56 Suppose that, in the past, 40% of all adults
favored capital punishment. Do we have reason to
believe that the proportion of adults favoring capital
punishment has increased if, in a random sample of 15
adults, 8 favor capital punishment? Use a 0.05 level of
significance.

10.57 A new radar device is being considered for a
certain missile defense system. The system is checked
by experimenting with aircraft in which a kill or a no
kill is simulated. If, in 300 trials, 250 kills occur, accept
or reject, at the 0.04 level of significance, the claim that
the probability of a kill with the new system does not
exceed the 0.8 probability of the existing device.

10.58 It is believed that at least 60% of the residents
in a certain area favor an annexation suit by a neigh-
boring city. What conclusion would you draw if only
110 in a sample of 200 voters favored the suit? Use a
0.05 level of significance.

10.59 A fuel oil company claims that one-fifth of the
homes in a certain city are heated by oil. Do we have
reason to believe that fewer than one-fifth are heated
by oil if, in a random sample of 1000 homes in this city,
136 are heated by oil? Use a P -value in your conclu-
sion.

10.60 At a certain college, it is estimated that at most
25% of the students ride bicycles to class. Does this
seem to be a valid estimate if, in a random sample of
90 college students, 28 are found to ride bicycles to
class? Use a 0.05 level of significance.

10.61 In a winter of an epidemic flu, the parents of
2000 babies were surveyed by researchers at a well-
known pharmaceutical company to determine if the
company’s new medicine was effective after two days.
Among 120 babies who had the flu and were given the
medicine, 29 were cured within two days. Among 280
babies who had the flu but were not given the medicine,
56 recovered within two days. Is there any significant
indication that supports the company’s claim of the
effectiveness of the medicine?

10.62 In a controlled laboratory experiment, scien-
tists at the University of Minnesota discovered that
25% of a certain strain of rats subjected to a 20% coffee
bean diet and then force-fed a powerful cancer-causing
chemical later developed cancerous tumors. Would we
have reason to believe that the proportion of rats devel-
oping tumors when subjected to this diet has increased
if the experiment were repeated and 16 of 48 rats de-
veloped tumors? Use a 0.05 level of significance.

10.63 In a study to estimate the proportion of resi-
dents in a certain city and its suburbs who favor the
construction of a nuclear power plant, it is found that
63 of 100 urban residents favor the construction while
only 59 of 125 suburban residents are in favor. Is there
a significant difference between the proportions of ur-
ban and suburban residents who favor construction of
the nuclear plant? Make use of a P -value.

10.64 In a study on the fertility of married women
conducted by Martin O’Connell and Carolyn C. Rogers
for the Census Bureau in 1979, two groups of childless
wives aged 25 to 29 were selected at random, and each
was asked if she eventually planned to have a child.
One group was selected from among wives married
less than two years and the other from among wives
married five years. Suppose that 240 of the 300 wives
married less than two years planned to have children
some day compared to 288 of the 400 wives married
five years. Can we conclude that the proportion of
wives married less than two years who planned to have
children is significantly higher than the proportion of
wives married five years? Make use of a P -value.

10.65 An urban community would like to show that
the incidence of breast cancer is higher in their area
than in a nearby rural area. (PCB levels were found to
be higher in the soil of the urban community.) If it is
found that 20 of 200 adult women in the urban com-
munity have breast cancer and 10 of 150 adult women
in the rural community have breast cancer, can we con-
clude at the 0.05 level of significance that breast cancer
is more prevalent in the urban community?

10.66 Group Project: The class should be divided
into pairs of students for this project. Suppose it is
conjectured that at least 25% of students at your uni-
versity exercise for more than two hours a week. Col-
lect data from a random sample of 50 students. Ask
each student if he or she works out for at least two
hours per week. Then do the computations that allow
either rejection or nonrejection of the above conjecture.
Show all work and quote a P -value in your conclusion.
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10.10 One- and Two-Sample Tests Concerning Variances

In this section, we are concerned with testing hypotheses concerning population
variances or standard deviations. Applications of one- and two-sample tests on
variances are certainly not difficult to motivate. Engineers and scientists are con-
fronted with studies in which they are required to demonstrate that measurements
involving products or processes adhere to specifications set by consumers. The
specifications are often met if the process variance is sufficiently small. Attention
is also focused on comparative experiments between methods or processes, where
inherent reproducibility or variability must formally be compared. In addition,
to determine if the equal variance assumption is violated, a test comparing two
variances is often applied prior to conducting a t-test on two means.

Let us first consider the problem of testing the null hypothesis H0 that the
population variance σ2 equals a specified value σ2

0 against one of the usual alter-
natives σ2 < σ2

0 , σ
2 > σ2

0 , or σ2 �= σ2
0 . The appropriate statistic on which to

base our decision is the chi-squared statistic of Theorem 8.4, which was used in
Chapter 9 to construct a confidence interval for σ2. Therefore, if we assume that
the distribution of the population being sampled is normal, the chi-squared value
for testing σ2 = σ2

0 is given by

χ2 =
(n− 1)s2

σ2
0

,

where n is the sample size, s2 is the sample variance, and σ2
0 is the value of σ2 given

by the null hypothesis. If H0 is true, χ2 is a value of the chi-squared distribution
with v = n − 1 degrees of freedom. Hence, for a two-tailed test at the α-level
of significance, the critical region is χ2 < χ2

1−α/2 or χ2 > χ2
α/2. For the one-

sided alternative σ2 < σ2
0 , the critical region is χ2 < χ2

1−α, and for the one-sided
alternative σ2 > σ2

0 , the critical region is χ2 > χ2
α.

Robustness of χ2-Test to Assumption of Normality

The reader may have discerned that various tests depend, at least theoretically,
on the assumption of normality. In general, many procedures in applied statis-
tics have theoretical underpinnings that depend on the normal distribution. These
procedures vary in the degree of their dependency on the assumption of normality.
A procedure that is reasonably insensitive to the assumption is called a robust
procedure (i.e., robust to normality). The χ2-test on a single variance is very
nonrobust to normality (i.e., the practical success of the procedure depends on
normality). As a result, the P -value computed may be appreciably different from
the actual P -value if the population sampled is not normal. Indeed, it is quite
feasible that a statistically significant P -value may not truly signal H1: σ �= σ0;
rather, a significant value may be a result of the violation of the normality assump-
tions. Therefore, the analyst should approach the use of this particular χ2-test with
caution.

Example 10.12: A manufacturer of car batteries claims that the life of the company’s batteries is
approximately normally distributed with a standard deviation equal to 0.9 year.
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If a random sample of 10 of these batteries has a standard deviation of 1.2 years,
do you think that σ > 0.9 year? Use a 0.05 level of significance.

Solution : 1. H0: σ2 = 0.81.

2. H1: σ2 > 0.81.

3. α = 0.05.

4. Critical region: From Figure 10.19 we see that the null hypothesis is rejected

when χ2 > 16.919, where χ2 = (n−1)s2

σ2
0

, with v = 9 degrees of freedom.

0 16.919
χ

2

v = 9

0.05

Figure 10.19: Critical region for the alternative hypothesis σ > 0.9.

5. Computations: s2 = 1.44, n = 10, and

χ2 =
(9)(1.44)

0.81
= 16.0, P ≈ 0.07.

6. Decision: The χ2-statistic is not significant at the 0.05 level. However, based
on the P -value 0.07, there is evidence that σ > 0.9.

Now let us consider the problem of testing the equality of the variances σ2
1 and

σ2
2 of two populations. That is, we shall test the null hypothesis H0 that σ2

1 = σ2
2

against one of the usual alternatives

σ2
1 < σ2

2 , σ2
1 > σ2

2 , or σ2
1 �= σ2

2 .

For independent random samples of sizes n1 and n2, respectively, from the two
populations, the f-value for testing σ2

1 = σ2
2 is the ratio

f =
s21
s22

,

where s21 and s22 are the variances computed from the two samples. If the two
populations are approximately normally distributed and the null hypothesis is true,
according to Theorem 8.8 the ratio f = s21/s

2
2 is a value of the F -distribution with

v1 = n1 − 1 and v2 = n2 − 1 degrees of freedom. Therefore, the critical regions
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of size α corresponding to the one-sided alternatives σ2
1 < σ2

2 and σ2
1 > σ2

2 are,
respectively, f < f1−α(v1, v2) and f > fα(v1, v2). For the two-sided alternative
σ2
1 �= σ2

2 , the critical region is f < f1−α/2(v1, v2) or f > fα/2(v1, v2).

Example 10.13: In testing for the difference in the abrasive wear of the two materials in Example
10.6, we assumed that the two unknown population variances were equal. Were we
justified in making this assumption? Use a 0.10 level of significance.

Solution : Let σ2
1 and σ2

2 be the population variances for the abrasive wear of material 1 and
material 2, respectively.

1. H0: σ2
1 = σ2

2 .

2. H1: σ2
1 �= σ2

2 .

3. α = 0.10.

4. Critical region: From Figure 10.20, we see that f0.05(11, 9) = 3.11, and, by
using Theorem 8.7, we find

f0.95(11, 9) =
1

f0.05(9, 11)
= 0.34.

Therefore, the null hypothesis is rejected when f < 0.34 or f > 3.11, where
f = s21/s

2
2 with v1 = 11 and v2 = 9 degrees of freedom.

5. Computations: s21 = 16, s22 = 25, and hence f = 16
25 = 0.64.

6. Decision: Do not reject H0. Conclude that there is insufficient evidence that
the variances differ.

0 0.34 3.11
f

v1 = 11 and v2 = 9

0.050.05

Figure 10.20: Critical region for the alternative hypothesis σ2
1 �= σ2

2 .

F-Test for Testing Variances in SAS

Figure 10.18 on page 356 displays the printout of a two-sample t-test where two
means from the seedling data in Exercise 9.40 were compared. Box-and-whisker
plots in Figure 10.17 on page 355 suggest that variances are not homogeneous,
and thus the t′-statistic and its corresponding P -value are relevant. Note also that
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the printout displays the F -statistic for H0: σ1 = σ2 with a P -value of 0.0098,
additional evidence that more variability is to be expected when nitrogen is used
than under the no-nitrogen condition.

Exercises

10.67 The content of containers of a particular lubri-
cant is known to be normally distributed with a vari-
ance of 0.03 liter. Test the hypothesis that σ2 = 0.03
against the alternative that σ2 �= 0.03 for the random
sample of 10 containers in Exercise 10.23 on page 356.
Use a P -value in your conclusion.

10.68 Past experience indicates that the time re-
quired for high school seniors to complete a standard-
ized test is a normal random variable with a standard
deviation of 6 minutes. Test the hypothesis that σ = 6
against the alternative that σ < 6 if a random sample of
the test times of 20 high school seniors has a standard
deviation s = 4.51. Use a 0.05 level of significance.

10.69 Aflotoxins produced by mold on peanut crops
in Virginia must be monitored. A sample of 64 batches
of peanuts reveals levels of 24.17 ppm, on average,
with a variance of 4.25 ppm. Test the hypothesis that
σ2 = 4.2 ppm against the alternative that σ2 �= 4.2
ppm. Use a P -value in your conclusion.

10.70 Past data indicate that the amount of money
contributed by the working residents of a large city to
a volunteer rescue squad is a normal random variable
with a standard deviation of $1.40. It has been sug-
gested that the contributions to the rescue squad from
just the employees of the sanitation department are
much more variable. If the contributions of a random
sample of 12 employees from the sanitation department
have a standard deviation of $1.75, can we conclude at
the 0.01 level of significance that the standard devi-
ation of the contributions of all sanitation workers is
greater than that of all workers living in the city?

10.71 A soft-drink dispensing machine is said to be
out of control if the variance of the contents exceeds
1.15 deciliters. If a random sample of 25 drinks from
this machine has a variance of 2.03 deciliters, does this
indicate at the 0.05 level of significance that the ma-
chine is out of control? Assume that the contents are
approximately normally distributed.

10.72 Large-Sample Test of σ2 = σ2
0 : When n ≥

30, we can test the null hypothesis that σ2 = σ2
0 , or

σ = σ0, by computing

z =
s− σ0

σ0/
√
2n

,

which is a value of a random variable whose sampling
distribution is approximately the standard normal dis-
tribution.

(a) With reference to Example 10.4, test at the 0.05
level of significance whether σ = 10.0 years against
the alternative that σ �= 10.0 years.

(b) It is suspected that the variance of the distribution
of distances in kilometers traveled on 5 liters of fuel
by a new automobile model equipped with a diesel
engine is less than the variance of the distribution
of distances traveled by the same model equipped
with a six-cylinder gasoline engine, which is known
to be σ2 = 6.25. If 72 test runs of the diesel model
have a variance of 4.41, can we conclude at the
0.05 level of significance that the variance of the
distances traveled by the diesel model is less than
that of the gasoline model?

10.73 A study is conducted to compare the lengths of
time required by men and women to assemble a certain
product. Past experience indicates that the distribu-
tion of times for both men and women is approximately
normal but the variance of the times for women is less
than that for men. A random sample of times for 11
men and 14 women produced the following data:

Men Women
n1 = 11 n2 = 14
s1 = 6.1 s2 = 5.3

Test the hypothesis that σ2
1 = σ2

2 against the alterna-
tive that σ2

1 > σ2
2 . Use a P -value in your conclusion.

10.74 For Exercise 10.41 on page 358, test the hy-
pothesis at the 0.05 level of significance that σ2

1 = σ2
2

against the alternative that σ2
1 �= σ2

2 , where σ2
1 and

σ2
2 are the variances of the number of organisms per

square meter of water at the two different locations on
Cedar Run.

10.75 With reference to Exercise 10.39 on page 358,
test the hypothesis that σ2

1 = σ2
2 against the alterna-

tive that σ2
1 �= σ2

2 , where σ2
1 and σ2

2 are the variances
for the running times of films produced by company 1
and company 2, respectively. Use a P -value.

10.76 Two types of instruments for measuring the
amount of sulfur monoxide in the atmosphere are being
compared in an air-pollution experiment. Researchers
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wish to determine whether the two types of instruments
yield measurements having the same variability. The
readings in the following table were recorded for the
two instruments.

Sulfur Monoxide
Instrument A Instrument B

0.86 0.87
0.82 0.74
0.75 0.63
0.61 0.55
0.89 0.76
0.64 0.70
0.81 0.69
0.68 0.57
0.65 0.53

Assuming the populations of measurements to be ap-
proximately normally distributed, test the hypothesis
that σA = σB against the alternative that σA �= σB .
Use a P -value.

10.77 An experiment was conducted to compare the
alcohol content of soy sauce on two different produc-
tion lines. Production was monitored eight times a day.
The data are shown here.

Production line 1:

0.48 0.39 0.42 0.52 0.40 0.48 0.52 0.52
Production line 2:

0.38 0.37 0.39 0.41 0.38 0.39 0.40 0.39

Assume both populations are normal. It is suspected
that production line 1 is not producing as consistently
as production line 2 in terms of alcohol content. Test
the hypothesis that σ1 = σ2 against the alternative
that σ1 �= σ2. Use a P -value.

10.78 Hydrocarbon emissions from cars are known to
have decreased dramatically during the 1980s. A study
was conducted to compare the hydrocarbon emissions
at idling speed, in parts per million (ppm), for automo-
biles from 1980 and 1990. Twenty cars of each model
year were randomly selected, and their hydrocarbon
emission levels were recorded. The data are as follows:

1980 models:
141 359 247 940 882 494 306 210 105 880
200 223 188 940 241 190 300 435 241 380
1990 models:
140 160 20 20 223 60 20 95 360 70
220 400 217 58 235 380 200 175 85 65

Test the hypothesis that σ1 = σ2 against the alter-
native that σ1 �= σ2. Assume both populations are
normal. Use a P -value.

10.11 Goodness-of-Fit Test

Throughout this chapter, we have been concerned with the testing of statistical
hypotheses about single population parameters such as μ, σ2, and p. Now we shall
consider a test to determine if a population has a specified theoretical distribution.
The test is based on how good a fit we have between the frequency of occurrence
of observations in an observed sample and the expected frequencies obtained from
the hypothesized distribution.

To illustrate, we consider the tossing of a die. We hypothesize that the die
is honest, which is equivalent to testing the hypothesis that the distribution of
outcomes is the discrete uniform distribution

f(x) =
1

6
, x = 1, 2, . . . , 6.

Suppose that the die is tossed 120 times and each outcome is recorded. Theoret-
ically, if the die is balanced, we would expect each face to occur 20 times. The
results are given in Table 10.4.

Table 10.4: Observed and Expected Frequencies of 120 Tosses of a Die

Face: 1 2 3 4 5 6
Observed 20 22 17 18 19 24
Expected 20 20 20 20 20 20
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10.11 Goodness-of-Fit Test 371

By comparing the observed frequencies with the corresponding expected fre-
quencies, we must decide whether these discrepancies are likely to occur as a result
of sampling fluctuations and the die is balanced or whether the die is not honest
and the distribution of outcomes is not uniform. It is common practice to refer
to each possible outcome of an experiment as a cell. In our illustration, we have
6 cells. The appropriate statistic on which we base our decision criterion for an
experiment involving k cells is defined by the following.

A goodness-of-fit test between observed and expected frequencies is based
on the quantity

Goodness-of-Fit
Test χ2 =

k∑
i=1

(oi − ei)
2

ei
,

where χ2 is a value of a random variable whose sampling distribution is approx-
imated very closely by the chi-squared distribution with v = k − 1 degrees of
freedom. The symbols oi and ei represent the observed and expected frequencies,
respectively, for the ith cell.

The number of degrees of freedom associated with the chi-squared distribution
used here is equal to k − 1, since there are only k − 1 freely determined cell fre-
quencies. That is, once k − 1 cell frequencies are determined, so is the frequency
for the kth cell.

If the observed frequencies are close to the corresponding expected frequencies,
the χ2-value will be small, indicating a good fit. If the observed frequencies differ
considerably from the expected frequencies, the χ2-value will be large and the fit
is poor. A good fit leads to the acceptance of H0, whereas a poor fit leads to its
rejection. The critical region will, therefore, fall in the right tail of the chi-squared
distribution. For a level of significance equal to α, we find the critical value χ2

α

from Table A.5, and then χ2 > χ2
α constitutes the critical region. The decision

criterion described here should not be used unless each of the expected
frequencies is at least equal to 5. This restriction may require the combining
of adjacent cells, resulting in a reduction in the number of degrees of freedom.

From Table 10.4, we find the χ2-value to be

χ2 =
(20− 20)2

20
+

(22− 20)2

20
+

(17− 20)2

20

+
(18− 20)2

20
+

(19− 20)2

20
+

(24− 20)2

20
= 1.7.

Using Table A.5, we find χ2
0.05 = 11.070 for v = 5 degrees of freedom. Since 1.7

is less than the critical value, we fail to reject H0. We conclude that there is
insufficient evidence that the die is not balanced.

As a second illustration, let us test the hypothesis that the frequency distri-
bution of battery lives given in Table 1.7 on page 23 may be approximated by
a normal distribution with mean μ = 3.5 and standard deviation σ = 0.7. The
expected frequencies for the 7 classes (cells), listed in Table 10.5, are obtained by
computing the areas under the hypothesized normal curve that fall between the
various class boundaries.
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372 Chapter 10 One- and Two-Sample Tests of Hypotheses

Table 10.5: Observed and Expected Frequencies of Battery Lives, Assuming Normality

Class Boundaries oi ei
1.45−1.95
1.95−2.45
2.45−2.95

2
1
4

⎫⎬⎭ 7
0.5
2.1
5.9

⎫⎬⎭ 8.5

2.95−3.45
3.45−3.95

15
10

10.3
10.7

3.95−4.45
4.45−4.95

5
3

}
8

7.0
3.5

}
10.5

For example, the z-values corresponding to the boundaries of the fourth class
are

z1 =
2.95− 3.5

0.7
= −0.79 and z2 =

3.45− 3.5

0.7
= −0.07.

From Table A.3 we find the area between z1 = −0.79 and z2 = −0.07 to be

area = P (−0.79 < Z < −0.07) = P (Z < −0.07)− P (Z < −0.79)

= 0.4721− 0.2148 = 0.2573.

Hence, the expected frequency for the fourth class is

e4 = (0.2573)(40) = 10.3.

It is customary to round these frequencies to one decimal.
The expected frequency for the first class interval is obtained by using the total

area under the normal curve to the left of the boundary 1.95. For the last class
interval, we use the total area to the right of the boundary 4.45. All other expected
frequencies are determined by the method described for the fourth class. Note that
we have combined adjacent classes in Table 10.5 where the expected frequencies
are less than 5 (a rule of thumb in the goodness-of-fit test). Consequently, the total
number of intervals is reduced from 7 to 4, resulting in v = 3 degrees of freedom.
The χ2-value is then given by

χ2 =
(7− 8.5)2

8.5
+

(15− 10.3)2

10.3
+

(10− 10.7)2

10.7
+

(8− 10.5)2

10.5
= 3.05.

Since the computed χ2-value is less than χ2
0.05 = 7.815 for 3 degrees of freedom,

we have no reason to reject the null hypothesis and conclude that the normal
distribution with μ = 3.5 and σ = 0.7 provides a good fit for the distribution of
battery lives.

The chi-squared goodness-of-fit test is an important resource, particularly since
so many statistical procedures in practice depend, in a theoretical sense, on the
assumption that the data gathered come from a specific type of distribution. As
we have already seen, the normality assumption is often made. In the chapters
that follow, we shall continue to make normality assumptions in order to provide
a theoretical basis for certain tests and confidence intervals.
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There are tests in the literature that are more powerful than the chi-squared test
for testing normality. One such test is called Geary’s test. This test is based on a
very simple statistic which is a ratio of two estimators of the population standard
deviation σ. Suppose that a random sample X1, X2, . . . , Xn is taken from a normal
distribution, N(μ, σ). Consider the ratio

U =

√
π/2

n∑
i=1

|Xi − X̄|/n√
n∑

i=1

(Xi − X̄)2/n

.

The reader should recognize that the denominator is a reasonable estimator of σ
whether the distribution is normal or not. The numerator is a good estimator of σ
if the distribution is normal but may overestimate or underestimate σ when there
are departures from normality. Thus, values of U differing considerably from 1.0
represent the signal that the hypothesis of normality should be rejected.

For large samples, a reasonable test is based on approximate normality of U .
The test statistic is then a standardization of U , given by

Z =
U − 1

0.2661/
√
n
.

Of course, the test procedure involves the two-sided critical region. We compute
a value of z from the data and do not reject the hypothesis of normality when

−zα/2 < Z < zα/2.

A paper dealing with Geary’s test is cited in the Bibliography (Geary, 1947).

10.12 Test for Independence (Categorical Data)

The chi-squared test procedure discussed in Section 10.11 can also be used to test
the hypothesis of independence of two variables of classification. Suppose that
we wish to determine whether the opinions of the voting residents of the state
of Illinois concerning a new tax reform are independent of their levels of income.
Members of a random sample of 1000 registered voters from the state of Illinois
are classified as to whether they are in a low, medium, or high income bracket and
whether or not they favor the tax reform. The observed frequencies are presented
in Table 10.6, which is known as a contingency table.

Table 10.6: 2 × 3 Contingency Table

Income Level
Tax Reform Low Medium High Total
For 182 213 203 598
Against 154 138 110 402
Total 336 351 313 1000
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A contingency table with r rows and c columns is referred to as an r × c table
(“r × c” is read “r by c”). The row and column totals in Table 10.6 are called
marginal frequencies. Our decision to accept or reject the null hypothesis, H0,
of independence between a voter’s opinion concerning the tax reform and his or
her level of income is based upon how good a fit we have between the observed
frequencies in each of the 6 cells of Table 10.6 and the frequencies that we would
expect for each cell under the assumption that H0 is true. To find these expected
frequencies, let us define the following events:

L: A person selected is in the low-income level.

M : A person selected is in the medium-income level.

H: A person selected is in the high-income level.

F : A person selected is for the tax reform.

A: A person selected is against the tax reform.

By using the marginal frequencies, we can list the following probability esti-
mates:

P (L) =
336

1000
, P (M) =

351

1000
, P (H) =

313

1000
,

P (F ) =
598

1000
, P (A) =

402

1000
.

Now, if H0 is true and the two variables are independent, we should have

P (L ∩ F ) = P (L)P (F ) =

(
336

1000

)(
598

1000

)
,

P (L ∩A) = P (L)P (A) =

(
336

1000

)(
402

1000

)
,

P (M ∩ F ) = P (M)P (F ) =

(
351

1000

)(
598

1000

)
,

P (M ∩A) = P (M)P (A) =

(
351

1000

)(
402

1000

)
,

P (H ∩ F ) = P (H)P (F ) =

(
313

1000

)(
598

1000

)
,

P (H ∩A) = P (H)P (A) =

(
313

1000

)(
402

1000

)
.

The expected frequencies are obtained by multiplying each cell probability by
the total number of observations. As before, we round these frequencies to one
decimal. Thus, the expected number of low-income voters in our sample who favor
the tax reform is estimated to be(

336

1000

)(
598

1000

)
(1000) =

(336)(598)

1000
= 200.9
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when H0 is true. The general rule for obtaining the expected frequency of any cell
is given by the following formula:

expected frequency =
(column total)× (row total)

grand total
.

The expected frequency for each cell is recorded in parentheses beside the actual
observed value in Table 10.7. Note that the expected frequencies in any row or
column add up to the appropriate marginal total. In our example, we need to
compute only two expected frequencies in the top row of Table 10.7 and then find
the others by subtraction. The number of degrees of freedom associated with the
chi-squared test used here is equal to the number of cell frequencies that may be
filled in freely when we are given the marginal totals and the grand total, and in
this illustration that number is 2. A simple formula providing the correct number
of degrees of freedom is

v = (r − 1)(c− 1).

Table 10.7: Observed and Expected Frequencies

Income Level
Tax Reform Low Medium High Total
For
Against
Total

182 (200.9)
154 (135.1)

336

213 (209.9)
138 (141.1)

351

203 (187.2)
110 (125.8)

313

598
402
1000

Hence, for our example, v = (2− 1)(3− 1) = 2 degrees of freedom. To test the
null hypothesis of independence, we use the following decision criterion.

Test for
Independence

Calculate

χ2 =
∑
i

(oi − ei)
2

ei
,

where the summation extends over all rc cells in the r × c contingency table.

If χ2 > χ2
α with v = (r − 1)(c − 1) degrees of freedom, reject the null hypothesis

of independence at the α-level of significance; otherwise, fail to reject the null
hypothesis.

Applying this criterion to our example, we find that

χ2 =
(182− 200.9)2

200.9
+

(213− 209.9)2

209.9
+

(203− 187.2)2

187.2

+
(154− 135.1)2

135.1
+

(138− 141.1)2

141.1
+

(110− 125.8)2

125.8
= 7.85,

P ≈ 0.02.

From Table A.5 we find that χ2
0.05 = 5.991 for v = (2 − 1)(3 − 1) = 2 degrees of

freedom. The null hypothesis is rejected and we conclude that a voter’s opinion
concerning the tax reform and his or her level of income are not independent.
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It is important to remember that the statistic on which we base our decision
has a distribution that is only approximated by the chi-squared distribution. The
computed χ2-values depend on the cell frequencies and consequently are discrete.
The continuous chi-squared distribution seems to approximate the discrete sam-
pling distribution of χ2 very well, provided that the number of degrees of freedom
is greater than 1. In a 2 × 2 contingency table, where we have only 1 degree of
freedom, a correction called Yates’ correction for continuity is applied. The
corrected formula then becomes

χ2(corrected) =
∑
i

(|oi − ei| − 0.5)2

ei
.

If the expected cell frequencies are large, the corrected and uncorrected results
are almost the same. When the expected frequencies are between 5 and 10, Yates’
correction should be applied. For expected frequencies less than 5, the Fisher-Irwin
exact test should be used. A discussion of this test may be found in Basic Concepts
of Probability and Statistics by Hodges and Lehmann (2005; see the Bibliography).
The Fisher-Irwin test may be avoided, however, by choosing a larger sample.

10.13 Test for Homogeneity

When we tested for independence in Section 10.12, a random sample of 1000 vot-
ers was selected and the row and column totals for our contingency table were
determined by chance. Another type of problem for which the method of Section
10.12 applies is one in which either the row or column totals are predetermined.
Suppose, for example, that we decide in advance to select 200 Democrats, 150
Republicans, and 150 Independents from the voters of the state of North Carolina
and record whether they are for a proposed abortion law, against it, or undecided.
The observed responses are given in Table 10.8.

Table 10.8: Observed Frequencies

Political Affiliation
Abortion Law Democrat Republican Independent Total
For
Against
Undecided
Total

82
93
25
200

70
62
18
150

62
67
21
150

214
222
64
500

Now, rather than test for independence, we test the hypothesis that the popu-
lation proportions within each row are the same. That is, we test the hypothesis
that the proportions of Democrats, Republicans, and Independents favoring the
abortion law are the same; the proportions of each political affiliation against the
law are the same; and the proportions of each political affiliation that are unde-
cided are the same. We are basically interested in determining whether the three
categories of voters are homogeneous with respect to their opinions concerning
the proposed abortion law. Such a test is called a test for homogeneity.

Assuming homogeneity, we again find the expected cell frequencies by multi-
plying the corresponding row and column totals and then dividing by the grand
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total. The analysis then proceeds using the same chi-squared statistic as before.
We illustrate this process for the data of Table 10.8 in the following example.

Example 10.14: Referring to the data of Table 10.8, test the hypothesis that opinions concerning
the proposed abortion law are the same within each political affiliation. Use a 0.05
level of significance.

Solution : 1. H0: For each opinion, the proportions of Democrats, Republicans, and Inde-
pendents are the same.

2. H1: For at least one opinion, the proportions of Democrats, Republicans, and
Independents are not the same.

3. α = 0.05.

4. Critical region: χ2 > 9.488 with v = 4 degrees of freedom.

5. Computations: Using the expected cell frequency formula on page 375, we
need to compute 4 cell frequencies. All other frequencies are found by sub-
traction. The observed and expected cell frequencies are displayed in Table
10.9.

Table 10.9: Observed and Expected Frequencies

Political Affiliation
Abortion Law Democrat Republican Independent Total
For
Against
Undecided
Total

82 (85.6)
93 (88.8)
25 (25.6)

200

70 (64.2)
62 (66.6)
18 (19.2)

150

62 (64.2)
67 (66.6)
21 (19.2)

150

214
222
64
500

Now,

χ2 =
(82− 85.6)2

85.6
+

(70− 64.2)2

64.2
+

(62− 64.2)2

64.2

+
(93− 88.8)2

88.8
+

(62− 66.6)2

66.6
+

(67− 66.6)2

66.6

+
(25− 25.6)2

25.6
+

(18− 19.2)2

19.2
+

(21− 19.2)2

19.2
= 1.53.

6. Decision: Do not reject H0. There is insufficient evidence to conclude that
the proportions of Democrats, Republicans, and Independents differ for each
stated opinion.

Testing for Several Proportions

The chi-squared statistic for testing for homogeneity is also applicable when testing
the hypothesis that k binomial parameters have the same value. This is, therefore,
an extension of the test presented in Section 10.9 for determining differences be-
tween two proportions to a test for determining differences among k proportions.
Hence, we are interested in testing the null hypothesis

H0 : p1 = p2 = · · · = pk
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against the alternative hypothesis, H1, that the population proportions are not all
equal. To perform this test, we first observe independent random samples of size
n1, n2, . . . , nk from the k populations and arrange the data in a 2 × k contingency
table, Table 10.10.

Table 10.10: k Independent Binomial Samples

Sample: 1 2 · · · k
Successes x1 x2 · · · xk

Failures n1 − x1 n2 − x2 · · · nk − xk

Depending on whether the sizes of the random samples were predetermined or
occurred at random, the test procedure is identical to the test for homogeneity or
the test for independence. Therefore, the expected cell frequencies are calculated as
before and substituted, together with the observed frequencies, into the chi-squared
statistic

χ2 =
∑
i

(oi − ei)
2

ei
,

with

v = (2− 1)(k − 1) = k − 1

degrees of freedom.
By selecting the appropriate upper-tail critical region of the form χ2 > χ2

α, we
can now reach a decision concerning H0.

Example 10.15: In a shop study, a set of data was collected to determine whether or not the
proportion of defectives produced was the same for workers on the day, evening,
and night shifts. The data collected are shown in Table 10.11.

Table 10.11: Data for Example 10.15

Shift: Day Evening Night
Defectives 45 55 70
Nondefectives 905 890 870

Use a 0.025 level of significance to determine if the proportion of defectives is the
same for all three shifts.

Solution : Let p1, p2, and p3 represent the true proportions of defectives for the day, evening,
and night shifts, respectively.

1. H0: p1 = p2 = p3.

2. H1: p1, p2, and p3 are not all equal.

3. α = 0.025.

4. Critical region: χ2 > 7.378 for v = 2 degrees of freedom.
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5. Computations: Corresponding to the observed frequencies o1 = 45 and o2 =
55, we find

e1 =
(950)(170)

2835
= 57.0 and e2 =

(945)(170)

2835
= 56.7.

All other expected frequencies are found by subtraction and are displayed in
Table 10.12.

Table 10.12: Observed and Expected Frequencies

Shift: Day Evening Night Total
Defectives
Nondefectives

45 (57.0)
905 (893.0)

55 (56.7)
890 (888.3)

70 (56.3)
870 (883.7)

170
2665

Total 950 945 940 2835

Now

χ2 =
(45− 57.0)2

57.0
+

(55− 56.7)2

56.7
+

(70− 56.3)2

56.3

+
(905− 893.0)2

893.0
+

(890− 888.3)2

888.3
+

(870− 883.7)2

883.7
= 6.29,

P ≈ 0.04.

6. Decision: We do not reject H0 at α = 0.025. Nevertheless, with the above
P -value computed, it would certainly be dangerous to conclude that the pro-
portion of defectives produced is the same for all shifts.

Often a complete study involving the use of statistical methods in hypothesis
testing can be illustrated for the scientist or engineer using both test statistics,
complete with P -values and statistical graphics. The graphics supplement the
numerical diagnostics with pictures that show intuitively why the P -values appear
as they do, as well as how reasonable (or not) the operative assumptions are.

10.14 Two-Sample Case Study

In this section, we consider a study involving a thorough graphical and formal anal-
ysis, along with annotated computer printout and conclusions. In a data analysis
study conducted by personnel at the Statistics Consulting Center at Virginia Tech,
two different materials, alloy A and alloy B, were compared in terms of breaking
strength. Alloy B is more expensive, but it should certainly be adopted if it can
be shown to be stronger than alloy A. The consistency of performance of the two
alloys should also be taken into account.

Random samples of beams made from each alloy were selected, and strength
was measured in units of 0.001-inch deflection as a fixed force was applied at both
ends of the beam. Twenty specimens were used for each of the two alloys. The
data are given in Table 10.13.

It is important that the engineer compare the two alloys. Of concern is average
strength and reproducibility. It is of interest to determine if there is a severe
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Table 10.13: Data for Two-Sample Case Study

Alloy A Alloy B
88 82 87 75 81 80
79 85 90 77 78 81
84 88 83 86 78 77
89 80 81 84 82 78
81 85 80 80
83 87 78 76
82 80 83 85
79 78 76 79

violation of the normality assumption required of both the t- and F -tests. Figures
10.21 and 10.22 are normal quantile-quantile plots of the samples of the two alloys.

There does not appear to be any serious violation of the normality assumption.
In addition, Figure 10.23 shows two box-and-whisker plots on the same graph. The
box-and-whisker plots suggest that there is no appreciable difference in the vari-
ability of deflection for the two alloys. However, it seems that the mean deflection
for alloy B is significantly smaller, suggesting, at least graphically, that alloy B is
stronger. The sample means and standard deviations are

ȳA = 83.55, sA = 3.663; ȳB = 79.70, sB = 3.097.

The SAS printout for the PROC TTEST is shown in Figure 10.24. The F -test
suggests no significant difference in variances (P = 0.4709), and the two-sample
t-statistic for testing

H0: μA = μB ,

H1: μA > μB

(t = 3.59, P = 0.0009) rejects H0 in favor of H1 and thus confirms what the
graphical information suggests. Here we use the t-test that pools the two-sample
variances together in light of the results of the F -test. On the basis of this analysis,
the adoption of alloy B would seem to be in order.

Statistical Significance and Engineering or Scientific Significance

While the statistician may feel quite comfortable with the results of the comparison
between the two alloys in the case study above, a dilemma remains for the engineer.
The analysis demonstrated a statistically significant improvement with the use
of alloy B. However, is the difference found really worth pursuing, since alloy
B is more expensive? This illustration highlights a very important issue often
overlooked by statisticians and data analysts—the distinction between statistical
significance and engineering or scientific significance. Here the average difference
in deflection is ȳA − ȳB = 0.00385 inch. In a complete analysis, the engineer must
determine if the difference is sufficient to justify the extra cost in the long run.
This is an economic and engineering issue. The reader should understand that a
statistically significant difference merely implies that the difference in the sample
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Figure 10.21: Normal quantile-quantile plot of
data for alloy A.
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Figure 10.22: Normal quantile-quantile plot of
data for alloy B.
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Figure 10.23: Box-and-whisker plots for both alloys.

means found in the data could hardly have occurred by chance. It does not imply
that the difference in the population means is profound or particularly significant in
the context of the problem. For example, in Section 10.4, an annotated computer
printout was used to show evidence that a pH meter was, in fact, biased. That
is, it does not demonstrate a mean pH of 7.00 for the material on which it was
tested. But the variability among the observations in the sample is very small.
The engineer may decide that the small deviations from 7.0 render the pH meter
adequate.
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The TTEST Procedure

Alloy N Mean Std Dev Std Err

Alloy A 20 83.55 3.6631 0.8191

Alloy B 20 79.7 3.0967 0.6924

Variances DF t Value Pr > |t|

Equal 38 3.59 0.0009

Unequal 37 3.59 0.0010

Equality of Variances

Num DF Den DF F Value Pr > F

19 19 1.40 0.4709

Figure 10.24: Annotated SAS printout for alloy data.

Exercises

10.79 A machine is supposed to mix peanuts, hazel-
nuts, cashews, and pecans in the ratio 5:2:2:1. A can
containing 500 of these mixed nuts was found to have
269 peanuts, 112 hazelnuts, 74 cashews, and 45 pecans.
At the 0.05 level of significance, test the hypothesis
that the machine is mixing the nuts in the ratio 5:2:2:1.

10.80 The grades in a statistics course for a particu-
lar semester were as follows:

Grade A B C D F
f 14 18 32 20 16

Test the hypothesis, at the 0.05 level of significance,
that the distribution of grades is uniform.

10.81 A die is tossed 180 times with the following
results:

x 1 2 3 4 5 6

f 28 36 36 30 27 23

Is this a balanced die? Use a 0.01 level of significance.

10.82 Three marbles are selected from an urn con-
taining 5 red marbles and 3 green marbles. After the
number X of red marbles is recorded, the marbles are
replaced in the urn and the experiment repeated 112
times. The results obtained are as follows:

x 0 1 2 3

f 1 31 55 25

Test the hypothesis, at the 0.05 level of significance,
that the recorded data may be fitted by the hypergeo-
metric distribution h(x; 8, 3, 5), x = 0, 1, 2, 3.

10.83 A coin is thrown until a head occurs and the
number X of tosses recorded. After repeating the ex-

periment 256 times, we obtained the following results:

x 1 2 3 4 5 6 7 8

f 136 60 34 12 9 1 3 1

Test the hypothesis, at the 0.05 level of significance,
that the observed distribution of X may be fitted by
the geometric distribution g(x; 1/2), x = 1, 2, 3, . . . .

10.84 For Exercise 1.18 on page 31, test the good-
ness of fit between the observed class frequencies and
the corresponding expected frequencies of a normal dis-
tribution with μ = 65 and σ = 21, using a 0.05 level of
significance.

10.85 For Exercise 1.19 on page 31, test the good-
ness of fit between the observed class frequencies and
the corresponding expected frequencies of a normal dis-
tribution with μ = 1.8 and σ = 0.4, using a 0.01 level
of significance.

10.86 In an experiment to study the dependence of
hypertension on smoking habits, the following data
were taken on 180 individuals:

Non- Moderate Heavy
smokers Smokers Smokers

Hypertension 21 36 30
No hypertension 48 26 19

Test the hypothesis that the presence or absence of hy-
pertension is independent of smoking habits. Use a
0.05 level of significance.

10.87 A random sample of 90 adults is classified ac-
cording to gender and the number of hours of television
watched during a week:
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Gender
Male Female

Over 25 hours 15 29
Under 25 hours 27 19

Use a 0.01 level of significance and test the hypothesis
that the time spent watching television is independent
of whether the viewer is male or female.

10.88 A random sample of 200 married men, all re-
tired, was classified according to education and number
of children:

Number of Children
Education 0–1 2–3 Over 3

Elementary 14 37 32
Secondary 19 42 17
College 12 17 10

Test the hypothesis, at the 0.05 level of significance,
that the size of a family is independent of the level of
education attained by the father.

10.89 A criminologist conducted a survey to deter-
mine whether the incidence of certain types of crime
varied from one part of a large city to another. The
particular crimes of interest were assault, burglary,
larceny, and homicide. The following table shows the
numbers of crimes committed in four areas of the city
during the past year.

Type of Crime
District Assault Burglary Larceny Homicide

1 162 118 451 18
2 310 196 996 25
3 258 193 458 10
4 280 175 390 19

Can we conclude from these data at the 0.01 level of
significance that the occurrence of these types of crime
is dependent on the city district?

10.90 According to a Johns Hopkins University study
published in the American Journal of Public Health,
widows live longer than widowers. Consider the fol-
lowing survival data collected on 100 widows and 100
widowers following the death of a spouse:

Years Lived Widow Widower

Less than 5 25 39
5 to 10 42 40
More than 10 33 21

Can we conclude at the 0.05 level of significance that
the proportions of widows and widowers are equal with
respect to the different time periods that a spouse sur-
vives after the death of his or her mate?

10.91 The following responses concerning the stan-
dard of living at the time of an independent opinion
poll of 1000 households versus one year earlier seem to

be in agreement with the results of a study published
in Across the Board (June 1981):

Standard of Living
Somewhat Not as

Period Better Same Good Total

1980: Jan. 72 144 84 300
May 63 135 102 300
Sept. 47 100 53 200

1981: Jan. 40 105 55 200

Test the hypothesis that the proportions of households
within each standard of living category are the same
for each of the four time periods. Use a P -value.

10.92 A college infirmary conducted an experiment
to determine the degree of relief provided by three
cough remedies. Each cough remedy was tried on 50
students and the following data recorded:

Cough Remedy
NyQuil Robitussin Triaminic

No relief 11 13 9
Some relief 32 28 27
Total relief 7 9 14

Test the hypothesis that the three cough remedies are
equally effective. Use a P -value in your conclusion.

10.93 To determine current attitudes about prayer
in public schools, a survey was conducted in four Vir-
ginia counties. The following table gives the attitudes
of 200 parents from Craig County, 150 parents from
Giles County, 100 parents from Franklin County, and
100 parents from Montgomery County:

County
Attitude Craig Giles Franklin Mont.

Favor 65 66 40 34
Oppose 42 30 33 42
No opinion 93 54 27 24

Test for homogeneity of attitudes among the four coun-
ties concerning prayer in the public schools. Use a P -
value in your conclusion.

10.94 A survey was conducted in Indiana, Kentucky,
and Ohio to determine the attitude of voters concern-
ing school busing. A poll of 200 voters from each of
these states yielded the following results:

Voter Attitude
Do Not

State Support Support Undecided

Indiana 82 97 21
Kentucky 107 66 27
Ohio 93 74 33

At the 0.05 level of significance, test the null hypothe-
sis that the proportions of voters within each attitude
category are the same for each of the three states.
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10.95 A survey was conducted in two Virginia cities
to determine voter sentiment about two gubernatorial
candidates in an upcoming election. Five hundred vot-
ers were randomly selected from each city and the fol-
lowing data were recorded:

City
Voter Sentiment Richmond Norfolk
Favor A
Favor B
Undecided

204
211
85

225
198
77

At the 0.05 level of significance, test the null hypoth-

esis that proportions of voters favoring candidate A,
favoring candidate B, and undecided are the same for
each city.

10.96 In a study to estimate the proportion of wives
who regularly watch soap operas, it is found that 52
of 200 wives in Denver, 31 of 150 wives in Phoenix,
and 37 of 150 wives in Rochester watch at least one
soap opera. Use a 0.05 level of significance to test the
hypothesis that there is no difference among the true
proportions of wives who watch soap operas in these
three cities.

Review Exercises

10.97 State the null and alternative hypotheses to be
used in testing the following claims and determine gen-
erally where the critical region is located:

(a) The mean snowfall at Lake George during the
month of February is 21.8 centimeters.

(b) No more than 20% of the faculty at the local uni-
versity contributed to the annual giving fund.

(c) On the average, children attend schools within 6.2
kilometers of their homes in suburban St. Louis.

(d) At least 70% of next year’s new cars will be in the
compact and subcompact category.

(e) The proportion of voters favoring the incumbent in
the upcoming election is 0.58.

(f) The average rib-eye steak at the Longhorn Steak
house weighs at least 340 grams.

10.98 A geneticist is interested in the proportions of
males and females in a population who have a cer-
tain minor blood disorder. In a random sample of 100
males, 31 are found to be afflicted, whereas only 24 of
100 females tested have the disorder. Can we conclude
at the 0.01 level of significance that the proportion of
men in the population afflicted with this blood disorder
is significantly greater than the proportion of women
afflicted?

10.99 A study was made to determine whether more
Italians than Americans prefer white champagne to
pink champagne at weddings. Of the 300 Italians
selected at random, 72 preferred white champagne,
and of the 400 Americans selected, 70 preferred white
champagne. Can we conclude that a higher proportion
of Italians than Americans prefer white champagne at
weddings? Use a 0.05 level of significance.

10.100 Consider the situation of Exercise 10.54 on
page 360. Oxygen consumption in mL/kg/min, was
also measured.

Subject With CO Without CO

1 26.46 25.41
2 17.46 22.53
3 16.32 16.32
4 20.19 27.48
5 19.84 24.97
6 20.65 21.77
7 28.21 28.17
8 33.94 32.02
9 29.32 28.96

It is conjectured that oxygen consumption should be
higher in an environment relatively free of CO. Do a
significance test and discuss the conjecture.

10.101 In a study analyzed by the Statistics Consult-
ing Center at Virginia Tech, a group of subjects was
asked to complete a certain task on the computer. The
response measured was the time to completion. The
purpose of the experiment was to test a set of facilita-
tion tools developed by the Department of Computer
Science at the university. There were 10 subjects in-
volved. With a random assignment, five were given a
standard procedure using Fortran language for comple-
tion of the task. The other five were asked to do the
task with the use of the facilitation tools. The data on
the completion times for the task are given here.

Group 1 Group 2
(Standard Procedure) (Facilitation Tool)

161 132
169 162
174 134
158 138
163 133

Assuming that the population distributions are nor-
mal and variances are the same for the two groups,
support or refute the conjecture that the facilitation
tools increase the speed with which the task can be
accomplished.

10.102 State the null and alternative hypotheses to
be used in testing the following claims, and determine
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generally where the critical region is located:

(a) At most, 20% of next year’s wheat crop will be
exported to the Soviet Union.

(b) On the average, American homemakers drink 3
cups of coffee per day.

(c) The proportion of college graduates in Virginia this
year who majored in the social sciences is at least
0.15.

(d) The average donation to the American Lung Asso-
ciation is no more than $10.

(e) Residents in suburban Richmond commute, on the
average, 15 kilometers to their place of employ-
ment.

10.103 If one can containing 500 nuts is selected
at random from each of three different distributors
of mixed nuts and there are, respectively, 345, 313,
and 359 peanuts in each of the cans, can we conclude
at the 0.01 level of significance that the mixed nuts
of the three distributors contain equal proportions of
peanuts?

10.104 A study was made to determine whether there
is a difference between the proportions of parents in
the states of Maryland (MD), Virginia (VA), Georgia
(GA), and Alabama (AL) who favor placing Bibles in
the elementary schools. The responses of 100 parents
selected at random in each of these states are recorded
in the following table:

State
Preference MD VA GA AL

Yes 65 71 78 82
No 35 29 22 18

Can we conclude that the proportions of parents who
favor placing Bibles in the schools are the same for
these four states? Use a 0.01 level of significance.

10.105 A study was conducted at the Virginia-
Maryland Regional College of Veterinary Medicine
Equine Center to determine if the performance of a
certain type of surgery on young horses had any effect
on certain kinds of blood cell types in the animal. Fluid
samples were taken from each of six foals before and af-
ter surgery. The samples were analyzed for the number
of postoperative white blood cell (WBC) leukocytes.
A preoperative measure of WBC leukocytes was also
measured. The data are given as follows:

Foal Presurgery* Postsurgery*

1 10.80 10.60
2 12.90 16.60
3 9.59 17.20
4 8.81 14.00
5 12.00 10.60
6 6.07 8.60

*All values × 10−3.

Use a paired sample t-test to determine if there is a sig-

nificant change in WBC leukocytes with the surgery.

10.106 A study was conducted at the Department of
Health and Physical Education at Virginia Tech to de-
termine if 8 weeks of training truly reduces the choles-
terol levels of the participants. A treatment group con-
sisting of 15 people was given lectures twice a week
on how to reduce cholesterol level. Another group of
18 people of similar age was randomly selected as a
control group. All participants’ cholesterol levels were
recorded at the end of the 8-week program and are
listed below.

Treatment:
129 131 154 172 115 126 175 191
122 238 159 156 176 175 126

Control:
151 132 196 195 188 198 187 168 115
165 137 208 133 217 191 193 140 146

Can we conclude, at the 5% level of significance, that
the average cholesterol level has been reduced due to
the program? Make the appropriate test on means.

10.107 In a study conducted by the Department of
Mechanical Engineering and analyzed by the Statistics
Consulting Center at Virginia Tech, steel rods supplied
by two different companies were compared. Ten sam-
ple springs were made out of the steel rods supplied by
each company, and the “bounciness” was studied. The
data are as follows:

Company A:
9.3 8.8 6.8 8.7 8.5 6.7 8.0 6.5 9.2 7.0

Company B:
11.0 9.8 9.9 10.2 10.1 9.7 11.0 11.1 10.2 9.6

Can you conclude that there is virtually no difference
in means between the steel rods supplied by the two
companies? Use a P -value to reach your conclusion.
Should variances be pooled here?

10.108 In a study conducted by the Water Resources
Center and analyzed by the Statistics Consulting Cen-
ter at Virginia Tech, two different wastewater treat-
ment plants are compared. Plant A is located where
the median household income is below $22,000 a year,
and plant B is located where the median household
income is above $60,000 a year. The amount of waste-
water treated at each plant (thousands of gallons/day)
was randomly sampled for 10 days. The data are as
follows:

Plant A:
21 19 20 23 22 28 32 19 13 18

Plant B:
20 39 24 33 30 28 30 22 33 24

Can we conclude, at the 5% level of significance, that
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the average amount of wastewater treated at the plant
in the high-income neighborhood is more than that
treated at the plant in the low-income area? Assume
normality.

10.109 The following data show the numbers of de-
fects in 100,000 lines of code in a particular type of
software program developed in the United States and
Japan. Is there enough evidence to claim that there is a
significant difference between the programs developed
in the two countries? Test on means. Should variances
be pooled?

U.S. 48 39 42 52 40 48 52 52
54 48 52 55 43 46 48 52

Japan 50 48 42 40 43 48 50 46
38 38 36 40 40 48 48 45

10.110 Studies show that the concentration of PCBs
is much higher in malignant breast tissue than in
normal breast tissue. If a study of 50 women with

breast cancer reveals an average PCB concentration
of 22.8 × 10−4 gram, with a standard deviation of
4.8 × 10−4 gram, is the mean concentration of PCBs
less than 24 × 10−4 gram?

10.111 z-Value for Testing p1−p2 = d0: To test
the null hypothesis H0 that p1−p2 = d0, where d0 �= 0,
we base our decision on

z =
p̂1 − p̂2 − d0√

p̂1q̂1/n1 + p̂2q̂2/n2

,

which is a value of a random variable whose distribu-
tion approximates the standard normal distribution as
long as n1 and n2 are both large. With reference to
Example 10.11 on page 364, test the hypothesis that
the percentage of town voters favoring the construction
of the chemical plant will not exceed the percentage of
county voters by more than 3%. Use a P -value in your
conclusion.

10.15 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

One of the easiest ways to misuse statistics relates to the final scientific conclusion
drawn when the analyst does not reject the null hypothesis H0. In this text, we
have attempted to make clear what the null hypothesis means and what the al-
ternative means, and to stress that, in a large sense, the alternative hypothesis is
much more important. Put in the form of an example, if an engineer is attempt-
ing to compare two gauges using a two-sample t-test, and H0 is “the gauges are
equivalent” while H1 is “the gauges are not equivalent,” not rejecting H0 does
not lead to the conclusion of equivalent gauges. In fact, a case can be made for
never writing or saying “accept H0”! Not rejecting H0 merely implies insufficient
evidence. Depending on the nature of the hypothesis, a lot of possibilities are still
not ruled out.

In Chapter 9, we considered the case of the large-sample confidence interval
using

z =
x̄− μ

s/
√
n
.

In hypothesis testing, replacing σ by s for n < 30 is risky. If n ≥ 30 and the
distribution is not normal but somehow close to normal, the Central Limit Theorem
is being called upon and one is relying on the fact that with n ≥ 30, s ≈ σ. Of
course, any t-test is accompanied by the concomitant assumption of normality.
As in the case of confidence intervals, the t-test is relatively robust to normality.
However, one should still use normal probability plotting, goodness-of-fit tests, or
other graphical procedures when the sample is not too small.

Most of the chapters in this text include discussions whose purpose is to relate
the chapter in question to other material that will follow. The topics of estimation
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and hypothesis testing are both used in a major way in nearly all of the tech-
niques that fall under the umbrella of “statistical methods.” This will be readily
noted by students who advance to Chapters 11 through 16. It will be obvious
that these chapters depend heavily on statistical modeling. Students will be ex-
posed to the use of modeling in a wide variety of applications in many scientific
and engineering fields. It will become obvious quite quickly that the framework
of a statistical model is useless unless data are available with which to estimate
parameters in the formulated model. This will become particularly apparent in
Chapters 11 and 12 as we introduce the notion of regression models. The concepts
and theory associated with Chapter 9 will carry over. As far as material in the
present chapter is concerned, the framework of hypothesis testing, P -values, power
of tests, and choice of sample size will collectively play a major role. Since initial
model formulation quite often must be supplemented by model editing before the
analyst is sufficiently comfortable to use the model for either process understand-
ing or prediction, Chapters 11, 12, and 15 make major use of hypothesis testing to
supplement diagnostic measures that are used to assess model quality.
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Chapter 11

Simple Linear Regression and
Correlation

11.1 Introduction to Linear Regression

Often, in practice, one is called upon to solve problems involving sets of variables
when it is known that there exists some inherent relationship among the variables.
For example, in an industrial situation it may be known that the tar content in the
outlet stream in a chemical process is related to the inlet temperature. It may be
of interest to develop a method of prediction, that is, a procedure for estimating
the tar content for various levels of the inlet temperature from experimental infor-
mation. Now, of course, it is highly likely that for many example runs in which
the inlet temperature is the same, say 130◦C, the outlet tar content will not be the
same. This is much like what happens when we study several automobiles with
the same engine volume. They will not all have the same gas mileage. Houses in
the same part of the country that have the same square footage of living space
will not all be sold for the same price. Tar content, gas mileage (mpg), and the
price of houses (in thousands of dollars) are natural dependent variables, or
responses, in these three scenarios. Inlet temperature, engine volume (cubic feet),
and square feet of living space are, respectively, natural independent variables,
or regressors. A reasonable form of a relationship between the response Y and
the regressor x is the linear relationship

Y = β0 + β1x,

where, of course, β0 is the intercept and β1 is the slope. The relationship is
illustrated in Figure 11.1.

If the relationship is exact, then it is a deterministic relationship between
two scientific variables and there is no random or probabilistic component to it.
However, in the examples listed above, as well as in countless other scientific and
engineering phenomena, the relationship is not deterministic (i.e., a given x does
not always give the same value for Y ). As a result, important problems here
are probabilistic in nature since the relationship above cannot be viewed as being
exact. The concept of regression analysis deals with finding the best relationship

389
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Figure 11.1: A linear relationship; β0: intercept; β1: slope.

between Y and x, quantifying the strength of that relationship, and using methods
that allow for prediction of the response values given values of the regressor x.

In many applications, there will be more than one regressor (i.e., more than
one independent variable that helps to explain Y ). For example, in the case
where the response is the price of a house, one would expect the age of the house
to contribute to the explanation of the price, so in this case the multiple regression
structure might be written

Y = β0 + β1x1 + β2x2,

where Y is price, x1 is square footage, and x2 is age in years. In the next chap-
ter, we will consider problems with multiple regressors. The resulting analysis
is termed multiple regression, while the analysis of the single regressor case is
called simple regression. As a second illustration of multiple regression, a chem-
ical engineer may be concerned with the amount of hydrogen lost from samples
of a particular metal when the material is placed in storage. In this case, there
may be two inputs, storage time x1 in hours and storage temperature x2 in degrees
centigrade. The response would then be hydrogen loss Y in parts per million.

In this chapter, we deal with the topic of simple linear regression, treating
only the case of a single regressor variable in which the relationship between y and
x is linear. For the case of more than one regressor variable, the reader is referred to
Chapter 12. Denote a random sample of size n by the set {(xi, yi); i = 1, 2, . . . , n}.
If additional samples were taken using exactly the same values of x, we should
expect the y values to vary. Hence, the value yi in the ordered pair (xi, yi) is a
value of some random variable Yi.

11.2 The Simple Linear Regression (SLR) Model

We have already confined the terminology regression analysis to situations in which
relationships among variables are not deterministic (i.e., not exact). In other words,
there must be a random component to the equation that relates the variables.
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This random component takes into account considerations that are not being mea-
sured or, in fact, are not understood by the scientists or engineers. Indeed, in most
applications of regression, the linear equation, say Y = β0 + β1x, is an approxima-
tion that is a simplification of something unknown and much more complicated.
For example, in our illustration involving the response Y= tar content and x =
inlet temperature, Y = β0 + β1x is likely a reasonable approximation that may be
operative within a confined range on x. More often than not, the models that are
simplifications of more complicated and unknown structures are linear in nature
(i.e., linear in the parameters β0 and β1 or, in the case of the model involving the
price, size, and age of the house, linear in the parameters β0, β1, and β2). These
linear structures are simple and empirical in nature and are thus called empirical
models.

An analysis of the relationship between Y and x requires the statement of a
statistical model. A model is often used by a statistician as a representation of
an ideal that essentially defines how we perceive that the data were generated by
the system in question. The model must include the set {(xi, yi); i = 1, 2, . . . , n}
of data involving n pairs of (x, y) values. One must bear in mind that the value yi
depends on xi via a linear structure that also has the random component involved.
The basis for the use of a statistical model relates to how the random variable
Y moves with x and the random component. The model also includes what is
assumed about the statistical properties of the random component. The statistical
model for simple linear regression is given below. The response Y is related to the
independent variable x through the equation

Simple Linear
Regression Model Y = β0 + β1x+ ε.

In the above, β0 and β1 are unknown intercept and slope parameters, respectively,
and ε is a random variable that is assumed to be distributed with E(ε) = 0 and
Var(ε) = σ2. The quantity σ2 is often called the error variance or residual variance.

From the model above, several things become apparent. The quantity Y is
a random variable since ε is random. The value x of the regressor variable is
not random and, in fact, is measured with negligible error. The quantity ε, often
called a random error or random disturbance, has constant variance. This
portion of the assumptions is often called the homogeneous variance assump-
tion. The presence of this random error, ε, keeps the model from becoming simply
a deterministic equation. Now, the fact that E(ε) = 0 implies that at a specific
x the y-values are distributed around the true, or population, regression line
y = β0 + β1x. If the model is well chosen (i.e., there are no additional important
regressors and the linear approximation is good within the ranges of the data),
then positive and negative errors around the true regression are reasonable. We
must keep in mind that in practice β0 and β1 are not known and must be estimated
from data. In addition, the model described above is conceptual in nature. As a
result, we never observe the actual ε values in practice and thus we can never draw
the true regression line (but we assume it is there). We can only draw an estimated
line. Figure 11.2 depicts the nature of hypothetical (x, y) data scattered around a
true regression line for a case in which only n = 5 observations are available. Let
us emphasize that what we see in Figure 11.2 is not the line that is used by the
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scientist or engineer. Rather, the picture merely describes what the assumptions
mean! The regression that the user has at his or her disposal will now be described.

x

y

ε1

ε2 ε3

ε4
ε5

“True’’ Regression Line
E(Y) β 0 β 1x= +

Figure 11.2: Hypothetical (x, y) data scattered around the true regression line for
n = 5.

The Fitted Regression Line

An important aspect of regression analysis is, very simply, to estimate the parame-
ters β0 and β1 (i.e., estimate the so-called regression coefficients). The method
of estimation will be discussed in the next section. Suppose we denote the esti-
mates b0 for β0 and b1 for β1. Then the estimated or fitted regression line is
given by

ŷ = b0 + b1x,

where ŷ is the predicted or fitted value. Obviously, the fitted line is an estimate
of the true regression line. We expect that the fitted line should be closer to the
true regression line when a large amount of data are available. In the following
example, we illustrate the fitted line for a real-life pollution study.

One of the more challenging problems confronting the water pollution control
field is presented by the tanning industry. Tannery wastes are chemically complex.
They are characterized by high values of chemical oxygen demand, volatile solids,
and other pollution measures. Consider the experimental data in Table 11.1, which
were obtained from 33 samples of chemically treated waste in a study conducted
at Virginia Tech. Readings on x, the percent reduction in total solids, and y, the
percent reduction in chemical oxygen demand, were recorded.

The data of Table 11.1 are plotted in a scatter diagram in Figure 11.3. From
an inspection of this scatter diagram, it can be seen that the points closely follow a
straight line, indicating that the assumption of linearity between the two variables
appears to be reasonable.
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Table 11.1: Measures of Reduction in Solids and Oxygen Demand

Solids Reduction, Oxygen Demand Solids Reduction, Oxygen Demand
x (%) Reduction, y (%) x (%) Reduction, y (%)

3
7

11
15
18
27
29
30
30
31
31
32
33
33
34
36
36

5
11
21
16
16
28
27
25
35
30
40
32
34
32
34
37
38

36
37
38
39
39
39
40
41
42
42
43
44
45
46
47
50

34
36
38
37
36
45
39
41
40
44
37
44
46
46
49
51
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Figure 11.3: Scatter diagram with regression lines.

The fitted regression line and a hypothetical true regression line are shown on
the scatter diagram of Figure 11.3. This example will be revisited as we move on
to the method of estimation, discussed in Section 11.3.
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Another Look at the Model Assumptions

It may be instructive to revisit the simple linear regression model presented previ-
ously and discuss in a graphical sense how it relates to the so-called true regression.
Let us expand on Figure 11.2 by illustrating not merely where the εi fall on a graph
but also what the implication is of the normality assumption on the εi.

Suppose we have a simple linear regression with n = 6 evenly spaced values of x
and a single y-value at each x. Consider the graph in Figure 11.4. This illustration
should give the reader a clear representation of the model and the assumptions
involved. The line in the graph is the true regression line. The points plotted
are actual (y, x) points which are scattered about the line. Each point is on its
own normal distribution with the center of the distribution (i.e., the mean of y)
falling on the line. This is certainly expected since E(Y ) = β0 + β1x. As a result,
the true regression line goes through the means of the response, and the
actual observations are on the distribution around the means. Note also that all
distributions have the same variance, which we referred to as σ2. Of course, the
deviation between an individual y and the point on the line will be its individual
ε value. This is clear since

yi − E(Yi) = yi − (β0 + β1xi) = εi.

Thus, at a given x, Y and the corresponding ε both have variance σ2.

x

Y

μ Y x =
β 0 +

β 1x
/

x1 x2 x3 x4 x5 x6

Figure 11.4: Individual observations around true regression line.

Note also that we have written the true regression line here as μY |x = β0+β1x
in order to reaffirm that the line goes through the mean of the Y random variable.

11.3 Least Squares and the Fitted Model

In this section, we discuss the method of fitting an estimated regression line to
the data. This is tantamount to the determination of estimates b0 for β0 and b1
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for β1. This of course allows for the computation of predicted values from the
fitted line ŷ = b0 + b1x and other types of analyses and diagnostic information
that will ascertain the strength of the relationship and the adequacy of the fitted
model. Before we discuss the method of least squares estimation, it is important
to introduce the concept of a residual. A residual is essentially an error in the fit
of the model ŷ = b0 + b1x.

Residual: Error in
Fit

Given a set of regression data {(xi, yi); i = 1, 2, . . . , n} and a fitted model, ŷi =
b0 + b1xi, the ith residual ei is given by

ei = yi − ŷi, i = 1, 2, . . . , n.

Obviously, if a set of n residuals is large, then the fit of the model is not good.
Small residuals are a sign of a good fit. Another interesting relationship which is
useful at times is the following:

yi = b0 + b1xi + ei.

The use of the above equation should result in clarification of the distinction be-
tween the residuals, ei, and the conceptual model errors, εi. One must bear in
mind that whereas the εi are not observed, the ei not only are observed but also
play an important role in the total analysis.

Figure 11.5 depicts the line fit to this set of data, namely ŷ = b0+ b1x, and the
line reflecting the model μY |x = β0 + β1x. Now, of course, β0 and β1 are unknown
parameters. The fitted line is an estimate of the line produced by the statistical
model. Keep in mind that the line μY |x = β0 + β1x is not known.

x

y

μY x β 0 β 1x

ŷ = b0 +

= +

b1x

|

(xi, yi)

}ei{εi

Figure 11.5: Comparing εi with the residual, ei.

The Method of Least Squares

We shall find b0 and b1, the estimates of β0 and β1, so that the sum of the squares
of the residuals is a minimum. The residual sum of squares is often called the sum
of squares of the errors about the regression line and is denoted by SSE. This
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minimization procedure for estimating the parameters is called the method of
least squares. Hence, we shall find a and b so as to minimize

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − b0 − b1xi)
2.

Differentiating SSE with respect to b0 and b1, we have

∂(SSE)

∂b0
= −2

n∑
i=1

(yi − b0 − b1xi),
∂(SSE)

∂b1
= −2

n∑
i=1

(yi − b0 − b1xi)xi.

Setting the partial derivatives equal to zero and rearranging the terms, we obtain
the equations (called the normal equations)

nb0 + b1

n∑
i=1

xi =
n∑

i=1

yi, b0

n∑
i=1

xi + b1

n∑
i=1

x2
i =

n∑
i=1

xiyi,

which may be solved simultaneously to yield computing formulas for b0 and b1.

Estimating the
Regression
Coefficients

Given the sample {(xi, yi); i = 1, 2, . . . , n}, the least squares estimates b0 and b1
of the regression coefficients β0 and β1 are computed from the formulas

b1 =

n
n∑

i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1

yi

)
n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
and

b0 =

n∑
i=1

yi − b1
n∑

i=1

xi

n
= ȳ − b1x̄.

The calculations of b0 and b1, using the data of Table 11.1, are illustrated by the
following example.

Example 11.1: Estimate the regression line for the pollution data of Table 11.1.
Solution : 33∑

i=1

xi = 1104,
33∑
i=1

yi = 1124,
33∑
i=1

xiyi = 41,355,
33∑
i=1

x2
i = 41,086

Therefore,

b1 =
(33)(41,355)− (1104)(1124)

(33)(41,086)− (1104)2
= 0.903643 and

b0 =
1124− (0.903643)(1104)

33
= 3.829633.

Thus, the estimated regression line is given by

ŷ = 3.8296 + 0.9036x.

Using the regression line of Example 11.1, we would predict a 31% reduction
in the chemical oxygen demand when the reduction in the total solids is 30%. The
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31% reduction in the chemical oxygen demand may be interpreted as an estimate
of the population mean μY |30 or as an estimate of a new observation when the
reduction in total solids is 30%. Such estimates, however, are subject to error.
Even if the experiment were controlled so that the reduction in total solids was
30%, it is unlikely that we would measure a reduction in the chemical oxygen
demand exactly equal to 31%. In fact, the original data recorded in Table 11.1
show that measurements of 25% and 35% were recorded for the reduction in oxygen
demand when the reduction in total solids was kept at 30%.

What Is Good about Least Squares?

It should be noted that the least squares criterion is designed to provide a fitted
line that results in a “closeness” between the line and the plotted points. There
are many ways of measuring closeness. For example, one may wish to determine b0

and b1 for which
n∑

i=1

|yi − ŷi| is minimized or for which
n∑

i=1

|yi − ŷi|1.5 is minimized.

These are both viable and reasonable methods. Note that both of these, as well
as the least squares procedure, result in forcing residuals to be “small” in some
sense. One should remember that the residuals are the empirical counterpart to
the ε values. Figure 11.6 illustrates a set of residuals. One should note that the
fitted line has predicted values as points on the line and hence the residuals are
vertical deviations from points to the line. As a result, the least squares procedure
produces a line that minimizes the sum of squares of vertical deviations
from the points to the line.

x

y

ŷ =

b 0+

b 1x

Figure 11.6: Residuals as vertical deviations.
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Exercises

11.1 A study was conducted at Virginia Tech to de-
termine if certain static arm-strength measures have
an influence on the “dynamic lift” characteristics of an
individual. Twenty-five individuals were subjected to
strength tests and then were asked to perform a weight-
lifting test in which weight was dynamically lifted over-
head. The data are given here.

Arm Dynamic
Individual Strength, x Lift, y

1
2
3
4
5
6
7
8
9

10
11
12

17.3
19.3
19.5
19.7
22.9
23.1
26.4
26.8
27.6
28.1
28.2
28.7

71.7
48.3
88.3
75.0
91.7

100.0
73.3
65.0
75.0
88.3
68.3
96.7

13
14
15
16
17
18
19
20
21
22
23
24
25

29.0
29.6
29.9
29.9
30.3
31.3
36.0
39.5
40.4
44.3
44.6
50.4
55.9

76.7
78.3
60.0
71.7
85.0
85.0
88.3

100.0
100.0
100.0
91.7

100.0
71.7

(a) Estimate β0 and β1 for the linear regression curve
μY |x = β0 + β1x.

(b) Find a point estimate of μY |30.
(c) Plot the residuals versus the x’s (arm strength).

Comment.

11.2 The grades of a class of 9 students on a midterm
report (x) and on the final examination (y) are as fol-
lows:

x 77 50 71 72 81 94 96 99 67
y 82 66 78 34 47 85 99 99 68

(a) Estimate the linear regression line.

(b) Estimate the final examination grade of a student
who received a grade of 85 on the midterm report.

11.3 The amounts of a chemical compound y that dis-
solved in 100 grams of water at various temperatures
x were recorded as follows:

x (◦C) y (grams)
0

15
30
45
60
75

8
12
25
31
44
48

6
10
21
33
39
51

8
14
24
28
42
44

(a) Find the equation of the regression line.

(b) Graph the line on a scatter diagram.

(c) Estimate the amount of chemical that will dissolve
in 100 grams of water at 50◦C.

11.4 The following data were collected to determine
the relationship between pressure and the correspond-
ing scale reading for the purpose of calibration.

Pressure, x (lb/sq in.) Scale Reading, y
10 13
10 18
10 16
10 15
10 20
50 86
50 90
50 88
50 88
50 92

(a) Find the equation of the regression line.

(b) The purpose of calibration in this application is to
estimate pressure from an observed scale reading.
Estimate the pressure for a scale reading of 54 using
x̂ = (54− b0)/b1.

11.5 A study was made on the amount of converted
sugar in a certain process at various temperatures. The
data were coded and recorded as follows:

Temperature, x Converted Sugar, y
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

8.1
7.8
8.5
9.8
9.5
8.9
8.6

10.2
9.3
9.2

10.5

(a) Estimate the linear regression line.

(b) Estimate the mean amount of converted sugar pro-
duced when the coded temperature is 1.75.

(c) Plot the residuals versus temperature. Comment.
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11.6 In a certain type of metal test specimen, the nor-
mal stress on a specimen is known to be functionally
related to the shear resistance. The following is a set
of coded experimental data on the two variables:

Normal Stress, x Shear Resistance, y
26.8 26.5
25.4 27.3
28.9 24.2
23.6 27.1
27.7 23.6
23.9 25.9
24.7 26.3
28.1 22.5
26.9 21.7
27.4 21.4
22.6 25.8
25.6 24.9

(a) Estimate the regression line μY |x = β0 + β1x.

(b) Estimate the shear resistance for a normal stress of
24.5.

11.7 The following is a portion of a classic data set
called the “pilot plot data” in Fitting Equations to
Data by Daniel and Wood, published in 1971. The
response y is the acid content of material produced by
titration, whereas the regressor x is the organic acid
content produced by extraction and weighing.

y x y x
76
62
66
58
88

123
55

100
75

159

70
37
82
88
43

109
48

138
164
28

(a) Plot the data; does it appear that a simple linear
regression will be a suitable model?

(b) Fit a simple linear regression; estimate a slope and
intercept.

(c) Graph the regression line on the plot in (a).

11.8 A mathematics placement test is given to all en-
tering freshmen at a small college. A student who re-
ceives a grade below 35 is denied admission to the regu-
lar mathematics course and placed in a remedial class.
The placement test scores and the final grades for 20
students who took the regular course were recorded.

(a) Plot a scatter diagram.

(b) Find the equation of the regression line to predict
course grades from placement test scores.

(c) Graph the line on the scatter diagram.

(d) If 60 is the minimum passing grade, below which
placement test score should students in the future
be denied admission to this course?

Placement Test Course Grade
50 53
35 41
35 61
40 56
55 68
65 36
35 11
60 70
90 79
35 59
90 54
80 91
60 48
60 71
60 71
40 47
55 53
50 68
65 57
50 79

11.9 A study was made by a retail merchant to deter-
mine the relation between weekly advertising expendi-
tures and sales.

Advertising Costs ($) Sales ($)
40 385
20 400
25 395
20 365
30 475
50 440
40 490
20 420
50 560
40 525
25 480
50 510

(a) Plot a scatter diagram.

(b) Find the equation of the regression line to predict
weekly sales from advertising expenditures.

(c) Estimate the weekly sales when advertising costs
are $35.

(d) Plot the residuals versus advertising costs. Com-
ment.

11.10 The following data are the selling prices z of a
certain make and model of used car w years old. Fit a
curve of the form μz|w = γδw by means of the nonlin-
ear sample regression equation ẑ = cdw. [Hint: Write
ln ẑ = ln c+ (ln d)w = b0 + b1w.]

w (years) z (dollars) w (years) z (dollars)
1 6350 3 5395
2 5695 5 4985
2 5750 5 4895
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11.11 The thrust of an engine (y) is a function of
exhaust temperature (x) in ◦F when other important
variables are held constant. Consider the following
data.

y x y x
4300 1760 4010 1665
4650 1652 3810 1550
3200 1485 4500 1700
3150 1390 3008 1270
4950 1820

(a) Plot the data.

(b) Fit a simple linear regression to the data and plot
the line through the data.

11.12 A study was done to study the effect of ambi-
ent temperature x on the electric power consumed by
a chemical plant y. Other factors were held constant,
and the data were collected from an experimental pilot
plant.

y (BTU) x (◦F) y (BTU) x (◦F)
250 27 265 31
285 45 298 60
320 72 267 34
295 58 321 74

(a) Plot the data.

(b) Estimate the slope and intercept in a simple linear
regression model.

(c) Predict power consumption for an ambient temper-
ature of 65◦F.

11.13 A study of the amount of rainfall and the quan-
tity of air pollution removed produced the following

data:

Daily Rainfall, Particulate Removed,
x (0.01 cm) y (μg/m3)

4.3 126
4.5 121
5.9 116
5.6 118
6.1 114
5.2 118
3.8 132
2.1 141
7.5 108

(a) Find the equation of the regression line to predict
the particulate removed from the amount of daily
rainfall.

(b) Estimate the amount of particulate removed when
the daily rainfall is x = 4.8 units.

11.14 A professor in the School of Business in a uni-
versity polled a dozen colleagues about the number of
professional meetings they attended in the past five
years (x) and the number of papers they submitted
to refereed journals (y) during the same period. The
summary data are given as follows:

n = 12, x̄ = 4, ȳ = 12,
n∑

i=1

x2
i = 232,

n∑
i=1

xiyi = 318.

Fit a simple linear regression model between x and y by
finding out the estimates of intercept and slope. Com-
ment on whether attending more professional meetings
would result in publishing more papers.

11.4 Properties of the Least Squares Estimators

In addition to the assumptions that the error term in the model

Yi = β0 + β1xi + εi

is a random variable with mean 0 and constant variance σ2, suppose that we make
the further assumption that ε1, ε2, . . . , εn are independent from run to run in the
experiment. This provides a foundation for finding the means and variances for
the estimators of β0 and β1.

It is important to remember that our values of b0 and b1, based on a given
sample of n observations, are only estimates of true parameters β0 and β1. If the
experiment is repeated over and over again, each time using the same fixed values
of x, the resulting estimates of β0 and β1 will most likely differ from experiment
to experiment. These different estimates may be viewed as values assumed by the
random variables B0 and B1, while b0 and b1 are specific realizations.

Since the values of x remain fixed, the values of B0 and B1 depend on the vari-
ations in the values of y or, more precisely, on the values of the random variables,
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Y1, Y2, . . . , Yn. The distributional assumptions imply that the Yi, i = 1, 2, . . . , n,
are also independently distributed, with mean μY |xi

= β0 + β1xi and equal vari-
ances σ2; that is,

σ2
Y |xi

= σ2 for i = 1, 2, . . . , n.

Mean and Variance of Estimators

In what follows, we show that the estimator B1 is unbiased for β1 and demonstrate
the variances of both B0 and B1. This will begin a series of developments that
lead to hypothesis testing and confidence interval estimation on the intercept and
slope.

Since the estimator

B1 =

n∑
i=1

(xi − x̄)(Yi − Ȳ )

n∑
i=1

(xi − x̄)2
=

n∑
i=1

(xi − x̄)Yi

n∑
i=1

(xi − x̄)2

is of the form
n∑

i=1

ciYi, where

ci =
xi − x̄

n∑
i=1

(xi − x̄)2
, i = 1, 2, . . . , n,

we may conclude from Theorem 7.11 that B1 has a n(μB1 , σB1) distribution with

μB1 =

n∑
i=1

(xi − x̄)(β0 + β1xi)

n∑
i=1

(xi − x̄)2
= β1 and σ2

B1
=

n∑
i=1

(xi − x̄)2σ2
Yi[

n∑
i=1

(xi − x̄)2
]2 =

σ2

n∑
i=1

(xi − x̄)2
.

It can also be shown (Review Exercise 11.60 on page 438) that the random
variable B0 is normally distributed with

mean μB0 = β0 and variance σ2
B0

=

n∑
i=1

x2
i

n
n∑

i=1

(xi − x̄)2
σ2.

From the foregoing results, it is apparent that the least squares estimators for
β0 and β1 are both unbiased estimators.

Partition of Total Variability and Estimation of σ2

To draw inferences on β0 and β1, it becomes necessary to arrive at an estimate
of the parameter σ2 appearing in the two preceding variance formulas for B0 and
B1. The parameter σ2, the model error variance, reflects random variation or
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experimental error variation around the regression line. In much of what follows,
it is advantageous to use the notation

Sxx =

n∑
i=1

(xi − x̄)2, Syy =

n∑
i=1

(yi − ȳ)2, Sxy =

n∑
i=1

(xi − x̄)(yi − ȳ).

Now we may write the error sum of squares as follows:

SSE =
n∑

i=1

(yi − b0 − b1xi)
2 =

n∑
i=1

[(yi − ȳ)− b1(xi − x̄)]2

=

n∑
i=1

(yi − ȳ)2 − 2b1

n∑
i=1

(xi − x̄)(yi − ȳ) + b21

n∑
i=1

(xi − x̄)2

= Syy − 2b1Sxy + b21Sxx = Syy − b1Sxy,

the final step following from the fact that b1 = Sxy/Sxx.

Theorem 11.1: An unbiased estimate of σ2 is

s2 =
SSE

n− 2
=

n∑
i=1

(yi − ŷi)
2

n− 2
=

Syy − b1Sxy

n− 2
.

The proof of Theorem 11.1 is left as an exercise (see Review Exercise 11.59).

The Estimator of σ2 as a Mean Squared Error

One should observe the result of Theorem 11.1 in order to gain some intuition about
the estimator of σ2. The parameter σ2 measures variance or squared deviations
between Y values and their mean given by μY |x (i.e., squared deviations between
Y and β0 + β1x). Of course, β0 + β1x is estimated by ŷ = b0 + b1x. Thus, it
would make sense that the variance σ2 is best depicted as a squared deviation of
the typical observation yi from the estimated mean, ŷi, which is the corresponding
point on the fitted line. Thus, (yi − ŷi)

2 values reveal the appropriate variance,
much like the way (yi − ȳ)2 values measure variance when one is sampling in a
nonregression scenario. In other words, ȳ estimates the mean in the latter simple
situation, whereas ŷi estimates the mean of yi in a regression structure. Now, what
about the divisor n−2? In future sections, we shall note that these are the degrees
of freedom associated with the estimator s2 of σ2. Whereas in the standard normal
i.i.d. scenario, one degree of freedom is subtracted from n in the denominator and a
reasonable explanation is that one parameter is estimated, namely the mean μ by,
say, ȳ, but in the regression problem, two parameters are estimated, namely
β0 and β1 by b0 and b1. Thus, the important parameter σ2, estimated by

s2 =

n∑
i=1

(yi − ŷi)
2/(n− 2),

is called a mean squared error, depicting a type of mean (division by n− 2) of
the squared residuals.
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11.5 Inferences Concerning the Regression Coefficients

Aside from merely estimating the linear relationship between x and Y for purposes
of prediction, the experimenter may also be interested in drawing certain inferences
about the slope and intercept. In order to allow for the testing of hypotheses and
the construction of confidence intervals on β0 and β1, one must be willing to make
the further assumption that each εi, i = 1, 2, . . . , n, is normally distributed. This
assumption implies that Y1, Y2, . . . , Yn are also normally distributed, each with
probability distribution n(yi;β0 + β1xi, σ).

From Section 11.4 we know that B1 follows a normal distribution. It turns out
that under the normality assumption, a result very much analogous to that given
in Theorem 8.4 allows us to conclude that (n − 2)S2/σ2 is a chi-squared variable
with n − 2 degrees of freedom, independent of the random variable B1. Theorem
8.5 then assures us that the statistic

T =
(B1 − β1)/(σ/

√
Sxx)

S/σ
=

B1 − β1

S/
√
Sxx

has a t-distribution with n− 2 degrees of freedom. The statistic T can be used to
construct a 100(1− α)% confidence interval for the coefficient β1.

Confidence Interval
for β1

A 100(1 − α)% confidence interval for the parameter β1 in the regression line
μY |x = β0 + β1x is

b1 − tα/2
s√
Sxx

< β1 < b1 + tα/2
s√
Sxx

,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

Example 11.2: Find a 95% confidence interval for β1 in the regression line μY |x = β0+β1x, based
on the pollution data of Table 11.1.

Solution : From the results given in Example 11.1 we find that Sxx = 4152.18 and Sxy =
3752.09. In addition, we find that Syy = 3713.88. Recall that b1 = 0.903643.
Hence,

s2 =
Syy − b1Sxy

n− 2
=

3713.88− (0.903643)(3752.09)

31
= 10.4299.

Therefore, taking the square root, we obtain s = 3.2295. Using Table A.4, we find
t0.025 ≈ 2.045 for 31 degrees of freedom. Therefore, a 95% confidence interval for
β1 is

0.903643− (2.045)(3.2295)√
4152.18

< β < 0.903643 +
(2.045)(3.2295)√

4152.18
,

which simplifies to

0.8012 < β1 < 1.0061.
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Hypothesis Testing on the Slope

To test the null hypothesis H0 that β1 = β10 against a suitable alternative, we
again use the t-distribution with n − 2 degrees of freedom to establish a critical
region and then base our decision on the value of

t =
b1 − β10

s/
√
Sxx

.

The method is illustrated by the following example.

Example 11.3: Using the estimated value b1 = 0.903643 of Example 11.1, test the hypothesis that
β1 = 1.0 against the alternative that β1 < 1.0.

Solution : The hypotheses are H0: β1 = 1.0 and H1: β1 < 1.0. So

t =
0.903643− 1.0

3.2295/
√
4152.18

= −1.92,

with n− 2 = 31 degrees of freedom (P ≈ 0.03).
Decision: The t-value is significant at the 0.03 level, suggesting strong evidence

that β1 < 1.0.
One important t-test on the slope is the test of the hypothesis

H0: β1 = 0 versus H1: β1 �= 0.

When the null hypothesis is not rejected, the conclusion is that there is no signifi-
cant linear relationship between E(y) and the independent variable x. The plot of
the data for Example 11.1 would suggest that a linear relationship exists. However,
in some applications in which σ2 is large and thus considerable “noise” is present in
the data, a plot, while useful, may not produce clear information for the researcher.
Rejection of H0 above implies that a significant linear regression exists.

Figure 11.7 displays a MINITAB printout showing the t-test for

H0: β1 = 0 versus H1: β1 �= 0,

for the data of Example 11.1. Note the regression coefficient (Coef), standard error
(SE Coef), t-value (T), and P -value (P). The null hypothesis is rejected. Clearly,
there is a significant linear relationship between mean chemical oxygen demand
reduction and solids reduction. Note that the t-statistic is computed as

t =
coefficient

standard error
=

b1

s/
√
Sxx

.

The failure to reject H0: β1 = 0 suggests that there is no linear relationship
between Y and x. Figure 11.8 is an illustration of the implication of this result.
It may mean that changing x has little impact on changes in Y , as seen in (a).
However, it may also indicate that the true relationship is nonlinear, as indicated
by (b).

When H0: β1 = 0 is rejected, there is an implication that the linear term in x
residing in the model explains a significant portion of variability in Y . The two
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Regression Analysis: COD versus Per_Red

The regression equation is COD = 3.83 + 0.904 Per_Red

Predictor Coef SE Coef T P

Constant 3.830 1.768 2.17 0.038

Per_Red 0.90364 0.05012 18.03 0.000

S = 3.22954 R-Sq = 91.3% R-Sq(adj) = 91.0%

Analysis of Variance

Source DF SS MS F P

Regression 1 3390.6 3390.6 325.08 0.000

Residual Error 31 323.3 10.4

Total 32 3713.9

Figure 11.7: MINITAB printout for t-test for data of Example 11.1.

x
(a)

y

x
(b)

y

Figure 11.8: The hypothesis H0: β1 = 0 is not rejected.

plots in Figure 11.9 illustrate possible scenarios. As depicted in (a) of the figure,
rejection of H0 may suggest that the relationship is, indeed, linear. As indicated
in (b), it may suggest that while the model does contain a linear effect, a better
representation may be found by including a polynomial (perhaps quadratic) term
(i.e., terms that supplement the linear term).

Statistical Inference on the Intercept

Confidence intervals and hypothesis testing on the coefficient β0 may be established
from the fact that B0 is also normally distributed. It is not difficult to show that

T =
B0 − β0

S

√
n∑

i=1

x2
i /(nSxx)
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Figure 11.9: The hypothesis H0: β1 = 0 is rejected.

has a t-distribution with n− 2 degrees of freedom from which we may construct a
100(1− α)% confidence interval for α.

Confidence Interval
for β0

A 100(1 − α)% confidence interval for the parameter β0 in the regression line
μY |x = β0 + β1x is

b0 − tα/2
s√
nSxx

√√√√ n∑
i=1

x2
i < β0 < b0 + tα/2

s√
nSxx

√√√√ n∑
i=1

x2
i ,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

Example 11.4: Find a 95% confidence interval for β0 in the regression line μY |x = β0+β1x, based
on the data of Table 11.1.

Solution : In Examples 11.1 and 11.2, we found that

Sxx = 4152.18 and s = 3.2295.

From Example 11.1 we had

n∑
i=1

x2
i = 41,086 and b0 = 3.829633.

Using Table A.4, we find t0.025 ≈ 2.045 for 31 degrees of freedom. Therefore, a
95% confidence interval for β0 is

3.829633− (2.045)(3.2295)
√
41,086√

(33)(4152.18)
< β0 < 3.829633 +

(2.045)(3.2295)
√
41,086√

(33)(4152.18)
,

which simplifies to 0.2132 < β0 < 7.4461.
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11.5 Inferences Concerning the Regression Coefficients 407

To test the null hypothesis H0 that β0 = β00 against a suitable alternative,
we can use the t-distribution with n − 2 degrees of freedom to establish a critical
region and then base our decision on the value of

t =
b0 − β00

s

√
n∑

i=1

x2
i /(nSxx)

.

Example 11.5: Using the estimated value b0 = 3.829633 of Example 11.1, test the hypothesis that
β0 = 0 at the 0.05 level of significance against the alternative that β0 �= 0.

Solution : The hypotheses are H0: β0 = 0 and H1: β0 �= 0. So

t =
3.829633− 0

3.2295
√
41,086/[(33)(4152.18)]

= 2.17,

with 31 degrees of freedom. Thus, P = P -value ≈ 0.038 and we conclude that
β0 �= 0. Note that this is merely Coef/StDev, as we see in the MINITAB printout
in Figure 11.7. The SE Coef is the standard error of the estimated intercept.

A Measure of Quality of Fit: Coefficient of Determination

Note in Figure 11.7 that an item denoted by R-Sq is given with a value of 91.3%.
This quantity, R2, is called the coefficient of determination. This quantity is
a measure of the proportion of variability explained by the fitted model.
In Section 11.8, we shall introduce the notion of an analysis-of-variance approach
to hypothesis testing in regression. The analysis-of-variance approach makes use

of the error sum of squares SSE =
n∑

i=1

(yi − ŷi)
2 and the total corrected sum of

squares SST =
n∑

i=1

(yi − ȳi)
2. The latter represents the variation in the response

values that ideally would be explained by the model. The SSE value is the variation
due to error, or variation unexplained. Clearly, if SSE = 0, all variation is
explained. The quantity that represents variation explained is SST − SSE. The
R2 is

Coeff. of determination: R2 = 1− SSE

SST
.

Note that if the fit is perfect, all residuals are zero, and thus R2 = 1.0. But if SSE
is only slightly smaller than SST , R2 ≈ 0. Note from the printout in Figure 11.7
that the coefficient of determination suggests that the model fit to the data explains
91.3% of the variability observed in the response, the reduction in chemical oxygen
demand.

Figure 11.10 provides an illustration of a good fit (R2 ≈ 1.0) in plot (a) and a
poor fit (R2 ≈ 0) in plot (b).

Pitfalls in the Use of R2

Analysts quote values of R2 quite often, perhaps due to its simplicity. However,
there are pitfalls in its interpretation. The reliability of R2 is a function of the
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ŷ

(a) R2 ≈ 1.0

x

y

y
ŷ

(b) R2 ≈ 0

Figure 11.10: Plots depicting a very good fit and a poor fit.

size of the regression data set and the type of application. Clearly, 0 ≤ R2 ≤ 1
and the upper bound is achieved when the fit to the data is perfect (i.e., all of
the residuals are zero). What is an acceptable value for R2? This is a difficult
question to answer. A chemist, charged with doing a linear calibration of a high-
precision piece of equipment, certainly expects to experience a very high R2-value
(perhaps exceeding 0.99), while a behavioral scientist, dealing in data impacted
by variability in human behavior, may feel fortunate to experience an R2 as large
as 0.70. An experienced model fitter senses when a value is large enough, given
the situation confronted. Clearly, some scientific phenomena lend themselves to
modeling with more precision than others.

The R2 criterion is dangerous to use for comparing competing models for the
same data set. Adding additional terms to the model (e.g., an additional regressor)
decreases SSE and thus increases R2 (or at least does not decrease it). This implies
that R2 can be made artificially high by an unwise practice of overfitting (i.e., the
inclusion of too many model terms). Thus, the inevitable increase in R2 enjoyed
by adding an additional term does not imply the additional term was needed. In
fact, the simple model may be superior for predicting response values. The role
of overfitting and its influence on prediction capability will be discussed at length
in Chapter 12 as we visit the notion of models involving more than a single
regressor. Suffice it to say at this point that one should not subscribe to a model
selection process that solely involves the consideration of R2.

11.6 Prediction

There are several reasons for building a linear regression. One, of course, is to
predict response values at one or more values of the independent variable. In this
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section, the focus is on errors associated with prediction.
The equation ŷ = b0 + b1x may be used to predict or estimate the mean

response μY |x0
at x = x0, where x0 is not necessarily one of the prechosen values,

or it may be used to predict a single value y0 of the variable Y0, when x = x0. We
would expect the error of prediction to be higher in the case of a single predicted
value than in the case where a mean is predicted. This, then, will affect the width
of our intervals for the values being predicted.

Suppose that the experimenter wishes to construct a confidence interval for
μY |x0

. We shall use the point estimator Ŷ0 = B0 + B1x0 to estimate μY |x0
=

β0 + β1x. It can be shown that the sampling distribution of Ŷ0 is normal with
mean

μY |x0
= E(Ŷ0) = E(B0 +B1x0) = β0 + β1x0 = μY |x0

and variance

σ2
Ŷ0

= σ2
B0+B1x0

= σ2
Ȳ+B1(x0−x̄) = σ2

[
1

n
+

(x0 − x̄)2

Sxx

]
,

the latter following from the fact that Cov(Ȳ , B1) = 0 (see Review Exercise 11.61
on page 438). Thus, a 100(1−α)% confidence interval on the mean response μY |x0

can now be constructed from the statistic

T =
Ŷ0 − μY |x0

S
√
1/n+ (x0 − x̄)2/Sxx

,

which has a t-distribution with n− 2 degrees of freedom.

Confidence Interval
for μY |x0

A 100(1− α)% confidence interval for the mean response μY |x0
is

ŷ0 − tα/2s

√
1

n
+

(x0 − x̄)2

Sxx
< μY |x0

< ŷ0 + tα/2s

√
1

n
+

(x0 − x̄)2

Sxx
,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

Example 11.6: Using the data of Table 11.1, construct 95% confidence limits for the mean response
μY |x0

.
Solution : From the regression equation we find for x0 = 20% solids reduction, say,

ŷ0 = 3.829633 + (0.903643)(20) = 21.9025.

In addition, x̄ = 33.4545, Sxx = 4152.18, s = 3.2295, and t0.025 ≈ 2.045 for 31
degrees of freedom. Therefore, a 95% confidence interval for μY |20 is

21.9025− (2.045)(3.2295)

√
1

33
+

(20− 33.4545)2

4152.18
< μY |20

< 21.9025 + (2.045)(3.2295)

√
1

33
+

(20− 33.4545)2

4152.18
,
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or simply 20.1071 < μY |20 < 23.6979.
Repeating the previous calculations for each of several different values of x0,

one can obtain the corresponding confidence limits on each μY |x0
. Figure 11.11

displays the data points, the estimated regression line, and the upper and lower
confidence limits on the mean of Y |x.
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Figure 11.11: Confidence limits for the mean value of Y |x.

In Example 11.6, we are 95% confident that the population mean reduction in
chemical oxygen demand is between 20.1071% and 23.6979% when solid reduction
is 20%.

Prediction Interval

Another type of interval that is often misinterpreted and confused with that given
for μY |x is the prediction interval for a future observed response. Actually in many
instances, the prediction interval is more relevant to the scientist or engineer than
the confidence interval on the mean. In the tar content and inlet temperature ex-
ample cited in Section 11.1, there would certainly be interest not only in estimating
the mean tar content at a specific temperature but also in constructing an interval
that reflects the error in predicting a future observed amount of tar content at the
given temperature.

To obtain a prediction interval for any single value y0 of the variable Y0, it
is necessary to estimate the variance of the differences between the ordinates ŷ0,
obtained from the computed regression lines in repeated sampling when x = x0,
and the corresponding true ordinate y0. We can think of the difference ŷ0 − y0 as
a value of the random variable Ŷ0 − Y0, whose sampling distribution can be shown
to be normal with mean

μŶ0−Y0
= E(Ŷ0 − Y0) = E[B0 +B1x0 − (β0 + β1x0 + ε0)] = 0

and variance

σ2
Ŷ0−Y0

= σ2
B0+B1x0−ε0 = σ2

Ȳ+B1(x0−x̄)−ε0
= σ2

[
1 +

1

n
+

(x0 − x̄)2

Sxx

]
.
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Thus, a 100(1 − α)% prediction interval for a single predicted value y0 can be
constructed from the statistic

T =
Ŷ0 − Y0

S
√
1 + 1/n+ (x0 − x̄)2/Sxx

,

which has a t-distribution with n− 2 degrees of freedom.

Prediction Interval
for y0

A 100(1− α)% prediction interval for a single response y0 is given by

ŷ0 − tα/2s

√
1 +

1

n
+

(x0 − x̄)2

Sxx
< y0 < ŷ0 + tα/2s

√
1 +

1

n
+

(x0 − x̄)2

Sxx
,

where tα/2 is a value of the t-distribution with n− 2 degrees of freedom.

Clearly, there is a distinction between the concept of a confidence interval and
the prediction interval described previously. The interpretation of the confidence
interval is identical to that described for all confidence intervals on population pa-
rameters discussed throughout the book. Indeed, μY |x0

is a population parameter.
The computed prediction interval, however, represents an interval that has a prob-
ability equal to 1 − α of containing not a parameter but a future value y0 of the
random variable Y0.

Example 11.7: Using the data of Table 11.1, construct a 95% prediction interval for y0 when
x0 = 20%.

Solution : We have n = 33, x0 = 20, x̄ = 33.4545, ŷ0 = 21.9025, Sxx = 4152.18, s = 3.2295,
and t0.025 ≈ 2.045 for 31 degrees of freedom. Therefore, a 95% prediction interval
for y0 is

21.9025− (2.045)(3.2295)

√
1 +

1

33
+

(20− 33.4545)2

4152.18
< y0

< 21.9025 + (2.045)(3.2295)

√
1 +

1

33
+

(20− 33.4545)2

4152.18
,

which simplifies to 15.0585 < y0 < 28.7464.
Figure 11.12 shows another plot of the chemical oxygen demand reduction data,

with both the confidence interval on the mean response and the prediction interval
on an individual response plotted. The plot reflects a much tighter interval around
the regression line in the case of the mean response.

Exercises

11.15 With reference to Exercise 11.1 on page 398,

(a) evaluate s2;

(b) test the hypothesis that β1 = 0 against the alter-
native that β1 �= 0 at the 0.05 level of significance
and interpret the resulting decision.

11.16 With reference to Exercise 11.2 on page 398,

(a) evaluate s2;

(b) construct a 95% confidence interval for β0;

(c) construct a 95% confidence interval for β1.
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Figure 11.12: Confidence and prediction intervals for the chemical oxygen demand
reduction data; inside bands indicate the confidence limits for the mean responses
and outside bands indicate the prediction limits for the future responses.

11.17 With reference to Exercise 11.5 on page 398,

(a) evaluate s2;

(b) construct a 95% confidence interval for β0;

(c) construct a 95% confidence interval for β1.

11.18 With reference to Exercise 11.6 on page 399,

(a) evaluate s2;

(b) construct a 99% confidence interval for β0;

(c) construct a 99% confidence interval for β1.

11.19 With reference to Exercise 11.3 on page 398,

(a) evaluate s2;

(b) construct a 99% confidence interval for β0;

(c) construct a 99% confidence interval for β1.

11.20 Test the hypothesis that β0 = 10 in Exercise
11.8 on page 399 against the alternative that β0 < 10.
Use a 0.05 level of significance.

11.21 Test the hypothesis that β1 = 6 in Exercise
11.9 on page 399 against the alternative that β1 < 6.
Use a 0.025 level of significance.

11.22 Using the value of s2 found in Exercise
11.16(a), construct a 95% confidence interval for μY |85
in Exercise 11.2 on page 398.

11.23 With reference to Exercise 11.6 on page 399,
use the value of s2 found in Exercise 11.18(a) to com-
pute

(a) a 95% confidence interval for the mean shear resis-
tance when x = 24.5;

(b) a 95% prediction interval for a single predicted
value of the shear resistance when x = 24.5.

11.24 Using the value of s2 found in Exercise
11.17(a), graph the regression line and the 95% con-
fidence bands for the mean response μY |x for the data
of Exercise 11.5 on page 398.

11.25 Using the value of s2 found in Exercise
11.17(a), construct a 95% confidence interval for the
amount of converted sugar corresponding to x = 1.6 in
Exercise 11.5 on page 398.

11.26 With reference to Exercise 11.3 on page 398,
use the value of s2 found in Exercise 11.19(a) to com-
pute

(a) a 99% confidence interval for the average amount
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of chemical that will dissolve in 100 grams of water
at 50◦C;

(b) a 99% prediction interval for the amount of chemi-
cal that will dissolve in 100 grams of water at 50◦C.

11.27 Consider the regression of mileage for certain
automobiles, measured in miles per gallon (mpg) on
their weight in pounds (wt). The data are from Con-
sumer Reports (April 1997). Part of the SAS output
from the procedure is shown in Figure 11.13.

(a) Estimate the mileage for a vehicle weighing 4000
pounds.

(b) Suppose that Honda engineers claim that, on aver-
age, the Civic (or any other model weighing 2440
pounds) gets more than 30 mpg. Based on the re-
sults of the regression analysis, would you believe
that claim? Why or why not?

(c) The design engineers for the Lexus ES300 targeted
18 mpg as being ideal for this model (or any other
model weighing 3390 pounds), although it is ex-
pected that some variation will be experienced. Is
it likely that this target value is realistic? Discuss.

11.28 There are important applications in which,
due to known scientific constraints, the regression line
must go through the origin (i.e., the intercept must
be zero). In other words, the model should read

Yi = β1xi + εi, i = 1, 2, . . . , n,

and only a simple parameter requires estimation. The
model is often called the regression through the
origin model.

(a) Show that the least squares estimator of the slope
is

b1 =

(
n∑

i=1

xiyi

)/(
n∑

i=1

x2
i

)
.

(b) Show that σ2
B1

= σ2

/(
n∑

i=1

x2
i

)
.

(c) Show that b1 in part (a) is an unbiased estimator
for β1. That is, show E(B1) = β1.

11.29 Use the data set

y x

7
50

100
40
70

2
15
30
10
20

(a) Plot the data.

(b) Fit a regression line through the origin.

(c) Plot the regression line on the graph with the data.

(d) Give a general formula (in terms of the yi and the
slope b1) for the estimator of σ2.

(e) Give a formula for Var(ŷi), i = 1, 2, . . . , n, for this
case.

(f) Plot 95% confidence limits for the mean response
on the graph around the regression line.

11.30 For the data in Exercise 11.29, find a 95% pre-
diction interval at x = 25.

Root MSE 1.48794 R-Square 0.9509

Dependent Mean 21.50000 Adj R-Sq 0.9447

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 44.78018 1.92919 23.21 <.0001

WT 1 -0.00686 0.00055133 -12.44 <.0001

MODEL WT MPG Predict LMean UMean Lpred Upred Residual

GMC 4520 15 13.7720 11.9752 15.5688 9.8988 17.6451 1.22804

Geo 2065 29 30.6138 28.6063 32.6213 26.6385 34.5891 -1.61381

Honda 2440 31 28.0412 26.4143 29.6681 24.2439 31.8386 2.95877

Hyundai 2290 28 29.0703 27.2967 30.8438 25.2078 32.9327 -1.07026

Infiniti 3195 23 22.8618 21.7478 23.9758 19.2543 26.4693 0.13825

Isuzu 3480 21 20.9066 19.8160 21.9972 17.3062 24.5069 0.09341

Jeep 4090 15 16.7219 15.3213 18.1224 13.0158 20.4279 -1.72185

Land 4535 13 13.6691 11.8570 15.4811 9.7888 17.5493 -0.66905

Lexus 3390 22 21.5240 20.4390 22.6091 17.9253 25.1227 0.47599

Lincoln 3930 18 17.8195 16.5379 19.1011 14.1568 21.4822 0.18051

Figure 11.13: SAS printout for Exercise 11.27.
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11.7 Choice of a Regression Model

Much of what has been presented thus far on regression involving a single inde-
pendent variable depends on the assumption that the model chosen is correct, the
presumption that μY |x is related to x linearly in the parameters. Certainly, one
cannot expect the prediction of the response to be good if there are several inde-
pendent variables, not considered in the model, that are affecting the response and
are varying in the system. In addition, the prediction will certainly be inadequate
if the true structure relating μY |x to x is extremely nonlinear in the range of the
variables considered.

Often the simple linear regression model is used even though it is known that
the model is something other than linear or that the true structure is unknown.
This approach is often sound, particularly when the range of x is narrow. Thus, the
model used becomes an approximating function that one hopes is an adequate rep-
resentation of the true picture in the region of interest. One should note, however,
the effect of an inadequate model on the results presented thus far. For example,
if the true model, unknown to the experimenter, is linear in more than one x, say

μY |x1,x2
= β0 + β1x1 + β2x2,

then the ordinary least squares estimate b1 = Sxy/Sxx, calculated by only con-
sidering x1 in the experiment, is, under general circumstances, a biased estimate
of the coefficient β1, the bias being a function of the additional coefficient β2 (see
Review Exercise 11.65 on page 438). Also, the estimate s2 for σ2 is biased due to
the additional variable.

11.8 Analysis-of-Variance Approach

Often the problem of analyzing the quality of the estimated regression line is han-
dled by an analysis-of-variance (ANOVA) approach: a procedure whereby the
total variation in the dependent variable is subdivided into meaningful compo-
nents that are then observed and treated in a systematic fashion. The analysis
of variance, discussed in Chapter 13, is a powerful resource that is used for many
applications.

Suppose that we have n experimental data points in the usual form (xi, yi) and
that the regression line is estimated. In our estimation of σ2 in Section 11.4, we
established the identity

Syy = b1Sxy + SSE.

An alternative and perhaps more informative formulation is

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2.

We have achieved a partitioning of the total corrected sum of squares of y
into two components that should reflect particular meaning to the experimenter.
We shall indicate this partitioning symbolically as

SST = SSR+ SSE.
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11.8 Analysis-of-Variance Approach 415

The first component on the right, SSR, is called the regression sum of squares,
and it reflects the amount of variation in the y-values explained by the model,
in this case the postulated straight line. The second component is the familiar
error sum of squares, which reflects variation about the regression line.

Suppose that we are interested in testing the hypothesis

H0: β1 = 0 versus H1: β1 �= 0,

where the null hypothesis says essentially that the model is μY |x = β0. That is, the
variation in Y results from chance or random fluctuations which are independent of
the values of x. This condition is reflected in Figure 11.10(b). Under the conditions
of this null hypothesis, it can be shown that SSR/σ2 and SSE/σ2 are values of
independent chi-squared variables with 1 and n−2 degrees of freedom, respectively,
and then by Theorem 7.12 it follows that SST/σ2 is also a value of a chi-squared
variable with n− 1 degrees of freedom. To test the hypothesis above, we compute

f =
SSR/1

SSE/(n− 2)
=

SSR

s2

and reject H0 at the α-level of significance when f > fα(1, n− 2).
The computations are usually summarized by means of an analysis-of-variance

table, as in Table 11.2. It is customary to refer to the various sums of squares
divided by their respective degrees of freedom as the mean squares.

Table 11.2: Analysis of Variance for Testing β1 = 0

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Regression
Error

SSR
SSE

1
n− 2

SSR
s2 = SSE

n−2

SSR
s2

Total SST n− 1

When the null hypothesis is rejected, that is, when the computed F -statistic
exceeds the critical value fα(1, n − 2), we conclude that there is a significant
amount of variation in the response accounted for by the postulated
model, the straight-line function. If the F -statistic is in the fail to reject
region, we conclude that the data did not reflect sufficient evidence to support the
model postulated.

In Section 11.5, a procedure was given whereby the statistic

T =
B1 − β10

S/
√
Sxx

is used to test the hypothesis

H0: β1 = β10 versus H1: β1 �= β10,

where T follows the t-distribution with n − 2 degrees of freedom. The hypothesis
is rejected if |t| > tα/2 for an α-level of significance. It is interesting to note that
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in the special case in which we are testing

H0: β1 = 0 versus H1: β1 �= 0,

the value of our T -statistic becomes

t =
b1

s/
√
Sxx

,

and the hypothesis under consideration is identical to that being tested in Table
11.2. Namely, the null hypothesis states that the variation in the response is due
merely to chance. The analysis of variance uses the F -distribution rather than
the t-distribution. For the two-sided alternative, the two approaches are identical.
This we can see by writing

t2 =
b21Sxx

s2
=

b1Sxy

s2
=

SSR

s2
,

which is identical to the f -value used in the analysis of variance. The basic relation-
ship between the t-distribution with v degrees of freedom and the F -distribution
with 1 and v degrees of freedom is

t2 = f(1, v).

Of course, the t-test allows for testing against a one-sided alternative while the
F -test is restricted to testing against a two-sided alternative.

Annotated Computer Printout for Simple Linear Regression

Consider again the chemical oxygen demand reduction data of Table 11.1. Figures
11.14 and 11.15 show more complete annotated computer printouts. Again we
illustrate it with MINITAB software. The t-ratio column indicates tests for null
hypotheses of zero values on the parameter. The term “Fit” denotes ŷ-values, often
called fitted values. The term “SE Fit” is used in computing confidence intervals
on mean response. The item R2 is computed as (SSR/SST )×100 and signifies the
proportion of variation in y explained by the straight-line regression. Also shown
are confidence intervals on the mean response and prediction intervals on a new
observation.

11.9 Test for Linearity of Regression: Data with Repeated
Observations

In certain kinds of experimental situations, the researcher has the capability of
obtaining repeated observations on the response for each value of x. Although it is
not necessary to have these repetitions in order to estimate β0 and β1, nevertheless
repetitions enable the experimenter to obtain quantitative information concerning
the appropriateness of the model. In fact, if repeated observations are generated,
the experimenter can make a significance test to aid in determining whether or not
the model is adequate.
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The regression equation is COD = 3.83 + 0.904 Per_Red
Predictor Coef SE Coef T P
Constant 3.830 1.768 2.17 0.038
Per_Red 0.90364 0.05012 18.03 0.000

S = 3.22954 R-Sq = 91.3% R-Sq(adj) = 91.0%
Analysis of Variance

Source DF SS MS F P
Regression 1 3390.6 3390.6 325.08 0.000
Residual Error 31 323.3 10.4
Total 32 3713.9

Obs Per_Red COD Fit SE Fit Residual St Resid
1 3.0 5.000 6.541 1.627 -1.541 -0.55
2 36.0 34.000 36.361 0.576 -2.361 -0.74
3 7.0 11.000 10.155 1.440 0.845 0.29
4 37.0 36.000 37.264 0.590 -1.264 -0.40
5 11.0 21.000 13.770 1.258 7.230 2.43
6 38.0 38.000 38.168 0.607 -0.168 -0.05
7 15.0 16.000 17.384 1.082 -1.384 -0.45
8 39.0 37.000 39.072 0.627 -2.072 -0.65
9 18.0 16.000 20.095 0.957 -4.095 -1.33
10 39.0 36.000 39.072 0.627 -3.072 -0.97
11 27.0 28.000 28.228 0.649 -0.228 -0.07
12 39.0 45.000 39.072 0.627 5.928 1.87
13 29.0 27.000 30.035 0.605 -3.035 -0.96
14 40.0 39.000 39.975 0.651 -0.975 -0.31
15 30.0 25.000 30.939 0.588 -5.939 -1.87
16 41.0 41.000 40.879 0.678 0.121 0.04
17 30.0 35.000 30.939 0.588 4.061 1.28
18 42.0 40.000 41.783 0.707 -1.783 -0.57
19 31.0 30.000 31.843 0.575 -1.843 -0.58
20 42.0 44.000 41.783 0.707 2.217 0.70
21 31.0 40.000 31.843 0.575 8.157 2.57
22 43.0 37.000 42.686 0.738 -5.686 -1.81
23 32.0 32.000 32.746 0.567 -0.746 -0.23
24 44.0 44.000 43.590 0.772 0.410 0.13
25 33.0 34.000 33.650 0.563 0.350 0.11
26 45.0 46.000 44.494 0.807 1.506 0.48
27 33.0 32.000 33.650 0.563 -1.650 -0.52
28 46.0 46.000 45.397 0.843 0.603 0.19
29 34.0 34.000 34.554 0.563 -0.554 -0.17
30 47.0 49.000 46.301 0.881 2.699 0.87
31 36.0 37.000 36.361 0.576 0.639 0.20
32 50.0 51.000 49.012 1.002 1.988 0.65
33 36.0 38.000 36.361 0.576 1.639 0.52

Figure 11.14: MINITAB printout of simple linear regression for chemical oxygen
demand reduction data; part I.

Let us select a random sample of n observations using k distinct values of x,
say x1, x2, . . . , xn, such that the sample contains n1 observed values of the random
variable Y1 corresponding to x1, n2 observed values of Y2 corresponding to x2, . . . ,

nk observed values of Yk corresponding to xk. Of necessity, n =
k∑

i=1

ni.
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Obs Fit SE Fit 95% CI 95% PI
1 6.541 1.627 ( 3.223, 9.858) (-0.834, 13.916)
2 36.361 0.576 (35.185, 37.537) (29.670, 43.052)
3 10.155 1.440 ( 7.218, 13.092) ( 2.943, 17.367)
4 37.264 0.590 (36.062, 38.467) (30.569, 43.960)
5 13.770 1.258 (11.204, 16.335) ( 6.701, 20.838)
6 38.168 0.607 (36.931, 39.405) (31.466, 44.870)
7 17.384 1.082 (15.177, 19.592) (10.438, 24.331)
8 39.072 0.627 (37.793, 40.351) (32.362, 45.781)
9 20.095 0.957 (18.143, 22.047) (13.225, 26.965)
10 39.072 0.627 (37.793, 40.351) (32.362, 45.781)
11 28.228 0.649 (26.905, 29.551) (21.510, 34.946)
12 39.072 0.627 (37.793, 40.351) (32.362, 45.781)
13 30.035 0.605 (28.802, 31.269) (23.334, 36.737)
14 39.975 0.651 (38.648, 41.303) (33.256, 46.694)
15 30.939 0.588 (29.739, 32.139) (24.244, 37.634)
16 40.879 0.678 (39.497, 42.261) (34.149, 47.609)
17 30.939 0.588 (29.739, 32.139) (24.244, 37.634)
18 41.783 0.707 (40.341, 43.224) (35.040, 48.525)
19 31.843 0.575 (30.669, 33.016) (25.152, 38.533)
20 41.783 0.707 (40.341, 43.224) (35.040, 48.525)
21 31.843 0.575 (30.669, 33.016) (25.152, 38.533)
22 42.686 0.738 (41.181, 44.192) (35.930, 49.443)
23 32.746 0.567 (31.590, 33.902) (26.059, 39.434)
24 43.590 0.772 (42.016, 45.164) (36.818, 50.362)
25 33.650 0.563 (32.502, 34.797) (26.964, 40.336)
26 44.494 0.807 (42.848, 46.139) (37.704, 51.283)
27 33.650 0.563 (32.502, 34.797) (26.964, 40.336)
28 45.397 0.843 (43.677, 47.117) (38.590, 52.205)
29 34.554 0.563 (33.406, 35.701) (27.868, 41.239)
30 46.301 0.881 (44.503, 48.099) (39.473, 53.128)
31 36.361 0.576 (35.185, 37.537) (29.670, 43.052)
32 49.012 1.002 (46.969, 51.055) (42.115, 55.908)
33 36.361 0.576 (35.185, 37.537) (29.670, 43.052)

Figure 11.15: MINITAB printout of simple linear regression for chemical oxygen
demand reduction data; part II.

We define

yij = the jth value of the random variable Yi,

yi. = Ti. =

ni∑
j=1

yij ,

ȳi. =
Ti.

ni
.

Hence, if n4 = 3 measurements of Y were made corresponding to x = x4, we would
indicate these observations by y41, y42, and y43. Then

Ti. = y41 + y42 + y43.

Concept of Lack of Fit

The error sum of squares consists of two parts: the amount due to the variation
between the values of Y within given values of x and a component that is normally
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called the lack-of-fit contribution. The first component reflects mere random
variation, or pure experimental error, while the second component is a measure
of the systematic variation brought about by higher-order terms. In our case, these
are terms in x other than the linear, or first-order, contribution. Note that in
choosing a linear model we are essentially assuming that this second component
does not exist and hence our error sum of squares is completely due to random
errors. If this should be the case, then s2 = SSE/(n− 2) is an unbiased estimate
of σ2. However, if the model does not adequately fit the data, then the error sum
of squares is inflated and produces a biased estimate of σ2. Whether or not the
model fits the data, an unbiased estimate of σ2 can always be obtained when we
have repeated observations simply by computing

s2i =

ni∑
j=1

(yij − ȳi.)
2

ni − 1
, i = 1, 2, . . . , k,

for each of the k distinct values of x and then pooling these variances to get

s2 =

k∑
i=1

(ni − 1)s2i

n− k
=

k∑
i=1

ni∑
j=1

(yij − ȳi.)
2

n− k
.

The numerator of s2 is a measure of the pure experimental error. A compu-
tational procedure for separating the error sum of squares into the two components
representing pure error and lack of fit is as follows:

Computation of
Lack-of-Fit Sum of

Squares

1. Compute the pure error sum of squares

k∑
i=1

ni∑
j=1

(yij − ȳi.)
2.

This sum of squares has n − k degrees of freedom associated with it, and the
resulting mean square is our unbiased estimate s2 of σ2.
2. Subtract the pure error sum of squares from the error sum of squares SSE,
thereby obtaining the sum of squares due to lack of fit. The degrees of freedom
for lack of fit are obtained by simply subtracting (n− 2)− (n− k) = k − 2.

The computations required for testing hypotheses in a regression problem with
repeated measurements on the response may be summarized as shown in Table
11.3.

Figures 11.16 and 11.17 display the sample points for the “correct model” and
“incorrect model” situations. In Figure 11.16, where the μY |x fall on a straight
line, there is no lack of fit when a linear model is assumed, so the sample variation
around the regression line is a pure error resulting from the variation that occurs
among repeated observations. In Figure 11.17, where the μY |x clearly do not fall
on a straight line, the lack of fit from erroneously choosing a linear model accounts
for a large portion of the variation around the regression line, supplementing the
pure error.
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Table 11.3: Analysis of Variance for Testing Linearity of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Computed f

Regression SSR 1 SSR SSR
s2

Error SSE n− 2

Lack of fit
{
SSE − SSE (pure)

SSE (pure)

{
k − 2

n − k

SSE−SSE(pure)
k−2

SSE−SSE(pure)
s2(k−2)

Pure error s2 =
SSE(pure)

n−k

Total SST n− 1

x

Y

μ Y x =

β0 +

 β1x
|

x1 x2 x3 x4 x5 x6

Figure 11.16: Correct linear model with no lack-of-
fit component.

x

Y

μ Y x =
β 0 +

β1x
/

x1 x2 x3 x4 x5 x6

Figure 11.17: Incorrect linear model with lack-of-fit
component.

What Is the Importance in Detecting Lack of Fit?

The concept of lack of fit is extremely important in applications of regression
analysis. In fact, the need to construct or design an experiment that will account
for lack of fit becomes more critical as the problem and the underlying mechanism
involved become more complicated. Surely, one cannot always be certain that his
or her postulated structure, in this case the linear regression model, is correct
or even an adequate representation. The following example shows how the error
sum of squares is partitioned into the two components representing pure error and
lack of fit. The adequacy of the model is tested at the α-level of significance by
comparing the lack-of-fit mean square divided by s2 with fα(k − 2, n− k).

Example 11.8: Observations of the yield of a chemical reaction taken at various temperatures were
recorded in Table 11.4. Estimate the linear model μY |x = β0 + β1x and test for
lack of fit.

Solution : Results of the computations are shown in Table 11.5.
Conclusion: The partitioning of the total variation in this manner reveals a

significant variation accounted for by the linear model and an insignificant amount
of variation due to lack of fit. Thus, the experimental data do not seem to suggest
the need to consider terms higher than first order in the model, and the null
hypothesis is not rejected.
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Table 11.4: Data for Example 11.8

y (%) x (◦C) y (%) x (◦C)
77.4 150 88.9 250
76.7 150 89.2 250
78.2 150 89.7 250
84.1 200 94.8 300
84.5 200 94.7 300
83.7 200 95.9 300

Table 11.5: Analysis of Variance on Yield-Temperature Data

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Computed f P-Values

Regression
Error

Lack of fit
Pure error

Total

509.2507
3.8660
1.2060
2.6600

513.1167

1
10
2
8
11

509.2507

0.6030
0.3325

1531.58

1.81

<0.0001

0.2241
{ {

Annotated Computer Printout for Test for Lack of Fit

Figure 11.18 is an annotated computer printout showing analysis of the data of
Example 11.8 with SAS. Note the “LOF” with 2 degrees of freedom, represent-
ing the quadratic and cubic contribution to the model, and the P -value of 0.22,
suggesting that the linear (first-order) model is adequate.

Dependent Variable: yield

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 510.4566667 170.1522222 511.74 <.0001

Error 8 2.6600000 0.3325000

Corrected Total 11 513.1166667

R-Square Coeff Var Root MSE yield Mean

0.994816 0.666751 0.576628 86.48333

Source DF Type I SS Mean Square F Value Pr > F

temperature 1 509.2506667 509.2506667 1531.58 <.0001

LOF 2 1.2060000 0.6030000 1.81 0.2241

Figure 11.18: SAS printout, showing analysis of data of Example 11.8.

Exercises

11.31 Test for linearity of regression in Exercise 11.3
on page 398. Use a 0.05 level of significance. Comment.

11.32 Test for linearity of regression in Exercise 11.8
on page 399. Comment.

11.33 Suppose we have a linear equation through the

origin (Exercise 11.28) μY |x = βx.

(a) Estimate the regression line passing through the
origin for the following data:

x 0.5 1.5 3.2 4.2 5.1 6.5
y 1.3 3.4 6.7 8.0 10.0 13.2
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(b) Suppose it is not known whether the true regres-
sion should pass through the origin. Estimate the
linear model μY |x = β0 + β1x and test the hypoth-
esis that β0 = 0, at the 0.10 level of significance,
against the alternative that β0 �= 0.

11.34 Use an analysis-of-variance approach to test
the hypothesis that β1 = 0 against the alternative hy-
pothesis β1 �= 0 in Exercise 11.5 on page 398 at the
0.05 level of significance.

11.35 The following data are a result of an investiga-
tion as to the effect of reaction temperature x on per-
cent conversion of a chemical process y. (See Myers,
Montgomery and Anderson-Cook, 2009.) Fit a simple
linear regression, and use a lack-of-fit test to determine
if the model is adequate. Discuss.

Temperature Conversion
Observation (◦C), x (%), y

1
2
3
4
5
6
7
8
9

10
11
12

200
250
200
250
189.65
260.35
225
225
225
225
225
225

43
78
69
73
48
78
65
74
76
79
83
81

11.36 Transistor gain between emitter and collector
in an integrated circuit device (hFE) is related to two
variables (Myers, Montgomery and Anderson-Cook,
2009) that can be controlled at the deposition process,
emitter drive-in time (x1, in minutes) and emitter dose
(x2, in ions × 1014). Fourteen samples were observed
following deposition, and the resulting data are shown
in the table below. We will consider linear regression
models using gain as the response and emitter drive-in
time or emitter dose as the regressor variable.

x1 (drive-in x2 (dose, y (gain,
Obs. time, min) ions ×1014) or hFE)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

195
255
195
255
255
255
255
195
255
255
255
255
255
340

4.00
4.00
4.60
4.60
4.20
4.10
4.60
4.30
4.30
4.00
4.70
4.30
4.72
4.30

1004
1636
852

1506
1272
1270
1269
903

1555
1260
1146
1276
1225
1321

(a) Determine if emitter drive-in time influences gain
in a linear relationship. That is, test H0: β1 = 0,
where β1 is the slope of the regressor variable.

(b) Do a lack-of-fit test to determine if the linear rela-
tionship is adequate. Draw conclusions.

(c) Determine if emitter dose influences gain in a linear
relationship. Which regressor variable is the better
predictor of gain?

11.37 Organophosphate (OP) compounds are used as
pesticides. However, it is important to study their ef-
fect on species that are exposed to them. In the labora-
tory study Some Effects of Organophosphate Pesticides
on Wildlife Species, by the Department of Fisheries
and Wildlife at Virginia Tech, an experiment was con-
ducted in which different dosages of a particular OP
pesticide were administered to 5 groups of 5 mice (per-
omysius leucopus). The 25 mice were females of similar
age and condition. One group received no chemical.
The basic response y was a measure of activity in the
brain. It was postulated that brain activity would de-
crease with an increase in OP dosage. The data are as
follows:

Dose, x (mg/kg Activity, y
Animal body weight) (moles/liter/min)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0.0
0.0
0.0
0.0
0.0
2.3
2.3
2.3
2.3
2.3
4.6
4.6
4.6
4.6
4.6
9.2
9.2
9.2
9.2
9.2

18.4
18.4
18.4
18.4
18.4

10.9
10.6
10.8
9.8
9.0

11.0
11.3
9.9
9.2

10.1
10.6
10.4
8.8

11.1
8.4
9.7
7.8
9.0
8.2
2.3
2.9
2.2
3.4
5.4
8.2

(a) Using the model

Yi = β0 + β1xi + εi, i = 1, 2, . . . , 25,

find the least squares estimates of β0 and β1.

(b) Construct an analysis-of-variance table in which
the lack of fit and pure error have been separated.
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Determine if the lack of fit is significant at the 0.05
level. Interpret the results.

11.38 Heat treating is often used to carburize metal
parts such as gears. The thickness of the carburized
layer is considered an important feature of the gear,
and it contributes to the overall reliability of the part.
Because of the critical nature of this feature, a lab test
is performed on each furnace load. The test is a de-
structive one, where an actual part is cross sectioned
and soaked in a chemical for a period of time. This
test involves running a carbon analysis on the surface
of both the gear pitch (top of the gear tooth) and the
gear root (between the gear teeth). The data below
are the results of the pitch carbon-analysis test for 19
parts.

Soak Time Pitch Soak Time Pitch
0.58 0.013 1.17 0.021
0.66 0.016 1.17 0.019
0.66 0.015 1.17 0.021
0.66 0.016 1.20 0.025
0.66 0.015 2.00 0.025
0.66 0.016 2.00 0.026
1.00 0.014 2.20 0.024
1.17 0.021 2.20 0.025
1.17 0.018 2.20 0.024
1.17 0.019

(a) Fit a simple linear regression relating the pitch car-
bon analysis y against soak time. Test H0: β1 = 0.

(b) If the hypothesis in part (a) is rejected, determine
if the linear model is adequate.

11.39 A regression model is desired relating tempera-
ture and the proportion of impurities passing through
solid helium. Temperature is listed in degrees centi-
grade. The data are as follows:

Temperature (◦C) Proportion of Impurities
−260.5 0.425
−255.7 0.224
−264.6 0.453
−265.0 0.475
−270.0 0.705
−272.0 0.860
−272.5 0.935
−272.6 0.961
−272.8 0.979
−272.9 0.990

(a) Fit a linear regression model.

(b) Does it appear that the proportion of impurities
passing through helium increases as the tempera-
ture approaches −273 degrees centigrade?

(c) Find R2.

(d) Based on the information above, does the linear
model seem appropriate? What additional infor-
mation would you need to better answer that ques-
tion?

11.40 It is of interest to study the effect of population
size in various cities in the United States on ozone con-
centrations. The data consist of the 1999 population
in millions and the amount of ozone present per hour
in ppb (parts per billion). The data are as follows.

Ozone (ppb/hour), y Population, x
126 0.6
135 4.9
124 0.2
128 0.5
130 1.1
128 0.1
126 1.1
128 2.3
128 0.6
129 2.3

(a) Fit the linear regression model relating ozone con-
centration to population. Test H0 : β1 = 0 using
the ANOVA approach.

(b) Do a test for lack of fit. Is the linear model appro-
priate based on the results of your test?

(c) Test the hypothesis of part (a) using the pure mean
square error in the F-test. Do the results change?
Comment on the advantage of each test.

11.41 Evaluating nitrogen deposition from the atmo-
sphere is a major role of the National Atmospheric
Deposition Program (NADP), a partnership of many
agencies. NADP is studying atmospheric deposition
and its effect on agricultural crops, forest surface wa-
ters, and other resources. Nitrogen oxides may affect
the ozone in the atmosphere and the amount of pure
nitrogen in the air we breathe. The data are as follows:

Year Nitrogen Oxide
1978 0.73
1979 2.55
1980 2.90
1981 3.83
1982 2.53
1983 2.77
1984 3.93
1985 2.03
1986 4.39
1987 3.04
1988 3.41
1989 5.07
1990 3.95
1991 3.14
1992 3.44
1993 3.63
1994 4.50
1995 3.95
1996 5.24
1997 3.30
1998 4.36
1999 3.33
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(a) Plot the data.

(b) Fit a linear regression model and find R2.

(c) What can you say about the trend in nitrogen oxide
across time?

11.42 For a particular variety of plant, researchers
wanted to develop a formula for predicting the quan-
tity of seeds (in grams) as a function of the density of
plants. They conducted a study with four levels of the
factor x, the number of plants per plot. Four replica-

tions were used for each level of x. The data are shown
as follows:

Plants per Plot, Quantity of Seeds, y
x (grams)
10 12.6 11.0 12.1 10.9
20 15.3 16.1 14.9 15.6
30 17.9 18.3 18.6 17.8
40 19.2 19.6 18.9 20.0

Is a simple linear regression model adequate for ana-
lyzing this data set?

11.10 Data Plots and Transformations

In this chapter, we deal with building regression models where there is one in-
dependent, or regressor, variable. In addition, we are assuming, through model
formulation, that both x and y enter the model in a linear fashion. Often it is
advisable to work with an alternative model in which either x or y (or both) enters
in a nonlinear way. A transformation of the data may be indicated because of
theoretical considerations inherent in the scientific study, or a simple plotting of
the data may suggest the need to reexpress the variables in the model. The need to
perform a transformation is rather simple to diagnose in the case of simple linear
regression because two-dimensional plots give a true pictorial display of how each
variable enters the model.

A model in which x or y is transformed should not be viewed as a nonlinear
regression model. We normally refer to a regression model as linear when it is
linear in the parameters. In other words, suppose the complexion of the data
or other scientific information suggests that we should regress y* against x*,
where each is a transformation on the natural variables x and y. Then the model
of the form

y∗i = β0 + β1x
∗
i + εi

is a linear model since it is linear in the parameters β0 and β1. The material given
in Sections 11.2 through 11.9 remains intact, with y∗i and x∗

i replacing yi and xi.
A simple and useful example is the log-log model

log yi = β0 + β1 log xi + εi.

Although this model is not linear in x and y, it is linear in the parameters and is
thus treated as a linear model. On the other hand, an example of a truly nonlinear
model is

yi = β0 + β1x
β2 + εi,

where the parameter β2 (as well as β0 and β1) is to be estimated. The model is
not linear in β2.

Transformations that may enhance the fit and predictability of a model are
many in number. For a thorough discussion of transformations, the reader is
referred to Myers (1990, see the Bibliography). We choose here to indicate a few
of them and show the appearance of the graphs that serve as a diagnostic tool.
Consider Table 11.6. Several functions are given describing relationships between
y and x that can produce a linear regression through the transformation indicated.

Uploaded By: anonymousSTUDENTS-HUB.com



11.10 Data Plots and Transformations 425

In addition, for the sake of completeness the reader is given the dependent and
independent variables to use in the resulting simple linear regression. Figure 11.19
depicts functions listed in Table 11.6. These serve as a guide for the analyst in
choosing a transformation from the observation of the plot of y against x.

Table 11.6: Some Useful Transformations to Linearize

Functional Form Proper Form of Simple
Relating y to x Transformation Linear Regression

Exponential: y = β0e
β1x y∗ = ln y Regress y* against x

Power: y = β0x
β1 y∗ = log y; x∗ = log x Regress y* against x*

Reciprocal: y = β0 + β1

(
1
x

)
x∗ = 1

x Regress y against x*

Hyperbolic: y = x
β0+β1x

y∗ = 1
y ; x∗ = 1

x Regress y* against x*

x

y

β 0

β 1 > 0

x

y

β0

β1 < 0

(a) Exponential function

x

y

β 1 > 1

0 <  β 1 < 1

x

y

β1 < 0

(b) Power function

x

y

β 0

β 1 > 0

x

y
β0

β 1 < 0

(c) Reciprocal function

x

y
1 β1

(d) Hyperbolic function

Figure 11.19: Diagrams depicting functions listed in Table 11.6.

What Are the Implications of a Transformed Model?

The foregoing is intended as an aid for the analyst when it is apparent that a trans-
formation will provide an improvement. However, before we provide an example,
two important points should be made. The first one revolves around the formal
writing of the model when the data are transformed. Quite often the analyst does
not think about this. He or she merely performs the transformation without any
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concern about the model form before and after the transformation. The exponen-
tial model serves as a good illustration. The model in the natural (untransformed)
variables that produces an additive error model in the transformed variables is
given by

yi = β0e
β1xi · εi,

which is a multiplicative error model. Clearly, taking logs produces

ln yi = lnβ0 + β1xi + ln εi.

As a result, it is on ln εi that the basic assumptions are made. The purpose
of this presentation is merely to remind the reader that one should not view a
transformation as merely an algebraic manipulation with an error added. Often a
model in the transformed variables that has a proper additive error structure is a
result of a model in the natural variables with a different type of error structure.

The second important point deals with the notion of measures of improvement.
Obvious measures of comparison are, of course, R2 and the residual mean square,
s2. (Other measures of performance used to compare competing models are given
in Chapter 12.) Now, if the response y is not transformed, then clearly s2 and R2

can be used in measuring the utility of the transformation. The residuals will be
in the same units for both the transformed and the untransformed models. But
when y is transformed, performance criteria for the transformed model should be
based on values of the residuals in the metric of the untransformed response so
that comparisons that are made are proper. The example that follows provides an
illustration.

Example 11.9: The pressure P of a gas corresponding to various volumes V is recorded, and the
data are given in Table 11.7.

Table 11.7: Data for Example 11.9

V (cm3) 50 60 70 90 100
P (kg/cm2) 64.7 51.3 40.5 25.9 7.8

The ideal gas law is given by the functional form PV γ = C, where γ and C are
constants. Estimate the constants C and γ.

Solution : Let us take natural logs of both sides of the model

PiV
γ = C · εi, i = 1, 2, 3, 4, 5.

As a result, a linear model can be written

lnPi = lnC − γ lnVi + ε∗i , i = 1, 2, 3, 4, 5,

where ε∗i = ln εi. The following represents results of the simple linear regression:

Intercept: l̂nC = 14.7589, Ĉ = 2, 568, 862.88, Slope: γ̂ = 2.65347221.

The following represents information taken from the regression analysis.

Pi Vi lnPi lnVi
̂lnPi P̂i ei = Pi − P̂i

64.7
51.3
40.5
25.9
7.8

50
60
70
90
100

4.16976
3.93769
3.70130
3.25424
2.05412

3.91202
4.09434
4.24850
4.49981
4.60517

4.37853
3.89474
3.48571
2.81885
2.53921

79.7
49.1
32.6
16.8
12.7

−15.0
2.2
7.9
9.1

−4.9
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11.10 Data Plots and Transformations 427

It is instructive to plot the data and the regression equation. Figure 11.20
shows a plot of the data in the untransformed pressure and volume and the curve
representing the regression equation.
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Figure 11.20: Pressure and volume data and fitted regression.

Diagnostic Plots of Residuals: Graphical Detection
of Violation of Assumptions

Plots of the raw data can be extremely helpful in determining the nature of the
model that should be fit to the data when there is a single independent variable.
We have attempted to illustrate this in the foregoing. Detection of proper model
form is, however, not the only benefit gained from diagnostic plotting. As in much
of the material associated with significance testing in Chapter 10, plotting methods
can illustrate and detect violation of assumptions. The reader should recall that
much of what is illustrated in this chapter requires assumptions made on the model
errors, the εi. In fact, we assume that the εi are independent N(0, σ) random
variables. Now, of course, the εi are not observed. However, the ei = yi − ŷi, the
residuals, are the error in the fit of the regression line and thus serve to mimic the
εi. Thus, the general complexion of these residuals can often highlight difficulties.
Ideally, of course, the plot of the residuals is as depicted in Figure 11.21. That is,
they should truly show random fluctuations around a value of zero.

Nonhomogeneous Variance

Homogeneous variance is an important assumption made in regression analysis.
Violations can often be detected through the appearance of the residual plot. In-
creasing error variance with an increase in the regressor variable is a common
condition in scientific data. Large error variance produces large residuals, and
hence a residual plot like the one in Figure 11.22 is a signal of nonhomogeneous
variance. More discussion regarding these residual plots and information regard-
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Figure 11.21: Ideal residual plot.
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Figure 11.22: Residual plot depicting heteroge-
neous error variance.

ing different types of residuals appears in Chapter 12, where we deal with multiple
linear regression.

Normal Probability Plotting

The assumption that the model errors are normal is made when the data analyst
deals in either hypothesis testing or confidence interval estimation. Again, the
numerical counterpart to the εi, namely the residuals, are subjects of diagnostic
plotting to detect any extreme violations. In Chapter 8, we introduced normal
quantile-quantile plots and briefly discussed normal probability plots. These plots
on residuals are illustrated in the case study introduced in the next section.

11.11 Simple Linear Regression Case Study

In the manufacture of commercial wood products, it is important to estimate the
relationship between the density of a wood product and its stiffness. A relatively
new type of particleboard is being considered that can be formed with considerably
more ease than the accepted commercial product. It is necessary to know at what
density the stiffness is comparable to that of the well-known, well-documented
commercial product. A study was done by Terrance E. Conners, Investigation of
Certain Mechanical Properties of a Wood-Foam Composite (M.S. Thesis, Depart-
ment of Forestry and Wildlife Management, University of Massachusetts). Thirty
particleboards were produced at densities ranging from roughly 8 to 26 pounds per
cubic foot, and the stiffness was measured in pounds per square inch. Table 11.8
shows the data.

It is necessary for the data analyst to focus on an appropriate fit to the data
and use inferential methods discussed in this chapter. Hypothesis testing on the
slope of the regression, as well as confidence or prediction interval estimation, may
well be appropriate. We begin by demonstrating a simple scatter plot of the raw
data with a simple linear regression superimposed. Figure 11.23 shows this plot.

The simple linear regression fit to the data produced the fitted model

ŷ = −25,433.739 + 3884.976x (R2 = 0.7975),
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11.11 Simple Linear Regression Case Study 429

Table 11.8: Density and Stiffness for 30 Particleboards

Density, x Stiffness, y Density, x Stiffness, y
9.50
9.80
8.30
8.60
7.00
17.40
15.20
16.70
15.00
14.80
25.60
24.40
19.50
22.80
19.80

14,814.00
14,007.00
7573.00
9714.00
5304.00

43,243.00
28,028.00
49,499.00
26,222.00
26,751.00
96,305.00
72,594.00
32,207.00
70,453.00
38,138.00

8.40
11.00
9.90
6.40
8.20

15.00
16.40
15.40
14.50
13.60
23.40
23.30
21.20
21.70
21.30

17,502.00
19,443.00
14,191.00
8076.00

10,728.00
25,319.00
41,792.00
25,312.00
22,148.00
18,036.00

104,170.00
49,512.00
48,218.00
47,661.00
53,045.00
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Figure 11.23: Scatter plot of the wood density data.
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Figure 11.24: Residual plot for the wood density
data.

and the residuals were computed. Figure 11.24 shows the residuals plotted against
the measurements of density. This is hardly an ideal or healthy set of residuals.
They do not show a random scatter around a value of zero. In fact, clusters of
positive and negative values suggest that a curvilinear trend in the data should be
investigated.

To gain some type of idea regarding the normal error assumption, a normal
probability plot of the residuals was generated. This is the type of plot discussed in
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Section 8.8 in which the horizontal axis represents the empirical normal distribution
function on a scale that produces a straight-line plot when plotted against the
residuals. Figure 11.25 shows the normal probability plot of the residuals. The
normal probability plot does not reflect the straight-line appearance that one would
like to see. This is another symptom of a faulty, perhaps overly simplistic choice
of a regression model.
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Figure 11.25: Normal probability plot of residuals for wood density data.

Both types of residual plots and, indeed, the scatter plot itself suggest here that
a somewhat complicated model would be appropriate. One possible approach is to
use a natural log transformation. In other words, one might choose to regress ln y
against x. This produces the regression

l̂n y = 8.257 + 0.125x (R2 = 0.9016).

To gain some insight into whether the transformed model is more appropriate,
consider Figures 11.26 and 11.27, which reveal plots of the residuals in stiffness [i.e.,

yi-antilog (l̂n y)] against density. Figure 11.26 appears to be closer to a random
pattern around zero, while Figure 11.27 is certainly closer to a straight line. This
in addition to the higher R2-value would suggest that the transformed model is
more appropriate.

11.12 Correlation

Up to this point we have assumed that the independent regressor variable x is a
physical or scientific variable but not a random variable. In fact, in this context,
x is often called a mathematical variable, which, in the sampling process, is
measured with negligible error. In many applications of regression techniques,
it is more realistic to assume that both X and Y are random variables and the
measurements {(xi, yi); i = 1, 2, . . . , n} are observations from a population having
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Figure 11.26: Residual plot using the log transfor-
mation for the wood density data.
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Figure 11.27: Normal probability plot of residuals
using the log transformation for the wood density
data.

the joint density function f(x, y). We shall consider the problem of measuring the
relationship between the two variables X and Y. For example, if X and Y represent
the length and circumference of a particular kind of bone in the adult body, we
might conduct an anthropological study to determine whether large values of X
are associated with large values of Y, and vice versa.

On the other hand, if X represents the age of a used automobile and Y repre-
sents the retail book value of the automobile, we would expect large values of X
to correspond to small values of Y and small values of X to correspond to large
values of Y. Correlation analysis attempts to measure the strength of such rela-
tionships between two variables by means of a single number called a correlation
coefficient.

In theory, it is often assumed that the conditional distribution f(y|x) of Y, for
fixed values of X, is normal with mean μY |x = β0 + β1x and variance σ2

Y |x = σ2

and that X is likewise normally distributed with mean μ and variance σ2
x. The

joint density of X and Y is then

f(x, y) = n(y|x;β0 + β1x, σ)n(x;μX , σX)

=
1

2πσxσ
exp

{
−1

2

[(
y − β0 − β1x

σ

)2

+

(
x− μX

σX

)2
]}

,

for −∞ < x < ∞ and −∞ < y < ∞.
Let us write the random variable Y in the form

Y = β0 + β1X + ε,

where X is now a random variable independent of the random error ε. Since the
mean of the random error ε is zero, it follows that

μY = β0 + β1μX and σ2
Y = σ2 + β2

1σ
2
X .

Substituting for α and σ2 into the preceding expression for f(x, y), we obtain the
bivariate normal distribution
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f(x, y) =
1

2πσXσY

√
1− ρ2

× exp

{
− 1

2(1− ρ2)

[(
x− μX

σX

)
2− 2ρ

(
x− μX

σX

)(
y − μY

σY

)
+

(
y − μY

σY

)
2

]}
,

for −∞ < x < ∞ and −∞ < y < ∞, where

ρ2 = 1− σ2

σ2
Y

= β2
1

σ2
X

σ2
Y

.

The constant ρ (rho) is called the population correlation coefficient and plays
a major role in many bivariate data analysis problems. It is important for the
reader to understand the physical interpretation of this correlation coefficient and
the distinction between correlation and regression. The term regression still has
meaning here. In fact, the straight line given by μY |x = β0 + β1x is still called
the regression line as before, and the estimates of β0 and β1 are identical to those
given in Section 11.3. The value of ρ is 0 when β1 = 0, which results when there
essentially is no linear regression; that is, the regression line is horizontal and any
knowledge of X is useless in predicting Y. Since σ2

Y ≥ σ2, we must have ρ2 ≤ 1
and hence −1 ≤ ρ ≤ 1. Values of ρ = ±1 only occur when σ2 = 0, in which case
we have a perfect linear relationship between the two variables. Thus, a value of ρ
equal to +1 implies a perfect linear relationship with a positive slope, while a value
of ρ equal to −1 results from a perfect linear relationship with a negative slope. It
might be said, then, that sample estimates of ρ close to unity in magnitude imply
good correlation, or linear association, between X and Y, whereas values near
zero indicate little or no correlation.

To obtain a sample estimate of ρ, recall from Section 11.4 that the error sum
of squares is

SSE = Syy − b1Sxy.

Dividing both sides of this equation by Syy and replacing Sxy by b1Sxx, we obtain
the relation

b21
Sxx

Syy
= 1− SSE

Syy
.

The value of b21Sxx/Syy is zero when b1 = 0, which will occur when the sample
points show no linear relationship. Since Syy ≥ SSE, we conclude that b21Sxx/Sxy

must be between 0 and l. Consequently, b1
√
Sxx/Syy must range from −1 to +1,

negative values corresponding to lines with negative slopes and positive values to
lines with positive slopes. A value of −1 or +1 will occur when SSE = 0, but this
is the case where all sample points lie in a straight line. Hence, a perfect linear
relationship appears in the sample data when b1

√
Sxx/Syy = ±1. Clearly, the

quantity b1
√

Sxx/Syy, which we shall henceforth designate as r, can be used as an
estimate of the population correlation coefficient ρ. It is customary to refer to the
estimate r as the Pearson product-moment correlation coefficient or simply
the sample correlation coefficient.

Correlation
Coefficient

The measure ρ of linear association between two variables X and Y is estimated
by the sample correlation coefficient r, where

r = b1

√
Sxx

Syy
=

Sxy√
SxxSyy

.

Uploaded By: anonymousSTUDENTS-HUB.com
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For values of r between −1 and +1 we must be careful in our interpretation.
For example, values of r equal to 0.3 and 0.6 only mean that we have two positive
correlations, one somewhat stronger than the other. It is wrong to conclude that
r = 0.6 indicates a linear relationship twice as good as that indicated by the value
r = 0.3. On the other hand, if we write

r2 =
S2
xy

SxxSyy
=

SSR

Syy
,

then r2, which is usually referred to as the sample coefficient of determination,
represents the proportion of the variation of Syy explained by the regression of Y
on x, namely SSR. That is, r2 expresses the proportion of the total variation in
the values of the variable Y that can be accounted for or explained by a linear
relationship with the values of the random variable X. Thus, a correlation of 0.6
means that 0.36, or 36%, of the total variation of the values of Y in our sample is
accounted for by a linear relationship with values of X.

Example 11.10: It is important that scientific researchers in the area of forest products be able to
study correlation among the anatomy and mechanical properties of trees. For the
study Quantitative Anatomical Characteristics of Plantation Grown Loblolly Pine
(Pinus Taeda L.) and Cottonwood (Populus deltoides Bart. Ex Marsh.) and Their
Relationships to Mechanical Properties, conducted by the Department of Forestry
and Forest Products at Virginia Tech, 29 loblolly pines were randomly selected
for investigation. Table 11.9 shows the resulting data on the specific gravity in
grams/cm3 and the modulus of rupture in kilopascals (kPa). Compute and inter-
pret the sample correlation coefficient.

Table 11.9: Data on 29 Loblolly Pines for Example 11.10

Specific Gravity, Modulus of Rupture, Specific Gravity, Modulus of Rupture,
x (g/cm3) y (kPa) x (g/cm3) y (kPa)

0.414 29,186 0.581 85,156
0.383 29,266 0.557 69,571
0.399 26,215 0.550 84,160
0.402 30,162 0.531 73,466
0.442 38,867 0.550 78,610
0.422 37,831 0.556 67,657
0.466 44,576 0.523 74,017
0.500 46,097 0.602 87,291
0.514 59,698 0.569 86,836
0.530 67,705 0.544 82,540
0.569 66,088 0.557 81,699
0.558 78,486 0.530 82,096
0.577 89,869 0.547 75,657
0.572 77,369 0.585 80,490
0.548 67,095

Solution : From the data we find that

Sxx = 0.11273, Syy = 11,807,324,805, Sxy = 34,422.27572.

Therefore,

r =
34,422.27572√

(0.11273)(11,807,324,805)
= 0.9435.
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A correlation coefficient of 0.9435 indicates a good linear relationship between X
and Y. Since r2 = 0.8902, we can say that approximately 89% of the variation in
the values of Y is accounted for by a linear relationship with X.

A test of the special hypothesis ρ = 0 versus an appropriate alternative is
equivalent to testing β1 = 0 for the simple linear regression model, and therefore
the procedures of Section 11.8 using either the t-distribution with n− 2 degrees of
freedom or the F -distribution with 1 and n− 2 degrees of freedom are applicable.
However, if one wishes to avoid the analysis-of-variance procedure and compute
only the sample correlation coefficient, it can be verified (see Review Exercise
11.66 on page 438) that the t-value

t =
b1

s/
√
Sxx

can also be written as

t =
r
√
n− 2√
1− r2

,

which, as before, is a value of the statistic T having a t-distribution with n − 2
degrees of freedom.

Example 11.11: For the data of Example 11.10, test the hypothesis that there is no linear association
among the variables.

Solution : 1. H0: ρ = 0.

2. H1: ρ �= 0.

3. α = 0.05.

4. Critical region: t < −2.052 or t > 2.052.

5. Computations: t = 0.9435
√
27√

1−0.94352
= 14.79, P < 0.0001.

6. Decision: Reject the hypothesis of no linear association.
A test of the more general hypothesis ρ = ρ0 against a suitable alternative is

easily conducted from the sample information. If X and Y follow the bivariate
normal distribution, the quantity

1

2
ln

(
1 + r

1− r

)
is the value of a random variable that follows approximately the normal distribution
with mean 1

2 ln
1+ρ
1−ρ and variance 1/(n−3). Thus, the test procedure is to compute

z =

√
n− 3

2

[
ln

(
1 + r

1− r

)
− ln

(
1 + ρ0
1− ρ0

)]
=

√
n− 3

2
ln

[
(1 + r)(1− ρ0)

(1− r)(1 + ρ0)

]
and compare it with the critical points of the standard normal distribution.

Example 11.12: For the data of Example 11.10, test the null hypothesis that ρ = 0.9 against the
alternative that ρ > 0.9. Use a 0.05 level of significance.

Solution : 1. H0: ρ = 0.9.

2. H1: ρ > 0.9.

3. α = 0.05.

4. Critical region: z > 1.645.
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(b) Causal Relationship

Figure 11.28: Scatter diagram showing zero correlation.

5. Computations:

z =

√
26

2
ln

[
(1 + 0.9435)(0.1)

(1− 0.9435)(1.9)

]
= 1.51, P = 0.0655.

6. Decision: There is certainly some evidence that the correlation coefficient does
not exceed 0.9.

It should be pointed out that in correlation studies, as in linear regression
problems, the results obtained are only as good as the model that is assumed. In
the correlation techniques studied here, a bivariate normal density is assumed for
the variables X and Y, with the mean value of Y at each x-value being linearly
related to x. To observe the suitability of the linearity assumption, a preliminary
plotting of the experimental data is often helpful. A value of the sample correlation
coefficient close to zero will result from data that display a strictly random effect
as in Figure 11.28(a), thus implying little or no causal relationship. It is important
to remember that the correlation coefficient between two variables is a measure of
their linear relationship and that a value of r = 0 implies a lack of linearity and
not a lack of association. Hence, if a strong quadratic relationship exists between
X and Y, as indicated in Figure 11.28(b), we can still obtain a zero correlation
indicating a nonlinear relationship.

Exercises

11.43 Compute and interpret the correlation coeffi-
cient for the following grades of 6 students selected at
random:

Mathematics grade 70 92 80 74 65 83

English grade 74 84 63 87 78 90

11.44 With reference to Exercise 11.1 on page 398,
assume that x and y are random variables with a bi-
variate normal distribution.

(a) Calculate r.

(b) Test the hypothesis that ρ = 0 against the alterna-
tive that ρ �= 0 at the 0.05 level of significance.
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11.45 With reference to Exercise 11.13 on page 400,
assume a bivariate normal distribution for x and y.

(a) Calculate r.

(b) Test the null hypothesis that ρ = −0.5 against the
alternative that ρ < −0.5 at the 0.025 level of sig-
nificance.

(c) Determine the percentage of the variation in the
amount of particulate removed that is due to
changes in the daily amount of rainfall.

11.46 Test the hypothesis that ρ = 0 in Exercise
11.43 against the alternative that ρ �= 0. Use a 0.05
level of significance.

11.47 The following data were obtained in a study of
the relationship between the weight and chest size of

infants at birth.
Weight (kg) Chest Size (cm)

2.75 29.5
2.15 26.3
4.41 32.2
5.52 36.5
3.21 27.2
4.32 27.7
2.31 28.3
4.30 30.3
3.71 28.7

(a) Calculate r.

(b) Test the null hypothesis that ρ = 0 against the al-
ternative that ρ > 0 at the 0.01 level of significance.

(c) What percentage of the variation in infant chest
sizes is explained by difference in weight?

Review Exercises
11.48 With reference to Exercise 11.8 on page 399,
construct

(a) a 95% confidence interval for the average course
grade of students who make a 35 on the placement
test;

(b) a 95% prediction interval for the course grade of a
student who made a 35 on the placement test.

11.49 The Statistics Consulting Center at Virginia
Tech analyzed data on normal woodchucks for the De-
partment of Veterinary Medicine. The variables of in-
terest were body weight in grams and heart weight in
grams. It was desired to develop a linear regression
equation in order to determine if there is a significant
linear relationship between heart weight and total body
weight.
Body Weight (grams) Heart Weight (grams)

4050
2465
3120
5700
2595
3640
2050
4235
2935
4975
3690
2800
2775
2170
2370
2055
2025
2645
2675

11.2
12.4
10.5
13.2
9.8

11.0
10.8
10.4
12.2
11.2
10.8
14.2
12.2
10.0
12.3
12.5
11.8
16.0
13.8

Use heart weight as the independent variable and body
weight as the dependent variable and fit a simple linear
regression using the following data. In addition, test
the hypothesis H0: β1 = 0 versus H1: β1 �= 0. Draw
conclusions.

11.50 The amounts of solids removed from a particu-
lar material when exposed to drying periods of different
lengths are as shown.

x (hours) y (grams)
4.4 13.1 14.2
4.5 9.0 11.5
4.8 10.4 11.5
5.5 13.8 14.8
5.7 12.7 15.1
5.9 9.9 12.7
6.3 13.8 16.5
6.9 16.4 15.7
7.5 17.6 16.9
7.8 18.3 17.2

(a) Estimate the linear regression line.

(b) Test at the 0.05 level of significance whether the
linear model is adequate.

11.51 With reference to Exercise 11.9 on page 399,
construct

(a) a 95% confidence interval for the average weekly
sales when $45 is spent on advertising;

(b) a 95% prediction interval for the weekly sales when
$45 is spent on advertising.

11.52 An experiment was designed for the Depart-
ment of Materials Engineering at Virginia Tech to
study hydrogen embrittlement properties based on
electrolytic hydrogen pressure measurements. The so-
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lution used was 0.1 N NaOH, and the material was a
certain type of stainless steel. The cathodic charging
current density was controlled and varied at four lev-
els. The effective hydrogen pressure was observed as
the response. The data follow.

Charging Current Effective
Density, x Hydrogen

Run ( mA/cm2) Pressure, y (atm)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.5
0.5
0.5
0.5
1.5
1.5
1.5
2.5
2.5
2.5
2.5
3.5
3.5
3.5
3.5

86.1
92.1
64.7
74.7

223.6
202.1
132.9
413.5
231.5
466.7
365.3
493.7
382.3
447.2
563.8

(a) Run a simple linear regression of y against x.

(b) Compute the pure error sum of squares and make
a test for lack of fit.

(c) Does the information in part (b) indicate a need
for a model in x beyond a first-order regression?
Explain.

11.53 The following data represent the chemistry
grades for a random sample of 12 freshmen at a cer-
tain college along with their scores on an intelligence
test administered while they were still seniors in high
school.

Test Chemistry
Student Score, x Grade, y

1
2
3
4
5
6
7
8
9

10
11
12

65
50
55
65
55
70
65
70
55
70
50
55

85
74
76
90
85
87
94
98
81
91
76
74

(a) Compute and interpret the sample correlation co-
efficient.

(b) State necessary assumptions on random variables.

(c) Test the hypothesis that ρ = 0.5 against the alter-
native that ρ > 0.5. Use a P-value in the conclu-
sion.

11.54 The business section of the Washington Times
in March of 1997 listed 21 different used computers and
printers and their sale prices. Also listed was the aver-
age hover bid. Partial results from regression analysis
using SAS software are shown in Figure 11.29 on page
439.

(a) Explain the difference between the confidence in-
terval on the mean and the prediction interval.

(b) Explain why the standard errors of prediction vary
from observation to observation.

(c) Which observation has the lowest standard error of
prediction? Why?

11.55 Consider the vehicle data from Consumer Re-
ports in Figure 11.30 on page 440. Weight is in tons,
mileage in miles per gallon, and drive ratio is also indi-
cated. A regression model was fitted relating weight x
to mileage y. A partial SAS printout in Figure 11.30 on
page 440 shows some of the results of that regression
analysis, and Figure 11.31 on page 441 gives a plot of
the residuals and weight for each vehicle.

(a) From the analysis and the residual plot, does it ap-
pear that an improved model might be found by
using a transformation? Explain.

(b) Fit the model by replacing weight with log weight.
Comment on the results.

(c) Fit a model by replacing mpg with gallons per 100
miles traveled, as mileage is often reported in other
countries. Which of the three models is preferable?
Explain.

11.56 Observations on the yield of a chemical reac-
tion taken at various temperatures were recorded as
follows:

x (◦C) y (%) x (◦C) y (%)
150 75.4 150 77.7
150 81.2 200 84.4
200 85.5 200 85.7
250 89.0 250 89.4
250 90.5 300 94.8
300 96.7 300 95.3

(a) Plot the data.

(b) Does it appear from the plot as if the relationship
is linear?

(c) Fit a simple linear regression and test for lack of
fit.

(d) Draw conclusions based on your result in (c).

11.57 Physical fitness testing is an important aspect
of athletic training. A common measure of the mag-
nitude of cardiovascular fitness is the maximum vol-
ume of oxygen uptake during strenuous exercise. A
study was conducted on 24 middle-aged men to de-
termine the influence on oxygen uptake of the time
required to complete a two-mile run. Oxygen uptake
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was measured with standard laboratory methods as the
subjects performed on a treadmill. The work was pub-
lished in “Maximal Oxygen Intake Prediction in Young
and Middle Aged Males,” Journal of Sports Medicine
9, 1969, 17–22. The data are as follows:

y, Maximum x, Time
Subject Volume of O2 in Seconds

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

42.33
53.10
42.08
50.06
42.45
42.46
47.82
49.92
36.23
49.66
41.49
46.17
46.18
43.21
51.81
53.28
53.29
47.18
56.91
47.80
48.65
53.67
60.62
56.73

918
805
892
962
968
907
770
743

1045
810
927
813
858
860
760
747
743
803
683
844
755
700
748
775

(a) Estimate the parameters in a simple linear regres-
sion model.

(b) Does the time it takes to run two miles have a sig-
nificant influence on maximum oxygen uptake? Use
H0: β1 = 0 versus H1: β1 �= 0.

(c) Plot the residuals on a graph against x and com-
ment on the appropriateness of the simple linear
model.

11.58 Suppose a scientist postulates a model

Yi = β0 + β1xi + εi, i = 1, 2, . . . , n,

and β0 is a known value, not necessarily zero.

(a) What is the appropriate least squares estimator of
β1? Justify your answer.

(b) What is the variance of the slope estimator?

11.59 For the simple linear regression model, prove
that E(s2) = σ2.

11.60 Assuming that the εi are independent and nor-
mally distributed with zero means and common vari-
ance σ2, show that B0, the least squares estimator of
β0 in μY |x = β0 + β1x, is normally distributed with

mean β0 and variance

σ2
B0

=

n∑
i=1

x2
i

n
n∑

i=1

(xi − x̄)2
σ2.

11.61 For a simple linear regression model

Yi = β0 + β1xi + εi, i = 1, 2, . . . , n,

where the εi are independent and normally distributed
with zero means and equal variances σ2, show that Ȳ
and

B1 =

n∑
i=1

(xi − x̄)Yi

n∑
i=1

(xi − x̄)2

have zero covariance.

11.62 Show, in the case of a least squares fit to the
simple linear regression model

Yi = β0 + β1xi + εi, i = 1, 2, . . . , n,

that
n∑

i=1

(yi − ŷi) =
n∑

i=1

ei = 0.

11.63 Consider the situation of Review Exercise
11.62 but suppose n = 2 (i.e., only two data points are
available). Give an argument that the least squares re-
gression line will result in (y1 − ŷ1) = (y2 − ŷ2) = 0.
Also show that for this case R2 = 1.0.

11.64 In Review Exercise 11.62, the student was re-

quired to show that
n∑

i=1

(yi − ŷi) = 0 for a standard

simple linear regression model. Does the same hold for
a model with zero intercept? Show why or why not.

11.65 Suppose that an experimenter postulates a
model of the type

Yi = β0 + β1x1i + εi, i = 1, 2, . . . , n,

when in fact an additional variable, say x2, also con-
tributes linearly to the response. The true model is
then given by

Yi = β0 + β1x1i + β2x2i + εi, i = 1, 2, . . . , n.

Compute the expected value of the estimator

B1 =

n∑
i=1

(x1i − x̄1)Yi

n∑
i=1

(x1i − x̄1)2
.

11.66 Show the necessary steps in converting the

equation r = b1
s/

√
Sxx

to the equivalent form t = r
√

n−2√
1−r2

.
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11.67 Consider the fictitious set of data shown below,
where the line through the data is the fitted simple lin-
ear regression line. Sketch a residual plot.

x

y

11.68 Project: This project can be done in groups
or as individuals. Each group or person must find a set
of data, preferably but not restricted to their field of
study. The data need to fit the regression framework
with a regression variable x and a response variable y.
Carefully make the assignment as to which variable is x
and which y. It may be necessary to consult a journal
or periodical from your field if you do not have other
research data available.

(a) Plot y versus x. Comment on the relationship as
seen from the plot.

(b) Fit an appropriate regression model from the data.
Use simple linear regression or fit a polynomial
model to the data. Comment on measures of qual-
ity.

(c) Plot residuals as illustrated in the text. Check pos-
sible violation of assumptions. Show graphically
a plot of confidence intervals on a mean response
plotted against x. Comment.

R-Square Coeff Var Root MSE Price Mean
0.967472 7.923338 70.83841 894.0476

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 59.93749137 38.34195754 1.56 0.1345
Buyer 1.04731316 0.04405635 23.77 <.0001

Predict Std Err Lower 95% Upper 95% Lower 95% Upper 95%
product Buyer Price Value Predict Mean Mean Predict Predict
IBM PS/1 486/66 420MB 325 375 400.31 25.8906 346.12 454.50 242.46 558.17
IBM ThinkPad 500 450 625 531.23 21.7232 485.76 576.70 376.15 686.31
IBM Think-Dad 755CX 1700 1850 1840.37 42.7041 1750.99 1929.75 1667.25 2013.49
AST Pentium 90 540MB 800 875 897.79 15.4590 865.43 930.14 746.03 1049.54
Dell Pentium 75 1GB 650 700 740.69 16.7503 705.63 775.75 588.34 893.05
Gateway 486/75 320MB 700 750 793.06 16.0314 759.50 826.61 641.04 945.07
Clone 586/133 1GB 500 600 583.59 20.2363 541.24 625.95 429.40 737.79
Compaq Contura 4/25 120MB 450 600 531.23 21.7232 485.76 576.70 376.15 686.31
Compaq Deskpro P90 1.2GB 800 850 897.79 15.4590 865.43 930.14 746.03 1049.54
Micron P75 810MB 800 675 897.79 15.4590 865.43 930.14 746.03 1049.54
Micron P100 1.2GB 900 975 1002.52 16.1176 968.78 1036.25 850.46 1154.58
Mac Quadra 840AV 500MB 450 575 531.23 21.7232 485.76 576.70 376.15 686.31
Mac Performer 6116 700MB 700 775 793.06 16.0314 759.50 826.61 641.04 945.07
PowerBook 540c 320MB 1400 1500 1526.18 30.7579 1461.80 1590.55 1364.54 1687.82
PowerBook 5300 500MB 1350 1575 1473.81 28.8747 1413.37 1534.25 1313.70 1633.92
Power Mac 7500/100 1GB 1150 1325 1264.35 21.9454 1218.42 1310.28 1109.13 1419.57
NEC Versa 486 340MB 800 900 897.79 15.4590 865.43 930.14 746.03 1049.54
Toshiba 1960CS 320MB 700 825 793.06 16.0314 759.50 826.61 641.04 945.07
Toshiba 4800VCT 500MB 1000 1150 1107.25 17.8715 1069.85 1144.66 954.34 1260.16
HP Laser jet III 350 475 426.50 25.0157 374.14 478.86 269.26 583.74
Apple Laser Writer Pro 63 750 800 845.42 15.5930 812.79 878.06 693.61 997.24

Figure 11.29: SAS printout, showing partial analysis of data of Review Exercise 11.54.
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440 Chapter 11 Simple Linear Regression and Correlation

Obs Model WT MPG DR_RATIO
1 Buick Estate Wagon 4.360 16.9 2.73
2 Ford Country Squire Wagon 4.054 15.5 2.26
3 Chevy Ma libu Wagon 3.605 19.2 2.56
4 Chrysler LeBaron Wagon 3.940 18.5 2.45
5 Chevette 2.155 30.0 3.70
6 Toyota Corona 2.560 27.5 3.05
7 Datsun 510 2.300 27.2 3.54
8 Dodge Omni 2.230 30.9 3.37
9 Audi 5000 2.830 20.3 3.90

10 Volvo 240 CL 3.140 17.0 3.50
11 Saab 99 GLE 2.795 21.6 3.77
12 Peugeot 694 SL 3.410 16.2 3.58
13 Buick Century Special 3.380 20.6 2.73
14 Mercury Zephyr 3.070 20.8 3.08
15 Dodge Aspen 3.620 18.6 2.71
16 AMC Concord D/L 3.410 18.1 2.73
17 Chevy Caprice Classic 3.840 17.0 2.41
18 Ford LTP 3.725 17.6 2.26
19 Mercury Grand Marquis 3.955 16.5 2.26
20 Dodge St Regis 3.830 18.2 2.45
21 Ford Mustang 4 2.585 26.5 3.08
22 Ford Mustang Ghia 2.910 21.9 3.08
23 Macda GLC 1.975 34.1 3.73
24 Dodge Colt 1.915 35.1 2.97
25 AMC Spirit 2.670 27.4 3.08
26 VW Scirocco 1.990 31.5 3.78
27 Honda Accord LX 2.135 29.5 3.05
28 Buick Skylark 2.570 28.4 2.53
29 Chevy Citation 2.595 28.8 2.69
30 Olds Omega 2.700 26.8 2.84
31 Pontiac Phoenix 2.556 33.5 2.69
32 Plymouth Horizon 2.200 34.2 3.37
33 Datsun 210 2.020 31.8 3.70
34 Fiat Strada 2.130 37.3 3.10
35 VW Dasher 2.190 30.5 3.70
36 Datsun 810 2.815 22.0 3.70
37 BMW 320i 2.600 21.5 3.64
38 VW Rabbit 1.925 31.9 3.78

R-Square Coeff Var Root MSE MPG Mean
0.817244 11.46010 2.837580 24.76053

Standard
Parameter Estimate Error t Value Pr > |t|
Intercept 48.67928080 1.94053995 25.09 <.0001
WT -8.36243141 0.65908398 -12.69 <.0001

Figure 11.30: SAS printout, showing partial analysis of data of Review Exercise 11.55.
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Plot of Resid*WT. Symbol used is ’*’.

Resid |
8 +

|
|
|
|
| * *

6 +
|
|
|
| *
|

4 + *
|
|
|
| *
| *

2 + *
| * *
| *
| * * *
| * * *
| * * * *

0 +-----------------*---*------------------------------------------*------------------------
|
| * * * *
|
| *
|

-2 + *
| * * *
|
| *
|
| *

-4 + *
|
| *
|
| * *
|

-6 +
|
---+-------------+-------------+-------------+-------------+-------------+-------------+--
1.5 2.0 2.5 3.0 3.5 4.0 4.5

WT

Figure 11.31: SAS printout, showing residual plot of Review Exercise 11.55.
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442 Chapter 11 Simple Linear Regression and Correlation

11.13 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

Anytime one is considering the use of simple linear regression, a plot of the data is
not only recommended but essential. A plot of the ordinary residuals and a normal
probability plot of these residuals are always edifying. In addition, we introduce
and illustrate an additional type of residual in Chapter 12 that is in a standardized
form. All of these plots are designed to detect violation of assumptions.

The use of t-statistics for tests on regression coefficients is reasonably robust to
the normality assumption. The homogeneous variance assumption is crucial, and
residual plots are designed to detect a violation.

The material in this chapter is used heavily in Chapters 12 and 15. All of the
information involving the method of least squares in the development of regression
models carries over into Chapter 12. The difference is that Chapter 12 deals with
the scientific conditions in which there is more than a single x variable, i.e., more
than one regression variable. However, material in the current chapter that deals
with regression diagnostics, types of residual plots, measures of model quality, and
so on, applies and will carry over. The student will realize that more complications
occur in Chapter 12 because the problems in multiple regression models often
involve the backdrop of questions regarding how the various regression variables
enter the model and even issues of which variables should remain in the model.
Certainly Chapter 15 heavily involves the use of regression modeling, but we will
preview the connection in the summary at the end of Chapter 12.

Uploaded By: anonymousSTUDENTS-HUB.com



Chapter 12

Multiple Linear Regression and
Certain Nonlinear Regression
Models

12.1 Introduction

In most research problems where regression analysis is applied, more than one
independent variable is needed in the regression model. The complexity of most
scientific mechanisms is such that in order to be able to predict an important
response, a multiple regression model is needed. When this model is linear in
the coefficients, it is called a multiple linear regression model. For the case of
k independent variables x1, x2, . . . , xk, the mean of Y |x1, x2, . . . , xk is given by the
multiple linear regression model

μY |x1,x2,...,xk
= β0 + β1x1 + · · ·+ βkxk,

and the estimated response is obtained from the sample regression equation

ŷ = b0 + b1x1 + · · ·+ bkxk,

where each regression coefficient βi is estimated by bi from the sample data using
the method of least squares. As in the case of a single independent variable, the
multiple linear regression model can often be an adequate representation of a more
complicated structure within certain ranges of the independent variables.

Similar least squares techniques can also be applied for estimating the coeffi-
cients when the linear model involves, say, powers and products of the independent
variables. For example, when k = 1, the experimenter may believe that the means
μY |x do not fall on a straight line but are more appropriately described by the
polynomial regression model

μY |x = β0 + β1x+ β2x
2 + · · ·+ βrx

r,

and the estimated response is obtained from the polynomial regression equation

ŷ = b0 + b1x+ b2x
2 + · · ·+ brx

r.

443
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444 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models

Confusion arises occasionally when we speak of a polynomial model as a linear
model. However, statisticians normally refer to a linear model as one in which the
parameters occur linearly, regardless of how the independent variables enter the
model. An example of a nonlinear model is the exponential relationship

μY |x = αβx,
whose response is estimated by the regression equation

ŷ = abx.

There are many phenomena in science and engineering that are inherently non-
linear in nature, and when the true structure is known, an attempt should certainly
be made to fit the actual model. The literature on estimation by least squares of
nonlinear models is voluminous. The nonlinear models discussed in this chapter
deal with nonideal conditions in which the analyst is certain that the response and
hence the response model error are not normally distributed but, rather, have a
binomial or Poisson distribution. These situations do occur extensively in practice.

A student who wants a more general account of nonlinear regression should
consult Classical and Modern Regression with Applications by Myers (1990; see
the Bibliography).

12.2 Estimating the Coefficients

In this section, we obtain the least squares estimators of the parameters β0, β1, . . . , βk

by fitting the multiple linear regression model

μY |x1,x2,...,xk
= β0 + β1x1 + · · ·+ βkxk

to the data points

{(x1i, x2i, . . . , xki, yi); i = 1, 2, . . . , n and n > k},
where yi is the observed response to the values x1i, x2i, . . . , xki of the k independent
variables x1, x2, . . . , xk. Each observation (x1i, x2i, . . . , xki, yi) is assumed to satisfy
the following equation.

Multiple Linear
Regression Model

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi

or

yi = ŷi + ei = b0 + b1x1i + b2x2i + · · ·+ bkxki + ei,

where εi and ei are the random error and residual, respectively, associated with
the response yi and fitted value ŷi.

As in the case of simple linear regression, it is assumed that the εi are independent
and identically distributed with mean 0 and common variance σ2.

In using the concept of least squares to arrive at estimates b0, b1, . . . , bk, we
minimize the expression

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − b0 − b1x1i − b2x2i − · · · − bkxki)
2.

Differentiating SSE in turn with respect to b0, b1, . . . , bk and equating to zero, we
generate the set of k + 1 normal equations for multiple linear regression.
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Normal Estimation
Equations for

Multiple Linear
Regression

nb0 + b1

n∑
i=1

x1i + b2

n∑
i=1

x2i + · · · + bk

n∑
i=1

xki =
n∑

i=1

yi

b0

n∑
i=1

x1i + b1

n∑
i=1

x2
1i + b2

n∑
i=1

x1ix2i + · · · + bk

n∑
i=1

x1ixki =

n∑
i=1

x1iyi

...
...

...
...

...

b0

n∑
i=1

xki + b1

n∑
i=1

xkix1i+ b2

n∑
i=1

xkix2i + · · · + bk

n∑
i=1

x2
ki =

n∑
i=1

xkiyi

These equations can be solved for b0, b1, b2, . . . , bk by any appropriate method for
solving systems of linear equations. Most statistical software can be used to obtain
numerical solutions of the above equations.

Example 12.1: A study was done on a diesel-powered light-duty pickup truck to see if humidity, air
temperature, and barometric pressure influence emission of nitrous oxide (in ppm).
Emission measurements were taken at different times, with varying experimental
conditions. The data are given in Table 12.2. The model is

μY |x1,x2,x3
= β0 + β1x1 + β2x2 + β3x3,

or, equivalently,

yi = β0 + β1x1i + β2x2i + β3x3i + εi, i = 1, 2, . . . , 20.

Fit this multiple linear regression model to the given data and then estimate the
amount of nitrous oxide emitted for the conditions where humidity is 50%, tem-
perature is 76◦F, and barometric pressure is 29.30.

Table 12.1: Data for Example 12.1

Nitrous Humidity, Temp., Pressure, Nitrous Humidity, Temp., Pressure,
Oxide, y x1 x2 x3 Oxide, y x1 x2 x3

0.90
0.91
0.96
0.89
1.00
1.10
1.15
1.03
0.77
1.07

72.4
41.6
34.3
35.1
10.7
12.9
8.3
20.1
72.2
24.0

76.3
70.3
77.1
68.0
79.0
67.4
66.8
76.9
77.7
67.7

29.18
29.35
29.24
29.27
29.78
29.39
29.69
29.48
29.09
29.60

1.07
0.94
1.10
1.10
1.10
0.91
0.87
0.78
0.82
0.95

23.2
47.4
31.5
10.6
11.2
73.3
75.4
96.6
107.4
54.9

76.8
86.6
76.9
86.3
86.0
76.3
77.9
78.7
86.8
70.9

29.38
29.35
29.63
29.56
29.48
29.40
29.28
29.29
29.03
29.37

Source: Charles T. Hare, “Light-Duty Diesel Emission Correction Factors for Ambient Conditions,” EPA-600/2-77-
116. U.S. Environmental Protection Agency.

Solution : The solution of the set of estimating equations yields the unique estimates

b0 = −3.507778, b1 = −0.002625, b2 = 0.000799, b3 = 0.154155.
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Therefore, the regression equation is

ŷ = −3.507778− 0.002625x1 + 0.000799x2 + 0.154155x3.

For 50% humidity, a temperature of 76◦F, and a barometric pressure of 29.30, the
estimated amount of nitrous oxide emitted is

ŷ = −3.507778− 0.002625(50.0) + 0.000799(76.0) + 0.1541553(29.30)

= 0.9384 ppm.

Polynomial Regression

Now suppose that we wish to fit the polynomial equation

μY |x = β0 + β1x+ β2x
2 + · · ·+ βrx

r

to the n pairs of observations {(xi, yi); i = 1, 2, . . . , n}. Each observation, yi,
satisfies the equation

yi = β0 + β1xi + β2x
2
i + · · ·+ βrx

r
i + εi

or

yi = ŷi + ei = b0 + b1xi + b2x
2
i + · · ·+ brx

r
i + ei,

where r is the degree of the polynomial and εi and ei are again the random error
and residual associated with the response yi and fitted value ŷi, respectively. Here,
the number of pairs, n, must be at least as large as r+1, the number of parameters
to be estimated.

Notice that the polynomial model can be considered a special case of the more
general multiple linear regression model, where we set x1 = x, x2 = x2, . . . , xr = xr.
The normal equations assume the same form as those given on page 445. They are
then solved for b0, b1, b2, . . . , br.

Example 12.2: Given the data
x 0 1 2 3 4 5 6 7 8 9
y 9.1 7.3 3.2 4.6 4.8 2.9 5.7 7.1 8.8 10.2

fit a regression curve of the form μY |x = β0 + β1x+ β2x
2 and then estimate μY |2.

Solution : From the data given, we find that

10b0 + 45 b1 + 285 b2 = 63.7,

45b0 + 285b1 + 2025b2 = 307.3,

285b0 + 2025 b1 + 15,333b2 = 2153.3.

Solving these normal equations, we obtain

b0 = 8.698, b1 = −2.341, b2 = 0.288.

Therefore,

ŷ = 8.698− 2.341x+ 0.288x2.

Uploaded By: anonymousSTUDENTS-HUB.com



12.3 Linear Regression Model Using Matrices 447

When x = 2, our estimate of μY |2 is

ŷ = 8.698− (2.341)(2) + (0.288)(22) = 5.168.

Example 12.3: The data in Table 12.2 represent the percent of impurities that resulted for various
temperatures and sterilizing times during a reaction associated with the manufac-
turing of a certain beverage. Estimate the regression coefficients in the polynomial
model

yi = β0 + β1x1i + β2x2i + β11x
2
1i + β22x

2
2i + β12x1ix2i + εi,

for i = 1, 2, . . . , 18.

Table 12.2: Data for Example 12.3

Sterilizing Temperature, x1 (◦C)
Time, x2 (min) 75 100 125

15

20

25

14.05
14.93
16.56
15.85
22.41
21.66

10.55
9.48
13.63
11.75
18.55
17.98

7.55
6.59
9.23
8.78
15.93
16.44

Solution : Using the normal equations, we obtain

b0 = 56.4411, b1 = −0.36190, b2 = −2.75299,

b11 = 0.00081, b22 = 0.08173, b12 = 0.00314,

and our estimated regression equation is

ŷ = 56.4411− 0.36190x1 − 2.75299x2 + 0.00081x2
1 + 0.08173x2

2 + 0.00314x1x2.

Many of the principles and procedures associated with the estimation of poly-
nomial regression functions fall into the category of response surface methodol-
ogy, a collection of techniques that have been used quite successfully by scientists
and engineers in many fields. The x2

i are called pure quadratic terms, and the
xixj (i �= j) are called interaction terms. Such problems as selecting a proper
experimental design, particularly in cases where a large number of variables are
in the model, and choosing optimum operating conditions for x1, x2, . . . , xk are
often approached through the use of these methods. For an extensive exposure,
the reader is referred to Response Surface Methodology: Process and Product Opti-
mization Using Designed Experiments by Myers, Montgomery, and Anderson-Cook
(2009; see the Bibliography).

12.3 Linear Regression Model Using Matrices

In fitting a multiple linear regression model, particularly when the number of vari-
ables exceeds two, a knowledge of matrix theory can facilitate the mathematical
manipulations considerably. Suppose that the experimenter has k independent
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variables x1, x2, . . . , xk and n observations y1, y2, . . . , yn, each of which can be ex-
pressed by the equation

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi.

This model essentially represents n equations describing how the response values
are generated in the scientific process. Using matrix notation, we can write the
following equation:

General Linear
Model

y = Xβ + ε,
where

y =

⎡⎢⎢⎢⎣
y1
y2
...
yn

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
1 x11 x21 · · · xk1

1 x12 x22 · · · xk2

...
...

...
...

1 x1n x2n · · · xkn

⎤⎥⎥⎥⎦ , β =

⎡⎢⎢⎢⎣
β0

β1

...
βk

⎤⎥⎥⎥⎦ , ε =

⎡⎢⎢⎢⎣
ε1
ε2
...
εn

⎤⎥⎥⎥⎦ .

Then the least squares method for estimation of β, illustrated in Section 12.2,
involves finding b for which

SSE = (y −Xb)′(y −Xb)

is minimized. This minimization process involves solving for b in the equation

∂

∂b
(SSE) = 0.

We will not present the details regarding solution of the equations above. The
result reduces to the solution of b in

(X′X)b = X′y.
Notice the nature of the X matrix. Apart from the initial element, the ith row
represents the x-values that give rise to the response yi. Writing

A = X′X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n∑

i=1

x1i

n∑
i=1

x2i · · ·
n∑

i=1

xki

n∑
i=1

x1i

n∑
i=1

x2
1i

n∑
i=1

x1ix2i · · ·
n∑

i=1

x1ixki

...
...

...
...

n∑
i=1

xki

n∑
i=1

xkix1i

n∑
i=1

xkix2i · · ·
n∑

i=1

x2
ki

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

g = X′y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 =
n∑

i=1

yi

g1 =
n∑

i=1

x1iyi

...

gk =
n∑

i=1

xkiyi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
allows the normal equations to be put in the matrix form

Ab = g.
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If the matrix A is nonsingular, we can write the solution for the regression
coefficients as

b = A−1g = (X′X)
−1

X′y.

Thus, we can obtain the prediction equation or regression equation by solving a
set of k+1 equations in a like number of unknowns. This involves the inversion of
the k+1 by k+1 matrix X′X. Techniques for inverting this matrix are explained
in most textbooks on elementary determinants and matrices. Of course, there are
many high-speed computer packages available for multiple regression problems,
packages that not only print out estimates of the regression coefficients but also
provide other information relevant to making inferences concerning the regression
equation.

Example 12.4: The percent survival rate of sperm in a certain type of animal semen, after storage,
was measured at various combinations of concentrations of three materials used to
increase chance of survival. The data are given in Table 12.3. Estimate the multiple
linear regression model for the given data.

Table 12.3: Data for Example 12.4

y (% survival) x1 (weight %) x2 (weight %) x3 (weight %)

25.5
31.2
25.9
38.4
18.4
26.7
26.4
25.9
32.0
25.2
39.7
35.7
26.5

1.74
6.32
6.22
10.52
1.19
1.22
4.10
6.32
4.08
4.15
10.15
1.72
1.70

5.30
5.42
8.41
4.63

11.60
5.85
6.62
8.72
4.42
7.60
4.83
3.12
5.30

10.80
9.40
7.20
8.50
9.40
9.90
8.00
9.10
8.70
9.20
9.40
7.60
8.20

Solution : The least squares estimating equations, (X′X)b = X′y, are⎡⎢⎢⎣
13.0 59.43 81.82 115.40
59.43 394.7255 360.6621 522.0780
81.82 360.6621 576.7264 728.3100

115.40 522.0780 728.3100 1035.9600

⎤⎥⎥⎦
⎡⎢⎢⎣
b0
b1
b2
b3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
377.5
1877.567
2246.661
3337.780

⎤⎥⎥⎦ .

From a computer readout we obtain the elements of the inverse matrix

(X′X)−1 =

⎡⎢⎢⎣
8.0648 −0.0826 −0.0942 −0.7905

−0.0826 0.0085 0.0017 0.0037
−0.0942 0.0017 0.0166 −0.0021
−0.7905 0.0037 −0.0021 0.0886

⎤⎥⎥⎦ ,

and then, using the relation b = (X′X)−1X′y, the estimated regression coefficients
are obtained as
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b0 = 39.1574, b1 = 1.0161, b2 = −1.8616, b3 = −0.3433.

Hence, our estimated regression equation is

ŷ = 39.1574 + 1.0161x1 − 1.8616x2 − 0.3433x3.

Exercises

12.1 A set of experimental runs was made to deter-
mine a way of predicting cooking time y at various
values of oven width x1 and flue temperature x2. The
coded data were recorded as follows:

y x1 x2

6.40
15.05
18.75
30.25
44.85
48.94
51.55
61.50

100.44
111.42

1.32
2.69
3.56
4.41
5.35
6.20
7.12
8.87
9.80

10.65

1.15
3.40
4.10
8.75

14.82
15.15
15.32
18.18
35.19
40.40

Estimate the multiple linear regression equation

μY |x1,x2
= β0 + β1x1 + β2x2.

12.2 In Applied Spectroscopy, the infrared reflectance
spectra properties of a viscous liquid used in the elec-
tronics industry as a lubricant were studied. The de-
signed experiment consisted of the effect of band fre-
quency x1 and film thickness x2 on optical density y
using a Perkin-Elmer Model 621 infrared spectrometer.
(Source: Pacansky, J., England, C. D., and Wattman,
R., 1986.)

y x1 x2

0.231
0.107
0.053
0.129
0.069
0.030
1.005
0.559
0.321
2.948
1.633
0.934

740
740
740
805
805
805
980
980
980

1235
1235
1235

1.10
0.62
0.31
1.10
0.62
0.31
1.10
0.62
0.31
1.10
0.62
0.31

Estimate the multiple linear regression equation

ŷ = b0 + b1x1 + b2x2.

12.3 Suppose in Review Exercise 11.53 on page 437
that we were also given the number of class periods
missed by the 12 students taking the chemistry course.
The complete data are shown.

Chemistry Test Classes
Student Grade, y Score, x1 Missed, x2

1
2
3
4
5
6
7
8
9

10
11
12

85
74
76
90
85
87
94
98
81
91
76
74

65
50
55
65
55
70
65
70
55
70
50
55

1
7
5
2
6
3
2
5
4
3
1
4

(a) Fit a multiple linear regression equation of the form
ŷ = b0 + b1x1 + b2x2.

(b) Estimate the chemistry grade for a student who has
an intelligence test score of 60 and missed 4 classes.

12.4 An experiment was conducted to determine if
the weight of an animal can be predicted after a given
period of time on the basis of the initial weight of the
animal and the amount of feed that was eaten. The
following data, measured in kilograms, were recorded:

Final Initial Feed
Weight, y Weight, x1 Weight, x2

95
77
80

100
97
70
50
80
92
84

42
33
33
45
39
36
32
41
40
38

272
226
259
292
311
183
173
236
230
235

(a) Fit a multiple regression equation of the form

μY |x1,x2
= β0 + β1x1 + β2x2.

(b) Predict the final weight of an animal having an ini-
tial weight of 35 kilograms that is given 250 kilo-
grams of feed.

12.5 The electric power consumed each month by a
chemical plant is thought to be related to the average
ambient temperature x1, the number of days in the
month x2, the average product purity x3, and the tons
of product produced x4. The past year’s historical data
are available and are presented in the following table.
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y x1 x2 x3 x4

240
236
290
274
301
316
300
296
267
276
288
261

25
31
45
60
65
72
80
84
75
60
50
38

24
21
24
25
25
26
25
25
24
25
25
23

91
90
88
87
91
94
87
86
88
91
90
89

100
95

110
88
94
99
97
96

110
105
100
98

(a) Fit a multiple linear regression model using the
above data set.

(b) Predict power consumption for a month in which
x1 = 75◦F, x2 = 24 days, x3 = 90%, and x4 = 98
tons.

12.6 An experiment was conducted on a new model
of a particular make of automobile to determine the
stopping distance at various speeds. The following data
were recorded.

Speed, v (km/hr) 35 50 65 80 95 110

Stopping Distance, d (m) 16 26 41 62 88 119

(a) Fit a multiple regression curve of the form μD|v =

β0 + β1v + β2v
2.

(b) Estimate the stopping distance when the car is
traveling at 70 kilometers per hour.

12.7 An experiment was conducted in order to de-
termine if cerebral blood flow in human beings can be
predicted from arterial oxygen tension (millimeters of
mercury). Fifteen patients participated in the study,
and the following data were collected:

Blood Flow, Arterial Oxygen
y Tension, x

84.33 603.40
87.80 582.50
82.20 556.20
78.21 594.60
78.44 558.90
80.01 575.20
83.53 580.10
79.46 451.20
75.22 404.00
76.58 484.00
77.90 452.40
78.80 448.40
80.67 334.80
86.60 320.30
78.20 350.30

Estimate the quadratic regression equation

μY |x = β0 + β1x+ β2x
2.

12.8 The following is a set of coded experimental data
on the compressive strength of a particular alloy at var-
ious values of the concentration of some additive:

Concentration, Compressive
x Strength, y

10.0
15.0
20.0
25.0
30.0

25.2
29.8
31.2
31.7
29.4

27.3
31.1
32.6
30.1
30.8

28.7
27.8
29.7
32.3
32.8

(a) Estimate the quadratic regression equation μY |x =

β0 + β1x+ β2x
2.

(b) Test for lack of fit of the model.

12.9 (a) Fit a multiple regression equation of the
form μY |x = β0 + β1x1 + β2x

2 to the data of Ex-
ample 11.8 on page 420.

(b) Estimate the yield of the chemical reaction for a
temperature of 225◦C.

12.10 The following data are given:

x 0 1 2 3 4 5 6

y 1 4 5 3 2 3 4

(a) Fit the cubic model μY |x = β0+β1x+β2x
2+β3x

3.

(b) Predict Y when x = 2.

12.11 An experiment was conducted to study the size
of squid eaten by sharks and tuna. The regressor vari-
ables are characteristics of the beaks of the squid. The
data are given as follows:

x1 x2 x3 x4 x5 y

1.31
1.55
0.99
0.99
1.01
1.09
1.08
1.27
0.99
1.34
1.30
1.33
1.86
1.58
1.97
1.80
1.75
1.72
1.68
1.75
2.19
1.73

1.07
1.49
0.84
0.83
0.90
0.93
0.90
1.08
0.85
1.13
1.10
1.10
1.47
1.34
1.59
1.56
1.58
1.43
1.57
1.59
1.86
1.67

0.44
0.53
0.34
0.34
0.36
0.42
0.40
0.44
0.36
0.45
0.45
0.48
0.60
0.52
0.67
0.66
0.63
0.64
0.72
0.68
0.75
0.64

0.75
0.90
0.57
0.54
0.64
0.61
0.51
0.77
0.56
0.77
0.76
0.77
1.01
0.95
1.20
1.02
1.09
1.02
0.96
1.08
1.24
1.14

0.35
0.47
0.32
0.27
0.30
0.31
0.31
0.34
0.29
0.37
0.38
0.38
0.65
0.50
0.59
0.59
0.59
0.63
0.68
0.62
0.72
0.55

1.95
2.90
0.72
0.81
1.09
1.22
1.02
1.93
0.64
2.08
1.98
1.90
8.56
4.49
8.49
6.17
7.54
6.36
7.63
7.78

10.15
6.88
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In the study, the regressor variables and response con-
sidered are

x1 = rostral length, in inches,

x2 = wing length, in inches,

x3 = rostral to notch length, in inches,

x4 = notch to wing length, in inches,

x5 = width, in inches,

y = weight, in pounds.

Estimate the multiple linear regression equation

μY |x1,x2,x3,x4,x5

= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5.

12.12 The following data reflect information from 17
U.S. Naval hospitals at various sites around the world.
The regressors are workload variables, that is, items
that result in the need for personnel in a hospital. A
brief description of the variables is as follows:

y = monthly labor-hours,

x1 = average daily patient load,

x2 = monthly X-ray exposures,

x3 = monthly occupied bed-days,

x4 = eligible population in the area/1000,

x5 = average length of patient’s stay, in days.

Site x1 x2 x3 x4 x5 y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

15.57
44.02
20.42
18.74
49.20
44.92
55.48
59.28
94.39

128.02
96.00

131.42
127.21
252.90
409.20
463.70
510.22

2463
2048
3940
6505
5723

11,520
5779
5969
8461

20,106
13,313
10,771
15,543
36,194
34,703
39,204
86,533

472.92
1339.75
620.25
568.33

1497.60
1365.83
1687.00
1639.92
2872.33
3655.08
2912.00
3921.00
3865.67
7684.10

12,446.33
14,098.40
15,524.00

18.0
9.5

12.8
36.7
35.7
24.0
43.3
46.7
78.7

180.5
60.9

103.7
126.8
157.7
169.4
331.4
371.6

4.45
6.92
4.28
3.90
5.50
4.60
5.62
5.15
6.18
6.15
5.88
4.88
5.50
7.00

10.75
7.05
6.35

566.52
696.82

1033.15
1003.62
1611.37
1613.27
1854.17
2160.55
2305.58
3503.93
3571.59
3741.40
4026.52

10,343.81
11,732.17
15,414.94
18,854.45

The goal here is to produce an empirical equation that
will estimate (or predict) personnel needs for Naval
hospitals. Estimate the multiple linear regression equa-
tion

μY |x1,x2,x3,x4,x5

= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5.

12.13 A study was performed on a type of bear-
ing to find the relationship of amount of wear y to
x1 = oil viscosity and x2 = load. The following data

were obtained. (From Response Surface Methodology,
Myers, Montgomery, and Anderson-Cook, 2009.)

y x1 x2 y x1 x2

193
172
113

1.6
22.0
33.0

851
1058
1357

230
91

125

15.5
43.0
40.0

816
1201
1115

(a) Estimate the unknown parameters of the multiple
linear regression equation

μY |x1,x2
= β0 + β1x1 + β2x2.

(b) Predict wear when oil viscosity is 20 and load is
1200.

12.14 Eleven student teachers took part in an eval-
uation program designed to measure teacher effective-
ness and determine what factors are important. The
response measure was a quantitative evaluation of the
teacher. The regressor variables were scores on four
standardized tests given to each teacher. The data are
as follows:

y x1 x2 x3 x4

410
569
425
344
324
505
235
501
400
584
434

69
57
77
81
0

53
77
76
65
97
76

125
131
141
122
141
152
141
132
157
166
141

59.00
31.75
80.50
75.00
49.00
49.35
60.75
41.25
50.75
32.25
54.50

55.66
63.97
45.32
46.67
41.21
43.83
41.61
64.57
42.41
57.95
57.90

Estimate the multiple linear regression equation

μY |x1,x2,x3,x4
= β0 + β1x1 + β2x2 + β3x3 + β4x4.

12.15 The personnel department of a certain indus-
trial firm used 12 subjects in a study to determine the
relationship between job performance rating (y) and
scores on four tests. The data are as follows:

y x1 x2 x3 x4

11.2 56.5 71.0 38.5 43.0
14.5 59.5 72.5 38.2 44.8
17.2 69.2 76.0 42.5 49.0
17.8 74.5 79.5 43.4 56.3
19.3 81.2 84.0 47.5 60.2
24.5 88.0 86.2 47.4 62.0
21.2 78.2 80.5 44.5 58.1
16.9 69.0 72.0 41.8 48.1
14.8 58.1 68.0 42.1 46.0
20.0 80.5 85.0 48.1 60.3
13.2 58.3 71.0 37.5 47.1
22.5 84.0 87.2 51.0 65.2
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Estimate the regression coefficients in the model

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4.

12.16 An engineer at a semiconductor company
wants to model the relationship between the gain or
hFE of a device (y) and three parameters: emitter-RS
(x1), base-RS (x2), and emitter-to-base-RS (x3). The
data are shown below:

x1, x2, x3, y,
Emitter-RS Base-RS E-B-RS hFE

14.62
15.63
14.62
15.00
14.50
15.25

226.0
220.0
217.4
220.0
226.5
224.1

7.000
3.375
6.375
6.000
7.625
6.000

128.40
52.62

113.90
98.01

139.90
102.60
(cont.)

x1, x2, x3, y,
Emitter-RS Base-RS E-B-RS hFE

16.12
15.13
15.50
15.13
15.50
16.12
15.13
15.63
15.38
15.50
14.25
14.50
14.62

220.5
223.5
217.6
228.5
230.2
226.5
226.6
225.6
234.0
230.0
224.3
240.5
223.7

3.375
6.125
5.000
6.625
5.750
3.750
6.125
5.375
8.875
4.000
8.000

10.870
7.375

48.14
109.60
82.68

112.60
97.52
59.06

111.80
89.09

171.90
66.80

157.10
208.40
133.40

(Data from Myers, Montgomery, and Anderson-Cook,
2009.)

(a) Fit a multiple linear regression to the data.

(b) Predict hFE when x1 = 14, x2 = 220, and x3 = 5.

12.4 Properties of the Least Squares Estimators

The means and variances of the estimators b0, b1, . . . , bk are readily obtained under
certain assumptions on the random errors ε1, ε2, . . . , εk that are identical to those
made in the case of simple linear regression. When we assume these errors to be
independent, each with mean 0 and variance σ2, it can be shown that b0, b1, . . . , bk
are, respectively, unbiased estimators of the regression coefficients β0, β1, . . . , βk.
In addition, the variances of the b’s are obtained through the elements of the inverse
of the A matrix. Note that the off-diagonal elements of A = X′X represent sums
of products of elements in the columns of X, while the diagonal elements of A
represent sums of squares of elements in the columns of X. The inverse matrix,
A−1, apart from the multiplier σ2, represents the variance-covariance matrix
of the estimated regression coefficients. That is, the elements of the matrix A−1σ2

display the variances of b0, b1, . . . , bk on the main diagonal and covariances on the
off-diagonal. For example, in a k = 2 multiple linear regression problem, we might
write

(X′X)−1 =

⎡⎣c00 c01 c02
c10 c11 c12
c20 c21 c22

⎤⎦
with the elements below the main diagonal determined through the symmetry of
the matrix. Then we can write

σ2
bi = ciiσ

2, i = 0, 1, 2,

σbibj = Cov(bi, bj)= cijσ
2, i �= j.

Of course, the estimates of the variances and hence the standard errors of these
estimators are obtained by replacing σ2 with the appropriate estimate obtained
through experimental data. An unbiased estimate of σ2 is once again defined in
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terms of the error sum of squares, which is computed using the formula estab-
lished in Theorem 12.1. In the theorem, we are making the assumptions on the εi
described above.

Theorem 12.1: For the linear regression equation

y = Xβ + ε,

an unbiased estimate of σ2 is given by the error or residual mean square

s2 =
SSE

n− k − 1
, where SSE =

n∑
i=1

e2i =

n∑
i=1

(yi − ŷi)
2.

We can see that Theorem 12.1 represents a generalization of Theorem 11.1
for the simple linear regression case. The proof is left for the reader. As in the
simpler linear regression case, the estimate s2 is a measure of the variation in
the prediction errors or residuals. Other important inferences regarding the fitted
regression equation, based on the values of the individual residuals ei = yi − ŷi,
i = 1, 2, . . . , n, are discussed in Sections 12.10 and 12.11.

The error and regression sums of squares take on the same form and play the
same role as in the simple linear regression case. In fact, the sum-of-squares identity

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2

continues to hold, and we retain our previous notation, namely

SST = SSR+ SSE,

with

SST =
n∑

i=1

(yi − ȳ)2 = total sum of squares

and

SSR =
n∑

i=1

(ŷi − ȳ)2 = regression sum of squares.

There are k degrees of freedom associated with SSR, and, as always, SST has
n− 1 degrees of freedom. Therefore, after subtraction, SSE has n− k− 1 degrees
of freedom. Thus, our estimate of σ2 is again given by the error sum of squares
divided by its degrees of freedom. All three of these sums of squares will appear
on the printouts of most multiple regression computer packages. Note that the
condition n > k in Section 12.2 guarantees that the degrees of freedom of SSE
cannot be negative.
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Analysis of Variance in Multiple Regression

The partition of the total sum of squares into its components, the regression and
error sums of squares, plays an important role. An analysis of variance can
be conducted to shed light on the quality of the regression equation. A useful
hypothesis that determines if a significant amount of variation is explained by the
model is

H0: β1 = β2 = β3 = · · · = βk = 0.

The analysis of variance involves an F -test via a table given as follows:

Source Sum of Squares Degrees of Freedom Mean Squares F

Regression SSR k MSR = SSR
k f = MSR

MSE

Error SSE n− (k + 1) MSE = SSE
n−(k+1)

Total SST n− 1

This test is an upper-tailed test. Rejection of H0 implies that the regression
equation differs from a constant. That is, at least one regressor variable is
important. More discussion of the use of analysis of variance appears in subsequent
sections.

Further utility of the mean square error (or residual mean square) lies in its use
in hypothesis testing and confidence interval estimation, which is discussed in Sec-
tion 12.5. In addition, the mean square error plays an important role in situations
where the scientist is searching for the best from a set of competing models. Many
model-building criteria involve the statistic s2. Criteria for comparing competing
models are discussed in Section 12.11.

12.5 Inferences in Multiple Linear Regression

A knowledge of the distributions of the individual coefficient estimators enables
the experimenter to construct confidence intervals for the coefficients and to test
hypotheses about them. Recall from Section 12.4 that the bj (j = 0, 1, 2, . . . , k)
are normally distributed with mean βj and variance cjjσ

2. Thus, we can use the
statistic

t =
bj − βj0

s
√
cjj

with n − k − 1 degrees of freedom to test hypotheses and construct confidence
intervals on βj . For example, if we wish to test

H0: βj = βj0,

H1: βj �= βj0,

we compute the above t-statistic and do not reject H0 if −tα/2 < t < tα/2, where
tα/2 has n− k − 1 degrees of freedom.
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Example 12.5: For the model of Example 12.4, test the hypothesis that β2 = −2.5 at the 0.05
level of significance against the alternative that β2 > −2.5.

Solution : H0: β2 = −2.5,

H1: β2 > −2.5.

Computations:

t =
b2 − β20

s
√
c22

=
−1.8616 + 2.5

2.073
√
0.0166

= 2.390,

P = P (T > 2.390) = 0.04.

Decision: Reject H0 and conclude that β2 > −2.5.

Individual t-Tests for Variable Screening

The t-test most often used in multiple regression is the one that tests the impor-
tance of individual coefficients (i.e., H0: βj = 0 against the alternative H1: βj �= 0).
These tests often contribute to what is termed variable screening, where the ana-
lyst attempts to arrive at the most useful model (i.e., the choice of which regressors
to use). It should be emphasized here that if a coefficient is found insignificant (i.e.,
the hypothesis H0: βj = 0 is not rejected), the conclusion drawn is that the vari-
able is insignificant (i.e., explains an insignificant amount of variation in y), in the
presence of the other regressors in the model. This point will be reaffirmed
in a future discussion.

Inferences on Mean Response and Prediction

One of the most useful inferences that can be made regarding the quality of the
predicted response y0 corresponding to the values x10, x20, . . . , xk0 is the confidence
interval on the mean response μY |x10,x20,...,xk0

. We are interested in constructing a
confidence interval on the mean response for the set of conditions given by

x′
0 = [1, x10, x20, . . . , xk0].

We augment the conditions on the x’s by the number 1 in order to facilitate the
matrix notation. Normality in the εi produces normality in the bj and the mean
and variance are still the same as indicated in Section 12.4. So is the covariance
between bi and bj , for i �= j. Hence,

ŷ = b0 +

k∑
j=1

bjxj0

is likewise normally distributed and is, in fact, an unbiased estimator for the mean
response on which we are attempting to attach a confidence interval. The variance
of ŷ0, written in matrix notation simply as a function of σ2, (X′X)−1, and the
condition vector x′

0, is

σ2
ŷ0

= σ2x′
0(X

′X)−1x0.
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If this expression is expanded for a given case, say k = 2, it is readily seen that it
appropriately accounts for the variance of the bj and the covariance of bi and bj ,
for i �= j. After σ2 is replaced by s2 as given by Theorem 12.1, the 100(1 − α)%
confidence interval on μY |x10,x20,...,xk0

can be constructed from the statistic

T =
ŷ0 − μY |x10,x20,...,xk0

s
√

x′
0(X

′X)−1x0

,

which has a t-distribution with n− k − 1 degrees of freedom.

Confidence Interval
for μY |x10,x20,...,xk0

A 100(1− α)% confidence interval for the mean response μY |x10,x20,...,xk0
is

ŷ0 − tα/2s
√

x′
0(X

′X)−1x0 < μY |x10,x20,...,xk0
< ŷ0 + tα/2s

√
x′
0(X

′X)−1x0,

where tα/2 is a value of the t-distribution with n− k − 1 degrees of freedom.

The quantity s
√
x′
0(X

′X)−1x0 is often called the standard error of predic-
tion and appears on the printout of many regression computer packages.

Example 12.6: Using the data of Example 12.4, construct a 95% confidence interval for the mean
response when x1 = 3%, x2 = 8%, and x3 = 9%.

Solution : From the regression equation of Example 12.4, the estimated percent survival when
x1 = 3%, x2 = 8%, and x3 = 9% is

ŷ = 39.1574 + (1.0161)(3)− (1.8616)(8)− (0.3433)(9) = 24.2232.

Next, we find that

x′
0(X

′X)−1x0 = [1, 3, 8, 9]

⎡⎢⎢⎣
8.0648 −0.0826 −0.0942 −0.7905

−0.0826 0.0085 0.0017 0.0037
−0.0942 0.0017 0.0166 −0.0021
−0.7905 0.0037 −0.0021 0.0886

⎤⎥⎥⎦
⎡⎢⎢⎣
1
3
8
9

⎤⎥⎥⎦
= 0.1267.

Using the mean square error, s2 = 4.298 or s = 2.073, and Table A.4, we see that
t0.025 = 2.262 for 9 degrees of freedom. Therefore, a 95% confidence interval for
the mean percent survival for x1 = 3%, x2 = 8%, and x3 = 9% is given by

24.2232− (2.262)(2.073)
√
0.1267 < μY |3,8,9

< 24.2232 + (2.262)(2.073)
√
0.1267,

or simply 22.5541 < μY |3,8,9 < 25.8923.
As in the case of simple linear regression, we need to make a clear distinction

between the confidence interval on a mean response and the prediction interval on
an observed response. The latter provides a bound within which we can say with
a preselected degree of certainty that a new observed response will fall.

A prediction interval for a single predicted response y0 is once again established
by considering the difference ŷ0 − y0. The sampling distribution can be shown to
be normal with mean

μŷ0−y0 = 0
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and variance

σ2
ŷ0−y0

= σ2[1 + x′
0(X

′X)−1x0].

Thus, a 100(1 − α)% prediction interval for a single prediction value y0 can be
constructed from the statistic

T =
ŷ0 − y0

s
√

1 + x′
0(X

′X)−1x0

,

which has a t-distribution with n− k − 1 degrees of freedom.

Prediction Interval
for y0

A 100(1− α)% prediction interval for a single response y0 is given by

ŷ0 − tα/2s
√
1 + x′

0(X
′X)−1x0 < y0 < ŷ0 + tα/2s

√
1 + x′

0(X
′X)−1x0,

where tα/2 is a value of the t-distribution with n− k − 1 degrees of freedom.

Example 12.7: Using the data of Example 12.4, construct a 95% prediction interval for an indi-
vidual percent survival response when x1 = 3%, x2 = 8%, and x3 = 9%.

Solution : Referring to the results of Example 12.6, we find that the 95% prediction interval
for the response y0, when x1 = 3%, x2 = 8%, and x3 = 9%, is

24.2232− (2.262)(2.073)
√
1.1267 < y0 < 24.2232 + (2.262)(2.073)

√
1.1267,

which reduces to 19.2459 < y0 < 29.2005. Notice, as expected, that the prediction
interval is considerably wider than the confidence interval for mean percent survival
found in Example 12.6.

Annotated Printout for Data of Example 12.4

Figure 12.1 shows an annotated computer printout for a multiple linear regression
fit to the data of Example 12.4. The package used is SAS.

Note the model parameter estimates, the standard errors, and the t-statistics
shown in the output. The standard errors are computed from square roots of di-
agonal elements of (X′X)−1s2. In this illustration, the variable x3 is insignificant
in the presence of x1 and x2 based on the t-test and the corresponding P-value of
0.5916. The terms CLM and CLI are confidence intervals on mean response and
prediction limits on an individual observation, respectively. The f-test in the anal-
ysis of variance indicates that a significant amount of variability is explained. As
an example of the interpretation of CLM and CLI, consider observation 10. With
an observation of 25.2000 and a predicted value of 26.0676, we are 95% confident
that the mean response is between 24.5024 and 27.6329, and a new observation will
fall between 21.1238 and 31.0114 with probability 0.95. The R2 value of 0.9117
implies that the model explains 91.17% of the variability in the response. More
discussion about R2 appears in Section 12.6.
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Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 399.45437 133.15146 30.98 <.0001

Error 9 38.67640 4.29738

Corrected Total 12 438.13077

Root MSE 2.07301 R-Square 0.9117

Dependent Mean 29.03846 Adj R-Sq 0.8823

Coeff Var 7.13885

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 39.15735 5.88706 6.65 <.0001

x1 1 1.01610 0.19090 5.32 0.0005

x2 1 -1.86165 0.26733 -6.96 <.0001

x3 1 -0.34326 0.61705 -0.56 0.5916

Dependent Predicted Std Error

Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict Residual

1 25.5000 27.3514 1.4152 24.1500 30.5528 21.6734 33.0294 -1.8514

2 31.2000 32.2623 0.7846 30.4875 34.0371 27.2482 37.2764 -1.0623

3 25.9000 27.3495 1.3588 24.2757 30.4234 21.7425 32.9566 -1.4495

4 38.4000 38.3096 1.2818 35.4099 41.2093 32.7960 43.8232 0.0904

5 18.4000 15.5447 1.5789 11.9730 19.1165 9.6499 21.4395 2.8553

6 26.7000 26.1081 1.0358 23.7649 28.4512 20.8658 31.3503 0.5919

7 26.4000 28.2532 0.8094 26.4222 30.0841 23.2189 33.2874 -1.8532

8 25.9000 26.2219 0.9732 24.0204 28.4233 21.0414 31.4023 -0.3219

9 32.0000 32.0882 0.7828 30.3175 33.8589 27.0755 37.1008 -0.0882

10 25.2000 26.0676 0.6919 24.5024 27.6329 21.1238 31.0114 -0.8676

11 39.7000 37.2524 1.3070 34.2957 40.2090 31.7086 42.7961 2.4476

12 35.7000 32.4879 1.4648 29.1743 35.8015 26.7459 38.2300 3.2121

13 26.5000 28.2032 0.9841 25.9771 30.4294 23.0122 33.3943 -1.7032

Figure 12.1: SAS printout for data in Example 12.4.

More on Analysis of Variance in Multiple Regression (Optional)

In Section 12.4, we discussed briefly the partition of the total sum of squares
n∑

i=1

(yi−ȳ)2 into its two components, the regression model and error sums of squares

(illustrated in Figure 12.1). The analysis of variance leads to a test of

H0: β1 = β2 = β3 = · · · = βk = 0.

Rejection of the null hypothesis has an important interpretation for the scientist or
engineer. (For those who are interested in more extensive treatment of the subject
using matrices, it is useful to discuss the development of these sums of squares
used in ANOVA.)

First, recall in Section 12.3, b, the vector of least squares estimators, is given
by

b = (X′X)−1X′y.
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A partition of the uncorrected sum of squares

y′y =
n∑

i=1

y2
i

into two components is given by

y′y = b′X′y + (y′y − b′X′y)

= y′X(X′X)
−1

X′y + [y′y − y′X(X′X)
−1

X′y].

The second term (in brackets) on the right-hand side is simply the error sum of

squares
n∑

i=1

(yi − ŷi)
2. The reader should see that an alternative expression for the

error sum of squares is

SSE = y′[In −X(X′X)−1X′]y.

The term y′X(X′X)
−1

X′y is called the regression sum of squares. However,

it is not the expression
n∑

i=1

(ŷi − ȳ)2 used for testing the “importance” of the terms

b1, b2, . . . , bk but, rather,

y′X(X′X)
−1

X′y =

n∑
i=1

ŷ2i ,

which is a regression sum of squares uncorrected for the mean. As such, it would
only be used in testing if the regression equation differs significantly from zero,
that is,

H0: β0 = β1 = β2 = · · · = βk = 0.

In general, this is not as important as testing

H0: β1 = β2 = · · · = βk = 0,

since the latter states that the mean response is a constant, not necessarily zero.

Degrees of Freedom

Thus, the partition of sums of squares and degrees of freedom reduces to

Source Sum of Squares d.f.

Regression
n∑

i=1

ŷ2i = y′X(X′X)−1X′y k + 1

Error
n∑

i=1

(yi − ŷi)
2 = y′[In −X(X′X)−1X′]y n− (k + 1)

Total
n∑

i=1

y2i = y′y n
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Hypothesis of Interest

Now, of course, the hypotheses of interest for an ANOVA must eliminate the role
of the intercept described previously. Strictly speaking, if H0 : β1 = β2 = · · · =
βk = 0, then the estimated regression line is merely ŷi = ȳ. As a result, we are
actually seeking evidence that the regression equation “varies from a constant.”
Thus, the total and regression sums of squares must be corrected for the mean. As
a result, we have

n∑
i=1

(yi − ȳ)2 =

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

(yi − ŷi)
2.

In matrix notation this is simply

y′[In− 1(1′1)−11′]y = y′[X(X′X)−1X′− 1(1′1)−11′]y + y′[In−X(X′X)−1X′]y.

In this expression, 1 is a vector of n ones. As a result, we are merely subtracting

y′1(1′1)−11′y =
1

n

(
n∑

i=1

yi

)2

from y′y and from y′X(X′X)−1X′y (i.e., correcting the total and regression sums
of squares for the mean).

Finally, the appropriate partitioning of sums of squares with degrees of freedom
is as follows:

Source Sum of Squares d.f.

Regression
n∑

i=1

(ŷi − ȳ)2 = y′[X(X′X)−1X′ − 1(1′1)−11]y k

Error
n∑

i=1

(yi − ŷi)
2 = y′[In −X(X′X)−1X′]y n− (k + 1)

Total
n∑

i=1

(yi − ȳ)2 = y′[In − 1(1′1)−11′]y n− 1

This is the ANOVA table that appears in the computer printout of Figure 12.1.
The expression y′[1(1′1)−11′]y is often called the regression sum of squares
associated with the mean, and 1 degree of freedom is allocated to it.

Exercises

12.17 For the data of Exercise 12.2 on page 450, es-
timate σ2.

12.18 For the data of Exercise 12.1 on page 450, es-
timate σ2.

12.19 For the data of Exercise 12.5 on page 450, es-
timate σ2.

12.20 Obtain estimates of the variances and the co-

variance of the estimators b1 and b2 of Exercise 12.2 on
page 450.

12.21 Referring to Exercise 12.5 on page 450, find the
estimate of

(a) σ2
b2
;

(b) Cov(b1, b4).

12.22 For the model of Exercise 12.7 on page 451,

Uploaded By: anonymousSTUDENTS-HUB.com



462 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models

test the hypothesis that β2 = 0 at the 0.05 level of
significance against the alternative that β2 �= 0.

12.23 For the model of Exercise 12.2 on page 450,
test the hypothesis that β1 = 0 at the 0.05 level of
significance against the alternative that β1 �= 0.

12.24 For the model of Exercise 12.1 on page 450,
test the hypotheses that β1 = 2 against the alternative
that β1 �= 2. Use a P-value in your conclusion.

12.25 Using the data of Exercise 12.2 on page 450
and the estimate of σ2 from Exercise 12.17, compute
95% confidence intervals for the predicted response and
the mean response when x1 = 900 and x2 = 1.00.

12.26 For Exercise 12.8 on page 451, construct a 90%
confidence interval for the mean compressive strength
when the concentration is x = 19.5 and a quadratic
model is used.

12.27 Using the data of Exercise 12.5 on page 450
and the estimate of σ2 from Exercise 12.19, compute
95% confidence intervals for the predicted response and
the mean response when x1 = 75, x2 = 24, x3 = 90,
and x4 = 98.

12.28 Consider the following data from Exercise
12.13 on page 452.

y (wear) x1 (oil viscosity) x2 (load)
193 1.6 851
230 15.5 816
172 22.0 1058
91 43.0 1201
113 33.0 1357
125 40.0 1115

(a) Estimate σ2 using multiple regression of y on x1

and x2.

(b) Compute predicted values, a 95% confidence inter-
val for mean wear, and a 95% prediction interval
for observed wear if x1 = 20 and x2 = 1000.

12.29 Using the data from Exercise 12.28, test the
following at the 0.05 level.

(a) H0: β1 = 0 versus H1: β1 �= 0;

(b) H0: β2 = 0 versus H1: β2 �= 0.

(c) Do you have any reason to believe that the model
in Exercise 12.28 should be changed? Why or why
not?

12.30 Use the data from Exercise 12.16 on page 453.

(a) Estimate σ2 using the multiple regression of y on
x1, x2, and x3,

(b) Compute a 95% prediction interval for the ob-
served gain with the three regressors at x1 = 15.0,
x2 = 220.0, and x3 = 6.0.

12.6 Choice of a Fitted Model through Hypothesis Testing

In many regression situations, individual coefficients are of importance to the ex-
perimenter. For example, in an economics application, β1, β2, . . . might have some
particular significance, and thus confidence intervals and tests of hypotheses on
these parameters would be of interest to the economist. However, consider an in-
dustrial chemical situation in which the postulated model assumes that reaction
yield is linearly dependent on reaction temperature and concentration of a certain
catalyst. It is probably known that this is not the true model but an adequate ap-
proximation, so interest is likely to be not in the individual parameters but rather
in the ability of the entire function to predict the true response in the range of the
variables considered. Therefore, in this situation, one would put more emphasis on
σ2
Ŷ
, confidence intervals on the mean response, and so forth, and likely deemphasize

inferences on individual parameters.
The experimenter using regression analysis is also interested in deletion of vari-

ables when the situation dictates that, in addition to arriving at a workable pre-
diction equation, he or she must find the “best regression” involving only variables
that are useful predictors. There are a number of computer programs that sequen-
tially arrive at the so-called best regression equation depending on certain criteria.
We discuss this further in Section 12.9.

One criterion that is commonly used to illustrate the adequacy of a fitted re-
gression model is the coefficient of determination, or R2.
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Coefficient of
Determination, or

R2 R2 =
SSR

SST
=

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
= 1− SSE

SST
.

Note that this parallels the description of R2 in Chapter 11. At this point
the explanation might be clearer since we now focus on SSR as the variability
explained. The quantity R2 merely indicates what proportion of the total vari-
ation in the response Y is explained by the fitted model. Often an experimenter
will report R2 × 100% and interpret the result as percent variation explained by
the postulated model. The square root of R2 is called the multiple correlation
coefficient between Y and the set x1, x2, . . . , xk. The value of R2 for the case
in Example 12.4, indicating the proportion of variation explained by the three
independent variables x1, x2, and x3, is

R2 =
SSR

SST
=

399.45

438.13
= 0.9117,

which means that 91.17% of the variation in percent survival has been explained
by the linear regression model.

The regression sum of squares can be used to give some indication concerning
whether or not the model is an adequate explanation of the true situation. We can
test the hypothesis H0 that the regression is not significant by merely forming
the ratio

f =
SSR/k

SSE/(n− k − 1)
=

SSR/k

s2

and rejecting H0 at the α-level of significance when f > fα(k, n− k − 1). For the
data of Example 12.4, we obtain

f =
399.45/3

4.298
= 30.98.

From the printout in Figure 12.1, the P -value is less than 0.0001. This should not
be misinterpreted. Although it does indicate that the regression explained by the
model is significant, this does not rule out the following possibilities:

1. The linear regression model for this set of x’s is not the only model that
can be used to explain the data; indeed, there may be other models with
transformations on the x’s that give a larger value of the F-statistic.

2. The model might have been more effective with the inclusion of other variables
in addition to x1, x2, and x3 or perhaps with the deletion of one or more of
the variables in the model, say x3, which has a P = 0.5916.

The reader should recall the discussion in Section 11.5 regarding the pitfalls
in the use of R2 as a criterion for comparing competing models. These pitfalls
are certainly relevant in multiple linear regression. In fact, in its employment in
multiple regression, the dangers are even more pronounced since the temptation
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to overfit is so great. One should always keep in mind that R2 ≈ 1.0 can always
be achieved at the expense of error degrees of freedom when an excess of model
terms is employed. However, R2 = 1, describing a model with a near perfect fit,
does not always result in a model that predicts well.

The Adjusted Coefficient of Determination (R2
adj)

In Chapter 11, several figures displaying computer printout from both SAS and
MINITAB featured a statistic called adjusted R2 or adjusted coefficient of deter-
mination. Adjusted R2 is a variation on R2 that provides an adjustment for
degrees of freedom. The coefficient of determination as defined on page 407
cannot decrease as terms are added to the model. In other words, R2 does not
decrease as the error degrees of freedom n − k − 1 are reduced, the latter result
being produced by an increase in k, the number of model terms. Adjusted R2

is computed by dividing SSE and SST by their respective degrees of freedom as
follows.

Adjusted R2

R2
adj = 1− SSE/(n− k − 1)

SST/(n− 1)
.

To illustrate the use of R2
adj, Example 12.4 will be revisited.

How Are R2 and R2
adj Affected by Removal of x3?

The t-test (or corresponding F -test) for x3 suggests that a simpler model involving
only x1 and x2 may well be an improvement. In other words, the complete model
with all the regressors may be an overfitted model. It is certainly of interest
to investigate R2 and R2

adj for both the full (x1, x2, x3) and the reduced (x1, x2)

models. We already know that R2
full = 0.9117 from Figure 12.1. The SSE for

the reduced model is 40.01, and thus R2
reduced = 1 − 40.01

438.13 = 0.9087. Thus, more
variability is explained with x3 in the model. However, as we have indicated, this
will occur even if the model is an overfitted model. Now, of course, R2

adj is designed
to provide a statistic that punishes an overfitted model, so we might expect it to
favor the reduced model. Indeed, for the full model

R2
adj = 1− 38.6764/9

438.1308/12
= 1− 4.2974

36.5109
= 0.8823,

whereas for the reduced model (deletion of x3)

R2
adj = 1− 40.01/10

438.1308/12
= 1− 4.001

36.5109
= 0.8904.

Thus, R2
adj does indeed favor the reduced model and confirms the evidence pro-

duced by the t- and F-tests, suggesting that the reduced model is preferable to the
model containing all three regressors. The reader may expect that other statistics
would suggest rejection of the overfitted model. See Exercise 12.40 on page 471.
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Test on an Individual Coefficient

The addition of any single variable to a regression system will increase the re-
gression sum of squares and thus reduce the error sum of squares. Consequently,
we must decide whether the increase in regression is sufficient to warrant using
the variable in the model. As we might expect, the use of unimportant variables
can reduce the effectiveness of the prediction equation by increasing the variance
of the estimated response. We shall pursue this point further by considering the
importance of x3 in Example 12.4. Initially, we can test

H0: β3 = 0,

H1: β3 �= 0

by using the t-distribution with 9 degrees of freedom. We have

t =
b3 − 0

s
√
c33

=
−0.3433

2.073
√
0.0886

= −0.556,

which indicates that β3 does not differ significantly from zero, and hence we may
very well feel justified in removing x3 from the model. Suppose that we consider
the regression of Y on the set (x1, x2), the least squares normal equations now
reducing to⎡⎣ 13.0 59.43 81.82

59.43 394.7255 360.6621
81.82 360.6621 576.7264

⎤⎦⎡⎣b0b1
b2

⎤⎦ =

⎡⎣ 377.50
1877.5670
2246.6610

⎤⎦ .

The estimated regression coefficients for this reduced model are

b0 = 36.094, b1 = 1.031, b2 = −1.870,

and the resulting regression sum of squares with 2 degrees of freedom is

R(β1, β2) = 398.12.

Here we use the notation R(β1, β2) to indicate the regression sum of squares of
the restricted model; it should not be confused with SSR, the regression sum of
squares of the original model with 3 degrees of freedom. The new error sum of
squares is then

SST −R(β1, β2) = 438.13− 398.12 = 40.01,

and the resulting mean square error with 10 degrees of freedom becomes

s2 =
40.01

10
= 4.001.

Does a Single Variable t-Test Have an F Counterpart?

From Example 12.4, the amount of variation in the percent survival that is at-
tributed to x3, in the presence of the variables x1 and x2, is

R(β3 | β1, β2) = SSR−R(β1, β2) = 399.45− 398.12 = 1.33,
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which represents a small proportion of the entire regression variation. This amount
of added regression is statistically insignificant, as indicated by our previous test
on β3. An equivalent test involves the formation of the ratio

f =
R(β3 | β1, β2)

s2
=

1.33

4.298
= 0.309,

which is a value of the F-distribution with 1 and 9 degrees of freedom. Recall that
the basic relationship between the t-distribution with v degrees of freedom and the
F-distribution with 1 and v degrees of freedom is

t2 = f(1, v),

and note that the f-value of 0.309 is indeed the square of the t-value of −0.56.
To generalize the concepts above, we can assess the work of an independent

variable xi in the general multiple linear regression model

μY |x1,x2,...,xk
= β0 + β1x1 + · · ·+ βkxk

by observing the amount of regression attributed to xi over and above that
attributed to the other variables, that is, the regression on xi adjusted for the
other variables. For example, we say that x1 is assessed by calculating

R(β1 | β2, β3, . . . , βk) = SSR−R(β2, β3, . . . , βk),

where R(β2, β3, . . . , βk) is the regression sum of squares with β1x1 removed from
the model. To test the hypothesis

H0: β1 = 0,

H1: β1 �= 0,

we compute

f =
R(β1 | β2, β3, . . . , βk)

s2
,

and compare it with fα(1, n− k − 1).

Partial F -Tests on Subsets of Coefficients

In a similar manner, we can test for the significance of a set of the variables. For
example, to investigate simultaneously the importance of including x1 and x2 in
the model, we test the hypothesis

H0: β1 = β2 = 0,

H1: β1 and β2 are not both zero,

by computing

f =
[R(β1, β2 | β3, β4, . . . , βk)]/2

s2
=

[SSR−R(β3, β4, . . . , βk)]/2

s2
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and comparing it with fα(2, n−k−1). The number of degrees of freedom associated
with the numerator, in this case 2, equals the number of variables in the set being
investigated.

Suppose we wish to test the hypothesis

H0: β2 = β3 = 0,

H1: β2 and β3 are not both zero

for Example 12.4. If we develop the regression model

y = β0 + β1x1 + ε,

we can obtain R(β1) = SSRreduced = 187.31179. From Figure 12.1 on page 459, we
have s2 = 4.29738 for the full model. Hence, the f -value for testing the hypothesis
is

f =
R(β2, β3 | β1)/2

s2
=

[R(β1, β2, β3)−R(β1)]/2

s2
=

[SSRfull − SSRreduced]/2

s2

=
(399.45437− 187.31179)/2

4.29738
= 24.68278.

This implies that β2 and β3 are not simultaneously zero. Using statistical software
such as SAS one can directly obtain the above result with a P -value of 0.0002.
Readers should note that in statistical software package output there are P -values
associated with each individual model coefficient. The null hypothesis for each is
that the coefficient is zero. However, it should be noted that the insignificance of
any coefficient does not necessarily imply that it does not belong in the final model.
It merely suggests that it is insignificant in the presence of all other variables in
the problem. The case study at the end of this chapter illustrates this further.

12.7 Special Case of Orthogonality (Optional)

Prior to our original development of the general linear regression problem, the
assumption was made that the independent variables are measured without error
and are often controlled by the experimenter. Quite often they occur as a result
of an elaborately designed experiment. In fact, we can increase the effectiveness of
the resulting prediction equation with the use of a suitable experimental plan.

Suppose that we once again consider the X matrix as defined in Section 12.3.
We can rewrite it as

X = [1,x1,x2, . . . ,xk],

where 1 represents a column of ones and xj is a column vector representing the
levels of xj . If

x′
pxq = 0, for p �= q,

the variables xp and xq are said to be orthogonal to each other. There are certain
obvious advantages to having a completely orthogonal situation where x′

pxq = 0
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for all possible p and q, p �= q, and, in addition,

n∑
i=1

xji = 0, j = 1, 2, . . . , k.

The resulting X′X is a diagonal matrix, and the normal equations in Section 12.3
reduce to

nb0 =

n∑
i=1

yi, b1

n∑
i=1

x2
1i =

n∑
i=1

x1iyi, · · · , bk
n∑

i=1

x2
ki =

n∑
i=1

xkiyi.

An important advantage is that one is easily able to partition SSR into single-
degree-of-freedom components, each of which corresponds to the amount of
variation in Y accounted for by a given controlled variable. In the orthogonal
situation, we can write

SSR =
n∑

i=1

(ŷi − ȳ)2 =
n∑

i=1

(b0 + b1x1i + · · ·+ bkxki − b0)
2

= b21

n∑
i=1

x2
1i + b22

n∑
i=1

x2
2i + · · ·+ b2k

n∑
i=1

x2
ki

= R(β1) +R(β2) + · · ·+R(βk).

The quantity R(βi) is the amount of the regression sum of squares associated with
a model involving a single independent variable xi.

To test simultaneously for the significance of a set of m variables in an orthog-
onal situation, the regression sum of squares becomes

R(β1, β2, . . . , βm | βm+1, βm+2, . . . , βk) = R(β1) +R(β2) + · · ·+R(βm),

and thus we have the further simplification

R(β1 | β2, β3, . . . , βk) = R(β1)

when evaluating a single independent variable. Therefore, the contribution of a
given variable or set of variables is essentially found by ignoring the other variables
in the model. Independent evaluations of the worth of the individual variables are
accomplished using analysis-of-variance techniques, as given in Table 12.4. The
total variation in the response is partitioned into single-degree-of-freedom compo-
nents plus the error term with n−k−1 degrees of freedom. Each computed f-value
is used to test one of the hypotheses

H0: βi = 0
H1: βi �= 0

}
i = 1, 2, . . . , k,

by comparing with the critical point fα(1, n − k − 1) or merely interpreting the
P-value computed from the f-distribution.
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Table 12.4: Analysis of Variance for Orthogonal Variables

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

β1 R(β1) = b21
n∑

i=1

x2
1i 1 R(β1)

R(β1)
s2

β2 R(β2) = b22
n∑

i=1

x2
2i 1 R(β2)

R(β2)
s2

...
...

...
...

...

βk R(βk) = b2k
n∑

i=1

x2
ki 1 R(βk)

R(βk)
s2

Error SSE n− k − 1 s2 = SSE
n−k−1

Total SST = Syy n− 1

Example 12.8: Suppose that a scientist takes experimental data on the radius of a propellant grain
Y as a function of powder temperature x1, extrusion rate x2, and die temperature
x3. Fit a linear regression model for predicting grain radius, and determine the
effectiveness of each variable in the model. The data are given in Table 12.5.

Table 12.5: Data for Example 12.8

Powder Extrusion Die
Grain Radius Temperature Rate Temperature

82
93
114
124
111
129
157
164

150 (−1)
190 (+1)
150 (−1)
150 (−1)
190 (+1)
190 (+1)
150 (−1)
190 (+1)

12 (−1)
12 (−1)
24 (+1)
12 (−1)
24 (+1)
12 (−1)
24 (+1)
24 (+1)

220 (−1)
220 (−1)
220 (−1)
250 (+1)
220 (−1)
250 (+1)
250 (+1)
250 (+1)

Solution : Note that each variable is controlled at two levels, and the experiment is composed
of the eight possible combinations. The data on the independent variables are
coded for convenience by means of the following formulas:

x1 =
powder temperature− 170

20
,

x2 =
extrusion rate− 18

6
,

x3 =
die temperature− 235

15
.

The resulting levels of x1, x2, and x3 take on the values −1 and +1 as indicated
in the table of data. This particular experimental design affords the orthogonal-
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ity that we want to illustrate here. (A more thorough treatment of this type of
experimental layout appears in Chapter 15.) The X matrix is

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the orthogonality conditions are readily verified.
We can now compute coefficients

b0 =
1

8

8∑
i=1

yi = 121.75, b1 =
1

8

8∑
i=1

x1iyi =
20

8
= 2.5,

b2 =

8∑
i=1

x2iyi

8
=

118

8
= 14.75, b3 =

8∑
i=1

x3iyi

8
=

174

8
= 21.75,

so in terms of the coded variables, the prediction equation is

ŷ = 121.75 + 2.5x1 + 14.75x2 + 21.75x3.

The analysis of variance in Table 12.6 shows independent contributions to SSR for
each variable. The results, when compared to the f0.05(1, 4) critical point of 7.71,
indicate that x1 does not contribute significantly at the 0.05 level, whereas variables
x2 and x3 are significant. In this example, the estimate for σ2 is 23.1250. As for
the single independent variable case, it should be pointed out that this estimate
does not solely contain experimental error variation unless the postulated model
is correct. Otherwise, the estimate is “contaminated” by lack of fit in addition
to pure error, and the lack of fit can be separated out only if we obtain multiple
experimental observations for the various (x1, x2, x3) combinations.

Table 12.6: Analysis of Variance for Grain Radius Data

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Squares f P-Value

β1

β2

β3

Error
Total

(2.5)2(8) = 50.00
(14.75)2(8) = 1740.50
(21.75)2(8) = 3784.50

92.50
5667.50

1
1
1
4
7

50.00
1740.50
3784.50

23.13

2.16
75.26

163.65

0.2156
0.0010
0.0002

Since x1 is not significant, it can simply be eliminated from the model without
altering the effects of the other variables. Note that x2 and x3 both impact the
grain radius in a positive fashion, with x3 being the more important factor based
on the smallness of its P-value.
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Exercises

12.31 Compute and interpret the coefficient of multi-
ple determination for the variables of Exercise 12.1 on
page 450.

12.32 Test whether the regression explained by the
model in Exercise 12.1 on page 450 is significant at the
0.01 level of significance.

12.33 Test whether the regression explained by the
model in Exercise 12.5 on page 450 is significant at the
0.01 level of significance.

12.34 For the model of Exercise 12.5 on page 450,
test the hypothesis

H0: β1 = β2 = 0,

H1: β1 and β2 are not both zero.

12.35 Repeat Exercise 12.17 on page 461 using an
F-statistic.

12.36 A small experiment was conducted to fit a mul-
tiple regression equation relating the yield y to temper-
ature x1, reaction time x2, and concentration of one
of the reactants x3. Two levels of each variable were
chosen, and measurements corresponding to the coded
independent variables were recorded as follows:

y x 1 x 2 x 3

7.6
8.4
9.2

10.3
9.8

11.1
10.2
12.6

−1
1

−1
−1
1
1

−1
1

−1
−1
1

−1
1

−1
1
1

−1
−1
−1
1

−1
1
1
1

(a) Using the coded variables, estimate the multiple
linear regression equation

μY |x1,x2,x3
= β0 + β1x1 + β2x2 + β3x3.

(b) Partition SSR, the regression sum of squares,
into three single-degree-of-freedom components at-
tributable to x1, x2, and x3, respectively. Show an
analysis-of-variance table, indicating significance
tests on each variable.

12.37 Consider the electric power data of Exercise
12.5 on page 450. Test H0 : β1 = β2 = 0, making use
of R(β1, β2 | β3, β4). Give a P-value, and draw conclu-
sions.

12.38 Consider the data for Exercise 12.36. Compute
the following:

R(β1 | β0), R(β1 | β0, β2, β3),

R(β2 | β0, β1), R(β2 | β0, β1, β3),

R(β3 | β0, β1, β2), R(β1, β2 | β3).

Comment.

12.39 Consider the data of Exercise 11.55 on page
437. Fit a regression model using weight and drive
ratio as explanatory variables. Compare this model
with the SLR (simple linear regression) model using
weight alone. Use R2, R2

adj, and any t-statistics (or
F-statistics) you may need to compare the SLR with
the multiple regression model.

12.40 Consider Example 12.4. Figure 12.1 on page
459 displays a SAS printout of an analysis of the model
containing variables x1, x2, and x3. Focus on the
confidence interval of the mean response μY at the
(x1, x2, x3) locations representing the 13 data points.
Consider an item in the printout indicated by C.V.
This is the coefficient of variation, which is defined
by

C.V. =
s

ȳ
· 100,

where s =
√
s2 is the root mean squared error. The

coefficient of variation is often used as yet another crite-
rion for comparing competing models. It is a scale-free
quantity which expresses the estimate of σ, namely s,
as a percent of the average response ȳ. In competition
for the “best” among a group of competing models, one
strives for the model with a small value of C.V. Do a
regression analysis of the data set shown in Example
12.4 but eliminate x3. Compare the full (x1, x2, x3)
model with the restricted (x1, x2) model and focus on
two criteria: (i) C.V.; (ii) the widths of the confidence
intervals on μY . For the second criterion you may want
to use the average width. Comment.

12.41 Consider Example 12.3 on page 447. Compare
the two competing models.

First order: yi = β0 + β1x1i + β2x2i + εi,

Second order: yi = β0 + β1x1i + β2x2i

+ β11x
2
1i + β22x

2
2i + β12x1ix2i + εi.

Use R2
adj in your comparison. Test H0 : β11 = β22 =

β12 = 0. In addition, use the C.V. discussed in Exercise
12.40.
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12.42 In Example 12.8, a case is made for eliminat-
ing x1, powder temperature, from the model since the
P-value based on the F-test is 0.2156 while P-values
for x2 and x3 are near zero.

(a) Reduce the model by eliminating x1, thereby pro-
ducing a full and a restricted (or reduced) model,
and compare them on the basis of R2

adj.

(b) Compare the full and restricted models using the
width of the 95% prediction intervals on a new ob-
servation. The better of the two models would be
that with the tightened prediction intervals. Use
the average of the width of the prediction intervals.

12.43 Consider the data of Exercise 12.13 on page
452. Can the response, wear, be explained adequately
by a single variable (either viscosity or load) in an SLR
rather than with the full two-variable regression? Jus-
tify your answer thoroughly through tests of hypothe-
ses as well as comparison of the three competing
models.

12.44 For the data set given in Exericise 12.16 on
page 453, can the response be explained adequately by
any two regressor variables? Discuss.

12.8 Categorical or Indicator Variables

An extremely important special-case application of multiple linear regression oc-
curs when one or more of the regressor variables are categorical, indicator, or
dummy variables. In a chemical process, the engineer may wish to model the
process yield against regressors such as process temperature and reaction time.
However, there is interest in using two different catalysts and somehow including
“the catalyst” in the model. The catalyst effect cannot be measured on a contin-
uum and is hence a categorical variable. An analyst may wish to model the price
of homes against regressors that include square feet of living space x1, the land
acreage x2, and age of the house x3. These regressors are clearly continuous in
nature. However, it is clear that cost of homes may vary substantially from one
area of the country to another. If data are collected on homes in the east, mid-
west, south, and west, we have an indicator variable with four categories. In the
chemical process example, if two catalysts are used, we have an indicator variable
with two categories. In a biomedical example in which a drug is to be compared
to a placebo, all subjects are evaluated on several continuous measurements such
as age, blood pressure, and so on, as well as gender, which of course is categori-
cal with two categories. So, included along with the continuous variables are two
indicator variables: treatment with two categories (active drug and placebo) and
gender with two categories (male and female).

Model with Categorical Variables

Let us use the chemical processing example to illustrate how indicator variables
are involved in the model. Suppose y = yield and x1 = temperature and x2 =
reaction time. Now let us denote the indicator variable by z. Let z = 0 for catalyst
1 and z = 1 for catalyst 2. The assignment of the (0, 1) indicator to the catalyst
is arbitrary. As a result, the model becomes

yi = β0 + β1x1i + β2x2i + β3zi + εi, i = 1, 2, . . . , n.

Three Categories

The estimation of coefficients by the method of least squares continues to apply.
In the case of three levels or categories of a single indicator variable, the model will
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include two regressors, say z1 and z2, where the (0, 1) assignment is as follows:

z1 z2⎡⎣1 0
0 1
0 0

⎤⎦,
where 0 and 1 are vectors of 0’s and 1’s, respectively. In other words, if there are
� categories, the model includes �− 1 actual model terms.

It may be instructive to look at a graphical representation of the model with
three categories. For the sake of simplicity, let us assume a single continuous
variable x. As a result, the model is given by

yi = β0 + β1xi + β2z1i + β3z2i + εi.

Thus, Figure 12.2 reflects the nature of the model. The following are model ex-
pressions for the three categories.

E(Y ) = (β0 + β2) + β1x, category 1,

E(Y ) = (β0 + β3) + β1x, category 2,

E(Y ) = β0 + β1x, category 3.

As a result, the model involving categorical variables essentially involves a change
in the intercept as we change from one category to another. Here of course we
are assuming that the coefficients of continuous variables remain the same
across the categories.

x

y

Category 3

Category 2

Category 1

Figure 12.2: Case of three categories.

Example 12.9: Consider the data in Table 12.7. The response y is the amount of suspended
solids in a coal cleansing system. The variable x is the pH of the system. Three
different polymers are used in the system. Thus, “polymer” is categorical with
three categories and hence produces two model terms. The model is given by

yi = β0 + β1xi + β2z1i + β3z2i + εi, i = 1, 2, . . . , 18.
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Here we have

z1 =

{
1, for polymer 1,

0, otherwise,
and z2 =

{
1, for polymer 2,

0, otherwise.

From the analysis in Figure 12.3, the following conclusions are drawn. The
coefficient b1 for pH is the estimate of the common slope that is assumed in the
regression analysis. All model terms are statistically significant. Thus, pH and the
nature of the polymer have an impact on the amount of cleansing. The signs and
magnitudes of the coefficients of z1 and z2 indicate that polymer 1 is most effective
(producing higher suspended solids) for cleansing, followed by polymer 2. Polymer
3 is least effective.

Table 12.7: Data for Example 12.9

x, (pH) y, (amount of suspended solids) Polymer
6.5 292 1
6.9 329 1
7.8 352 1
8.4 378 1
8.8 392 1
9.2 410 1
6.7 198 2
6.9 227 2
7.5 277 2
7.9 297 2
8.7 364 2
9.2 375 2
6.5 167 3
7.0 225 3
7.2 247 3
7.6 268 3
8.7 288 3
9.2 342 3

Slope May Vary with Indicator Categories

In the discussion given here, we have assumed that the indicator variable model
terms enter the model in an additive fashion. This suggests that the slopes, as
in Figure 12.2, are constant across categories. Obviously, this is not always going
to be the case. We can account for the possibility of varying slopes and indeed
test for this condition of parallelism by including product or interaction terms
between indicator terms and continuous variables. For example, suppose a model
with one continuous regressor and an indicator variable with two levels is chosen.
The model is given by

y = β0 + β1x+ β2z + β3xz + ε.
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Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 80181.73127 26727.24376 73.68 <.0001

Error 14 5078.71318 362.76523

Corrected Total 17 85260.44444

R-Square Coeff Var Root MSE y Mean

0.940433 6.316049 19.04640 301.5556

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -161.8973333 37.43315576 -4.32 0.0007

x 54.2940260 4.75541126 11.42 <.0001

z1 89.9980606 11.05228237 8.14 <.0001

z2 27.1656970 11.01042883 2.47 0.0271

Figure 12.3: SAS printout for Example 12.9.

This model suggests that for category l (z = 1),

E(y) = (β0 + β2) + (β1 + β3)x,

while for category 2 (z = 0),

E(y) = β0 + β1x.

Thus, we allow for varying intercepts and slopes for the two categories. Figure 12.4
displays the regression lines with varying slopes for the two categories.

y

x

Category 1: slope = β1

Category 2: slope = β1

β 3

β0

β2

+

Figure 12.4: Nonparallelism in categorical variables.

In this case, β0, β1, and β2 are positive while β3 is negative with |β3| < β1. Ob-
viously, if the interaction coefficient β3 is insignificant, we are back to the common
slope model.
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Exercises

12.45 A study was done to assess the cost effective-
ness of driving a four-door sedan instead of a van or an
SUV (sports utility vehicle). The continuous variables
are odometer reading and octane of the gasoline used.
The response variable is miles per gallon. The data are
presented here.

MPG Car Type Odometer Octane
34.5 sedan 75,000 87.5
33.3 sedan 60,000 87.5
30.4 sedan 88,000 78.0
32.8 sedan 15,000 78.0
35.0 sedan 25,000 90.0
29.0 sedan 35,000 78.0
32.5 sedan 102,000 90.0
29.6 sedan 98,000 87.5
16.8 van 56,000 87.5
19.2 van 72,000 90.0
22.6 van 14,500 87.5
24.4 van 22,000 90.0
20.7 van 66,500 78.0
25.1 van 35,000 90.0
18.8 van 97,500 87.5
15.8 van 65,500 78.0
17.4 van 42,000 78.0
15.6 SUV 65,000 78.0
17.3 SUV 55,500 87.5
20.8 SUV 26,500 87.5
22.2 SUV 11,500 90.0
16.5 SUV 38,000 78.0
21.3 SUV 77,500 90.0
20.7 SUV 19,500 78.0
24.1 SUV 87,000 90.0

(a) Fit a linear regression model including two indica-
tor variables. Use (0, 0) to denote the four-door
sedan.

(b) Which type of vehicle appears to get the best gas
mileage?

(c) Discuss the difference between a van and an SUV
in terms of gas mileage.

12.46 A study was done to determine whether the
gender of the credit card holder was an important fac-
tor in generating profit for a certain credit card com-
pany. The variables considered were income, the num-
ber of family members, and the gender of the card
holder. The data are as follows:

Family
Profit Income Gender Members

157
−181
−253
158
75

202
−451
146
89

−357
522
78
5

−177
123
251
−56
453
288

−104

45,000
55,000
45,800
38,000
75,000
99,750
28,000
39,000
54,350
32,500
36,750
42,500
34,250
36,750
24,500
27,500
18,000
24,500
88,750
19,750

M
M
M
M
M
M
M
M
M
M
F
F
F
F
F
F
F
F
F
F

1
2
4
3
4
4
1
2
1
1
1
3
2
3
2
1
1
1
1
2

(a) Fit a linear regression model using the variables
available. Based on the fitted model, would the
company prefer male or female customers?

(b) Would you say that income was an important fac-
tor in explaining the variability in profit?

12.9 Sequential Methods for Model Selection

At times, the significance tests outlined in Section 12.6 are quite adequate for
determining which variables should be used in the final regression model. These
tests are certainly effective if the experiment can be planned and the variables are
orthogonal to each other. Even if the variables are not orthogonal, the individual
t-tests can be of some use in many problems where the number of variables under
investigation is small. However, there are many problems where it is necessary
to use more elaborate techniques for screening variables, particularly when the
experiment exhibits a substantial deviation from orthogonality. Useful measures
of multicollinearity (linear dependency) among the independent variables are
provided by the sample correlation coefficients rxixj . Since we are concerned only
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with linear dependency among independent variables, no confusion will result if we
drop the x’s from our notation and simply write rxixj = rij , where

rij =
Sij√
SiiSjj

.

Note that the rij do not give true estimates of population correlation coeffi-
cients in the strict sense, since the x’s are actually not random variables in the
context discussed here. Thus, the term correlation, although standard, is perhaps
a misnomer.

When one or more of these sample correlation coefficients deviate substantially
from zero, it can be quite difficult to find the most effective subset of variables for
inclusion in our prediction equation. In fact, for some problems the multicollinear-
ity will be so extreme that a suitable predictor cannot be found unless all possible
subsets of the variables are investigated. Informative discussions of model selec-
tion in regression by Hocking (1976) are cited in the Bibliography. Procedures for
detection of multicollinearity are discussed in the textbook by Myers (1990), also
cited.

The user of multiple linear regression attempts to accomplish one of three ob-
jectives:

1. Obtain estimates of individual coefficients in a complete model.

2. Screen variables to determine which have a significant effect on the response.

3. Arrive at the most effective prediction equation.

In (1) it is known a priori that all variables are to be included in the model. In
(2) prediction is secondary, while in (3) individual regression coefficients are not
as important as the quality of the estimated response ŷ. For each of the situations
above, multicollinearity in the experiment can have a profound effect on the success
of the regression.

In this section, some standard sequential procedures for selecting variables are
discussed. They are based on the notion that a single variable or a collection of
variables should not appear in the estimating equation unless the variables result in
a significant increase in the regression sum of squares or, equivalently, a significant
increase in R2, the coefficient of multiple determination.

Illustration of Variable Screening in the Presence of Collinearity

Example 12.10: Consider the data of Table 12.8, where measurements were taken for nine infants.
The purpose of the experiment was to arrive at a suitable estimating equation
relating the length of an infant to all or a subset of the independent variables.
The sample correlation coefficients, indicating the linear dependency among the
independent variables, are displayed in the symmetric matrix

x1 x2 x3 x4⎡⎢⎢⎣
1.0000 0.9523 0.5340 0.3900
0.9523 1.0000 0.2626 0.1549
0.5340 0.2626 1.0000 0.7847
0.3900 0.1549 0.7847 1.0000

⎤⎥⎥⎦

Uploaded By: anonymousSTUDENTS-HUB.com



478 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models

Table 12.8: Data Relating to Infant Length∗

Infant Length, Age, Length at Weight at Chest Size at
y (cm) x1 (days) Birth, x2 (cm) Birth, x3 (kg) Birth, x4 (cm)

57.5
52.8
61.3
67.0
53.5
62.7
56.2
68.5
69.2

78
69
77
88
67
80
74
94
102

48.2
45.5
46.3
49.0
43.0
48.0
48.0
53.0
58.0

2.75
2.15
4.41
5.52
3.21
4.32
2.31
4.30
3.71

29.5
26.3
32.2
36.5
27.2
27.7
28.3
30.3
28.7

∗Data analyzed by the Statistical Consulting Center, Virginia Tech, Blacksburg, Virginia.

Note that there appears to be an appreciable amount of multicollinearity. Using the
least squares technique outlined in Section 12.2, the estimated regression equation
was fitted using the complete model and is

ŷ = 7.1475 + 0.1000x1 + 0.7264x2 + 3.0758x3 − 0.0300x4.

The value of s2 with 4 degrees of freedom is 0.7414, and the value for the coefficient
of determination for this model is found to be 0.9908. Regression sums of squares,
measuring the variation attributed to each individual variable in the presence of
the others, and the corresponding t-values are given in Table 12.9.

Table 12.9: t-Values for the Regression Data of Table 12.8

Variable x1 Variable x2 Variable x3 Variable x4

R(β1 | β2, β3, β4) R(β2 | β1, β3, β4) R(β3 | β1, β2, β4) R(β4 | β1, β2, β3)
= 0.0644 = 0.6334 = 6.2523 = 0.0241
t = 0.2947 t = 0.9243 t = 2.9040 t = −0.1805

A two-tailed critical region with 4 degrees of freedom at the 0.05 level of sig-
nificance is given by |t| > 2.776. Of the four computed t-values, only variable x3
appears to be significant. However, recall that although the t-statistic described
in Section 12.6 measures the worth of a variable adjusted for all other variables,
it does not detect the potential importance of a variable in combination with a
subset of the variables. For example, consider the model with only the variables
x2 and x3 in the equation. The data analysis gives the regression function

ŷ = 2.1833 + 0.9576x2 + 3.3253x3,

with R2 = 0.9905, certainly not a substantial reduction from R2 = 0.9907 for the
complete model. However, unless the performance characteristics of this particular
combination had been observed, one would not be aware of its predictive poten-
tial. This, of course, lends support for a methodology that observes all possible
regressions or a systematic sequential procedure designed to test subsets.
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Stepwise Regression

One standard procedure for searching for the “optimum subset” of variables in the
absence of orthogonality is a technique called stepwise regression. It is based
on the procedure of sequentially introducing the variables into the model one at
a time. Given a predetermined size α, the description of the stepwise routine
will be better understood if the methods of forward selection and backward
elimination are described first.

Forward selection is based on the notion that variables should be inserted
one at a time until a satisfactory regression equation is found. The procedure is as
follows:

STEP 1. Choose the variable that gives the largest regression sum of squares
when performing a simple linear regression with y or, equivalently, that which
gives the largest value of R2. We shall call this initial variable x1. If x1 is
insignificant, the procedure is terminated.

STEP 2. Choose the variable that, when inserted in the model, gives the
largest increase in R2, in the presence of x1, over the R2 found in step 1.
This, of course, is the variable xj for which

R(βj |β1) = R(β1, βj)−R(β1)

is largest. Let us call this variable x2. The regression model with x1 and
x2 is then fitted and R2 observed. If x2 is insignificant, the procedure is
terminated.

STEP 3. Choose the variable xj that gives the largest value of

R(βj | β1, β2) = R(β1, β2, βj)−R(β1, β2),

again resulting in the largest increase of R2 over that given in step 2. Calling
this variable x3, we now have a regression model involving x1, x2, and x3. If
x3 is insignificant, the procedure is terminated.

This process is continued until the most recent variable inserted fails to induce a
significant increase in the explained regression. Such an increase can be determined
at each step by using the appropriate partial F -test or t-test. For example, in step
2 the value

f =
R(β2|β1)

s2

can be determined to test the appropriateness of x2 in the model. Here the value
of s2 is the mean square error for the model containing the variables x1 and x2.
Similarly, in step 3 the ratio

f =
R(β3 | β1, β2)

s2

tests the appropriateness of x3 in the model. Now, however, the value for s2 is the
mean square error for the model that contains the three variables x1, x2, and x3.
If f < fα(1, n − 3) at step 2, for a prechosen significance level, x2 is not included
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and the process is terminated, resulting in a simple linear equation relating y and
x1. However, if f > fα(1, n− 3), we proceed to step 3. Again, if f < fα(1, n− 4)
at step 3, x3 is not included and the process is terminated with the appropriate
regression equation containing the variables x1 and x2.

Backward elimination involves the same concepts as forward selection except
that one begins with all the variables in the model. Suppose, for example, that
there are five variables under consideration. The steps are as follows:

STEP 1. Fit a regression equation with all five variables included in the
model. Choose the variable that gives the smallest value of the regression
sum of squares adjusted for the others. Suppose that this variable is x2.
Remove x2 from the model if

f =
R(β2 | β1, β3, β4, β5)

s2

is insignificant.

STEP 2. Fit a regression equation using the remaining variables x1, x3, x4,
and x5, and repeat step 1. Suppose that variable x5 is chosen this time. Once
again, if

f =
R(β5 | β1, β3, β4)

s2

is insignificant, the variable x5 is removed from the model. At each step, the
s2 used in the F-test is the mean square error for the regression model at that
stage.

This process is repeated until at some step the variable with the smallest ad-
justed regression sum of squares results in a significant f-value for some predeter-
mined significance level.

Stepwise regression is accomplished with a slight but important modification
of the forward selection procedure. The modification involves further testing at
each stage to ensure the continued effectiveness of variables that had been inserted
into the model at an earlier stage. This represents an improvement over forward
selection, since it is quite possible that a variable entering the regression equation
at an early stage might have been rendered unimportant or redundant because
of relationships that exist between it and other variables entering at later stages.
Therefore, at a stage in which a new variable has been entered into the regression
equation through a significant increase in R2 as determined by the F-test, all the
variables already in the model are subjected to F-tests (or, equivalently, to t-tests)
in light of this new variable and are deleted if they do not display a significant
f-value. The procedure is continued until a stage is reached where no additional
variables can be inserted or deleted. We illustrate the stepwise procedure in the
following example.

Example 12.11: Using the techniques of stepwise regression, find an appropriate linear regression
model for predicting the length of infants for the data of Table 12.8.

Solution : STEP 1. Considering each variable separately, four individual simple linear
regression equations are fitted. The following pertinent regression sums of
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squares are computed:

R(β1) = 288.1468, R(β2) = 215.3013,

R(β3) = 186.1065, R(β4) = 100.8594.

Variable x1 clearly gives the largest regression sum of squares. The mean
square error for the equation involving only x1 is s2 = 4.7276, and since

f =
R(β1)

s2
=

288.1468

4.7276
= 60.9500,

which exceeds f0.05(1, 7) = 5.59, the variable x1 is significant and is entered
into the model.

STEP 2. Three regression equations are fitted at this stage, all containing x1.
The important results for the combinations (x1, x2), (x1, x3), and (x1, x4) are

R(β2|β1) = 23.8703, R(β3|β1) = 29.3086, R(β4|β1) = 13.8178.

Variable x3 displays the largest regression sum of squares in the presence of
x1. The regression involving x1 and x3 gives a new value of s2 = 0.6307, and
since

f =
R(β3|β1)

s2
=

29.3086

0.6307
= 46.47,

which exceeds f0.05(1, 6) = 5.99, the variable x3 is significant and is included
along with x1 in the model. Now we must subject x1 in the presence of x3 to
a significance test. We find that R(β1 | β3) = 131.349, and hence

f =
R(β1|β3)

s2
=

131.349

0.6307
= 208.26,

which is highly significant. Therefore, x1 is retained along with x3.

STEP 3. With x1 and x3 already in the model, we now require R(β2 | β1, β3)
and R(β4 | β1, β3) in order to determine which, if any, of the remaining two
variables is entered at this stage. From the regression analysis using x2 along
with x1 and x3, we find R(β2 | β1, β3) = 0.7948, and when x4 is used along
with x1 and x3, we obtain R(β4 | β1, β3) = 0.1855. The value of s2 is 0.5979
for the (x1, x2, x3) combination and 0.7198 for the (x1, x2, x4) combination.
Since neither f-value is significant at the α = 0.05 level, the final regression
model includes only the variables x1 and x3. The estimating equation is found
to be

ŷ = 20.1084 + 0.4136x1 + 2.0253x3,

and the coefficient of determination for this model is R2 = 0.9882.

Although (x1, x3) is the combination chosen by stepwise regression, it is not nec-
essarily the combination of two variables that gives the largest value of R2. In
fact, we have already observed that the combination (x2, x3) gives R2 = 0.9905.
Of course, the stepwise procedure never observed this combination. A rational ar-
gument could be made that there is actually a negligible difference in performance
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between these two estimating equations, at least in terms of percent variation
explained. It is interesting to observe, however, that the backward elimination
procedure gives the combination (x2, x3) in the final equation (see Exercise 12.49
on page 494).

Summary

The main function of each of the procedures explained in this section is to expose
the variables to a systematic methodology designed to ensure the eventual inclusion
of the best combinations of the variables. Obviously, there is no assurance that this
will happen in all problems, and, of course, it is possible that the multicollinearity
is so extensive that one has no alternative but to resort to estimation procedures
other than least squares. These estimation procedures are discussed in Myers
(1990), listed in the Bibliography.

The sequential procedures discussed here represent three of many such methods
that have been put forth in the literature and appear in various regression computer
packages that are available. These methods are designed to be computationally
efficient but, of course, do not give results for all possible subsets of the variables.
As a result, the procedures are most effective for data sets that involve a large
number of variables. For regression problems involving a relatively small number
of variables, modern regression computer packages allow for the computation and
summarization of quantitative information on all models for every possible subset
of the variables. Illustrations are provided in Section 12.11.

Choice of P -Values

As one might expect, the choice of the final model with these procedures may
depend dramatically on what P -value is chosen. In addition, a procedure is most
successful when it is forced to test a large number of candidate variables. For this
reason, any forward procedure will be most useful when a relatively large P -value
is used. Thus, some software packages use a default P -value of 0.50.

12.10 Study of Residuals and Violation of Assumptions (Model
Checking)

It was suggested earlier in this chapter that the residuals, or errors in the regression
fit, often carry information that can be very informative to the data analyst. The
ei = yi−ŷi, i = 1, 2, . . . , n, which are the numerical counterpart to the εi, the model
errors, often shed light on the possible violation of assumptions or the presence of
“suspect” data points. Suppose that we let the vector xi denote the values of the
regressor variables corresponding to the ith data point, supplemented by a 1 in the
initial position. That is,

x′
i = [1, x1i, x2i, . . . , xki].

Consider the quantity

hii = x′
i(X

′X)−1xi, i = 1, 2, . . . , n.

Uploaded By: anonymousSTUDENTS-HUB.com



12.10 Study of Residuals and Violation of Assumptions (Model Checking) 483

The reader should recognize that hii was used in the computation of the confidence
intervals on the mean response in Section 12.5. Apart from σ2, hii represents the
variance of the fitted value ŷi. The hii values are the diagonal elements of the
HAT matrix

H = X(X′X)−1X′,

which plays an important role in any study of residuals and in other modern aspects
of regression analysis (see Myers, 1990, listed in the Bibliography). The term HAT
matrix is derived from the fact that H generates the “y-hats,” or the fitted values
when multiplied by the vector y of observed responses. That is, ŷ = Xb, and thus

ŷ = X(X′X)−1X′y = Hy,

where ŷ is the vector whose ith element is ŷi.
If we make the usual assumptions that the εi are independent and normally

distributed with mean 0 and variance σ2, the statistical properties of the residuals
are readily characterized. Then

E(ei) = E(yi − ŷi) = 0 and σ2
εi = (1− hii)σ

2,

for i = 1, 2, . . . , n. (See Myers, 1990, for details.) It can be shown that the HAT
diagonal values are bounded according to the inequality

1

n
≤ hii ≤ 1.

In addition,
n∑

i=1

hii = k+ 1, the number of regression parameters. As a result, any

data point whose HAT diagonal element is large, that is, well above the average
value of (k + 1)/n, is in a position in the data set where the variance of ŷi is
relatively large and the variance of a residual is relatively small. As a result, the
data analyst can gain some insight into how large a residual may become before its
deviation from zero can be attributed to something other than mere chance. Many
of the commercial regression computer packages produce the set of studentized
residuals.

Studentized
Residual

ri =
ei

s
√
1− hii

, i = 1, 2, . . . , n

Here each residual has been divided by an estimate of its standard de-
viation, creating a t-like statistic that is designed to give the analyst a scale-free
quantity providing information regarding the size of the residual. In addition,
standard computer packages often provide values of another set of studentized-
type residuals called the R-Student values.

R-Student Residual ti =
ei

s−i

√
1− hii

, i = 1, 2, . . . , n,

where s−i is an estimate of the error standard deviation, calculated with the ith
data point deleted.
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There are three types of violations of assumptions that are readily detected
through use of residuals or residual plots. While plots of the raw residuals, the ei,
can be helpful, it is often more informative to plot the studentized residuals. The
three violations are as follows:

1. Presence of outliers

2. Heterogeneous error variance

3. Model misspecification

In case 1, we choose to define an outlier as a data point where there is a
deviation from the usual assumption E(εi) = 0 for a specific value of i. If there is
a reason to believe that a specific data point is an outlier exerting a large influence
on the fitted model, ri or ti may be informative. The R-Student values can be
expected to be more sensitive to outliers than the ri values.

In fact, under the condition that E(εi) = 0, ti is a value of a random variable
following a t-distribution with n−1− (k+1) = n−k−2 degrees of freedom. Thus,
a two-sided t-test can be used to provide information for detecting whether or not
the ith point is an outlier.

Although the R-Student statistic ti produces an exact t-test for detection of an
outlier at a specific data location, the t-distribution would not apply for simultane-
ously testing for outliers at all locations. As a result, the studentized residuals or
R-Student values should be used strictly as diagnostic tools without formal hypoth-
esis testing as the mechanism. The implication is that these statistics highlight data
points where the error of fit is larger than what is expected by chance. R-Student
values large in magnitude suggest a need for “checking” the data with whatever
resources are possible. The practice of eliminating observations from regression
data sets should not be done indiscriminately. (For further information regarding
the use of outlier diagnostics, see Myers, 1990, in the Bibliography.)

Illustration of Outlier Detection

Case Study 12.1: Method for Capturing Grasshoppers: In a biological experiment conducted
at Virginia Tech by the Department of Entomology, n experimental runs were made
with two different methods for capturing grasshoppers. The methods were drop
net catch and sweep net catch. The average number of grasshoppers caught within
a set of field quadrants on a given date was recorded for each of the two methods.
An additional regressor variable, the average plant height in the quadrants, was
also recorded. The experimental data are given in Table 12.10.

The goal is to be able to estimate grasshopper catch by using only the sweep
net method, which is less costly. There was some concern about the validity of
the fourth data point. The observed catch that was reported using the net drop
method seemed unusually high given the other conditions and, indeed, it was felt
that the figure might be erroneous. Fit a model of the type

yi = β0 + β1x1 + β2x2

to the 17 data points and study the residuals to determine if data point 4 is an
outlier.
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Table 12.10: Data Set for Case Study 12.1

Drop Net Sweep Net Plant
Observation Catch, y Catch, x1 Height, x2 (cm)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18.0000
8.8750
2.0000
20.0000
2.3750
2.7500
3.3333
1.0000
1.3333
1.7500
4.1250
12.8750
5.3750
28.0000
4.7500
1.7500
0.1333

4.15476
2.02381
0.15909
2.32812
0.25521
0.57292
0.70139
0.13542
0.12121
0.10937
0.56250
2.45312
0.45312
6.68750
0.86979
0.14583
0.01562

52.705
42.069
34.766
27.622
45.879
97.472
102.062
97.790
88.265
58.737
42.386
31.274
31.750
35.401
64.516
25.241
36.354

Solution : A computer package generated the fitted regression model

ŷ = 3.6870 + 4.1050x1 − 0.0367x2

along with the statistics R2 = 0.9244 and s2 = 5.580. The residuals and other
diagnostic information were also generated and recorded in Table 12.11.

As expected, the residual at the fourth location appears to be unusually high,
namely 7.769. The vital issue here is whether or not this residual is larger than one
would expect by chance. The residual standard error for point 4 is 2.209. The R-
Student value t4 is found to be 9.9315. Viewing this as a value of a random variable
having a t-distribution with 13 degrees of freedom, one would certainly conclude
that the residual of the fourth observation is estimating something greater than 0
and that the suspected measurement error is supported by the study of residuals.
Notice that no other residual results in an R-Student value that produces any cause
for alarm.

Plotting Residuals for Case Study 12.1

In Chapter 11, we discussed, in some detail, the usefulness of plotting residuals in
regression analysis. Violation of model assumptions can often be detected through
these plots. In multiple regression, normal probability plotting of residuals or
plotting of residuals against ŷ may be useful. However, it is often preferable to
plot studentized residuals.

Keep in mind that the preference for the studentized residuals over ordinary
residuals for plotting purposes stems from the fact that since the variance of the
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Table 12.11: Residual Information for the Data Set of Case Study 12.1

Obs. yi ŷi yi − ŷi hii s
√
1 − hii ri ti

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18.000
8.875
2.000
20.000
2.375
2.750
3.333
1.000
1.333
1.750
4.125
12.875
5.375
28.000
4.750
1.750
0.133

18.809
10.452
3.065
12.231
3.052
2.464
2.823
0.656
0.947
1.982
4.442
12.610
4.383
29.841
4.891
3.360
2.418

−0.809
−1.577
−1.065
7.769

−0.677
0.286
0.510
0.344
0.386

−0.232
−0.317
0.265
0.992

−1.841
−0.141
−1.610
−2.285

0.2291
0.0766
0.1364
0.1256
0.0931
0.2276
0.2669
0.2318
0.1691
0.0852
0.0884
0.1152
0.1339
0.6233
0.0699
0.1891
0.1386

2.074
2.270
2.195
2.209
2.250
2.076
2.023
2.071
2.153
2.260
2.255
2.222
2.199
1.450
2.278
2.127
2.193

−0.390
−0.695
−0.485
3.517

−0.301
0.138
0.252
0.166
0.179

−0.103
−0.140
0.119
0.451

−1.270
−0.062
−0.757
−1.042

−0.3780
−0.6812
−0.4715
9.9315

−0.2909
0.1329
0.2437
0.1601
0.1729

−0.0989
−0.1353
0.1149
0.4382

−1.3005
−0.0598
−0.7447
−1.0454

ith residual depends on the ith HAT diagonal, variances of residuals will differ
if there is a dispersion in the HAT diagonals. Thus, the appearance of a plot of
residuals may seem to suggest heterogeneity because the residuals themselves do
not behave, in general, in an ideal way. The purpose of using studentized residuals
is to provide a type of standardization. Clearly, if σ were known, then under ideal
conditions (i.e., a correct model and homogeneous variance), we would have

E

(
ei

σ
√
1− hii

)
= 0 and Var

(
ei

σ
√
1− hii

)
= 1.

So the studentized residuals produce a set of statistics that behave in a standard
way under ideal conditions. Figure 12.5 shows a plot of the R-Student values for
the grasshopper data of Case Study 12.1. Note how the value for observation 4
stands out from the rest. The R-Student plot was generated by SAS software. The
plot shows the residuals against the ŷ-values.

Normality Checking

The reader should recall the importance of normality checking through the use of
normal probability plotting, as discussed in Chapter 11. The same recommendation
holds for the case of multiple linear regression. Normal probability plots can be
generated using standard regression software. Again, however, they can be more
effective when one does not use ordinary residuals but, rather, studentized residuals
or R-Student values.
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Figure 12.5: R-Student values plotted against predicted values for grasshopper
data of Case Study 12.1.

12.11 Cross Validation, Cp, and Other Criteria for Model
Selection

For many regression problems, the experimenter must choose among various alter-
native models or model forms that are developed from the same data set. Quite
often, the model that best predicts or estimates mean response is required. The
experimenter should take into account the relative sizes of the s2-values for the can-
didate models and certainly the general nature of the confidence intervals on the
mean response. One must also consider how well the model predicts response val-
ues that were not used in building the candidate models. The models should
be subjected to cross validation. What are required, then, are cross-validation
errors rather than fitting errors. Such errors in prediction are the PRESS resid-
uals

δi = yi − ŷi,−i, i = 1, 2, . . . , n,

where ŷi,−i is the prediction of the ith data point by a model that did not make
use of the ith point in the calculation of the coefficients. These PRESS residuals
are calculated from the formula

δi =
ei

1− hii
, i = 1, 2, . . . , n.

(The derivation can be found in Myers, 1990.)

Use of the PRESS Statistic

The motivation for PRESS and the utility of PRESS residuals are very simple to
understand. The purpose of extracting or setting aside data points one at a time is
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to allow the use of separate methodologies for fitting and assessment of a specific
model. For assessment of a model, the “−i” indicates that the PRESS residual
gives a prediction error where the observation being predicted is independent of
the model fit.

Criteria that make use of the PRESS residuals are given by

n∑
i=1

|δi| and PRESS =
n∑

i=1

δ2i .

(The term PRESS is an acronym for prediction sum of squares.) We suggest
that both of these criteria be used. It is possible for PRESS to be dominated by

one or only a few large PRESS residuals. Clearly, the criterion on
n∑

i=1

|δi| is less

sensitive to a small number of large values.
In addition to the PRESS statistic itself, the analyst can simply compute an

R2-like statistic reflecting prediction performance. The statistic is often called
R2

pred and is given as follows:

R2 of Prediction Given a fitted model with a specific value for PRESS, R2
pred is given by

R2
pred = 1− PRESS

n∑
i=1

(yi − ȳ)2
.

Note that R2
pred is merely the ordinary R2 statistic with SSE replaced by the

PRESS statistic.
In the following case study, an illustration is provided in which many candidate

models are fit to a set of data and the best model is chosen. The sequential
procedures described in Section 12.9 are not used. Rather, the role of the PRESS
residuals and other statistical values in selecting the best regression equation is
illustrated.

Case Study 12.2: Football Punting: Leg strength is a necessary characteristic of a successful punter
in American football. One measure of the quality of a good punt is the “hang time.”
This is the time that the ball hangs in the air before being caught by the punt
returner. To determine what leg strength factors influence hang time and to de-
velop an empirical model for predicting this response, a study on The Relationship
Between Selected Physical Performance Variables and Football Punting Ability was
conducted by the Department of Health, Physical Education, and Recreation at
Virginia Tech. Thirteen punters were chosen for the experiment, and each punted
a football 10 times. The average hang times, along with the strength measures
used in the analysis, were recorded in Table 12.12.

Each regressor variable is defined as follows:

1. RLS, right leg strength (pounds)

2. LLS, left leg strength (pounds)

3. RHF, right hamstring muscle flexibility (degrees)

4. LHF, left hamstring muscle flexibility (degrees)
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5. Power, overall leg strength (foot-pounds)

Determine the most appropriate model for predicting hang time.

Table 12.12: Data for Case Study 12.2

Hang Time, RLS, LLS, RHF, LHF, Power,
Punter y (sec) x1 x2 x3 x4 x5

1
2
3
4
5
6
7
8
9
10
11
12
13

4.75
4.07
4.04
4.18
4.35
4.16
4.43
3.20
3.02
3.64
3.68
3.60
3.85

170
140
180
160
170
150
170
110
120
130
120
140
160

170
130
170
160
150
150
180
110
110
120
140
130
150

106
92
93

103
104
101
108
86
90
85
89
92
95

106
93
78
93
93
87
106
92
86
80
83
94
95

240.57
195.49
152.99
197.09
266.56
260.56
219.25
132.68
130.24
205.88
153.92
154.64
240.57

Solution : In the search for the best of the candidate models for predicting hang time, the
information in Table 12.13 was obtained from a regression computer package. The
models are ranked in ascending order of the values of the PRESS statistic. This
display provides enough information on all possible models to enable the user to
eliminate from consideration all but a few models. The model containing x2 and
x5 (LLS and Power), denoted by x2x5, appears to be superior for predicting punter

hang time. Also note that all models with low PRESS, low s2, low
n∑

i=1

|δi|, and
high R2-values contain these two variables.

In order to gain some insight from the residuals of the fitted regression

ŷi = b0 + b2x2i + b5x5i,

the residuals and PRESS residuals were generated. The actual prediction model
(see Exercise 12.47 on page 494) is given by

ŷ = 1.10765 + 0.01370x2 + 0.00429x5.

Residuals, HAT diagonal values, and PRESS values are listed in Table 12.14.
Note the relatively good fit of the two-variable regression model to the data.

The PRESS residuals reflect the capability of the regression equation to predict
hang time if independent predictions were to be made. For example, for punter
number 4, the hang time of 4.180 would encounter a prediction error of 0.039 if the
model constructed by using the remaining 12 punters were used. For this model,
the average prediction error or cross-validation error is

1

13

n∑
i=1

|δi| = 0.1489 second,
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Table 12.13: Comparing Different Regression Models

Model s2
∑ |δi| PRESS R2

x2x5 0.036907 1.93583 0.54683 0.871300
x1x2x5 0.041001 2.06489 0.58998 0.871321
x2x4x5 0.037708 2.18797 0.59915 0.881658
x2x3x5 0.039636 2.09553 0.66182 0.875606
x1x2x4x5 0.042265 2.42194 0.67840 0.882093
x1x2x3x5 0.044578 2.26283 0.70958 0.875642
x2x3x4x5 0.042421 2.55789 0.86236 0.881658
x1x3x5 0.053664 2.65276 0.87325 0.831580
x1x4x5 0.056279 2.75390 0.89551 0.823375
x1x5 0.059621 2.99434 0.97483 0.792094
x2x3 0.056153 2.95310 0.98815 0.804187
x1x3 0.059400 3.01436 0.99697 0.792864
x1x2x3x4x5 0.048302 2.87302 1.00920 0.882096
x2 0.066894 3.22319 1.04564 0.743404
x3x5 0.065678 3.09474 1.05708 0.770971
x1x2 0.068402 3.09047 1.09726 0.761474
x3 0.074518 3.06754 1.13555 0.714161
x1x3x4 0.065414 3.36304 1.15043 0.794705
x2x3x4 0.062082 3.32392 1.17491 0.805163
x2x4 0.063744 3.59101 1.18531 0.777716
x1x2x3 0.059670 3.41287 1.26558 0.812730
x3x4 0.080605 3.28004 1.28314 0.718921
x1x4 0.069965 3.64415 1.30194 0.756023
x1 0.080208 3.31562 1.30275 0.692334
x1x3x4x5 0.059169 3.37362 1.36867 0.834936
x1x2x4 0.064143 3.89402 1.39834 0.798692
x3x4x5 0.072505 3.49695 1.42036 0.772450
x1x2x3x4 0.066088 3.95854 1.52344 0.815633
x5 0.111779 4.17839 1.72511 0.571234
x4x5 0.105648 4.12729 1.87734 0.631593
x4 0.186708 4.88870 2.82207 0.283819

which is small compared to the average hang time for the 13 punters.
We indicated in Section 12.9 that the use of all possible subset regressions is

often advisable when searching for the best model. Most commercial statistics
software packages contain an all possible regressions routine. These algorithms
compute various criteria for all subsets of model terms. Obviously, criteria such as
R2, s2, and PRESS are reasonable for choosing among candidate subsets. Another
very popular and useful statistic, particularly for areas in the physical sciences and
engineering, is the Cp statistic, described below.
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Table 12.14: PRESS Residuals

Punter yi ŷi ei =yi − ŷi hii δi

1
2
3
4
5
6
7
8
9
10
11
12
13

4.750
4.070
4.040
4.180
4.350
4.160
4.430
3.200
3.020
3.640
3.680
3.600
3.850

4.470
3.728
4.094
4.146
4.307
4.281
4.515
3.184
3.174
3.636
3.687
3.553
4.196

0.280
0.342

−0.054
0.034
0.043

−0.121
−0.085
0.016

−0.154
0.004

−0.007
0.047

−0.346

0.198
0.118
0.444
0.132
0.286
0.250
0.298
0.294
0.301
0.231
0.152
0.142
0.154

0.349
0.388

−0.097
0.039
0.060

−0.161
−0.121
0.023

−0.220
0.005

−0.008
0.055

−0.409

The Cp Statistic

Quite often, the choice of the most appropriate model involves many considerations.
Obviously, the number of model terms is important; the matter of parsimony is
a consideration that cannot be ignored. On the other hand, the analyst cannot
be pleased with a model that is too simple, to the point where there is serious
underspecification. A single statistic that represents a nice compromise in this
regard is the Cp statistic. (See Mallows, 1973, in the Bibliography.)

The Cp statistic appeals nicely to common sense and is developed from con-
siderations of the proper compromise between excessive bias incurred when one
underfits (chooses too few model terms) and excessive prediction variance pro-
duced when one overfits (has redundancies in the model). The Cp statistic is a
simple function of the total number of parameters in the candidate model and the
mean square error s2.

We will not present the entire development of the Cp statistic. (For details, the
reader is referred to Myers, 1990, in the Bibliography.) The Cp for a particular
subset model is an estimate of the following:

Γ(p) =
1

σ2

n∑
i=1

Var(ŷi) +
1

σ2

n∑
i=1

(Bias ŷi)
2.

It turns out that under the standard least squares assumptions indicated earlier
in this chapter, and assuming that the “true” model is the model containing all
candidate variables,

1

σ2

n∑
i=1

Var(ŷi) = p (number of parameters in the candidate model)
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(see Review Exercise 12.63) and an unbiased estimate of

1

σ2

n∑
i=1

(Bias ŷi)
2 is given by

1

σ2

n∑
i=1

(B̂ias ŷi)
2 =

(s2 − σ2)(n− p)

σ2
.

In the above, s2 is the mean square error for the candidate model and σ2 is the
population error variance. Thus, if we assume that some estimate σ̂2 is available
for σ2, Cp is given by the following equation:

Cp Statistic
Cp = p+

(s2 − σ̂2)(n− p)

σ̂2
,

where p is the number of model parameters, s2 is the mean square error for the
candidate model, and σ̂2 is an estimate of σ2.

Obviously, the scientist should adopt models with small values of Cp. The
reader should note that, unlike the PRESS statistic, Cp is scale-free. In addition,
one can gain some insight concerning the adequacy of a candidate model by ob-
serving its value of Cp. For example, Cp > p indicates a model that is biased due
to being an underfitted model, whereas Cp ≈ p indicates a reasonable model.

There is often confusion concerning where σ̂2 comes from in the formula for Cp.
Obviously, the scientist or engineer does not have access to the population quantity
σ2. In applications where replicated runs are available, say in an experimental
design situation, a model-independent estimate of σ2 is available (see Chapters 11
and 15). However, most software packages use σ̂2 as the mean square error from
the most complete model. Obviously, if this is not a good estimate, the bias portion
of the Cp statistic can be negative. Thus, Cp can be less than p.

Example 12.12: Consider the data set in Table 12.15, in which a maker of asphalt shingles is
interested in the relationship between sales for a particular year and factors that
influence sales. (The data were taken from Kutner et al., 2004, in the Bibliography.)

Of the possible subset models, three are of particular interest. These three are
x2x3, x1x2x3, and x1x2x3x4. The following represents pertinent information for
comparing the three models. We include the PRESS statistics for the three models
to supplement the decision making.

Model R2 R2
pred s2 PRESS Cp

x2x3 0.9940 0.9913 44.5552 782.1896 11.4013
x1x2x3 0.9970 0.9928 24.7956 643.3578 3.4075
x1x2x3x4 0.9971 0.9917 26.2073 741.7557 5.0

It seems clear from the information in the table that the model x1, x2, x3 is
preferable to the other two. Notice that, for the full model, Cp = 5.0. This occurs
since the bias portion is zero, and σ̂2 = 26.2073 is the mean square error from the
full model.

Figure 12.6 is a SAS PROC REG printout showing information for all possible
regressions. Here we are able to show comparisons of other models with (x1, x2, x3).
Note that (x1, x2, x3) appears to be quite good when compared to all models.

As a final check on the model (x1, x2, x3), Figure 12.7 shows a normal proba-
bility plot of the residuals for this model.
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Table 12.15: Data for Example 12.12

Promotional Active Competing Potential, Sales, y
District Accounts, x1 Accounts, x2 Brands, x3 x4 (thousands)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5.5
2.5
8.0
3.0
3.0
2.9
8.0
9.0
4.0
6.5
5.5
5.0
6.0
5.0
3.5

31
55
67
50
38
71
30
56
42
73
60
44
50
39
55

10
8
12
7
8
12
12
5
8
5
11
12
6
10
10

8
6
9
16
15
17
8
10
4
16
7
12
6
4
4

$ 79.3
200.1
163.2
200.1
146.0
177.7
30.9
291.9
160.0
339.4
159.6
86.3
237.5
107.2
155.0

Dependent Variable: sales

Number in Adjusted

Model C(p) R-Square R-Square MSE Variables in Model

3 3.4075 0.9970 0.9961 24.79560 x1 x2 x3

4 5.0000 0.9971 0.9959 26.20728 x1 x2 x3 x4

2 11.4013 0.9940 0.9930 44.55518 x2 x3

3 13.3770 0.9940 0.9924 48.54787 x2 x3 x4

3 1053.643 0.6896 0.6049 2526.96144 x1 x3 x4

2 1082.670 0.6805 0.6273 2384.14286 x3 x4

2 1215.316 0.6417 0.5820 2673.83349 x1 x3

1 1228.460 0.6373 0.6094 2498.68333 x3

3 1653.770 0.5140 0.3814 3956.75275 x1 x2 x4

2 1668.699 0.5090 0.4272 3663.99357 x1 x2

2 1685.024 0.5042 0.4216 3699.64814 x2 x4

1 1693.971 0.5010 0.4626 3437.12846 x2

2 3014.641 0.1151 -.0324 6603.45109 x1 x4

1 3088.650 0.0928 0.0231 6248.72283 x4

1 3364.884 0.0120 -.0640 6805.59568 x1

Figure 12.6: SAS printout of all possible subsets on sales data for Example 12.12.
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Figure 12.7: Normal probability plot of residuals using the model x1x2x3 for Example 12.12.

Exercises

12.47 Consider the “hang time” punting data given
in Case Study 12.2, using only the variables x2 and x3.

(a) Verify the regression equation shown on page 489.

(b) Predict punter hang time for a punter with LLS =
180 pounds and Power = 260 foot-pounds.

(c) Construct a 95% confidence interval for the mean
hang time of a punter with LLS = 180 pounds and
Power = 260 foot-pounds.

12.48 For the data of Exercise 12.15 on page 452, use
the techniques of

(a) forward selection with a 0.05 level of significance to
choose a linear regression model;

(b) backward elimination with a 0.05 level of signifi-
cance to choose a linear regression model;

(c) stepwise regression with a 0.05 level of significance
to choose a linear regression model.

12.49 Use the techniques of backward elimination
with α = 0.05 to choose a prediction equation for the
data of Table 12.8.
12.50 For the punter data in Case Study 12.2,
an additional response, “punting distance,” was also
recorded. The average distance values for each of the
13 punters are given.

(a) Using the distance data rather than the hang times,
estimate a multiple linear regression model of the
type

μY |x1,x2,x3,x4,x5

= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

for predicting punting distance.

(b) Use stepwise regression with a significance level of
0.10 to select a combination of variables.

(c) Generate values for s2, R2, PRESS, and
13∑
i=1

|δi| for
the entire set of 31 models. Use this information
to determine the best combination of variables for
predicting punting distance.

(d) For the final model you choose, plot the standard-
ized residuals against Y and do a normal probabil-
ity plot of the ordinary residuals. Comment.

Punter Distance, y (ft)

1 162.50
2 144.00
3 147.50
4 163.50
5 192.00
6 171.75
7 162.00
8 104.93
9 105.67
10 117.59
11 140.25
12 150.17
13 165.16

12.51 The following is a set of data for y, the amount
of money (in thousands of dollars) contributed to the
alumni association at Virginia Tech by the Class of
1960, and x, the number of years following graduation:
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y x y x
812.52
822.50

1211.50
1348.00
1301.00
2567.50
2526.50

1
2
3
4
8
9

10

2755.00
4390.50
5581.50
5548.00
6086.00
5764.00
8903.00

11
12
13
14
15
16
17

(a) Fit a regression model of the type

μY |x = β0 + β1x.

(b) Fit a quadratic model of the type

μY |x = β0 + β1x+ β11x
2.

(c) Determine which of the models in (a) or (b) is
preferable. Use s2, R2, and the PRESS residuals
to support your decision.

12.52 For the model of Exercise 12.50(a), test the hy-
pothesis

H0: β4 = 0,

H1: β4 �= 0.

Use a P-value in your conclusion.

12.53 For the quadratic model of Exercise 12.51(b),
give estimates of the variances and covariances of the
estimates of β1 and β11.

12.54 A client from the Department of Mechanical
Engineering approached the Consulting Center at Vir-
ginia Tech for help in analyzing an experiment dealing
with gas turbine engines. The voltage output of en-
gines was measured at various combinations of blade
speed and sensor extension.

y Speed, x1 Extension,
(volts) (in./sec) x2 (in.)

1.95 6336 0.000
2.50 7099 0.000
2.93 8026 0.000
1.69 6230 0.000
1.23 5369 0.000
3.13 8343 0.000
1.55 6522 0.006
1.94 7310 0.006
2.18 7974 0.006
2.70 8501 0.006
1.32 6646 0.012
1.60 7384 0.012
1.89 8000 0.012
2.15 8545 0.012
1.09 6755 0.018
1.26 7362 0.018
1.57 7934 0.018
1.92 8554 0.018

(a) Fit a multiple linear regression to the data.

(b) Compute t-tests on coefficients. Give P-values.

(c) Comment on the quality of the fitted model.

12.55 Rayon whiteness is an important factor for sci-
entists dealing in fabric quality. Whiteness is affected
by pulp quality and other processing variables. Some
of the variables include acid bath temperature, ◦C (x1);
cascade acid concentration, % (x2); water temperature,
◦C (x3); sulfide concentration, % (x4); amount of chlo-
rine bleach, lb/min (x5); and blanket finish tempera-
ture, ◦C (x6). A set of data from rayon specimens is
given here. The response, y, is the measure of white-
ness.

y x1 x2 x3 x4 x5 x6

88.7 43 0.211 85 0.243 0.606 48
89.3 42 0.604 89 0.237 0.600 55
75.5 47 0.450 87 0.198 0.527 61
92.1 46 0.641 90 0.194 0.500 65
83.4 52 0.370 93 0.198 0.485 54
44.8 50 0.526 85 0.221 0.533 60
50.9 43 0.486 83 0.203 0.510 57
78.0 49 0.504 93 0.279 0.489 49
86.8 51 0.609 90 0.220 0.462 64
47.3 51 0.702 86 0.198 0.478 63
53.7 48 0.397 92 0.231 0.411 61
92.0 46 0.488 88 0.211 0.387 88
87.9 43 0.525 85 0.199 0.437 63
90.3 45 0.486 84 0.189 0.499 58
94.2 53 0.527 87 0.245 0.530 65
89.5 47 0.601 95 0.208 0.500 67

(a) Use the criteria MSE, Cp, and PRESS to find the
“best” model from among all subset models.

(b) Plot standardized residuals against Y and do a
normal probability plot of residuals for the “best”
model. Comment.

12.56 In an effort to model executive compensation
for the year 1979, 33 firms were selected, and data were
gathered on compensation, sales, profits, and employ-
ment. The following data were gathered for the year
1979.

Compen-
sation, y Sales, x1 Profits, x2 Employ-

Firm (thousands) (millions) (millions) ment, x3

1
2
3
4
5
6
7
8
9

$450
387
368
277
676
454
507
496
487

$4600.6
9255.4
1526.2
1683.2
2752.8
2205.8
2384.6
2746.0
1434.0

$128.1
783.9
136.0
179.0
231.5
329.5
381.8
237.9
222.3

48,000
55,900
13,783
27,765
34,000
26,500
30,800
41,000
25,900
(cont.)
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Compen-
sation, y Sales, x1 Profits, x2 Employ-

Firm (thousands) (millions) (millions) ment, x3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

$383
311
271
524
498
343
354
324
225
254
208
518
406
332
340
698
306
613
302
540
293
528
456
417

$470.6
1508.0
464.4

9329.3
2377.5
1174.3
409.3
724.7
578.9
966.8
591.0

4933.1
7613.2
3457.4
545.3

22,862.8
2361.0
2614.1
1013.2
4560.3
855.7

4211.6
5440.4
1229.9

$63.7
149.5
30.0

577.3
250.7
82.6
61.5
90.8
63.3
42.8
48.5

310.6
491.6
228.0
54.6

3011.3
203.0
201.0
121.3
194.6
63.4

352.1
655.2
97.5

8600
21,075
6874

39,000
34,300
19,405
3586
3905
4139
6255

10,605
65,392
89,400
55,200
7800

337,119
52,000
50,500
18,625
97,937
12,300
71,800
87,700
14,600

Consider the model

yi = β0 + β1 lnx1i + β2 lnx2i

+ β3 lnx3i + εi, i = 1, 2, . . . , 33.

(a) Fit the regression with the model above.

(b) Is a model with a subset of the variables preferable
to the full model?

12.57 The pull strength of a wire bond is an impor-
tant characteristic. The following data give informa-
tion on pull strength y, die height x1, post height x2,
loop height x3, wire length x4, bond width on the die x5,
and bond width on the post x6. (From Myers, Mont-
gomery, and Anderson-Cook, 2009.)

(a) Fit a regression model using all independent vari-
ables.

(b) Use stepwise regression with input significance level
0.25 and removal significance level 0.05. Give your
final model.

(c) Use all possible regression models and compute R2,
Cp, s

2, and adjusted R2 for all models.

(d) Give the final model.

(e) For your model in part (d), plot studentized resid-
uals (or R-Student) and comment.

y x1 x2 x3 x4 x5 x6

8.0
8.3
8.5
8.8
9.0
9.3
9.3
9.5
9.8

10.0
10.3
10.5
10.8
11.0
11.3
11.5
11.8
12.3
12.5

5.2
5.2
5.8
6.4
5.8
5.2
5.6
6.0
5.2
5.8
6.4
6.0
6.2
6.2
6.2
5.6
6.0
5.8
5.6

19.6
19.8
19.6
19.4
18.6
18.8
20.4
19.0
20.8
19.9
18.0
20.6
20.2
20.2
19.2
17.0
19.8
18.8
18.6

29.6
32.4
31.0
32.4
28.6
30.6
32.4
32.6
32.2
31.8
32.6
33.4
31.8
32.4
31.4
33.2
35.4
34.0
34.2

94.9
89.7
96.2
95.6
86.5
84.5
88.8
85.7
93.6
86.0
87.1
93.1
83.4
94.5
83.4
85.2
84.1
86.9
83.0

2.1
2.1
2.0
2.2
2.0
2.1
2.2
2.1
2.3
2.1
2.0
2.1
2.2
2.1
1.9
2.1
2.0
2.1
1.9

2.3
1.8
2.0
2.1
1.8
2.1
1.9
1.9
2.1
1.8
1.6
2.1
2.1
1.9
1.8
2.1
1.8
1.8
2.0

12.58 For Exercise 12.57, test H0: β1 = β6 = 0. Give
P-values and comment.

12.59 In Exercise 12.28, page 462, we have the fol-
lowing data concerning wear of a bearing:

y (wear) x1 (oil viscosity) x2 (load)

193
230
172
91

113
125

1.6
15.5
22.0
43.0
33.0
40.0

851
816

1058
1201
1357
1115

(a) The following model may be considered to describe
the data:

yi = β0 + β1x1i + β2x2i + β12x1ix2i + εi,

for i = 1, 2, . . . , 6. The x1x2 is an “interaction”
term. Fit this model and estimate the parameters.

(b) Use the models (x1), (x1, x2), (x2), (x1, x2, x1x2)
and compute PRESS, Cp, and s2 to determine the
“best” model.

12.12 Special Nonlinear Models for Nonideal Conditions

In much of the preceding material in this chapter and in Chapter 11, we have
benefited substantially from the assumption that the model errors, the εi, are
normal with mean 0 and constant variance σ2. However, there are many real-life
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situations in which the response is clearly nonnormal. For example, a wealth of
applications exist where the response is binary (0 or 1) and hence Bernoulli in
nature. In the social sciences, the problem may be to develop a model to predict
whether or not an individual is a good credit risk (0 or 1) as a function of certain
socioeconomic regressors such as income, age, gender, and level of education. In
a biomedical drug trial, the response is often whether or not the patient responds
positively to a drug while regressors may include drug dosage as well as biological
factors such as age, weight, and blood pressure. Again the response is binary
in nature. Applications are also abundant in manufacturing areas where certain
controllable factors influence whether a manufactured item is defective or not.

A second type of nonnormal application on which we will touch briefly has to do
with count data. Here the assumption of a Poisson response is often convenient.
In biomedical applications, the number of cancer cell colonies may be the response
which is modeled against drug dosages. In the textile industry, the number of
imperfections per yard of cloth may be a reasonable response which is modeled
against certain process variables.

Nonhomogeneous Variance

The reader should note the comparison of the ideal (i.e., the normal response)
situation with that of the Bernoulli (or binomial) or the Poisson response. We
have become accustomed to the fact that the normal case is very special in that
the variance is independent of the mean. Clearly this is not the case for either
Bernoulli or Poisson responses. For example, if the response is 0 or l, suggesting a
Bernoulli response, then the model is of the form

p = f(x, β),

where p is the probability of a success (say response = 1). The parameter
p plays the role of μY |x in the normal case. However, the Bernoulli variance is
p(1 − p), which, of course, is also a function of the regressor x. As a result, the
variance is not constant. This rules out the use of standard least squares, which
we have utilized in our linear regression work up to this point. The same is true
for the Poisson case since the model is of the form

λ = f(x, β),

with Var(y) = μy = λ, which varies with x.

Binary Response (Logistic Regression)

The most popular approach to modeling binary responses is a technique entitled
logistic regression. It is used extensively in the biological sciences, biomedical
research, and engineering. Indeed, even in the social sciences binary responses are
found to be plentiful. The basic distribution for the response is either Bernoulli or
binomial. The former is found in observational studies where there are no repeated
runs at each regressor level, while the latter will be the case when an experiment
is designed. For example, in a clinical trial in which a new drug is being evaluated,
the goal might be to determine the dose of the drug that provides efficacy. So
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certain doses will be employed in the experiment, and more than one subject will
be used for each dose. This case is called the grouped case.

What Is the Model for Logistic Regression?

In the case of binary responses ,the mean response is a probability. In the preceding
clinical trial illustration, we might say that we wish to estimate the probability that
the patient responds properly to the drug, P(success). Thus, the model is written
in terms of a probability. Given regressors x, the logistic function is given by

p =
1

1 + e−x′β .

The portion x′β is called the linear predictor, and in the case of a single regressor
x it might be written x′β = β0 + β1x. Of course, we do not rule out involving
multiple regressors and polynomial terms in the so-called linear predictor. In the
grouped case, the model involves modeling the mean of a binomial rather than a
Bernoulli, and thus we have the mean given by

np =
n

1 + e−x′β .

Characteristics of Logistic Function

A plot of the logistic function reveals a great deal about its characteristics and
why it is utilized for this type of problem. First, the function is nonlinear. In
addition, the plot in Figure 12.8 reveals the S-shape with the function approaching
p = 1.0 as an asymptote. In this case, β1 > 0. Thus, we would never experience
an estimated probability exceeding 1.0.

1.0

x

p

Figure 12.8: The logistic function.

The regression coefficients in the linear predictor can be estimated by the
method of maximum likelihood, as described in Chapter 9. The solution to the
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likelihood equations involves an iterative methodology that will not be described
here. However, we will present an example and discuss the computer printout and
conclusions.

Example 12.13: The data set in Table 12.16 will be used to illustrate the use of logistic regression
to analyze a single-agent quantal bioassay of a toxicity experiment. The results
show the effect of different doses of nicotine on the common fruit fly.

Table 12.16: Data Set for Example 12.13

x ni y
Concentration Number of Number Percent
(grams/100 cc) Insects Killed Killed

0.10 47 8 17.0
0.15 53 14 26.4
0.20 55 24 43.6
0.30 52 32 61.5
0.50 46 38 82.6
0.70 54 50 92.6
0.95 52 50 96.2

The purpose of the experiment was to arrive at an appropriate model relating
probability of “kill” to concentration. In addition, the analyst sought the so-called
effective dose (ED), that is, the concentration of nicotine that results in a certain
probability. Of particular interest was the ED50, the concentration that produces
a 0.5 probability of “insect kill.”

This example is grouped, and thus the model is given by

E(Yi) = nipi =
ni

1 + e−(β0+β1xi)
.

Estimates of β0 and β1 and their standard errors are found by the method of
maximum likelihood. Tests on individual coefficients are found using χ2-statistics
rather than t-statistics since there is no common variance σ2. The χ2-statistic is

derived from
(

coeff
standard error

)2
.

Thus, we have the following from a SAS PROC LOGIST printout.

Analysis of Parameter Estimates
df Estimate Standard Error Chi-Squared P-Value

β0

β1

1
1

−1.7361
6.2954

0.2420
0.7422

51.4482
71.9399

< 0.0001
< 0.0001

Both coefficients are significantly different from zero. Thus, the fitted model used
to predict the probability of “kill” is given by

p̂ =
1

1 + e−(−1.7361+6.2954x)
.
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Estimate of Effective Dose

The estimate of ED50 for Example 12.13 is found very simply from the estimates
b0 for β0 and b1 for β1. From the logistic function, we see that

log

(
p

1− p

)
= β0 + β1x.

As a result, for p = 0.5, an estimate of x is found from

b0 + b1x = 0.

Thus, ED50 is given by

x = −
(
b0
b1

)
= 0.276 gram/100 cc.

Concept of Odds Ratio

Another form of inference that is conveniently accomplished using logistic regres-
sion is derived from the use of the odds ratio. The odds ratio is designed to
determine how the odds of success, p

1−p , increases as certain changes in regressor
values occur. For example, in the case of Example 12.13 we may wish to know how
the odds would increase if one were to increase dosage by, say, 0.2 gram/100 cc.

Definition 12.1: In logistic regression, an odds ratio is the ratio of odds of success at condition
2 to that of condition 1 in the regressors, that is,

[p/(1− p)]2
[p/(1− p)]1

.

This allows the analyst to ascertain a sense of the utility of changing the regressor

by a certain number of units. Now, since
(

p
1−p

)
= eβ0+β1x, for Example 12.13,

the ratio reflecting the increase in odds of success when the dosage of nicotine is
increased by 0.2 gram/100 cc is given by

e0.2b1 = e(0.2)(6.2954) = 3.522.

The implication of an odds ratio of 3.522 is that the odds of success is enhanced
by a factor of 3.522 when the nicotine dose is increased by 0.2 gram/100 cc.

Exercises

12.60 From a set of streptonignic dose-response data,
an experimenter desires to develop a relationship be-
tween the proportion of lymphoblasts sampled that
contain aberrations and the dosage of streptonignic.
Five dosage levels were applied to the rabbits used for
the experiment. The data are as follows (see Myers,
1990, in the Bibliography):

Dose Number of Number with
(mg/kg) Lymphoblasts Aberrations

0 600 15
30 500 96
60 600 187
75 300 100
90 300 145
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(a) Fit a logistic regression to the data set and thus
estimate β0 and β1 in the model

p =
1

1 + e−(β0+β1x)
,

where n is the number of lymphoblasts, x is the
dose, and p is the probability of an aberration.

(b) Show results of χ2-tests revealing the significance
of the regression coefficients β0 and β1.

(c) Estimate ED50 and give an interpretation.

12.61 In an experiment to ascertain the effect of load,
x, in lb/inches2, on the probability of failure of speci-
mens of a certain fabric type, an experiment was con-
ducted in which numbers of specimens were exposed to
loads ranging from 5 lb/in.2 to 90 lb/in.2. The numbers

of “failures” were observed. The data are as follows:

Number of Number of
Load Specimens Failures

5
35
70
80
90

600
500
600
300
300

13
95

189
95

130

(a) Use logistic regression to fit the model

p =
1

1 + e−(β0+β1x)
,

where p is the probability of failure and x is load.

(b) Use the odds ratio concept to determine the in-
crease in odds of failure that results by increasing
the load from 20 lb/in.2.

Review Exercises

12.62 In the Department of Fisheries and Wildlife at
Virginia Tech, an experiment was conducted to study
the effect of stream characteristics on fish biomass. The
regressor variables are as follows: average depth (of 50
cells), x1; area of in-stream cover (i.e., undercut banks,
logs, boulders, etc.), x2; percent canopy cover (average
of 12), x3; and area ≥ 25 centimeters in depth, x4.
The response is y, the fish biomass. The data are as
follows:

Obs. y x1 x2 x3 x4

1
2
3
4
5
6
7
8
9

10

100
388
755

1288
230

0
551
345

0
348

14.3
19.1
54.6
28.8
16.1
10.0
28.5
13.8
10.7
25.9

15.0
29.4
58.0
42.6
15.9
56.4
95.1
60.6
35.2
52.0

12.2
26.0
24.2
26.1
31.6
23.3
13.0
7.5

40.3
40.3

48.0
152.2
469.7
485.9
87.6
6.9

192.9
105.8

0.0
116.6

(a) Fit a multiple linear regression including all four
regression variables.

(b) Use Cp, R
2, and s2 to determine the best subset of

variables. Compute these statistics for all possible
subsets.

(c) Compare the appropriateness of the models in parts
(a) and (b) for predicting fish biomass.

12.63 Show that, in a multiple linear regression data
set,

n∑
i=1

hii = p.

12.64 A small experiment was conducted to fit a mul-
tiple regression equation relating the yield y to tem-
perature x1, reaction time x2, and concentration of one
of the reactants x3. Two levels of each variable were
chosen, and measurements corresponding to the coded
independent variables were recorded as follows:

y x1 x2 x3

7.6
5.5
9.2

10.3
11.6
11.1
10.2
14.0

−1
1

−1
−1
1
1

−1
1

−1
−1
1

−1
1

−1
1
1

−1
−1
−1
1

−1
1
1
1

(a) Using the coded variables, estimate the multiple
linear regression equation

μY |x1,x2,x3
= β0 + β1x1 + β2x2 + β3x3.

(b) Partition SSR, the regression sum of squares,
into three single-degree-of-freedom components at-
tributable to x1, x2, and x3, respectively. Show an
analysis-of-variance table, indicating significance
tests on each variable. Comment on the results.

12.65 In a chemical engineering experiment dealing
with heat transfer in a shallow fluidized bed, data are
collected on the following four regressor variables: flu-
idizing gas flow rate, lb/hr (x1); supernatant gas flow
rate, lb/hr (x2); supernatant gas inlet nozzle opening,
millimeters (x3); and supernatant gas inlet tempera-
ture, ◦F (x4). The responses measured are heat trans-
fer efficiency (y1) and thermal efficiency (y2). The data
are as follows:

Uploaded By: anonymousSTUDENTS-HUB.com



/ /

502 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models

Obs. y1 y2 x 1 x 2 x 3 x 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

41.852
155.329
99.628
49.409
72.958

107.702
97.239

105.856
99.348

111.907
100.008
175.380
117.800
217.409
41.725

151.139
220.630
131.666
80.537

152.966

38.75
51.87
53.79
53.84
49.17
47.61
64.19
52.73
51.00
47.37
43.18
71.23
49.30
50.87
54.44
47.93
42.91
66.60
64.94
43.18

69.69
113.46
113.54
118.75
119.72
168.38
169.85
169.85
170.89
171.31
171.43
171.59
171.63
171.93
173.92
221.44
222.74
228.90
231.19
236.84

170.83
230.06
228.19
117.73
117.69
173.46
169.85
170.86
173.92
173.34
171.43
263.49
171.63
170.91
71.73

217.39
221.73
114.40
113.52
167.77

45
25
65
65
25
45
45
45
80
25
45
45
45
10
45
65
25
25
65
45

219.74
181.22
179.06
281.30
282.20
216.14
223.88
222.80
218.84
218.12
219.20
168.62
217.58
219.92
296.60
189.14
186.08
285.80
286.34
221.72

Consider the model for predicting the heat transfer co-
efficient response

y1i = β0 +

4∑
j=1

βjxji +

4∑
i=1

βjjx
2
ji

+
∑∑

j �=l

βjlxjixli + εi, i = 1, 2, . . . , 20.

(a) Compute PRESS and
n∑

i=1

|yi − ŷi,−i| for the least

squares regression fit to the model above.

(b) Fit a second-order model with x4 completely elim-
inated (i.e., deleting all terms involving x4). Com-
pute the prediction criteria for the reduced model.
Comment on the appropriateness of x4 for predic-
tion of the heat transfer coefficient.

(c) Repeat parts (a) and (b) for thermal efficiency.

12.66 In exercise physiology, an objective measure of
aerobic fitness is the oxygen consumption in volume per
unit body weight per unit time. Thirty-one individuals
were used in an experiment in order to be able to model
oxygen consumption against age in years (x1), weight
in kilograms (x2), time to run 1 1

2
miles (x3), resting

pulse rate (x4), pulse rate at the end of run (x5), and
maximum pulse rate during run (x6).

(a) Do a stepwise regression with input significance
level 0.25. Quote the final model.

(b) Do all possible subsets using s2, Cp, R
2, and R2

adj.
Make a decision and quote the final model.

ID y x1 x2 x3 x4 x5 x6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

44.609
45.313
54.297
59.571
49.874
44.811
45.681
49.091
39.442
60.055
50.541
37.388
44.754
47.273
51.855
49.156
40.836
46.672
46.774
50.388
39.407
46.080
45.441
54.625
45.118
39.203
45.790
50.545
48.673
47.920
47.467

44
40
44
42
38
47
40
43
44
38
44
45
45
47
54
49
51
51
48
49
57
54
52
50
51
54
51
57
49
48
52

89.47
75.07
85.84
68.15
89.02
77.45
75.98
81.19
81.42
81.87
73.03
87.66
66.45
79.15
83.12
81.42
69.63
77.91
91.63
73.37
73.37
79.38
76.32
70.87
67.25
91.63
73.71
59.08
76.32
61.24
82.78

11.37
10.07
8.65
8.17
9.22

11.63
11.95
10.85
13.08
8.63

10.13
14.03
11.12
10.60
10.33
8.95

10.95
10.00
10.25
10.08
12.63
11.17
9.63
8.92

11.08
12.88
10.47
9.93
9.40

11.50
10.50

62
62
45
40
55
58
70
64
63
48
45
56
51
47
50
44
57
48
48
76
58
62
48
48
48
44
59
49
56
52
53

178
185
156
166
178
176
176
162
174
170
168
186
176
162
166
180
168
162
162
168
174
156
164
146
172
168
186
148
186
170
170

182
185
168
172
180
176
180
170
176
186
168
192
176
164
170
185
172
168
164
168
176
165
166
155
172
172
188
155
188
176
172

12.67 Consider the data of Review Exercise 12.64.
Suppose it is of interest to add some “interaction”
terms. Namely, consider the model

yi = β0 + β1x1i + β2x2i + β3x3i + β12x1ix2i

+ β13x1ix3i + β23x2ix3i + β123x1ix2ix3i + εi.

(a) Do we still have orthogonality? Comment.

(b) With the fitted model in part (a), can you find
prediction intervals and confidence intervals on the
mean response? Why or why not?

(c) Consider a model with β123x1x2x3 removed. To
determine if interactions (as a whole) are needed,
test

H0: β12 = β13 = β23 = 0.

Give the P-value and conclusions.

12.68 A carbon dioxide (CO2) flooding technique is
used to extract crude oil. The CO2 floods oil pock-
ets and displaces the crude oil. In an experiment, flow
tubes are dipped into sample oil pockets containing a
known amount of oil. Using three different values of
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flow pressure and three different values of dipping an-
gles, the oil pockets are flooded with CO2, and the per-
centage of oil displaced recorded. Consider the model

yi = β0 + β1x1i + β2x2i + β11x
2
1i

+ β22x
2
2i + β12x1ix2i + εi.

Fit the model above to the data, and suggest any model
editing that may be needed.

Pressure Dipping Oil Recovery
(lb/in2), x1 Angle, x2 (%), y

1000
1000
1000
1500
1500
1500
2000
2000
2000

0
15
30
0

15
30
0

15
30

60.58
72.72
79.99
66.83
80.78
89.78
69.18
80.31
91.99

Source: Wang, G. C. “Microscopic Investigations of CO2

Flooding Process,” Journal of Petroleum Technology, Vol.
34, No. 8, Aug. 1982.

12.69 An article in the Journal of Pharmaceutical
Sciences (Vol. 80, 1991) presents data on the mole
fraction solubility of a solute at a constant tempera-
ture. Also measured are the dispersion x1 and dipolar
and hydrogen bonding solubility parameters x2 and x3.
A portion of the data is shown in the table below. In
the model, y is the negative logarithm of the mole frac-
tion. Fit the model

yi = β0 + β1x1i + β2x2i + β3x3i + εi,

for i = 1, 2, . . . , 20.
Obs. y x1 x2 x3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.2220
0.3950
0.4220
0.4370
0.4280
0.4670
0.4440
0.3780
0.4940
0.4560
0.4520
0.1120
0.4320
0.1010
0.2320
0.3060
0.0923
0.1160
0.0764
0.4390

7.3
8.7
8.8
8.1
9.0
8.7
9.3
7.6

10.0
8.4
9.3
7.7
9.8
7.3
8.5
9.5
7.4
7.8
7.7

10.3

0.0
0.0
0.7
4.0
0.5
1.5
2.1
5.1
0.0
3.7
3.6
2.8
4.2
2.5
2.0
2.5
2.8
2.8
3.0
1.7

0.0
0.3
1.0
0.2
1.0
2.8
1.0
3.4
0.3
4.1
2.0
7.1
2.0
6.8
6.6
5.0
7.8
7.7
8.0
4.2

(a) Test H0: β1 = β2 = β3 = 0.

(b) Plot studentized residuals against x1, x2, and x3

(three plots). Comment.

(c) Consider two additional models that are competi-
tors to the models above:

Model 2: Add x2
1, x

2
2, x

2
3.

Model 3: Add x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3.

Use PRESS and Cp with these three models to ar-
rive at the best among the three.

12.70 A study was conducted to determine whether
lifestyle changes could replace medication in reducing
blood pressure among hypertensives. The factors con-
sidered were a healthy diet with an exercise program,
the typical dosage of medication for hypertension, and
no intervention. The pretreatment body mass index
(BMI) was also calculated because it is known to affect
blood pressure. The response considered in this study
was change in blood pressure. The variable “group”
had the following levels.

1 = Healthy diet and an exercise program

2 = Medication

3 = No intervention

(a) Fit an appropriate model using the data below.
Does it appear that exercise and diet could be effec-
tively used to lower blood pressure? Explain your
answer from the results.

(b) Would exercise and diet be an effective alternative
to medication?

(Hint: You may wish to form the model in more than
one way to answer both of these questions.)

Change in
Blood Pressure Group BMI

−32
−21
−26
−16
−11
−19
−23
−5
−6
5

−11
14

1
1
1
1
2
2
2
2
3
3
3
3

27.3
22.1
26.1
27.8
19.2
26.1
28.6
23.0
28.1
25.3
26.7
22.3

12.71 Show that in choosing the so-called best subset
model from a series of candidate models, choosing the
model with the smallest s2 is equivalent to choosing
the model with the smallest R2

adj.

Uploaded By: anonymousSTUDENTS-HUB.com



504 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models

12.72 Case Study: Consider the data set for Exer-
cise 12.12, page 452 (hospital data), repeated here.

Site x1 x2 x3 x4 x5 y
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

15.57
44.02
20.42
18.74
49.20
44.92
55.48
59.28
94.39

128.02
96.00

131.42
127.21
252.90
409.20
463.70
510.22

2463
2048
3940
6505
5723

11,520
5779
5969
8461

20,106
13,313
10,771
15,543
36,194
34,703
39,204
86,533

472.92
1339.75
620.25
568.33

1497.60
1365.83
1687.00
1639.92
2872.33
3655.08
2912.00
3921.00
3865.67
7684.10

12,446.33
14,098.40
15,524.00

18.0
9.5

12.8
36.7
35.7
24.0
43.3
46.7
78.7

180.5
60.9

103.7
126.8
157.7
169.4
331.4
371.6

4.45
6.92
4.28
3.90
5.50
4.60
5.62
5.l5
6.18
6.15
5.88
4.88
5.50
7.00

10.75
7.05
6.35

566.52
696.82

1033.15
1003.62
1611.37
1613.27
1854.17
2160.55
2305.58
3503.93
3571.59
3741.40
4026.52

10,343.81
11,732.17
15,414.94
18,854.45

(a) The SAS PROC REG outputs provided in Figures
12.9 and 12.10 supply a considerable amount of in-
formation. Goals are to do outlier detection and
eventually determine which model terms are to be
used in the final model.

(b) Often the role of a single regressor variable is not
apparent when it is studied in the presence of sev-
eral other variables. This is due to multicollinear-
ity. With this in mind, comment on the importance
of x2 and x3 in the full model as opposed to their
importance in a model in which they are the only
variables.

(c) Comment on what other analyses should be run.

(d) Run appropriate analyses and write your conclu-
sions concerning the final model.

Dependent Variable: y
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 5 490177488 98035498 237.79 <.0001
Error 11 4535052 412277
Corrected Total 16 494712540

Root MSE 642.08838 R-Square 0.9908
Dependent Mean 4978.48000 Adj R-Sq 0.9867
Coeff Var 12.89728

Parameter Estimates
Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 1962.94816 1071.36170 1.83 0.0941
x1 Average Daily Patient Load 1 -15.85167 97.65299 -0.16 0.8740
x2 Monthly X-Ray Exposure 1 0.05593 0.02126 2.63 0.0234
x3 Monthly Occupied Bed Days 1 1.58962 3.09208 0.51 0.6174
x4 Eligible Population in the 1 -4.21867 7.17656 -0.59 0.5685

Area/100
x5 Average Length of Patients 1 -394.31412 209.63954 -1.88 0.0867

Stay in Days

Figure 12.9: SAS output for Review Exercise 12.72; part I.
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Dependent Predicted Std Error
Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict
1 566.5200 775.0251 241.2323 244.0765 1306 -734.6494 2285
2 696.8200 740.6702 331.1402 11.8355 1470 -849.4275 2331
3 1033 1104 278.5116 490.9234 1717 -436.5244 2644
4 1604 1240 268.1298 650.3459 1831 -291.0028 2772
5 1611 1564 211.2372 1099 2029 76.6816 3052
6 1613 2151 279.9293 1535 2767 609.5796 3693
7 1854 1690 218.9976 1208 2172 196.5345 3183
8 2161 1736 468.9903 703.9948 2768 -13.8306 3486
9 2306 2737 290.4749 2098 3376 1186 4288
10 3504 3682 585.2517 2394 4970 1770 5594
11 3572 3239 189.0989 2823 3655 1766 4713
12 3741 4353 328.8507 3630 5077 2766 5941
13 4027 4257 314.0481 3566 4948 2684 5830
14 10344 8768 252.2617 8213 9323 7249 10286
15 11732 12237 573.9168 10974 13500 10342 14133
16 15415 15038 585.7046 13749 16328 13126 16951
17 18854 19321 599.9780 18000 20641 17387 21255

Std Error Student
Obs Residual Residual Residual -2-1 0 1 2
1 -208.5051 595.0 -0.350 | | |
2 -43.8502 550.1 -0.0797 | | |
3 -70.7734 578.5 -0.122 | | |
4 363.1244 583.4 0.622 | |* |
5 46.9483 606.3 0.0774 | | |
6 -538.0017 577.9 -0.931 | *| |
7 164.4696 603.6 0.272 | | |
8 424.3145 438.5 0.968 | |* |
9 -431.4090 572.6 -0.753 | *| |
10 -177.9234 264.1 -0.674 | *| |
11 332.6011 613.6 0.542 | |* |
12 -611.9330 551.5 -1.110 | **| |
13 -230.5684 560.0 -0.412 | | |
14 1576 590.5 2.669 | |***** |
15 -504.8574 287.9 -1.753 | ***| |
16 376.5491 263.1 1.431 | |** |
17 -466.2470 228.7 -2.039 | ****| |

Figure 12.10: SAS output for Review Exercise 12.72; part II.
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506 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models

12.13 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

There are several procedures discussed in this chapter for use in the “attempt” to
find the best model. However, one of the most important misconceptions under
which näıve scientists or engineers labor is that there is a true linear model and
that it can be found. In most scientific phenomena, relationships between scientific
variables are nonlinear in nature and the true model is unknown. Linear statistical
models are empirical approximations.

At times, the choice of the model to be adopted may depend on what informa-
tion needs to be derived from the model. Is it to be used for prediction? Is it to
be used for the purpose of explaining the role of each regressor? This “choice” can
be made difficult in the presence of collinearity. It is true that for many regression
problems there are multiple models that are very similar in performance. See the
Myers reference (1990) for details.

One of the most damaging misuses of the material in this chapter is to assign too
much importance to R2 in the choice of the so-called best model. It is important
to remember that for any data set, one can obtain an R2 as large as one desires,
within the constraint 0 ≤ R2 ≤ 1. Too much attention to R2 often leads to
overfitting.

Much attention was given in this chapter to outlier detection. A classical serious
misuse of statistics centers around the decision made concerning the detection of
outliers. We hope it is clear that the analyst should absolutely not carry out the
exercise of detecting outliers, eliminating them from the data set, fitting a new
model, reporting outlier detection, and so on. This is a tempting and disastrous
procedure for arriving at a model that fits the data well, with the result being
an example of how to lie with statistics. If an outlier is detected, the history
of the data should be checked for possible clerical or procedural error before it is
eliminated from the data set. One must remember that an outlier by definition is
a data point that the model did not fit well. The problem may not be in the data
but rather in the model selection. A changed model may result in the point not
being detected as an outlier.

There are many types of responses that occur naturally in practice but can’t
be used in an analysis of standard least squares because classic least squares as-
sumptions do not hold. The assumptions that often fail are those of normal errors
and homogeneous variance. For example, if the response is a proportion, say pro-
portion defective, the response distribution is related to the binomial distribution.
A second response that occurs often in practice is that of Poisson counts. Clearly
the distribution is not normal, and the response variance, which is equal to the
Poisson mean, will vary from observation to observation. For more details on these
nonideal conditions, see Myers et al. (2008) in the Bibliography.
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Chapter 13

One-Factor Experiments: General

13.1 Analysis-of-Variance Technique

In the estimation and hypothesis testing material covered in Chapters 9 and 10, we
were restricted in each case to considering no more than two population parameters.
Such was the case, for example, in testing for the equality of two population means
using independent samples from normal populations with common but unknown
variance, where it was necessary to obtain a pooled estimate of σ2.

This material dealing in two-sample inference represents a special case of what
we call the one-factor problem. For example, in Exercise 10.35 on page 357, the
survival time was measured for two samples of mice, where one sample received a
new serum for leukemia treatment and the other sample received no treatment. In
this case, we say that there is one factor, namely treatment, and the factor is at two
levels. If several competing treatments were being used in the sampling process,
more samples of mice would be necessary. In this case, the problem would involve
one factor with more than two levels and thus more than two samples.

In the k > 2 sample problem, it will be assumed that there are k samples from
k populations. One very common procedure used to deal with testing population
means is called the analysis of variance, or ANOVA.

The analysis of variance is certainly not a new technique to the reader who
has followed the material on regression theory. We used the analysis-of-variance
approach to partition the total sum of squares into a portion due to regression and
a portion due to error.

Suppose in an industrial experiment that an engineer is interested in how the
mean absorption of moisture in concrete varies among 5 different concrete aggre-
gates. The samples are exposed to moisture for 48 hours. It is decided that 6
samples are to be tested for each aggregate, requiring a total of 30 samples to be
tested. The data are recorded in Table 13.1.

The model for this situation may be set up as follows. There are 6 observations
taken from each of 5 populations with means μ1, μ2, . . . , μ5, respectively. We may
wish to test

H0: μ1 = μ2 = · · · = μ5,

H1: At least two of the means are not equal.

507
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Table 13.1: Absorption of Moisture in Concrete Aggregates

Aggregate: 1 2 3 4 5

551 595 639 417 563
457 580 615 449 631
450 508 511 517 522
731 583 573 438 613
499 633 648 415 656
632 517 677 555 679

Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

In addition, we may be interested in making individual comparisons among these
5 population means.

Two Sources of Variability in the Data

In the analysis-of-variance procedure, it is assumed that whatever variation exists
among the aggregate averages is attributed to (1) variation in absorption among
observations within aggregate types and (2) variation among aggregate types, that
is, due to differences in the chemical composition of the aggregates. The within-
aggregate variation is, of course, brought about by various causes. Perhaps
humidity and temperature conditions were not kept entirely constant throughout
the experiment. It is possible that there was a certain amount of heterogeneity in
the batches of raw materials that were used. At any rate, we shall consider the
within-sample variation to be chance or random variation. Part of the goal of
the analysis of variance is to determine if the differences among the 5 sample means
are what we would expect due to random variation alone or, rather, due to variation
beyond merely random effects, i.e., differences in the chemical composition of the
aggregates.

Many pointed questions appear at this stage concerning the preceding problem.
For example, how many samples must be tested for each aggregate? This is a
question that continually haunts the practitioner. In addition, what if the within-
sample variation is so large that it is difficult for a statistical procedure to detect
the systematic differences? Can we systematically control extraneous sources of
variation and thus remove them from the portion we call random variation? We
shall attempt to answer these and other questions in the following sections.

13.2 The Strategy of Experimental Design

In Chapters 9 and 10, the notions of estimation and testing for the two-sample
case were covered under the important backdrop of the way the experiment is con-
ducted. This falls into the broad category of design of experiments. For example,
for the pooled t-test discussed in Chapter 10, it is assumed that the factor levels
(treatments in the mice example) are assigned randomly to the experimental units
(mice). The notion of experimental units was discussed in Chapters 9 and 10 and

Uploaded By: anonymousSTUDENTS-HUB.com
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illustrated through examples. Simply put, experimental units are the units (mice,
patients, concrete specimens, time) that provide the heterogeneity that leads
to experimental error in a scientific investigation. The random assignment elim-
inates bias that could result with systematic assignment. The goal is to distribute
uniformly among the factor levels the risks brought about by the heterogeneity of
the experimental units. Random assignment best simulates the conditions that are
assumed by the model. In Section 13.7, we discuss blocking in experiments. The
notion of blocking was presented in Chapters 9 and 10, when comparisons between
means were accomplished with pairing, that is, the division of the experimental
units into homogeneous pairs called blocks. The factor levels or treatments are
then assigned randomly within blocks. The purpose of blocking is to reduce the
effective experimental error. In this chapter, we naturally extend the pairing to
larger block sizes, with analysis of variance being the primary analytical tool.

13.3 One-Way Analysis of Variance:
Completely Randomized Design (One-Way ANOVA)

Random samples of size n are selected from each of k populations. The k differ-
ent populations are classified on the basis of a single criterion such as different
treatments or groups. Today the term treatment is used generally to refer to
the various classifications, whether they be different aggregates, different analysts,
different fertilizers, or different regions of the country.

Assumptions and Hypotheses in One-Way ANOVA

It is assumed that the k populations are independent and normally distributed
with means μ1, μ2, . . . , μk and common variance σ2. As indicated in Section 13.2,
these assumptions are made more palatable by randomization. We wish to derive
appropriate methods for testing the hypothesis

H0: μ1 = μ2 = · · · = μk,

H1: At least two of the means are not equal.

Let yij denote the jth observation from the ith treatment and arrange the data as
in Table 13.2. Here, Yi. is the total of all observations in the sample from the ith
treatment, ȳi. is the mean of all observations in the sample from the ith treatment,
Y.. is the total of all nk observations, and ȳ.. is the mean of all nk observations.

Model for One-Way ANOVA

Each observation may be written in the form

Yij = μi + εij ,

where εij measures the deviation of the jth observation of the ith sample from the
corresponding treatment mean. The εij-term represents random error and plays
the same role as the error terms in the regression models. An alternative and
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Table 13.2: k Random Samples

Treatment: 1 2 · · · i · · · k
y11 y21 · · · yi1 · · · yk1
y12 y22 · · · yi2 · · · yk2
...

...
...

...
y1n y2n · · · yin · · · ykn

Total Y1. Y2. · · · Yi. · · · Yk. Y..

Mean ȳ1. ȳ2. · · · ȳi. · · · ȳk. ȳ..

preferred form of this equation is obtained by substituting μi = μ+ αi, subject to

the constraint
k∑

i=1

αi = 0. Hence, we may write

Yij = μ+ αi + εij ,

where μ is just the grand mean of all the μi, that is,

μ =
1

k

k∑
i=1

μi,

and αi is called the effect of the ith treatment.
The null hypothesis that the k population means are equal against the alter-

native that at least two of the means are unequal may now be replaced by the
equivalent hypothesis

H0: α1 = α2 = · · · = αk = 0,

H1: At least one of the αi is not equal to zero.

Resolution of Total Variability into Components

Our test will be based on a comparison of two independent estimates of the common
population variance σ2. These estimates will be obtained by partitioning the total
variability of our data, designated by the double summation

k∑
i=1

n∑
j=1

(yij − ȳ..)
2,

into two components.

Theorem 13.1: Sum-of-Squares Identity

k∑
i=1

n∑
j=1

(yij − ȳ..)
2 = n

k∑
i=1

(ȳi. − ȳ..)
2 +

k∑
i=1

n∑
j=1

(yij − ȳi.)
2

It will be convenient in what follows to identify the terms of the sum-of-squares
identity by the following notation:
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Three Important
Measures of
Variability

SST =

k∑
i=1

n∑
j=1

(yij − ȳ..)
2 = total sum of squares,

SSA = n
k∑

i=1

(ȳi. − ȳ..)
2 = treatment sum of squares,

SSE =
k∑

i=1

n∑
j=1

(yij − ȳi.)
2 = error sum of squares.

The sum-of-squares identity can then be represented symbolically by the equation

SST = SSA+ SSE.

The identity above expresses how between-treatment and within-treatment
variation add to the total sum of squares. However, much insight can be gained by
investigating the expected value of both SSA and SSE. Eventually, we shall
develop variance estimates that formulate the ratio to be used to test the equality
of population means.

Theorem 13.2:
E(SSA) = (k − 1)σ2 + n

k∑
i=1

α2
i

The proof of the theorem is left as an exercise (see Review Exercise 13.53 on page
556).

If H0 is true, an estimate of σ2, based on k− 1 degrees of freedom, is provided
by this expression:

Treatment Mean
Square s21 =

SSA

k − 1

If H0 is true and thus each αi in Theorem 13.2 is equal to zero, we see that

E

(
SSA

k − 1

)
= σ2,

and s21 is an unbiased estimate of σ2. However, if H1 is true, we have

E

(
SSA

k − 1

)
= σ2 +

n

k − 1

k∑
i=1

α2
i ,

and s21 estimates σ2 plus an additional term, which measures variation due to the
systematic effects.

A second and independent estimate of σ2, based on k(n−1) degrees of freedom,
is this familiar formula:

Error Mean
Square s2 =

SSE

k(n− 1)
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It is instructive to point out the importance of the expected values of the mean
squares indicated above. In the next section, we discuss the use of an F-ratio with
the treatment mean square residing in the numerator. It turns out that when H1

is true, the presence of the condition E(s21) > E(s2) suggests that the F-ratio be
used in the context of a one-sided upper-tailed test. That is, when H1 is true,
we would expect the numerator s21 to exceed the denominator.

Use of F-Test in ANOVA

The estimate s2 is unbiased regardless of the truth or falsity of the null hypothesis
(see Review Exercise 13.52 on page 556). It is important to note that the sum-of-
squares identity has partitioned not only the total variability of the data, but also
the total number of degrees of freedom. That is,

nk − 1 = k − 1 + k(n− 1).

F-Ratio for Testing Equality of Means

When H0 is true, the ratio f = s21/s
2 is a value of the random variable F having the

F-distribution with k−1 and k(n−1) degrees of freedom (see Theorem 8.8). Since
s21 overestimates σ2 when H0 is false, we have a one-tailed test with the critical
region entirely in the right tail of the distribution.

The null hypothesis H0 is rejected at the α-level of significance when

f > fα[k − 1, k(n− 1)].

Another approach, the P-value approach, suggests that the evidence in favor of
or against H0 is

P = P{f [k − 1, k(n− 1)] > f}.

The computations for an analysis-of-variance problem are usually summarized in
tabular form, as shown in Table 13.3.

Table 13.3: Analysis of Variance for the One-Way ANOVA

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Treatments SSA k − 1 s21 =
SSA

k − 1

s21
s2

Error SSE k(n− 1) s2 =
SSE

k(n− 1)

Total SST kn− 1

Example 13.1: Test the hypothesis μ1 = μ2 = · · · = μ5 at the 0.05 level of significance for the data
of Table 13.1 on absorption of moisture by various types of cement aggregates.
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Solution : The hypotheses are

H0: μ1 = μ2 = · · · = μ5,

H1: At least two of the means are not equal.

α = 0.05.

Critical region: f > 2.76 with v1 = 4 and v2 = 25 degrees of freedom. The
sum-of-squares computations give

SST = 209,377, SSA = 85,356,

SSE = 209,377− 85,356 = 124,021.

These results and the remaining computations are exhibited in Figure 13.1 in the
SAS ANOVA procedure.

The GLM Procedure

Dependent Variable: moisture

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 85356.4667 21339.1167 4.30 0.0088

Error 25 124020.3333 4960.8133

Corrected Total 29 209376.8000

R-Square Coeff Var Root MSE moisture Mean

0.407669 12.53703 70.43304 561.8000

Source DF Type I SS Mean Square F Value Pr > F

aggregate 4 85356.46667 21339.11667 4.30 0.0088

Figure 13.1: SAS output for the analysis-of-variance procedure.

Decision: Reject H0 and conclude that the aggregates do not have the same mean
absorption. The P-value for f = 4.30 is 0.0088, which is smaller than 0.05.

In addition to the ANOVA, a box plot was constructed for each aggregate. The
plots are shown in Figure 13.2. From these plots it is evident that the absorption
is not the same for all aggregates. In fact, it appears as if aggregate 4 stands out
from the rest. A more formal analysis showing this result will appear in Exercise
13.21 on page 531.

During experimental work, one often loses some of the desired observations.
Experimental animals may die, experimental material may be damaged, or human
subjects may drop out of a study. The previous analysis for equal sample size will
still be valid if we slightly modify the sum of squares formulas. We now assume
the k random samples to be of sizes n1, n2, . . . , nk, respectively.

Sum of Squares,
Unequal Sample

Sizes
SST =

k∑
i=1

ni∑
j=1

(yij − ȳ..)
2, SSA =

k∑
i=1

ni(ȳi. − ȳ..)
2, SSE = SST − SSA
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Figure 13.2: Box plots for the absorption of moisture in concrete aggregates.

The degrees of freedom are then partitioned as before: N − 1 for SST, k − 1 for

SSA, and N − 1− (k − 1) = N − k for SSE, where N =
k∑

i=1

ni.

Example 13.2: Part of a study conducted at Virginia Tech was designed to measure serum alka-
line phosphatase activity levels (in Bessey-Lowry units) in children with seizure
disorders who were receiving anticonvulsant therapy under the care of a private
physician. Forty-five subjects were found for the study and categorized into four
drug groups:

G-1: Control (not receiving anticonvulsants and having no history of seizure
disorders)

G-2: Phenobarbital

G-3: Carbamazepine

G-4: Other anticonvulsants

From blood samples collected from each subject, the serum alkaline phosphatase
activity level was determined and recorded as shown in Table 13.4. Test the hy-
pothesis at the 0.05 level of significance that the average serum alkaline phosphatase
activity level is the same for the four drug groups.
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Table 13.4: Serum Alkaline Phosphatase Activity Level

G-1 G-2 G-3 G-4
49.20
44.54
45.80
95.84
30.10
36.50
82.30
87.85
105.00
95.22

97.50
105.00
58.05
86.60
58.35
72.80
116.70
45.15
70.35
77.40

97.07
73.40
68.50
91.85

106.60
0.57
0.79
0.77
0.81

62.10
94.95

142.50
53.00

175.00
79.50
29.50
78.40

127.50

110.60
57.10

117.60
77.71

150.00
82.90

111.50

Solution : With the level of significance at 0.05, the hypotheses are

H0: μ1 = μ2 = μ3 = μ4,

H1: At least two of the means are not equal.

Critical region: f > 2.836, from interpolating in Table A.6.
Computations: Y1. = 1460.25, Y2. = 440.36, Y3. = 842.45, Y4. = 707.41, and
Y.. = 3450.47. The analysis of variance is shown in the MINITAB output of
Figure 13.3.

One-way ANOVA: G-1, G-2, G-3, G-4

Source DF SS MS F P

Factor 3 13939 4646 3.57 0.022

Error 41 53376 1302

Total 44 67315

S = 36.08 R-Sq = 20.71% R-Sq(adj) = 14.90%

Individual 95% CIs For Mean Based on

Pooled StDev

Level N Mean StDev --+---------+---------+---------+-------

G-1 20 73.01 25.75 (----*-----)

G-2 9 48.93 47.11 (-------*-------)

G-3 9 93.61 46.57 (-------*-------)

G-4 7 101.06 30.76 (--------*--------)

--+---------+---------+---------+-------

30 60 90 120

Pooled StDev = 36.08

Figure 13.3: MINITAB analysis of data in Table 13.4.
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Decision: Reject H0 and conclude that the average serum alkaline phosphatase
activity levels for the four drug groups are not all the same. The calculated P-
value is 0.022.

In concluding our discussion on the analysis of variance for the one-way classi-
fication, we state the advantages of choosing equal sample sizes over the choice of
unequal sample sizes. The first advantage is that the f-ratio is insensitive to slight
departures from the assumption of equal variances for the k populations when the
samples are of equal size. Second, the choice of equal sample sizes minimizes the
probability of committing a type II error.

13.4 Tests for the Equality of Several Variances

Although the f-ratio obtained from the analysis-of-variance procedure is insensitive
to departures from the assumption of equal variances for the k normal populations
when the samples are of equal size, we may still prefer to exercise caution and
run a preliminary test for homogeneity of variances. Such a test would certainly
be advisable in the case of unequal sample sizes if there was a reasonable doubt
concerning the homogeneity of the population variances. Suppose, therefore, that
we wish to test the null hypothesis

H0: σ2
1 = σ2

2 = · · · = σ2
k

against the alternative

H1: The variances are not all equal.

The test that we shall use, called Bartlett’s test, is based on a statistic whose
sampling distribution provides exact critical values when the sample sizes are equal.
These critical values for equal sample sizes can also be used to yield highly accurate
approximations to the critical values for unequal sample sizes.

First, we compute the k sample variances s21, s
2
2, . . . , s

2
k from samples of size

n1, n2, . . . , nk, with
k∑

i=1

ni = N . Second, we combine the sample variances to give

the pooled estimate

s2p =
1

N − k

k∑
i=1

(ni − 1)s2i .

Now

b =
[(s21)

n1−1(s22)
n2−1 · · · (s2k)nk−1]1/(N−k)

s2p

is a value of a random variable B having the Bartlett distribution. For the
special case where n1 = n2 = · · · = nk = n, we reject H0 at the α-level of
significance if

b < bk(α;n),
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where bk(α;n) is the critical value leaving an area of size α in the left tail of the
Bartlett distribution. Table A.10 gives the critical values, bk(α;n), for α = 0.01
and 0.05; k = 2, 3, . . . , 10; and selected values of n from 3 to 100.

When the sample sizes are unequal, the null hypothesis is rejected at the α-level
of significance if

b < bk(α;n1, n2, . . . , nk),

where

bk(α;n1, n2, . . . , nk) ≈ n1bk(α;n1) + n2bk(α;n2) + · · ·+ nkbk(α;nk)

N
.

As before, all the bk(α;ni) for sample sizes n1, n2, . . . , nk are obtained from Table
A.10.

Example 13.3: Use Bartlett’s test to test the hypothesis at the 0.01 level of significance that the
population variances of the four drug groups of Example 13.2 are equal.

Solution : We have the hypotheses

H0: σ2
1 = σ2

2 = σ2
3 = σ2

4 ,

H1: The variances are not equal,

with α = 0.01.

Critical region: Referring to Example 13.2, we have n1 = 20, n2 = 9, n3 = 9,
n4 = 7, N = 45, and k = 4. Therefore, we reject when

b < b4(0.01; 20, 9, 9, 7)

≈ (20)(0.8586) + (9)(0.6892) + (9)(0.6892) + (7)(0.6045)

45
= 0.7513.

Computations: First compute

s21 = 662.862, s22 = 2219.781, s23 = 2168.434, s24 = 946.032,

and then

s2p =
(19)(662.862) + (8)(2219.781) + (8)(2168.434) + (6)(946.032)

41
= 1301.861.

Now

b =
[(662.862)19(2219.781)8(2168.434)8(946.032)6]1/41

1301.861
= 0.8557.

Decision: Do not reject the hypothesis, and conclude that the population variances
of the four drug groups are not significantly different.

Although Bartlett’s test is most often used for testing of homogeneity of vari-
ances, other methods are available. A method due to Cochran provides a compu-
tationally simple procedure, but it is restricted to situations in which the sample
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sizes are equal. Cochran’s test is particularly useful for detecting if one variance
is much larger than the others. The statistic that is used is

G =
largest S2

i

k∑
i=1

S2
i

,

and the hypothesis of equality of variances is rejected if g > gα, where the value of
gα is obtained from Table A.11.

To illustrate Cochran’s test, let us refer again to the data of Table 13.1 on
moisture absorption in concrete aggregates. Were we justified in assuming equal
variances when we performed the analysis of variance in Example 13.1? We find
that

s21 = 12,134, s22 = 2303, s23 = 3594, s24 = 3319, s25 = 3455.

Therefore,

g =
12,134

24,805
= 0.4892,

which does not exceed the table value g0.05 = 0.5065. Hence, we conclude that the
assumption of equal variances is reasonable.

Exercises

13.1 Six different machines are being considered for
use in manufacturing rubber seals. The machines are
being compared with respect to tensile strength of the
product. A random sample of four seals from each ma-
chine is used to determine whether the mean tensile
strength varies from machine to machine. The follow-
ing are the tensile-strength measurements in kilograms
per square centimeter × 10−1:

Machine
1 2 3 4 5 6

17.5 16.4 20.3 14.6 17.5 18.3
16.9 19.2 15.7 16.7 19.2 16.2
15.8 17.7 17.8 20.8 16.5 17.5
18.6 15.4 18.9 18.9 20.5 20.1

Perform the analysis of variance at the 0.05 level of sig-
nificance and indicate whether or not the mean tensile
strengths differ significantly for the six machines.

13.2 The data in the following table represent the
number of hours of relief provided by five different
brands of headache tablets administered to 25 subjects
experiencing fevers of 38◦C or more. Perform the anal-
ysis of variance and test the hypothesis at the 0.05 level
of significance that the mean number of hours of relief
provided by the tablets is the same for all five brands.
Discuss the results.

Tablet
A B C D E
5.2 9.1 3.2 2.4 7.1
4.7 7.1 5.8 3.4 6.6
8.1 8.2 2.2 4.1 9.3
6.2 6.0 3.1 1.0 4.2
3.0 9.1 7.2 4.0 7.6

13.3 In an article “Shelf-Space Strategy in Retailing,”
published in Proceedings: Southern Marketing Associa-
tion, the effect of shelf height on the supermarket sales
of canned dog food is investigated. An experiment was
conducted at a small supermarket for a period of 8 days
on the sales of a single brand of dog food, referred to
as Arf dog food, involving three levels of shelf height:
knee level, waist level, and eye level. During each day,
the shelf height of the canned dog food was randomly
changed on three different occasions. The remaining
sections of the gondola that housed the given brand
were filled with a mixture of dog food brands that were
both familiar and unfamiliar to customers in this par-
ticular geographic area. Sales, in hundreds of dollars,
of Arf dog food per day for the three shelf heights are
given. Based on the data, is there a significant differ-
ence in the average daily sales of this dog food based
on shelf height? Use a 0.01 level of significance.
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Shelf Height
Knee Level Waist Level Eye Level

77 88 85
82 94 85
86 93 87
78 90 81
81 91 80
86 94 79
77 90 87
81 87 93

13.4 Immobilization of free-ranging white-tailed deer
by drugs allows researchers the opportunity to closely
examine the deer and gather valuable physiological in-
formation. In the study Influence of Physical Restraint
and Restraint Facilitating Drugs on Blood Measure-
ments of White-Tailed Deer and Other Selected Mam-
mals, conducted at Virginia Tech, wildlife biologists
tested the “knockdown” time (time from injection to
immobilization) of three different immobilizing drugs.
Immobilization, in this case, is defined as the point
where the animal no longer has enough muscle control
to remain standing. Thirty male white-tailed deer were
randomly assigned to each of three treatments. Group
A received 5 milligrams of liquid succinylcholine chlo-
ride (SCC); group B received 8 milligrams of powdered
SCC; and group C received 200 milligrams of phency-
clidine hydrochloride. Knockdown times, in minutes,
were recorded. Perform an analysis of variance at the
0.01 level of significance and determine whether or not
the average knockdown time for the three drugs is the
same.

Group
A B C
11
5

14
7

10
7

23
4

11
11

10
7

16
7
7
5

10
10
6

12

4
4
6
3
5
6
8
3
7
3

13.5 The mitochondrial enzyme NADPH:NAD
transhydrogenase of the common rat tapeworm (Hy-
menolepiasis diminuta) catalyzes hydrogen in the
transfer from NADPH to NAD, producing NADH.
This enzyme is known to serve a vital role in the
tapeworm’s anaerobic metabolism, and it has recently
been hypothesized that it may serve as a proton ex-
change pump, transferring protons across the mito-
chondrial membrane. A study on Effect of Various
Substrate Concentrations on the Conformational Vari-
ation of the NADPH:NAD Transhydrogenase of Hy-
menolepiasis diminuta, conducted at Bowling Green

State University, was designed to assess the ability of
this enzyme to undergo conformation or shape changes.
Changes in the specific activity of the enzyme caused
by variations in the concentration of NADP could be
interpreted as supporting the theory of conformational
change. The enzyme in question is located in the in-
ner membrane of the tapeworm’s mitochondria. Tape-
worms were homogenized, and through a series of cen-
trifugations, the enzyme was isolated. Various con-
centrations of NADP were then added to the isolated
enzyme solution, and the mixture was then incubated
in a water bath at 56◦C for 3 minutes. The enzyme
was then analyzed on a dual-beam spectrophotometer,
and the results shown were calculated, with the specific
activity of the enzyme given in nanomoles per minute
per milligram of protein. Test the hypothesis at the
0.01 level that the average specific activity is the same
for the four concentrations.

NADP Concentration (nm)
0 80 160 360

11.01 11.38 11.02 6.04 10.31
12.09 10.67 10.67 8.65 8.30
10.55 12.33 11.50 7.76 9.48
11.26 10.08 10.31 10.13 8.89

9.36

13.6 A study measured the sorption (either absorp-
tion or adsorption) rates of three different types of or-
ganic chemical solvents. These solvents are used to
clean industrial fabricated-metal parts and are poten-
tial hazardous waste. Independent samples from each
type of solvent were tested, and their sorption rates
were recorded as a mole percentage. (See McClave,
Dietrich, and Sincich, 1997.)

Aromatics Chloroalkanes Esters
1.06 0.95 1.58 1.12 0.29 0.43 0.06
0.79 0.65 1.45 0.91 0.06 0.51 0.09
0.82 1.15 0.57 0.83 0.44 0.10 0.17
0.89 1.12 1.16 0.43 0.55 0.53 0.17
1.05 0.61 0.34 0.60

Is there a significant difference in the mean sorption
rates for the three solvents? Use a P-value for your
conclusions. Which solvent would you use?

13.7 It has been shown that the fertilizer magnesium
ammonium phosphate, MgNH4PO4, is an effective sup-
plier of the nutrients necessary for plant growth. The
compounds supplied by this fertilizer are highly solu-
ble in water, allowing the fertilizer to be applied di-
rectly on the soil surface or mixed with the growth
substrate during the potting process. A study on the
Effect of Magnesium Ammonium Phosphate on Height
of Chrysanthemums was conducted at George Mason
University to determine a possible optimum level of
fertilization, based on the enhanced vertical growth re-
sponse of the chrysanthemums. Forty chrysanthemum
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seedlings were divided into four groups, each containing
10 plants. Each was planted in a similar pot containing
a uniform growth medium. To each group of plants an
increasing concentration of MgNH4PO4, measured in
grams per bushel, was added. The four groups of plants
were grown under uniform conditions in a greenhouse
for a period of four weeks. The treatments and the re-
spective changes in heights, measured in centimeters,
are shown next.

Treatment
50 g/bu 100 g/bu 200 g/bu 400 g/bu
13.2 12.4 16.0 12.6 7.8 14.4 21.0 14.8
12.8 17.2 14.8 13.0 20.0 15.8 19.1 15.8
13.0 14.0 14.0 23.6 17.0 27.0 18.0 26.0
14.2 21.6 14.0 17.0 19.6 18.0 21.1 22.0
15.0 20.0 22.2 24.4 20.2 23.2 25.0 18.2

Can we conclude at the 0.05 level of significance that
different concentrations of MgNH4PO4 affect the av-

erage attained height of chrysanthemums? How much
MgNH4PO4 appears to be best?

13.8 For the data set in Exercise 13.7, use Bartlett’s
test to check whether the variances are equal. Use
α = 0.05.

13.9 Use Bartlett’s test at the 0.01 level of signifi-
cance to test for homogeneity of variances in Exercise
13.5 on page 519.

13.10 Use Cochran’s test at the 0.01 level of signifi-
cance to test for homogeneity of variances in Exercise
13.4 on page 519.

13.11 Use Bartlett’s test at the 0.05 level of signifi-
cance to test for homogeneity of variances in Exercise
13.6 on page 519.

13.5 Single-Degree-of-Freedom Comparisons

The analysis of variance in a one-way classification, or a one-factor experiment, as
it is often called, merely indicates whether or not the hypothesis of equal treatment
means can be rejected. Usually, an experimenter would prefer his or her analysis
to probe deeper. For instance, in Example 13.1, by rejecting the null hypothesis
we concluded that the means are not all equal, but we still do not know where
the differences exist among the aggregates. The engineer might have the feeling a
priori that aggregates 1 and 2 should have similar absorption properties and that
the same is true for aggregates 3 and 5. However, it is of interest to study the
difference between the two groups. It would seem, then, appropriate to test the
hypothesis

H0: μ1 + μ2 − μ3 − μ5 = 0,

H1: μ1 + μ2 − μ3 − μ5 �= 0.

We notice that the hypothesis is a linear function of the population means where
the coefficients sum to zero.

Definition 13.1: Any linear function of the form

ω =
k∑

i=1

ciμi,

where
k∑

i=1

ci = 0, is called a comparison or contrast in the treatment means.

The experimenter can often make multiple comparisons by testing the significance
of contrasts in the treatment means, that is, by testing a hypothesis of the following
type:
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Hypothesis for a
Contrast H0:

k∑
i=1

ciμi = 0,

H1:

k∑
i=1

ciμi �= 0,

where
k∑

i=1

ci = 0.

The test is conducted by first computing a similar contrast in the sample means,

w =
k∑

i=1

ciȳi..

Since Ȳ1., Ȳ2., . . . , Ȳk. are independent random variables having normal distribu-
tions with means μ1, μ2, . . . , μk and variances σ2

1/n1, σ
2
2/n2, . . . , σ

2
k/nk, respec-

tively, Theorem 7.11 assures us that w is a value of the normal random variable
W with

mean μW =

k∑
i=1

ciμi and variance σ2
W = σ2

k∑
i=1

c2i
ni

.

Therefore, when H0 is true, μW = 0 and, by Example 7.5, the statistic

W 2

σ2
W

=

(
k∑

i=1

ciȲi.

)2

σ2
k∑

i=1

(c2i /ni)

is distributed as a chi-squared random variable with 1 degree of freedom.

Test Statistic for
Testing a
Contrast

Our hypothesis is tested at the α-level of significance by computing

f =

(
k∑

i=1

ciȳi.

)2

s2
k∑

i=1

(c2i /ni)

=

[
k∑

i=1

(ciYi./ni)

]2
s2

k∑
i=1

(c2i /ni)

=
SSw

s2
.

Here f is a value of the random variable F having the F -distribution with 1 and
N − k degrees of freedom.

When the sample sizes are all equal to n,

SSw =

(
k∑

i=1

ciYi.

)2

n
k∑

i=1

c2i

.

The quantity SSw, called the contrast sum of squares, indicates the portion of
SSA that is explained by the contrast in question.
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This sum of squares will be used to test the hypothesis that

k∑
i=1

ciμi = 0.

It is often of interest to test multiple contrasts, particularly contrasts that are
linearly independent or orthogonal. As a result, we need the following definition:

Definition 13.2: The two contrasts

ω1 =
k∑

i=1

biμi and ω2 =
k∑

i=1

ciμi

are said to be orthogonal if
k∑

i=1

bici/ni = 0 or, when the ni are all equal to n, if

k∑
i=1

bici = 0.

If ω1 and ω2 are orthogonal, then the quantities SSw1 and SSw2 are compo-
nents of SSA, each with a single degree of freedom. The treatment sum of squares
with k − 1 degrees of freedom can be partitioned into at most k − 1 independent
single-degree-of-freedom contrast sums of squares satisfying the identity

SSA = SSw1 + SSw2 + · · ·+ SSwk−1,

if the contrasts are orthogonal to each other.

Example 13.4: Referring to Example 13.1, find the contrast sum of squares corresponding to the
orthogonal contrasts

ω1 = μ1 + μ2 − μ3 − μ5, ω2 = μ1 + μ2 + μ3 − 4μ4 + μ5,

and carry out appropriate tests of significance. In this case, it is of interest a
priori to compare the two groups (1, 2) and (3, 5). An important and independent
contrast is the comparison between the set of aggregates (1, 2, 3, 5) and aggregate
4.

Solution : It is obvious that the two contrasts are orthogonal, since

(1)(1) + (1)(1) + (−1)(1) + (0)(−4) + (−1)(1) = 0.

The second contrast indicates a comparison between aggregates (1, 2, 3, and 5) and
aggregate 4. We can write two additional contrasts orthogonal to the first two,
namely

ω3 = μ1 − μ2 (aggregate 1 versus aggregate 2),

ω4 = μ3 − μ5 (aggregate 3 versus aggregate 5).
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From the data of Table 13.1, we have

SSw1 =
(3320 + 3416− 3663− 3664)2

6[(1)2 + (1)2 + (−1)2 + (−1)2]
= 14, 553,

SSw2 =
[3320 + 3416 + 3663 + 3664− 4(2791)]2

6[(1)2 + (1)2 + (1)2 + (1)2 + (−4)2]
= 70, 035.

A more extensive analysis-of-variance table is shown in Table 13.5. We note that
the two contrast sums of squares account for nearly all the aggregate sum of squares.
There is a significant difference between aggregates in their absorption properties,
and the contrast ω1 is marginally significant. However, the f-value of 14.12 for ω2

is highly significant, and the hypothesis

H0: μ1 + μ2 + μ3 + μ5 = 4μ4

is rejected.

Table 13.5: Analysis of Variance Using Orthogonal Contrasts

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Aggregates
(1, 2) vs. (3, 5)
(1, 2, 3, 5) vs. 4

Error
Total

85,356
14,553
70,035
124,021
209,377

4
1
1
25
29

21,339
14,553
70,035
4961

4.30
2.93
14.12

{ { {

Orthogonal contrasts allow the practitioner to partition the treatment varia-
tion into independent components. Normally, the experimenter would have certain
contrasts that were of interest to him or her. Such was the case in our example,
where a priori considerations suggested that aggregates (1, 2) and (3, 5) consti-
tuted distinct groups with different absorption properties, a postulation that was
not strongly supported by the significance test. However, the second comparison
supported the conclusion that aggregate 4 seemed to “stand out” from the rest.
In this case, the complete partitioning of SSA was not necessary, since two of the
four possible independent comparisons accounted for a majority of the variation in
treatments.

Figure 13.4 shows a SAS GLM procedure that displays a complete set of or-
thogonal contrasts. Note that the sums of squares for the four contrasts add to
the aggregate sum of squares. Also, note that the latter two contrasts (1 versus 2,
3 versus 5) reveal insignificant comparisons.

13.6 Multiple Comparisons

The analysis of variance is a powerful procedure for testing the homogeneity of
a set of means. However, if we reject the null hypothesis and accept the stated
alternative—that the means are not all equal—we still do not know which of the
population means are equal and which are different.
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The GLM Procedure

Dependent Variable: moisture

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 85356.4667 21339.1167 4.30 0.0088

Error 25 124020.3333 4960.8133

Corrected Total 29 209376.8000

R-Square Coeff Var Root MSE moisture Mean

0.407669 12.53703 70.43304 561.8000

Source DF Type I SS Mean Square F Value Pr > F

aggregate 4 85356.46667 21339.11667 4.30 0.0088

Source DF Type III SS Mean Square F Value Pr > F

aggregate 4 85356.46667 21339.11667 4.30 0.0088

Contrast DF Contrast SS Mean Square F Value Pr > F

(1,2,3,5) vs. 4 1 70035.00833 70035.00833 14.12 0.0009

(1,2) vs. (3,5) 1 14553.37500 14553.37500 2.93 0.0991

1 vs. 2 1 768.00000 768.00000 0.15 0.6973

3 vs. 5 1 0.08333 0.08333 0.00 0.9968

Figure 13.4: A set of orthogonal contrasts

Often it is of interest to make several (perhaps all possible) paired compar-
isons among the treatments. Actually, a paired comparison may be viewed as a
simple contrast, namely, a test of

H0: μi − μj = 0,

H1: μi − μj �= 0,

for all i �= j. Making all possible paired comparisons among the means can be very
beneficial when particular complex contrasts are not known a priori. For example,
in the aggregate data of Table 13.1, suppose that we wish to test

H0: μ1 − μ5 = 0,

H1: μ1 − μ5 �= 0.

The test is developed through use of an F, t, or confidence interval approach. Using
t, we have

t =
ȳ1. − ȳ5.

s
√
2/n

,

where s is the square root of the mean square error and n = 6 is the sample size
per treatment. In this case,

t =
553.33− 610.67√

4961
√

1/3
= −1.41.
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The P-value for the t-test with 25 degrees of freedom is 0.17. Thus, there is not
sufficient evidence to reject H0.

Relationship between T and F

In the foregoing, we displayed the use of a pooled t-test along the lines of that
discussed in Chapter 10. The pooled estimate was taken from the mean squared
error in order to enjoy the degrees of freedom that are pooled across all five samples.
In addition, we have tested a contrast. The reader should note that if the t-value
is squared, the result is exactly of the same form as the value of f for a test on a
contrast, discussed in the preceding section. In fact,

f =
(ȳ1. − ȳ5.)

2

s2(1/6 + 1/6)
=

(553.33− 610.67)2

4961(1/3)
= 1.988,

which, of course, is t2.

Confidence Interval Approach to a Paired Comparison

It is straightforward to solve the same problem of a paired comparison (or a con-
trast) using a confidence interval approach. Clearly, if we compute a 100(1− α)%
confidence interval on μ1 − μ5, we have

ȳ1. − ȳ5. ± tα/2s

√
2

6
,

where tα/2 is the upper 100(1 − α/2)% point of a t-distribution with 25 degrees
of freedom (degrees of freedom coming from s2). This straightforward connection
between hypothesis testing and confidence intervals should be obvious from dis-
cussions in Chapters 9 and 10. The test of the simple contrast μ1 − μ5 involves
no more than observing whether or not the confidence interval above covers zero.
Substituting the numbers, we have as the 95% confidence interval

(553.33− 610.67)± 2.060
√
4961

√
1

3
= −57.34± 83.77.

Thus, since the interval covers zero, the contrast is not significant. In other words,
we do not find a significant difference between the means of aggregates 1 and 5.

Experiment-wise Error Rate

Serious difficulties occur when the analyst attempts to make many or all pos-
sible paired comparisons. For the case of k means, there will be, of course,
r = k(k − 1)/2 possible paired comparisons. Assuming independent comparisons,
the experiment-wise error rate or family error rate (i.e., the probability of
false rejection of at least one of the hypotheses) is given by 1 − (1 − α)r, where
α is the selected probability of a type I error for a specific comparison. Clearly,
this measure of experiment-wise type I error can be quite large. For example, even
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if there are only 6 comparisons, say, in the case of 4 means, and α = 0.05, the
experiment-wise rate is

1− (0.95)6 ≈ 0.26.

When many paired comparisons are being tested, there is usually a need to make
the effective contrast on a single comparison more conservative. That is, with the
confidence interval approach, the confidence intervals would be much wider than
the ±tα/2s

√
2/n used for the case where only a single comparison is being made.

Tukey’s Test

There are several standard methods for making paired comparisons that sustain
the credibility of the type I error rate. We shall discuss and illustrate two of them
here. The first one, called Tukey’s procedure, allows formation of simultaneous
100(1− α)% confidence intervals for all paired comparisons. The method is based
on the studentized range distribution. The appropriate percentile point is a function
of α, k, and v = degrees of freedom for s2. A list of upper percentage points for
α = 0.05 is shown in Table A.12. The method of paired comparisons by Tukey
involves finding a significant difference between means i and j (i �= j) if |ȳi. − ȳj.|
exceeds q(α, k, v)

√
s2

n .

Tukey’s procedure is easily illustrated. Consider a hypothetical example where
we have 6 treatments in a one-factor completely randomized design, with 5 obser-
vations taken per treatment. Suppose that the mean square error taken from the
analysis-of-variance table is s2 = 2.45 (24 degrees of freedom). The sample means
are in ascending order:

ȳ2. ȳ5. ȳ1. ȳ3. ȳ6. ȳ4.
14.50 16.75 19.84 21.12 22.90 23.20.

With α = 0.05, the value of q(0.05, 6, 24) is 4.37. Thus, all absolute differences are
to be compared to

4.37

√
2.45

5
= 3.059.

As a result, the following represent means found to be significantly different using
Tukey’s procedure:

4 and 1, 4 and 5, 4 and 2, 6 and 1, 6 and 5,
6 and 2, 3 and 5, 3 and 2, 1 and 5, 1 and 2.

Where Does the α-Level Come From in Tukey’s Test?

We briefly alluded to the concept of simultaneous confidence intervals being
employed for Tukey’s procedure. The reader will gain a useful insight into the
notion of multiple comparisons if he or she gains an understanding of what is
meant by simultaneous confidence intervals.

In Chapter 9, we saw that if we compute a 95% confidence interval on, say,
a mean μ, then the probability that the interval covers the true mean μ is 0.95.
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However, as we have discussed, for the case of multiple comparisons, the effective
probability of interest is tied to the experiment-wise error rate, and it should be
emphasized that the confidence intervals of the type ȳi. − ȳj. ± q(α, k, v)s

√
1/n

are not independent since they all involve s and many involve the use of the same
averages, the ȳi.. Despite the difficulties, if we use q(0.05, k, v), the simultaneous
confidence level is controlled at 95%. The same holds for q(0.01, k, v); namely, the
confidence level is controlled at 99%. In the case of α = 0.05, there is a probability
of 0.05 that at least one pair of measures will be falsely found to be different (false
rejection of at least one null hypothesis). In the α = 0.01 case, the corresponding
probability will be 0.01.

Duncan’s Test

The second procedure we shall discuss is called Duncan’s procedure or Dun-
can’s multiple-range test. This procedure is also based on the general notion
of studentized range. The range of any subset of p sample means must exceed a
certain value before any of the p means are found to be different. This value is
called the least significant range for the p means and is denoted by Rp, where

Rp = rp

√
s2

n
.

The values of the quantity rp, called the least significant studentized range,
depend on the desired level of significance and the number of degrees of freedom
of the mean square error. These values may be obtained from Table A.13 for
p = 2, 3, . . . , 10 means.

To illustrate the multiple-range test procedure, let us consider the hypothetical
example where 6 treatments are compared, with 5 observations per treatment. This
is the same example used to illustrate Tukey’s test. We obtain Rp by multiplying
each rp by 0.70. The results of these computations are summarized as follows:

p 2 3 4 5 6

rp 2.919 3.066 3.160 3.226 3.276
Rp 2.043 2.146 2.212 2.258 2.293

Comparing these least significant ranges with the differences in ordered means, we
arrive at the following conclusions:

1. Since ȳ4. − ȳ2. = 8.70 > R6 = 2.293, we conclude that μ4 and μ2 are signifi-
cantly different.

2. Comparing ȳ4.− ȳ5. and ȳ6.− ȳ2. with R5, we conclude that μ4 is significantly
greater than μ5 and μ6 is significantly greater than μ2.

3. Comparing ȳ4. − ȳ1., ȳ6. − ȳ5., and ȳ3. − ȳ2. with R4, we conclude that each
difference is significant.

4. Comparing ȳ4. − ȳ3., ȳ6. − ȳ1., ȳ3. − ȳ5., and ȳ1. − ȳ2. with R3, we find all
differences significant except for μ4−μ3. Therefore, μ3, μ4, and μ6 constitute
a subset of homogeneous means.

5. Comparing ȳ3. − ȳ1., ȳ1. − ȳ5., and ȳ5. − ȳ2. with R2, we conclude that only
μ3 and μ1 are not significantly different.
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It is customary to summarize the conclusions above by drawing a line under any
subsets of adjacent means that are not significantly different. Thus, we have

ȳ2. ȳ5. ȳ1. ȳ3. ȳ6. ȳ4.
14.50 16.75 19.84 21.12 22.90 23.20

It is clear that in this case the results from Tukey’s and Duncan’s procedures
are very similar. Tukey’s procedure did not detect a difference between 2 and 5,
whereas Duncan’s did.

Dunnett’s Test: Comparing Treatment with a Control

In many scientific and engineering problems, one is not interested in drawing infer-
ences regarding all possible comparisons among the treatment means of the type
μi−μj . Rather, the experiment often dictates the need to simultaneously compare
each treatment with a control. A test procedure developed by C. W. Dunnett de-
termines significant differences between each treatment mean and the control, at a
single joint significance level α. To illustrate Dunnett’s procedure, let us consider
the experimental data of Table 13.6 for a one-way classification where the effect of
three catalysts on the yield of a reaction is being studied. A fourth treatment, no
catalyst, is used as a control.

Table 13.6: Yield of Reaction

Control Catalyst 1 Catalyst 2 Catalyst 3

50.7 54.1 52.7 51.2
51.5 53.8 53.9 50.8
49.2 53.1 57.0 49.7
53.1 52.5 54.1 48.0
52.7 54.0 52.5 47.2

ȳ0. = 51.44 ȳ1. = 53.50 ȳ2. = 54.04 ȳ3. = 49.38

In general, we wish to test the k hypotheses

H0: μ0 = μi

H1: μ0 �= μi

}
i = 1, 2, . . . , k,

where μ0 represents the mean yield for the population of measurements in which
the control is used. The usual analysis-of-variance assumptions, as outlined in
Section 13.3, are expected to remain valid. To test the null hypotheses specified
by H0 against two-sided alternatives for an experimental situation in which there
are k treatments, excluding the control, and n observations per treatment, we first
calculate the values

di =
ȳi. − ȳ0.√
2s2/n

, i = 1, 2, . . . , k.

The sample variance s2 is obtained, as before, from the mean square error in the
analysis of variance. Now, the critical region for rejecting H0, at the α-level of
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significance, is established by the inequality

|di| > dα/2(k, v),

where v is the number of degrees of freedom for the mean square error. The values
of the quantity dα/2(k, v) for a two-tailed test are given in Table A.14 for α = 0.05
and α = 0.01 for various values of k and v.

Example 13.5: For the data of Table 13.6, test hypotheses comparing each catalyst with the con-
trol, using two-sided alternatives. Choose α = 0.05 as the joint significance level.

Solution : The mean square error with 16 degrees of freedom is obtained from the analysis-
of-variance table, using all k + 1 treatments. The mean square error is given by

s2 =
36.812

16
= 2.30075 and

√
2s2

n
=

√
(2)(2.30075)

5
= 0.9593.

Hence,

d1 =
53.50− 51.44

0.9593
= 2.147, d2 =

54.04− 51.44

0.9593
= 2.710,

d3 =
49.38− 51.44

0.9593
= −2.147.

From Table A.14 the critical value for α = 0.05 is found to be d0.025(3, 16) = 2.59.
Since |d1| < 2.59 and |d3| < 2.59, we conclude that only the mean yield for catalyst
2 is significantly different from the mean yield of the reaction using the control.

Many practical applications dictate the need for a one-tailed test for comparing
treatments with a control. Certainly, when a pharmacologist is concerned with
the effect of various dosages of a drug on cholesterol level and his control is zero
dosage, it is of interest to determine if each dosage produces a significantly larger
reduction than the control. Table A.15 shows the critical values of dα(k, v) for
one-sided alternatives.

Exercises

13.12 Consider the data of Review Exercise 13.45 on
page 555. Make significance tests on the following con-
trasts:

(a) B versus A, C, and D;

(b) C versus A and D;

(c) A versus D.

13.13 The purpose of the study The Incorporation
of a Chelating Agent into a Flame Retardant Finish
of a Cotton Flannelette and the Evaluation of Selected
Fabric Properties conducted at Virginia Tech was to
evaluate the use of a chelating agent as part of the
flame-retardant finish of cotton flannelette by deter-
mining its effects upon flammability after the fabric is

laundered under specific conditions. Two baths were
prepared, one with carboxymethyl cellulose and one
without. Twelve pieces of fabric were laundered 5 times
in bath I, and 12 other pieces of fabric were laundered
10 times in bath I. This was repeated using 24 addi-
tional pieces of cloth in bath II. After the washings the
lengths of fabric that burned and the burn times were
measured. For convenience, let us define the following
treatments:

Treatment 1: 5 launderings in bath I,

Treatment 2: 5 launderings in bath II,

Treatment 3: 10 launderings in bath I,

Treatment 4: 10 launderings in bath II.
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Burn times, in seconds, were recorded as follows:

Treatment
1 2 3 4

13.7
23.0
15.7
25.5
15.8
14.8
14.0
29.4
9.7

14.0
12.3
12.3

6.2
5.4
5.0
4.4
5.0
3.3

16.0
2.5
1.6
3.9
2.5
7.1

27.2
16.8
12.9
14.9
17.1
13.0
10.8
13.5
25.5
14.2
27.4
11.5

18.2
8.8

14.5
14.7
17.1
13.9
10.6
5.8
7.3

17.7
18.3
9.9

(a) Perform an analysis of variance, using a 0.01 level of
significance, and determine whether there are any
significant differences among the treatment means.

(b) Use single-degree-of-freedom contrasts with α =
0.01 to compare the mean burn time of treatment
1 versus treatment 2 and also treatment 3 versus
treatment 4.

13.14 The study Loss of Nitrogen Through Sweat by
Preadolescent Boys Consuming Three Levels of Dietary
Protein was conducted by the Department of Human
Nutrition and Foods at Virginia Tech to determine per-
spiration nitrogen loss at various dietary protein levels.
Twelve preadolescent boys ranging in age from 7 years,
8 months to 9 years, 8 months, all judged to be clini-
cally healthy, were used in the experiment. Each boy
was subjected to one of three controlled diets in which
29, 54, or 84 grams of protein were consumed per day.
The following data represent the body perspiration ni-
trogen loss, in milligrams, during the last two days of
the experimental period:

Protein Level
29 Grams 54 Grams 84 Grams

190 318 390
266 295 321
270 271 396

438 399
402

(a) Perform an analysis of variance at the 0.05 level
of significance to show that the mean perspiration
nitrogen losses at the three protein levels are dif-
ferent.

(b) Use Tukey’s test to determine which protein levels
are significantly different from each other in mean
nitrogen loss.

13.15 Use Tukey’s test, with a 0.05 level of signifi-
cance, to analyze the means of the five different brands
of headache tablets in Exercise 13.2 on page 518.

13.16 An investigation was conducted to determine
the source of reduction in yield of a certain chemical
product. It was known that the loss in yield occurred in
the mother liquor, that is, the material removed at the
filtration stage. It was thought that different blends
of the original material might result in different yield
reductions at the mother liquor stage. The following
are the percent reductions for 3 batches at each of 4
preselected blends:

Blend
1 2 3 4

25.6 25.2 20.8 31.6
24.3 28.6 26.7 29.8
27.9 24.7 22.2 34.3

(a) Perform the analysis of variance at the α = 0.05
level of significance.

(b) Use Duncan’s multiple-range test to determine
which blends differ.

(c) Do part (b) using Tukey’s test.

13.17 In the study An Evaluation of the Removal
Method for Estimating Benthic Populations and Diver-
sity conducted by Virginia Tech on the Jackson River, 5
different sampling procedures were used to determine
the species counts. Twenty samples were selected at
random, and each of the 5 sampling procedures was
repeated 4 times. The species counts were recorded as
follows:

Sampling Procedure
Substrate

Deple- Modified Removal Kick-
tion Hess Surber Kicknet net
85
55
40
77

75
45
35
67

31
20
9

37

43
21
15
27

17
10
8

15

(a) Is there a significant difference in the average
species counts for the different sampling proce-
dures? Use a P-value in your conclusion.

(b) Use Tukey’s test with α = 0.05 to find which sam-
pling procedures differ.

13.18 The following data are values of pressure (psi)
in a torsion spring for several settings of the angle be-
tween the legs of the spring in a free position:

Angle (◦)
67 71 75 79 83
83 84 86 87 89 90
85 85 87 87 90 92

85 88 88 90
86 88 88 91
86 88 89
87 90
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Compute a one-way analysis of variance for this experi-
ment and state your conclusion concerning the effect of
angle on the pressure in the spring. (From C. R. Hicks,
Fundamental Concepts in the Design of Experiments,
Holt, Rinehart and Winston, New York, 1973.)

13.19 It is suspected that the environmental temper-
ature at which batteries are activated affects their life.
Thirty homogeneous batteries were tested, six at each
of five temperatures, and the data are shown below
(activated life in seconds). Analyze and interpret the
data. (From C. R. Hicks, Fundamental Concepts in
Design of Experiments, Holt, Rinehart and Winston,
New York, 1973.)

Temperature (◦C)
0 25 50 75 100
55 60 70 72 65
55 61 72 72 66
57 60 72 72 60
54 60 68 70 64
54 60 77 68 65
56 60 77 69 65

13.20 The following table (from A. Hald, Statistical
Theory with Engineering Applications, John Wiley &
Sons, New York, 1952) gives tensile strengths (in devi-
ations from 340) for wires taken from nine cables to be
used for a high-voltage network. Each cable is made
from 12 wires. We want to know whether the mean
strengths of the wires in the nine cables are the same.
If the cables are different, which ones differ? Use a
P-value in your analysis of variance.

Cable Tensile Strength

1 5 −13 −5 −2 −10 −6 −5 0 −3 2 −7 −5
2 −11 −13 −8 8 −3 −12 −12 −10 5 −6 −12 −10
3 0 −10 −15 −12 −2 −8 −5 0 −4 −1 −5 −11
4 −12 4 2 10 −5 −8 −12 0 −5 −3 −3 0
5 7 1 5 0 10 6 5 2 0 −1 −10 −2
6 1 0 −5 −4 −1 0 2 5 1 −2 6 7
7 −1 0 2 1 −4 2 7 5 1 0 −4 2
8 −1 0 7 5 10 8 1 2 −3 6 0 5
9 2 6 7 8 15 11 −7 7 10 7 8 1

13.21 The printout in Figure 13.5 on page 532 gives
information on Duncan’s test, using PROC GLM in
SAS, for the aggregate data in Example 13.1. Give
conclusions regarding paired comparisons using Dun-
can’s test results.

13.22 Do Duncan’s test for paired comparisons for

the data of Exercise 13.6 on page 519. Discuss the
results.

13.23 In a biological experiment, four concentrations
of a certain chemical are used to enhance the growth of
a certain type of plant over time. Five plants are used
at each concentration, and the growth in each plant is
measured in centimeters. The following growth data
are taken. A control (no chemical) is also applied.

Concentration
Control 1 2 3 4

6.8 8.2 7.7 6.9 5.9
7.3 8.7 8.4 5.8 6.1
6.3 9.4 8.6 7.2 6.9
6.9 9.2 8.1 6.8 5.7
7.1 8.6 8.0 7.4 6.1

Use Dunnett’s two-sided test at the 0.05 level of signif-
icance to simultaneously compare the concentrations
with the control.

13.24 The financial structure of a firm refers to the
way the firm’s assets are divided into equity and debt,
and the financial leverage refers to the percentage of
assets financed by debt. In the paper The Effect of Fi-
nancial Leverage on Return, Tai Ma of Virginia Tech
claims that financial leverage can be used to increase
the rate of return on equity. To say it another way,
stockholders can receive higher returns on equity with
the same amount of investment through the use of fi-
nancial leverage. The following data show the rates
of return on equity using 3 different levels of financial
leverage and a control level (zero debt) for 24 randomly
selected firms:

Financial Leverage

Control Low Medium High

2.1
5.6
3.0
7.8
5.2
2.6

6.2
4.0
8.4
2.8
4.2
5.0

9.6
8.0
5.5

12.6
7.0
7.8

10.3
6.9
7.8
5.8
7.2

12.0
Source: Standard & Poor’s Machinery Indus-
try Survey, 1975.

(a) Perform the analysis of variance at the 0.05 level of
significance.

(b) Use Dunnett’s test at the 0.01 level of significance
to determine whether the mean rates of return on
equity are higher at the low, medium, and high lev-
els of financial leverage than at the control level.
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The GLM Procedure

Duncan’s Multiple Range Test for moisture

NOTE: This test controls the Type I comparisonwise error rate,

not the experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 25

Error Mean Square 4960.813

Number of Means 2 3 4 5

Critical Range 83.75 87.97 90.69 92.61

Means with the same letter are not significantly different.

Duncan Grouping Mean N aggregate

A 610.67 6 5

A

A 610.50 6 3

A

A 569.33 6 2

A

A 553.33 6 1

B 465.17 6 4

Figure 13.5: SAS printout for Exercise 13.21.

13.7 Comparing a Set of Treatments in Blocks

In Section 13.2, we discussed the idea of blocking, that is, isolating sets of experi-
mental units that are reasonably homogeneous and randomly assigning treatments
to these units. This is an extension of the “pairing” concept discussed in Chapters
9 and 10, and it is done to reduce experimental error, since the units in a block
have more common characteristics than units in different blocks.

The reader should not view blocks as a second factor, although this is a tempting
way of visualizing the design. In fact, the main factor (treatments) still carries the
major thrust of the experiment. Experimental units are still the source of error,
just as in the completely randomized design. We merely treat sets of these units
more systematically when blocking is accomplished. In this way, we say there are
restrictions in randomization. Before we turn to a discussion of blocking, let us look
at two examples of a completely randomized design. The first example is a
chemical experiment designed to determine if there is a difference in mean reaction
yield among four catalysts. Samples of materials to be tested are drawn from the
same batches of raw materials, while other conditions, such as temperature and
concentration of reactants, are held constant. In this case, the time of day for the
experimental runs might represent the experimental units, and if the experimenter
believed that there could possibly be a slight time effect, he or she would randomize
the assignment of the catalysts to the runs to counteract the possible trend. As a
second example of such a design, consider an experiment to compare four methods
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of measuring a particular physical property of a fluid substance. Suppose the
sampling process is destructive; that is, once a sample of the substance has been
measured by one method, it cannot be measured again by any of the other methods.
If it is decided that five measurements are to be taken for each method, then 20
samples of the material are selected from a large batch at random and are used in
the experiment to compare the four measuring methods. The experimental units
are the randomly selected samples. Any variation from sample to sample will
appear in the error variation, as measured by s2 in the analysis.

What Is the Purpose of Blocking?

If the variation due to heterogeneity in experimental units is so large that the
sensitivity with which treatment differences are detected is reduced due to an
inflated value of s2, a better plan might be to “block off” variation due to these
units and thus reduce the extraneous variation to that accounted for by smaller
or more homogeneous blocks. For example, suppose that in the previous catalyst
illustration it is known a priori that there definitely is a significant day-to-day
effect on the yield and that we can measure the yield for four catalysts on a
given day. Rather than assign the four catalysts to the 20 test runs completely at
random, we choose, say, five days and run each of the four catalysts on each day,
randomly assigning the catalysts to the runs within days. In this way, the day-
to-day variation is removed from the analysis, and consequently the experimental
error, which still includes any time trend within days, more accurately represents
chance variation. Each day is referred to as a block.

The most straightforward of the randomized block designs is one in which we
randomly assign each treatment once to every block. Such an experimental layout
is called a randomized complete block (RCB) design, each block constituting
a single replication of the treatments.

13.8 Randomized Complete Block Designs

A typical layout for the randomized complete block design using 3 measurements
in 4 blocks is as follows:

Block 1 Block 2 Block 3 Block 4

t2
t1
t3

t1
t3
t2

t3
t2
t1

t2
t1
t3

The t’s denote the assignment to blocks of each of the 3 treatments. Of course, the
true allocation of treatments to units within blocks is done at random. Once the
experiment has been completed, the data can be recorded in the following 3 × 4
array:
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Treatment Block: 1 2 3 4

1 y11 y12 y13 y14
2 y21 y22 y23 y24
3 y31 y32 y33 y34

where y11 represents the response obtained by using treatment 1 in block l, y12
represents the response obtained by using treatment 1 in block 2, . . . , and y34
represents the response obtained by using treatment 3 in block 4.

Let us now generalize and consider the case of k treatments assigned to b blocks.
The data may be summarized as shown in the k × b rectangular array of Table
13.7. It will be assumed that the yij , i = 1, 2, . . . , k and j = 1, 2, . . . , b, are values
of independent random variables having normal distributions with mean μij and
common variance σ2.

Table 13.7: k × b Array for the RCB Design

Block

Treatment 1 2 · · · j · · · b Total Mean

1 y11 y12 · · · y1j · · · y1b T1. ȳ1.
2 y21 y22 · · · y2j · · · y2b T2. ȳ2.
...

...
...

...
...

...
...

i yi1 yi2 · · · yij · · · yib Ti. ȳi.
...

...
...

...
...

...
...

k yk1 yk2 · · · ykj · · · ykb Tk. ȳk.
Total T.1 T.2 · · · T.j · · · T.b T..

Mean ȳ.1 ȳ.2 · · · ȳ.j · · · ȳ.b ȳ..

Let μi. represent the average (rather than the total) of the b population means
for the ith treatment. That is,

μi. =
1

b

b∑
j=1

μij , for i = 1, . . . , k.

Similarly, the average of the population means for the jth block, μ.j , is defined by

μ.j =
1

k

k∑
i=1

μij , for j = 1, . . . , b

and the average of the bk population means, μ, is defined by

μ =
1

bk

k∑
i=1

b∑
j=1

μij .

To determine if part of the variation in our observations is due to differences among
the treatments, we consider the following test:
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Hypothesis of
Equal Treatment

Means

H0: μ1. = μ2. = · · ·μk. = μ,

H1: The μi. are not all equal.

Model for the RCB Design

Each observation may be written in the form

yij = μij + εij ,

where εij measures the deviation of the observed value yij from the population
mean μij . The preferred form of this equation is obtained by substituting

μij = μ+ αi + βj ,

where αi is, as before, the effect of the ith treatment and βj is the effect of the jth
block. It is assumed that the treatment and block effects are additive. Hence, we
may write

yij = μ+ αi + βj + εij .

Notice that the model resembles that of the one-way classification, the essential
difference being the introduction of the block effect βj . The basic concept is much
like that of the one-way classification except that we must account in the analysis
for the additional effect due to blocks, since we are now systematically controlling
variation in two directions. If we now impose the restrictions that

k∑
i=1

αi = 0 and
b∑

j=1

βj = 0,

then

μi. =
1

b

b∑
j=1

(μ+ αi + βj) = μ+ αi, for i = 1, . . . , k,

and

μ.j =
1

k

k∑
i=1

(μ+ αi + βj) = μ+ βj , for j = 1, . . . , b.

The null hypothesis that the k treatment means μi· are equal, and therefore equal
to μ, is now equivalent to testing the hypothesis

H0: α1 = α2 = · · · = αk = 0,

H1: At least one of the αi is not equal to zero.

Each of the tests on treatments will be based on a comparison of independent
estimates of the common population variance σ2. These estimates will be obtained
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by splitting the total sum of squares of our data into three components by means
of the following identity.

Theorem 13.3: Sum-of-Squares Identity

k∑
i=1

b∑
j=1

(yij − ȳ..)
2 = b

k∑
i=1

(ȳi. − ȳ..)
2 + k

b∑
j=1

(ȳ.j − ȳ..)
2

+
k∑

i=1

b∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)
2

The proof is left to the reader.

The sum-of-squares identity may be presented symbolically by the equation

SST = SSA+ SSB + SSE,

where

SST =

k∑
i=1

b∑
j=1

(yij − ȳ..)
2 = total sum of squares,

SSA = b
k∑

i=1

(ȳi. − ȳ..)
2 = treatment sum of squares,

SSB = k

b∑
j=1

(ȳ.j − ȳ..)
2 = block sum of squares,

SSE =
k∑

i=1

b∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)
2 = error sum of squares.

Following the procedure outlined in Theorem 13.2, where we interpreted the
sums of squares as functions of the independent random variables Y11, Y12, . . . , Ykb,
we can show that the expected values of the treatment, block, and error sums of
squares are given by

E(SSA) = (k − 1)σ2 + b

k∑
i=1

α2
i , E(SSB) = (b− 1)σ2 + k

b∑
j=1

β2
j ,

E(SSE) = (b− 1)(k − 1)σ2.

As in the case of the one-factor problem, we have the treatment mean square

s21 =
SSA

k − 1
.

If the treatment effects α1 = α2 = · · · = αk = 0, s21 is an unbiased estimate of σ2.
However, if the treatment effects are not all zero, we have the following:
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Expected
Treatment Mean

Square
E

(
SSA

k − 1

)
= σ2 +

b

k − 1

k∑
i=1

α2
i

In this case, s21 overestimates σ2. A second estimate of σ2, based on b− 1 degrees
of freedom, is

s22 =
SSB

b− 1
.

The estimate s22 is an unbiased estimate of σ2 if the block effects β1 = β2 = · · · =
βb = 0. If the block effects are not all zero, then

E

(
SSB

b− 1

)
= σ2 +

k

b− 1

b∑
j=1

β2
j ,

and s22 will overestimate σ2. A third estimate of σ2, based on (k−1)(b−1) degrees
of freedom and independent of s21 and s22, is

s2 =
SSE

(k − 1)(b− 1)
,

which is unbiased regardless of the truth or falsity of either null hypothesis.
To test the null hypothesis that the treatment effects are all equal to zero, we

compute the ratio f1 = s21/s
2, which is a value of the random variable F1 having

an F-distribution with k − 1 and (k − 1)(b − 1) degrees of freedom when the null
hypothesis is true. The null hypothesis is rejected at the α-level of significance
when

f1 > fα[k − 1, (k − 1)(b− 1)].

In practice, we first compute SST , SSA, and SSB and then, using the sum-
of-squares identity, obtain SSE by subtraction. The degrees of freedom associated
with SSE are also usually obtained by subtraction; that is,

(k − 1)(b− 1) = kb− 1− (k − 1)− (b− 1).

The computations in an analysis-of-variance problem for a randomized complete
block design may be summarized as shown in Table 13.8.

Example 13.6: Four different machines, M1, M2, M3, and M4, are being considered for the assem-
bling of a particular product. It was decided that six different operators would be
used in a randomized block experiment to compare the machines. The machines
were assigned in a random order to each operator. The operation of the machines
requires physical dexterity, and it was anticipated that there would be a difference
among the operators in the speed with which they operated the machines. The
amounts of time (in seconds) required to assemble the product are shown in Table
13.9.

Test the hypothesis H0, at the 0.05 level of significance, that the machines
perform at the same mean rate of speed.
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Table 13.8: Analysis of Variance for the Randomized Complete Block Design

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Treatments SSA k − 1 s21 =
SSA

k − 1
f1 =

s21
s2

Blocks SSB b− 1 s22 =
SSB

b− 1

Error SSE (k − 1)(b− 1) s2 =
SSE

(k − 1)(b− 1)

Total SST kb− 1

Table 13.9: Time, in Seconds, to Assemble Product

Operator

Machine 1 2 3 4 5 6 Total

1 42.5 39.3 39.6 39.9 42.9 43.6 247.8
2 39.8 40.1 40.5 42.3 42.5 43.1 248.3
3 40.2 40.5 41.3 43.4 44.9 45.1 255.4
4 41.3 42.2 43.5 44.2 45.9 42.3 259.4

Total 163.8 162.1 164.9 169.8 176.2 174.1 1010.9

Solution : The hypotheses are

H0: α1 = α2 = α3 = α4 = 0 (machine effects are zero),

H1: At least one of the αi is not equal to zero.

The sum-of-squares formulas shown on page 536 and the degrees of freedom
are used to produce the analysis of variance in Table 13.10. The value f = 3.34 is
significant at P = 0.048. If we use α = 0.05 as at least an approximate yardstick,
we conclude that the machines do not perform at the same mean rate of speed.

Table 13.10: Analysis of Variance for the Data of Table 13.9

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Machines 15.93 3 5.31 3.34
Operators 42.09 5 8.42
Error 23.84 15 1.59

Total 81.86 23

Further Comments Concerning Blocking

In Chapter 10, we presented a procedure for comparing means when the observa-
tions were paired. The procedure involved “subtracting out” the effect due to the
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homogeneous pair and thus working with differences. This is a special case of a
randomized complete block design with k = 2 treatments. The n homogeneous
units to which the treatments were assigned take on the role of blocks.

If there is heterogeneity in the experimental units, the experimenter should not
be misled into believing that it is always advantageous to reduce the experimental
error through the use of small homogeneous blocks. Indeed, there may be instances
where it would not be desirable to block. The purpose in reducing the error variance
is to increase the sensitivity of the test for detecting differences in the treatment
means. This is reflected in the power of the test procedure. (The power of the
analysis-of-variance test procedure is discussed more extensively in Section 13.11.)
The power to detect certain differences among the treatment means increases with
a decrease in the error variance. However, the power is also affected by the degrees
of freedom with which this variance is estimated, and blocking reduces the degrees
of freedom that are available from k(b − 1) for the one-way classification to (k −
1)(b−1). So one could lose power by blocking if there is not a significant reduction
in the error variance.

Interaction between Blocks and Treatments

Another important assumption that is implicit in writing the model for a random-
ized complete block design is that the treatment and block effects are additive.
This is equivalent to stating that

μij − μij′ = μi′j − μi′j′ or μij − μi′j = μij′ − μi′j′ ,

for every value of i, i′, j, and j′. That is, the difference between the population
means for blocks j and j′ is the same for every treatment and the difference between
the population means for treatments i and i′ is the same for every block. The
parallel lines of Figure 13.6(a) illustrate a set of mean responses for which the
treatment and block effects are additive, whereas the intersecting lines of Figure
13.6(b) show a situation in which treatment and block effects are said to interact.
Referring to Example 13.6, if operator 3 is 0.5 second faster on the average than
operator 2 when machine 1 is used, then operator 3 will still be 0.5 second faster on
the average than operator 2 when machine 2, 3, or 4 is used. In many experiments,
the assumption of additivity does not hold and the analysis described in this section
leads to erroneous conclusions. Suppose, for instance, that operator 3 is 0.5 second
faster on the average than operator 2 when machine 1 is used but is 0.2 second
slower on the average than operator 2 when machine 2 is used. The operators and
machines are now interacting.

An inspection of Table 13.9 suggests the possible presence of interaction. This
apparent interaction may be real or it may be due to experimental error. The
analysis of Example 13.6 was based on the assumption that the apparent interaction
was due entirely to experimental error. If the total variability of our data was in
part due to an interaction effect, this source of variation remained a part of the
error sum of squares, causing the mean square error to overestimate σ2 and
thereby increasing the probability of committing a type II error. We have, in fact,
assumed an incorrect model. If we let (αβ)ij denote the interaction effect of the
ith treatment and the jth block, we can write a more appropriate model in the
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Figure 13.6: Population means for (a) additive results and (b) interacting effects.

form

yij = μ+ αi + βj + (αβ)ij + εij ,

on which we impose the additional restrictions

k∑
i=1

(αβ)ij =
b∑

j=1

(αβ)ij = 0, for i = 1, . . . , k and j = 1, . . . , b.

We can now readily verify that

E

[
SSE

(b− 1)(k − 1)

]
= σ2 +

1

(b− 1)(k − 1)

k∑
i=1

b∑
j=1

(αβ)2ij .

Thus, the mean square error is seen to be a biased estimate of σ2 when existing
interaction has been ignored. It would seem necessary at this point to arrive at
a procedure for the detection of interaction for cases where there is suspicion that
it exists. Such a procedure requires the availability of an unbiased and independent
estimate of σ2. Unfortunately, the randomized block design does not lend itself
to such a test unless the experimental setup is altered. This subject is discussed
extensively in Chapter 14.

13.9 Graphical Methods and Model Checking

In several chapters, we make reference to graphical procedures displaying data and
analytical results. In early chapters, we used stem-and-leaf and box-and-whisker
plots as visuals to aid in summarizing samples. We used similar diagnostics to
better understand the data in two sample problems in Chapter 10. In Chapter 11
we introduced the notion of residual plots to detect violations of standard assump-
tions. In recent years, much attention in data analysis has centered on graphical
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methods. Like regression, analysis of variance lends itself to graphics that aid in
summarizing data as well as detecting violations. For example, a simple plotting
of the raw observations around each treatment mean can give the analyst a feel for
variability between sample means and within samples. Figure 13.7 depicts such a
plot for the aggregate data of Table 13.1. From the appearance of the plot one
may even gain a graphical insight into which aggregates (if any) stand out from
the others. It is clear that aggregate 4 stands out from the others. Aggregates 3
and 5 certainly form a homogeneous group, as do aggregates 1 and 2.
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Figure 13.7: Plot of data around the mean for the
aggregate data of Table 13.1.
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Figure 13.8: Plot of residuals for five aggregates,
using data in Table 13.1.

As in the case of regression, residuals can be helpful in analysis of variance
in providing a diagnostic that may detect violations of assumptions. To form the
residuals, we merely need to consider the model of the one-factor problem, namely

yij = μi + εij .

It is straightforward to determine that the estimate of μi is ȳi.. Hence, the ijth
residual is yij − ȳi.. This is easily extendable to the randomized complete block
model. It may be instructive to have the residuals plotted for each aggregate in
order to gain some insight regarding the homogeneous variance assumption. This
plot is shown in Figure 13.8.

Trends in plots such as these may reveal difficulties in some situations, par-
ticularly when the violation of a particular assumption is graphic. In the case of
Figure 13.8, the residuals seem to indicate that the within-treatment variances are
reasonably homogeneous apart from aggregate 1. There is some graphical evidence
that the variance for aggregate 1 is larger than the rest.

What Is a Residual for an RCB Design?

The randomized complete block design is another experimental situation in which
graphical displays can make the analyst feel comfortable with an “ideal picture” or
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perhaps highlight difficulties. Recall that the model for the randomized complete
block design is

yij = μ+ αi + βj + εij , i = 1, . . . , k, j = 1, . . . , b,

with the imposed constraints

k∑
i=1

αi = 0,
b∑

j=1

βj = 0.

To determine what indeed constitutes a residual, consider that

αi = μi. − μ, βj = μ.j − μ

and that μ is estimated by ȳ.., μi. is estimated by ȳi., and μ.j is estimated by ȳ.j .
As a result, the predicted or fitted value ŷij is given by

ŷij = μ̂+ α̂i + β̂j = ȳi. + ȳ.j − ȳ..,

and thus the residual at the (i, j) observation is given by

yij − ŷij = yij − ȳi. − ȳ.j + ȳ...

Note that ŷij , the fitted value, is an estimate of the mean μij . This is consistent
with the partitioning of variability given in Theorem 13.3, where the error sum of
squares is

SSE =

k∑
i

b∑
j

(yij − ȳi. − ȳ.j + ȳ..)
2.

The visual displays in the randomized complete block design involve plotting
the residuals separately for each treatment and for each block. The analyst should
expect roughly equal variability if the homogeneous variance assumption holds.
The reader should recall that in Chapter 12 we discussed plotting residuals for
the purpose of detecting model misspecification. In the case of the randomized
complete block design, the serious model misspecification may be related to our
assumption of additivity (i.e., no interaction). If no interaction is present, a random
pattern should appear.

Consider the data of Example 13.6, in which treatments are four machines and
blocks are six operators. Figures 13.9 and 13.10 give the residual plots for separate
treatments and separate blocks. Figure 13.11 shows a plot of the residuals against
the fitted values. Figure 13.9 reveals that the error variance may not be the same
for all machines. The same may be true for error variance for each of the six
operators. However, two unusually large residuals appear to produce the apparent
difficulty. Figure 13.11 is a plot of residuals that shows reasonable evidence of
random behavior. However, the two large residuals displayed earlier still stand
out.
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Figure 13.9: Residual plot for the four machines for
the data of Example 13.6.
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Figure 13.10: Residual plot for the six operators
for the data of Example 13.6.
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Figure 13.11: Residuals plotted against fitted values for the data of Example 13.6.

13.10 Data Transformations in Analysis of Variance

In Chapter 11, considerable attention was given to transformation of the response
y in situations where a linear regression model was being fit to a set of data.
Obviously, the same concept applies to multiple linear regression, though it was
not discussed in Chapter 12. In the regression modeling discussion, emphasis was
placed on the transformations of y that would produce a model that fit the data
better than the model in which y enters linearly. For example, if the “time”
structure is exponential in nature, then a log transformation on y linearizes the

Uploaded By: anonymousSTUDENTS-HUB.com



544 Chapter 13 One-Factor Experiments: General

structure and thus more success is anticipated when one uses the transformed
response.

While the primary purpose for data transformation discussed thus far has been
to improve the fit of the model, there are certainly other reasons to transform or
reexpress the response y, and many of them are related to assumptions that are
being made (i.e., assumptions on which the validity of the analysis depends). One
very important assumption in analysis of variance is the homogeneous variance
assumption discussed early in Section 13.4. We assume a common variance σ2.
If the variance differs a great deal from treatment to treatment and we perform the
standard ANOVA discussed in this chapter (and future chapters), the results can
be substantially flawed. In other words, the analysis of variance is not robust to
the assumption of homogeneous variance. As we have discussed thus far, this is the
centerpiece of motivation for the residual plots discussed in the previous section
and illustrated in Figures 13.9, 13.10, and 13.11. These plots allow us to detect
nonhomogeneous variance problems. However, what do we do about them? How
can we accommodate them?

Where Does Nonhomogeneous Variance Come From?

Often, but not always, nonhomogeneous variance in ANOVA is present because
of the distribution of the responses. Now, of course we assume normality in the
response. But there certainly are situations in which tests on means are needed
even though the distribution of the response is one of the nonnormal distributions
discussed in Chapters 5 and 6, such as Poisson, lognormal, exponential, or gamma.
ANOVA-type problems certainly exist with count data, time to failure data, and
so on.

We demonstrated in Chapters 5 and 6 that, apart from the normal case, the
variance of a distribution will often be a function of the mean, say σ2

i = g(μi). For
example, in the Poisson case Var(Yi) = μi = σ2

i (i.e., the variance is equal to the
mean). In the case of the exponential distribution, Var(Yi) = σ2

i = μ2
i (i.e., the

variance is equal to the square of the mean). For the case of the lognormal, a log
transformation produces a normal distribution with constant variance σ2.

The same concepts that we used in Chapter 4 to determine the variance of a
nonlinear function can be used as an aid to determine the nature of the variance
stabilizing transformation g(yi). Recall that the first order Taylor series expansion

of g(yi) around yi = μi where g′(μi) =

[
∂g(yi)

∂yi

]
yi=μi

. The transformation func-

tion g(y) must be independent of μ in order to suffice as the variance stabilizing
transformation. From the above,

Var[g(yi)] ≈ [g′(μi)]
2σ2

i .

As a result, g(yi) must be such that g′(μi) ∝ 1
σ . Thus, if we suspect that the

response is Poisson distributed, σi = μ
1/2
i , so g′(μi) ∝ 1

μ
1/2
i

. Thus, the variance

stabilizing transformation is g(yi) = y
1/2
i . From this illustration and similar ma-

nipulation for the exponential and gamma distributions, we have the following.
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Distribution Variance Stabilizing Transformations

Poisson g(y) = y1/2

Exponential g(y) = ln y
Gamma g(y) = ln y

Exercises

13.25 Four kinds of fertilizer f1, f2, f3, and f4 are
used to study the yield of beans. The soil is divided
into 3 blocks, each containing 4 homogeneous plots.
The yields in kilograms per plot and the correspond-
ing treatments are as follows:

Block 1 Block 2 Block 3

f1 = 42.7
f3 = 48.5
f4 = 32.8
f2 = 39.3

f3 = 50.9
f1 = 50.0
f2 = 38.0
f4 = 40.2

f4 = 51.1
f2 = 46.3
f1 = 51.9
f3 = 53.5

Conduct an analysis of variance at the 0.05 level of sig-
nificance using the randomized complete block model.

13.26 Three varieties of potatoes are being compared
for yield. The experiment is conducted by assigning
each variety at random to one of 3 equal-size plots at
each of 4 different locations. The following yields for
varieties A, B, and C, in 100 kilograms per plot, were
recorded:

Location 1 Location 2 Location 3 Location 4

B : 13
A : 18
C : 12

C : 21
A : 20
B : 23

C : 9
B : 12
A : 14

A : 11
C : 10
B : 17

Perform a randomized complete block analysis of vari-
ance to test the hypothesis that there is no difference in
the yielding capabilities of the 3 varieties of potatoes.
Use a 0.05 level of significance. Draw conclusions.

13.27 The following data are the percents of foreign
additives measured by 5 analysts for 3 similar brands
of strawberry jam, A, B, and C:

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5

B: 2.7
C: 3.6
A: 3.8

C: 7.5
A: 1.6
B: 5.2

B: 2.8
A: 2.7
C: 6.4

A: 1.7
B: 1.9
C: 2.6

C: 8.1
A: 2.0
B: 4.8

Perform a randomized complete block analysis of vari-
ance to test the hypothesis, at the 0.05 level of signifi-
cance, that the percent of foreign additives is the same
for all 3 brands of jam. Which brand of jam appears
to have fewer additives?

13.28 The following data represent the final grades
obtained by 5 students in mathematics, English,

French, and biology:

Subject

Student Math English French Biology

1 68 57 73 61
2 83 94 91 86
3 72 81 63 59
4 55 73 77 66
5 92 68 75 87

Test the hypothesis that the courses are of equal dif-
ficulty. Use a P-value in your conclusions and discuss
your findings.

13.29 In a study on The Periphyton of the South
River, Virginia: Mercury Concentration, Productivity,
and Autotropic Index Studies, conducted by the De-
partment of Environmental Sciences and Engineering
at Virginia Tech, the total mercury concentration in
periphyton total solids was measured at 6 different sta-
tions on 6 different days. Determine whether the mean
mercury content is significantly different between the
stations by using the following recorded data. Use a
P -value and discuss your findings.

Station

Date CA CB El E2 E3 E4

April 8 0.45 3.24 1.33 2.04 3.93 5.93
June 23 0.10 0.10 0.99 4.31 9.92 6.49
July 1 0.25 0.25 1.65 3.13 7.39 4.43
July 8 0.09 0.06 0.92 3.66 7.88 6.24
July 15 0.15 0.16 2.17 3.50 8.82 5.39
July 23 0.17 0.39 4.30 2.91 5.50 4.29

13.30 A nuclear power facility produces a vast
amount of heat, which is usually discharged into
aquatic systems. This heat raises the temperature of
the aquatic system, resulting in a greater concentration
of chlorophyll a, which in turn extends the growing sea-
son. To study this effect, water samples were collected
monthly at 3 stations for a period of 12 months. Sta-
tion A is located closest to a potential heated water
discharge, station C is located farthest away from the
discharge, and station B is located halfway between
stations A and C. The following concentrations of
chlorophyll a were recorded.
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Station

Month A B C

January
February
March
April
May
June
July
August
September
October
November
December

9.867
14.035
10.700
13.853
7.067

11.670
7.357
3.358
4.210
3.630
2.953
2.640

3.723
8.416

20.723
9.168
4.778
9.145
8.463
4.086
4.233
2.320
3.843
3.610

4.410
11.100
4.470
8.010

34.080
8.990
3.350
4.500
6.830
5.800
3.480
3.020

Perform an analysis of variance and test the hypoth-
esis, at the 0.05 level of significance, that there is no
difference in the mean concentrations of chlorophyll a
at the 3 stations.

13.31 In a study conducted by the Department of
Health and Physical Education at Virginia Tech, 3 di-
ets were assigned for a period of 3 days to each of 6
subjects in a randomized complete block design. The
subjects, playing the role of blocks, were assigned the
following 3 diets in a random order:

Diet 1: mixed fat and carbohydrates,
Diet 2: high fat,
Diet 3: high carbohydrates.

At the end of the 3-day period, each subject was put on
a treadmill and the time to exhaustion, in seconds, was
measured. Perform the analysis of variance, separating
out the diet, subject, and error sum of squares. Use a
P -value to determine if there are significant differences
among the diets, using the following recorded data.

Subject

Diet 1 2 3 4 5 6

1
2
3

84
91

122

35
48
53

91
71

110

57
45
71

56
61
91

45
61

122

13.32 Organic arsenicals are used by forestry person-
nel as silvicides. The amount of arsenic that the body
takes in when exposed to these silvicides is a major
health problem. It is important that the amount of
exposure be determined quickly so that a field worker
with a high level of arsenic can be removed from the
job. In an experiment reported in the paper “A Rapid
Method for the Determination of Arsenic Concentra-
tions in Urine at Field Locations,” published in the
American Industrial Hygiene Association Journal (Vol.
37, 1976), urine specimens from 4 forest service per-
sonnel were divided equally into 3 samples each so that
each individual’s urine could be analyzed for arsenic by
a university laboratory, by a chemist using a portable
system, and by a forest-service employee after a brief
orientation. The following arsenic levels, in parts per

million, were recorded:

Analyst

Individual Employee Chemist Laboratory

1 0.05 0.05 0.04
2 0.05 0.05 0.04
3 0.04 0.04 0.03
4 0.15 0.17 0.10

Perform an analysis of variance and test the hypoth-
esis, at the 0.05 level of significance, that there is no
difference in the arsenic levels for the 3 methods of
analysis.

13.33 Scientists in the Department of Plant Pathol-
ogy at Virginia Tech devised an experiment in which
5 different treatments were applied to 6 different lo-
cations in an apple orchard to determine if there were
significant differences in growth among the treatments.
Treatments 1 through 4 represent different herbicides
and treatment 5 represents a control. The growth
period was from May to November in 1982, and the
amounts of new growth, measured in centimeters, for
samples selected from the 6 locations in the orchard
were recorded as follows:

Locations

Treatment 1 2 3 4 5 6

1 455 72 61 215 695 501
2 622 82 444 170 437 134
3 695 56 50 443 701 373
4 607 650 493 257 490 262
5 388 263 185 103 518 622

Perform an analysis of variance, separating out the
treatment, location, and error sum of squares. De-
termine if there are significant differences among the
treatment means. Quote a P-value.

13.34 In the paper “Self-Control and Therapist
Control in the Behavioral Treatment of Overweight
Women,” published in Behavioral Research and Ther-
apy (Vol. 10, 1972), two reduction treatments and
a control treatment were studied for their effects on
the weight change of obese women. The two reduc-
tion treatments were a self-induced weight reduction
program and a therapist-controlled reduction program.
Each of 10 subjects was assigned to one of the 3
treatment programs in a random order and measured
for weight loss. The following weight changes were
recorded:
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Treatment

Subject Control Self-induced Therapist

1
2
3
4
5
6
7
8
9

10

1.00
3.75
0.00

−0.25
−2.25
−1.00
−1.00
3.75
1.50
0.50

−2.25
−6.00
−2.00
−1.50
−3.25
−1.50

−10.75
−0.75
0.00

−3.75

−10.50
−13.50

0.75
−4.50
−6.00
4.00

−12.25
−2.75
−6.75
−7.00

Perform an analysis of variance and test the hypothesis,
at the 0.01 level of significance, that there is no differ-
ence in the mean weight losses for the 3 treatments.
Which treatment was best?

13.35 In the book Design of Experiments for the
Quality Improvement, published by the Japanese Stan-
dards Association (1989), a study on the amount of dye
needed to get the best color for a certain type of fabric
was reported. The three amounts of dye, 1

3
% wof ( 1

3
%

of the weight of a fabric), 1% wof, and 3% wof, were
each administered at two different plants. The color
density of the fabric was then observed four times for
each level of dye at each plant.

Amount of Dye
1/3% 1% 3%

Plant 1 5.2 6.0 12.3 10.5 22.4 17.8
5.9 5.9 12.4 10.9 22.5 18.4

Plant 2 6.5 5.5 14.5 11.8 29.0 23.2
6.4 5.9 16.0 13.6 29.7 24.0

Perform an analysis of variance to test the hypothesis,

at the 0.05 level of significance, that there is no dif-
ference in the color density of the fabric for the three
levels of dye. Consider plants to be blocks.

13.36 An experiment was conducted to compare
three types of coating materials for copper wire. The
purpose of the coating is to eliminate “flaws” in the
wire. Ten different specimens of length 5 millimeters
were randomly assigned to receive each coating, and
the thirty specimens were subjected to an abrasive
wear type process. The number of flaws was measured
for each, and the results are as follows:

Material
1 2 3

6 8 4 5 3 3 5 4 12 8 7 14
7 7 9 6 2 4 4 5 18 6 7 18
7 8 4 3 8 5

Suppose it is assumed that the Poisson process applies
and thus the model is Yij = μi + εij , where μi is the
mean of a Poisson distribution and σ2

Yij
= μi.

(a) Do an appropriate transformation on the data and
perform an analysis of variance.

(b) Determine whether or not there is sufficient evi-
dence to choose one coating material over the other.
Show whatever findings suggest a conclusion.

(c) Do a plot of the residuals and comment.

(d) Give the purpose of your data transformation.

(e) What additional assumption is made here that may
not have been completely satisfied by your trans-
formation?

(f) Comment on (e) after doing a normal probability
plot on the residuals.

13.11 Random Effects Models

Throughout this chapter, we deal with analysis-of-variance procedures in which
the primary goal is to study the effect on some response of certain fixed or prede-
termined treatments. Experiments in which the treatments or treatment levels are
preselected by the experimenter as opposed to being chosen randomly are called
fixed effects experiments. For the fixed effects model, inferences are made only
on those particular treatments used in the experiment.

It is often important that the experimenter be able to draw inferences about
a population of treatments by means of an experiment in which the treatments
used are chosen randomly from the population. For example, a biologist may
be interested in whether or not there is significant variance in some physiological
characteristic due to animal type. The animal types actually used in the experiment
are then chosen randomly and represent the treatment effects. A chemist may be
interested in studying the effect of analytical laboratories on the chemical analysis
of a substance. She is not concerned with particular laboratories but rather with
a large population of laboratories. She might then select a group of laboratories
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at random and allocate samples to each for analysis. The statistical inference
would then involve (1) testing whether or not the laboratories contribute a nonzero
variance to the analytical results and (2) estimating the variance due to laboratories
and the variance within laboratories.

Model and Assumptions for Random Effects Model

The one-way random effects model is written like the fixed effects model but
with the terms taking on different meanings. The response yij = μ + αi + εij is
now a value of the random variable

Yij = μ+Ai + εij , with i = 1, 2, . . . , k and j = 1, 2, . . . , n,

where the Ai are independently and normally distributed with mean 0 and variance
σ2
α and are independent of the εij . As for the fixed effects model, the εij are also

independently and normally distributed with mean 0 and variance σ2. Note that

for a random effects experiment, the constraint that
k∑

i=1

αi = 0 no longer applies.

Theorem 13.4: For the one-way random effects analysis-of-variance model,

E(SSA) = (k − 1)σ2 + n(k − 1)σ2
α and E(SSE) = k(n− 1)σ2.

Table 13.11 shows the expected mean squares for both a fixed effects and a
random effects experiment. The computations for a random effects experiment are
carried out in exactly the same way as for a fixed effects experiment. That is,
the sum-of-squares, degrees-of-freedom, and mean-square columns in an analysis-
of-variance table are the same for both models.

Table 13.11: Expected Mean Squares for the One-Factor Experiment

Source of Degrees of Mean Expected Mean Squares

Variation Freedom Squares Fixed Effects Random Effects

Treatments k − 1 s21 σ2 +
n

k − 1

∑
i

α2
i σ2 + nσ2

α

Error k(n− 1) s2 σ2 σ2

Total nk − 1

For the random effects model, the hypothesis that the treatment effects are all
zero is written as follows:

Hypothesis for a
Random Effects

Experiment

H0: σ2
α = 0,

H1: σ2
α �= 0.

This hypothesis says that the different treatments contribute nothing to the
variability of the response. It is obvious from Table 13.11 that s21 and s2 are both
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13.11 Random Effects Models 549

estimates of σ2 when H0 is true and that the ratio

f =
s21
s2

is a value of the random variable F having the F-distribution with k−1 and k(n−1)
degrees of freedom. The null hypothesis is rejected at the α-level of significance
when

f > fα[k − 1, k(n− 1)].

In many scientific and engineering studies, interest is not centered on the F-
test. The scientist knows that the random effect does, indeed, have a significant
effect. What is more important is estimation of the various variance components.
This produces a ranking in terms of what factors produce the most variability
and by how much. In the present context, it may be of interest to quantify how
much larger the single-factor variance component is than that produced by chance
(random variation).

Estimation of Variance Components

Table 13.11 can also be used to estimate the variance components σ2 and σ2
α.

Since s21 estimates σ2 + nσ2
α and s2 estimates σ2,

σ̂2 = s2, σ̂2
α =

s21 − s2

n
.

Example 13.7: The data in Table 13.12 are coded observations on the yield of a chemical process,
using five batches of raw material selected randomly. Show that the batch variance
component is significantly greater than zero and obtain its estimate.

Table 13.12: Data for Example 13.7

Batch: 1 2 3 4 5

9.7
5.6
8.4
7.9
8.2
7.7
8.1

10.4
9.6
7.3
6.8
8.8
9.2
7.6

15.9
14.4
8.3
12.8
7.9
11.6
9.8

8.6
11.1
10.7
7.6
6.4
5.9
8.1

9.7
12.8
8.7

13.4
8.3

11.7
10.7

Total 55.6 59.7 80.7 58.4 75.3 329.7

Solution : The total, batch, and error sums of squares are, respectively,

SST = 194.64, SSA = 72.60, and SSE = 194.64− 72.60 = 122.04.

These results, with the remaining computations, are shown in Table 13.13.
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Table 13.13: Analysis of Variance for Example 13.7

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Batches 72.60 4 18.15 4.46
Error 122.04 30 4.07

Total 194.64 34

The f-ratio is significant at the α = 0.05 level, indicating that the hypothesis of
a zero batch component is rejected. An estimate of the batch variance component
is

σ̂2
α =

18.15− 4.07

7
= 2.01.

Note that while the batch variance component is significantly different from
zero, when gauged against the estimate of σ2, namely σ̂2 = MSE = 4.07, it
appears as if the batch variance component is not appreciably large.

If the result using the formula for σ2
α appears negative, (i.e., when s21 is smaller

than s2), σ̂2
α is then set to zero. This is a biased estimator. In order to have

a better estimator of σ2
α, a method called restricted (or residual) maximum

likelihood (REML) is commonly used (see Harville, 1977, in the Bibliography).
Such an estimator can be found in many statistical software packages. The details
for this estimation procedure are beyond the scope of this text.

Randomized Block Design with Random Blocks

In a randomized complete block experiment where the blocks represent days, it is
conceivable that the experimenter would like the results to apply not only to the
actual days used in the analysis but to every day in the year. He or she would then
select at random the days on which to run the experiment as well as the treatments
and use the random effects model

Yij = μ+Ai +Bj + εij , for i = 1, 2, . . . , k and j = 1, 2, . . . , b,

with the Ai, Bj , and εij being independent random variables with means 0 and
variances σ2

α, σ
2
β , and σ2, respectively. The expected mean squares for a random

effects randomized complete block design are obtained, using the same procedure
as for the one-factor problem, and are presented along with those for a fixed effects
experiment in Table 13.14.

Again the computations for the individual sums of squares and degrees of free-
dom are identical to those of the fixed effects model. The hypothesis

H0: σ2
α = 0,

H1: σ2
α �= 0

is carried out by computing

f =
s21
s2
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Table 13.14: Expected Mean Squares for the Randomized Complete Block Design

Source of Degrees of Mean Expected Mean Squares

Variation Freedom Squares Fixed Effects Random Effects

Treatments k − 1 s21 σ2 +
b

k − 1

∑
i

α2
i σ2 + bσ2

α

Blocks b− 1 s22 σ2 +
k

b− 1

∑
j

β2
j σ2 + kσ2

β

Error (k − 1)(b− 1) s2 σ2 σ2

Total kb− 1

and rejecting H0 when f > fα[k − 1, (b− 1)(k − 1)].
The unbiased estimates of the variance components are

σ̂2 = s2, σ̂2
α =

s21 − s2

b
, σ̂2

β =
s22 − s2

k
.

Tests of hypotheses concerning the various variance components are made by
computing the ratios of appropriate mean squares, as indicated in Table 13.14, and
comparing them with corresponding f-values from Table A.6.

13.12 Case Study

Case Study 13.1: Chemical Analysis: Personnel in the Chemistry Department of Virginia Tech
were called upon to analyze a data set that was produced to compare 4 different
methods of analysis of aluminum in a certain solid igniter mixture. To get a
broad range of analytical laboratories involved, 5 laboratories were used in the
experiment. These laboratories were selected because they are generally adept in
doing these types of analyses. Twenty samples of igniter material containing 2.70%
aluminum were assigned randomly, 4 to each laboratory, and directions were given
on how to carry out the chemical analysis using all 4 methods. The data retrieved
are as follows:

Laboratory

Method 1 2 3 4 5 Mean

A 2.67 2.69 2.62 2.66 2.70 2.668
B 2.71 2.74 2.69 2.70 2.77 2.722
C 2.76 2.76 2.70 2.76 2.81 2.758
D 2.65 2.69 2.60 2.64 2.73 2.662

The laboratories are not considered as random effects since they were not se-
lected randomly from a larger population of laboratories. The data were analyzed
as a randomized complete block design. Plots of the data were sought to determine
if an additive model of the type

yij = μ+mi + lj + εij
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is appropriate: in other words, a model with additive effects. The randomized
block is not appropriate when interaction between laboratories and methods exists.
Consider the plot shown in Figure 13.12. Although this plot is a bit difficult
to interpret because each point is a single observation, there appears to be no
appreciable interaction between methods and laboratories.
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Figure 13.12: Interaction plot for data of Case Study 13.1.

Residual Plots

Residual plots were used as diagnostic indicators regarding the homogeneous vari-
ance assumption. Figure 13.13 shows a plot of residuals against analytical methods.
The variability depicted in the residuals seems to be remarkably homogeneous. For
completeness, a normal probability plot of the residuals is shown in Figure 13.14.
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Figure 13.13: Plot of residuals against method for
the data of Case Study 13.1.
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Figure 13.14: Normal probability plot of residuals
for the data of Case Study 13.1.

The residual plots show no difficulty with either the assumption of normal
errors or the assumption of homogeneous variance. SAS PROC GLM was used
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to conduct the analysis of variance. Figure 13.15 shows the annotated computer
printout.

The computed f- and P-values do indicate a significant difference between an-
alytical methods. This analysis can be followed by a multiple comparison analysis
to determine where the differences are among the methods.

Exercises

13.37 Testing patient blood samples for HIV antibod-
ies, a spectrophotometer determines the optical density
of each sample. Optical density is measured as the
absorbance of light at a particular wavelength. The
blood sample is positive if it exceeds a certain cutoff
value that is determined by the control samples for that
run. Researchers are interested in comparing the lab-
oratory variability for the positive control values. The
data represent positive control values for 10 different
runs at 4 randomly selected laboratories.

Laboratory
Run 1 2 3 4

1 0.888 1.065 1.325 1.232
2 0.983 1.226 1.069 1.127
3 1.047 1.332 1.219 1.051
4 1.087 0.958 0.958 0.897
5 1.125 0.816 0.819 1.222
6 0.997 1.015 1.140 1.125
7 1.025 1.071 1.222 0.990
8 0.969 0.905 0.995 0.875
9 0.898 1.140 0.928 0.930
10 1.018 1.051 1.322 0.775

(a) Write an appropriate model for this experiment.

(b) Estimate the laboratory variance component and
the variance within laboratories.

13.38 An experiment is conducted in which 4 treat-
ments are to be compared in 5 blocks. The data are
given below.

Block
Treatment 1 2 3 4 5

1 12.8 10.6 11.7 10.7 11.0
2 11.7 14.2 11.8 9.9 13.8
3 11.5 14.7 13.6 10.7 15.9
4 12.6 16.5 15.4 9.6 17.1

(a) Assuming a random effects model, test the hypoth-
esis, at the 0.05 level of significance, that there is
no difference between treatment means.

(b) Compute estimates of the treatment and block vari-
ance components.

13.39 The following data show the effect of 4 oper-
ators, chosen randomly, on the output of a particular
machine.

Operator
1 2 3 4

175.4 168.5 170.1 175.2
171.7 162.7 173.4 175.7
173.0 165.0 175.7 180.1
170.5 164.1 170.7 183.7

(a) Perform a random effects analysis of variance at
the 0.05 level of significance.

(b) Compute an estimate of the operator variance com-
ponent and the experimental error variance compo-
nent.

13.40 Five “pours” of metals have had 5 core samples
each analyzed for the amount of a trace element. The
data for the 5 randomly selected pours are as follows:

Pour
Core 1 2 3 4 5
1 0.98 0.85 1.12 1.21 1.00
2 1.02 0.92 1.68 1.19 1.21
3 1.57 1.16 0.99 1.32 0.93
4 1.25 1.43 1.26 1.08 0.86
5 1.16 0.99 1.05 0.94 1.41

(a) The intent is that the pours be identical. Thus,
test that the “pour” variance component is zero.
Draw conclusions.

(b) Show a complete ANOVA along with an estimate
of the within-pour variance.

13.41 A textile company weaves a certain fabric on
a large number of looms. The managers would like
the looms to be homogeneous so that their fabric is of
uniform strength. It is suspected that there may be
significant variation in strength among looms. Con-
sider the following data for 4 randomly selected looms.
Each observation is a determination of strength of the
fabric in pounds per square inch.

Loom
1 2 3 4
99 97 94 93
97 96 95 94
97 92 90 90
96 98 92 92

(a) Write a model for the experiment.

(b) Does the loom variance component differ signifi-
cantly from zero?

(c) Comment on the managers’ suspicion.
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The GLM Procedure

Class Level Information

Class Levels Values

Method 4 A B C D

Lab 5 1 2 3 4 5

Number of Observations Read 20

Number of Observations Used 20

Dependent Variable: Response

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 0.05340500 0.00762929 42.19 <.0001

Error 12 0.00217000 0.00018083

Corrected Total 19 0.05557500

R-Square Coeff Var Root MSE Response Mean

0.960954 0.497592 0.013447 2.702500

Source DF Type III SS Mean Square F Value Pr > F

Method 3 0.03145500 0.01048500 57.98 <.0001

Lab 4 0.02195000 0.00548750 30.35 <.0001

Observation Observed Predicted Residual

1 2.67000000 2.66300000 0.00700000

2 2.71000000 2.71700000 -0.00700000

3 2.76000000 2.75300000 0.00700000

4 2.65000000 2.65700000 -0.00700000

5 2.69000000 2.68550000 0.00450000

6 2.74000000 2.73950000 0.00050000

7 2.76000000 2.77550000 -0.01550000

8 2.69000000 2.67950000 0.01050000

9 2.62000000 2.61800000 0.00200000

10 2.69000000 2.67200000 0.01800000

11 2.70000000 2.70800000 -0.00800000

12 2.60000000 2.61200000 -0.01200000

13 2.66000000 2.65550000 0.00450000

14 2.70000000 2.70950000 -0.00950000

15 2.76000000 2.74550000 0.01450000

16 2.64000000 2.64950000 -0.00950000

17 2.70000000 2.71800000 -0.01800000

18 2.77000000 2.77200000 -0.00200000

19 2.81000000 2.80800000 0.00200000

20 2.73000000 2.71200000 0.01800000

Figure 13.15: SAS printout for data of Case Study 13.1.
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Review Exercises

13.42 An analysis was conducted by the Statistics
Consulting Center at Virginia Tech in conjunction with
the Department of Forestry. A certain treatment was
applied to a set of tree stumps in which the chemical
Garlon was used with the purpose of regenerating the
roots of the stumps. A spray was used with four lev-
els of Garlon concentration. After a period of time,
the height of the shoots was observed. Perform a one-
factor analysis of variance on the following data. Test
to see if the concentration of Garlon has a significant
impact on the height of the shoots. Use α = 0.05.

Garlon Level
1 2 3 4

2.87 2.31 3.27 2.66 2.39 1.91 3.05 0.91
3.91 2.04 3.15 2.00 2.89 1.89 2.43 0.01

13.43 Consider the aggregate data of Example 13.1.
Perform Bartlett’s test, at level α = 0.1, to determine
if there is heterogeneity of variance among the aggre-
gates.

13.44 Three catalysts are used in a chemical process;
a control (no catalyst) is also included. The following
are yield data from the process:

Catalyst

Control 1 2 3

74.5 77.5 81.5 78.1
76.1 82.0 82.3 80.2
75.9 80.6 81.4 81.5
78.1 84.9 79.5 83.0
76.2 81.0 83.0 82.1

Use Dunnett’s test at the α = 0.01 level of significance
to determine if a significantly higher yield is obtained
with the catalysts than with no catalyst.

13.45 Four laboratories are being used to perform
chemical analysis. Samples of the same material are
sent to the laboratories for analysis as part of a study
to determine whether or not they give, on the average,
the same results. The analytical results for the four
laboratories are as follows:

Laboratory

A B C D

58.7 62.7 55.9 60.7
61.4 64.5 56.1 60.3
60.9 63.1 57.3 60.9
59.1 59.2 55.2 61.4
58.2 60.3 58.1 62.3

(a) Use Bartlett’s test to show that the within-
laboratory variances are not significantly different
at the α = 0.05 level of significance.

(b) Perform the analysis of variance and give conclu-
sions concerning the laboratories.

(c) Do a normal probability plot of residuals.

13.46 An experiment was designed for personnel in
the Department of Animal Science at Virginia Tech to
study urea and aqueous ammonia treatment of wheat
straw. The purpose was to improve nutritional value
for male sheep. The diet treatments were control, urea
at feeding, ammonia-treated straw, and urea-treated
straw. Twenty-four sheep were used in the experiment,
and they were separated according to relative weight.
There were four sheep in each homogeneous group (by
weight) and each of them was given one of the four
diets in random order. For each of the 24 sheep, the
percent dry matter digested was measured. The data
follow.

Group by Weight (block)

Diet 1 2 3 4 5 6

Control 32.68 36.22 36.36 40.95 34.99 33.89

Urea at
feeding 35.90 38.73 37.55 34.64 37.36 34.35

Ammonia
treated 49.43 53.50 52.86 45.00 47.20 49.76

Urea
treated 46.58 42.82 45.41 45.08 43.81 47.40

(a) Use a randomized complete block type of analy-
sis to test for differences between the diets. Use
α = 0.05.

(b) Use Dunnett’s test to compare the three diets with
the control. Use α = 0.05.

(c) Do a normal probability plot of residuals.

13.47 In a study that was analyzed for personnel
in the Department of Biochemistry at Virginia Tech,
three diets were given to groups of rats in order to study
the effect of each on dietary residual zinc in the blood-
stream. Five pregnant rats were randomly assigned to
each diet group, and each was given the diet on day 22
of pregnancy. The amount of zinc in parts per million
was measured. The data are as follows:

1 0.50 0.42 0.65 0.47 0.44
Diet 2 0.42 0.40 0.73 0.47 0.69

3 1.06 0.82 0.72 0.72 0.82

Determine if there is a significant difference in resid-
ual dietary zinc among the three diets. Use α = 0.05.
Perform a one-way ANOVA.
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13.48 An experiment was conducted to compare
three types of paint for evidence of differences in their
wearing qualities. They were exposed to abrasive ac-
tion and the time in hours until abrasion was noticed
was observed. Six specimens were used for each type
of paint. The data are as follows.

Paint Type
1 2 3

158 97 282 515 264 544 317 662 213
315 220 115 525 330 525 536 175 614

(a) Do an analysis of variance to determine if the evi-
dence suggests that wearing quality differs for the
three paints. Use a P-value in your conclusion.

(b) If significant differences are found, characterize
what they are. Is there one paint that stands out?
Discuss your findings.

(c) Do whatever graphical analysis you need to deter-
mine if assumptions used in (a) are valid. Discuss
your findings.

(d) Suppose it is determined that the data for each
treatment follow an exponential distribution. Does
this suggest an alternative analysis? If so, do the
alternative analysis and give findings.

13.49 A company that stamps gaskets out of sheets
of rubber, plastic, and cork wants to compare the mean
number of gaskets produced per hour for the three
types of material. Two randomly selected stamping
machines are chosen as blocks. The data represent the
number of gaskets (in thousands) produced per hour.
The data is given below. In addition, the printout anal-
ysis is given in Figure 13.16 on page 557.

Material
Machine Cork Rubber Plastic

A 4.31 4.27 4.40 3.36 3.42 3.48 4.01 3.94 3.89
B 3.94 3.81 3.99 3.91 3.80 3.85 3.48 3.53 3.42

(a) Why would the stamping machines be chosen as
blocks?

(b) Plot the six means for machine and material com-
binations.

(c) Is there a single material that is best?

(d) Is there an interaction between treatments and
blocks? If so, is the interaction causing any seri-
ous difficulty in arriving at a proper conclusion?
Explain.

13.50 A study is conducted to compare gas mileage
for 3 competing brands of gasoline. Four different au-
tomobile models of varying size are randomly selected.
The data, in miles per gallon, follow. The order of
testing is random for each model.

Gasoline Brand

Model A B C
A 32.4 35.6 38.7
B 28.8 28.6 29.9
C 36.5 37.6 39.1
D 34.4 36.2 37.9

(a) Discuss the need for the use of more than a single
model of car.

(b) Consider the ANOVA from the SAS printout in
Figure 13.17 on page 558. Does brand of gasoline
matter?

(c) Which brand of gasoline would you select? Consult
the result of Duncan’s test.

13.51 Four different locations in the northeast were
used for collecting ozone measurements in parts per
million. Amounts of ozone were collected in 5 samples
at each location.

Location
1 2 3 4

0.09 0.15 0.10 0.10
0.10 0.12 0.13 0.07
0.08 0.17 0.08 0.05
0.08 0.18 0.08 0.08
0.11 0.14 0.09 0.09

(a) Is there sufficient information here to suggest that
there are differences in the mean ozone levels across
locations? Be guided by a P-value.

(b) If significant differences are found in (a), charac-
terize the nature of the differences. Use whatever
methods you have learned.

13.52 Show that the mean square error

s2 =
SSE

k(n− 1)

for the analysis of variance in a one-way classification
is an unbiased estimate of σ2.

13.53 Prove Theorem 13.2.

13.54 Show that the computing formula for SSB, in
the analysis of variance of the randomized complete
block design, is equivalent to the corresponding term
in the identity of Theorem 13.3.

13.55 For the randomized block design with k treat-
ments and b blocks, show that

E(SSB) = (b− 1)σ2 + k

b∑
j=1

β2
j .
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The GLM Procedure

Dependent Variable: gasket
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 5 1.68122778 0.33624556 76.52 <.0001
Error 12 0.05273333 0.00439444
Corrected Total 17 1.73396111
R-Square Coeff Var Root MSE gasket Mean
0.969588 1.734095 0.066291 3.822778

Source DF Type III SS Mean Square F Value Pr > F
material 2 0.81194444 0.40597222 92.38 <.0001
machine 1 0.10125000 0.10125000 23.04 0.0004
material*machine 2 0.76803333 0.38401667 87.39 <.0001
Level of Level of ------------gasket-----------
material machine N Mean Std Dev
cork A 3 4.32666667 0.06658328
cork B 3 3.91333333 0.09291573
plastic A 3 3.94666667 0.06027714
plastic B 3 3.47666667 0.05507571
rubber A 3 3.42000000 0.06000000
rubber B 3 3.85333333 0.05507571

Level of ------------gasket-----------
material N Mean Std Dev
cork 6 4.12000000 0.23765521
plastic 6 3.71166667 0.26255793
rubber 6 3.63666667 0.24287171

Level of ------------gasket-----------
machine N Mean Std Dev
A 9 3.89777778 0.39798800
B 9 3.74777778 0.21376259

Figure 13.16: SAS printout for Review Exercise 13.49.
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The GLM Procedure
Dependent Variable: MPG

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 153.2508333 30.6501667 24.66 0.0006
Error 6 7.4583333 1.2430556
Corrected Total 11 160.7091667

R-Square Coeff Var Root MSE MPG Mean
0.953591 3.218448 1.114924 34.64167

Source DF Type III SS Mean Square F Value Pr > F
Model 3 130.3491667 43.4497222 34.95 0.0003
Brand 2 22.9016667 11.4508333 9.21 0.0148

Duncan’s Multiple Range Test for MPG
NOTE: This test controls the Type I comparisonwise error rate, not
the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 1.243056

Number of Means 2 3
Critical Range 1.929 1.999

Means with the same letter are not significantly different.
Duncan Grouping Mean N Brand

A 36.4000 4 C
A

B A 34.5000 4 B
B
B 33.0250 4 A

Figure 13.17: SAS printout for Review Exercise 13.50.

13.56 Group Project: It is of interest to determine
which type of sports ball can be thrown the longest dis-
tance. The competition involves a tennis ball, a base-
ball, and a softball. Divide the class into teams of five
individuals. Each team should design and conduct a
separate experiment. Each team should also analyze
the data from its own experiment. For a given team,
each of the five individuals will throw each ball (after
sufficient arm warmup). The experimental response
will be the distance (in feet) that the ball is thrown.
The data for each team will involve 15 observations.
Important points:

(a) This is not a competition among teams. The com-
petition is among the three types of sports balls.
One would expect that the conclusion drawn by

each team would be similar.

(b) Each team should be gender mixed.

(c) The experimental design for each team should be a
randomized complete block design. The five indi-
viduals throwing are the blocks.

(d) Be sure to incorporate the appropriate randomiza-
tion in conducting the experiment.

(e) The results should contain a description of the ex-
periment with an ANOVA table complete with a P -
value and appropriate conclusions. Use graphical
techniques where appropriate. Use multiple com-
parisons where appropriate. Draw practical conclu-
sions concerning differences between the ball types.
Be thorough.
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13.13 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

As in other procedures covered in previous chapters, the analysis of variance is
reasonably robust to the normality assumption but less robust to the homogeneous
variance assumption. Also we note here that Bartlett’s test for equal variance is
extremely nonrobust to normality.

This chapter is an extremely pivotal chapter in that it is essentially an “entry
level” point for important topics such as design of experiments and analysis of
variance. Chapter 14 will concern itself with the same topics, but the expansion
will be to more than one factor, with the total analysis further complicated by
the interpretation of interaction among factors. There are times when the role of
interaction in a scientific experiment is more important than the role of the main
factors (main effects). The presence of interaction results in even more empha-
sis placed on graphical displays. In Chapters 14 and 15, it will be necessary to
give more details regarding the randomization process since the number of factor
combinations can be large.
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Chapter 14

Factorial Experiments
(Two or More Factors)

14.1 Introduction

Consider a situation where it is of interest to study the effects of two factors, A
and B, on some response. For example, in a chemical experiment, we would like to
vary simultaneously the reaction pressure and reaction time and study the effect
of each on the yield. In a biological experiment, it is of interest to study the effects
of drying time and temperature on the amount of solids (percent by weight) left in
samples of yeast. As in Chapter 13, the term factor is used in a general sense to
denote any feature of the experiment such as temperature, time, or pressure that
may be varied from trial to trial. We define the levels of a factor to be the actual
values used in the experiment.

For each of these cases, it is important to determine not only if each of the two
factors has an influence on the response, but also if there is a significant interaction
between the two factors. As far as terminology is concerned, the experiment de-
scribed here is a two-factor experiment and the experimental design may be either
a completely randomized design, in which the various treatment combinations are
assigned randomly to all the experimental units, or a randomized complete block
design, in which factor combinations are assigned randomly within blocks. In the
case of the yeast example, the various treatment combinations of temperature and
drying time would be assigned randomly to the samples of yeast if we were using
a completely randomized design.

Many of the concepts studied in Chapter 13 are extended in this chapter to two
and three factors. The main thrust of this material is the use of the completely
randomized design with a factorial experiment. A factorial experiment in two
factors involves experimental trials (or a single trial) with all factor combinations.
For example, in the temperature-drying-time example with, say, 3 levels of each
and n = 2 runs at each of the 9 combinations, we have a two-factor factorial
experiment in a completely randomized design. Neither factor is a blocking factor;
we are interested in how each influences percent solids in the samples and whether
or not they interact. The biologist would have available 18 physical samples of
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material which are experimental units. These would then be assigned randomly to
the 18 combinations (9 treatment combinations, each duplicated).

Before we launch into analytical details, sums of squares, and so on, it may
be of interest for the reader to observe the obvious connection between what we
have described and the situation with the one-factor problem. Consider the yeast
experiment. Explanation of degrees of freedom aids the reader or the analyst in
visualizing the extension. We should initially view the 9 treatment combinations
as if they represented one factor with 9 levels (8 degrees of freedom). Thus, an
initial look at degrees of freedom gives

Treatment combinations 8
Error 9
Total 17

Main Effects and Interaction

The experiment could be analyzed as described in the above table. However, the
F-test for combinations would probably not give the analyst the information he or
she desires, namely, that which considers the role of temperature and drying time.
Three drying times have 2 associated degrees of freedom; three temperatures have
2 degrees of freedom. The main factors, temperature and drying time, are called
main effects. The main effects represent 4 of the 8 degrees of freedom for factor
combinations. The additional 4 degrees of freedom are associated with interaction
between the two factors. As a result, the analysis involves

Combinations 8
Temperature 2
Drying time 2
Interaction 4

Error 9
Total 17

Recall from Chapter 13 that factors in an analysis of variance may be viewed
as fixed or random, depending on the type of inference desired and how the levels
were chosen. Here we must consider fixed effects, random effects, and even cases
where effects are mixed. Most attention will be directed toward expected mean
squares when we advance to these topics. In the following section, we focus on the
concept of interaction.

14.2 Interaction in the Two-Factor Experiment

In the randomized block model discussed previously, it was assumed that one
observation on each treatment is taken in each block. If the model assumption is
correct, that is, if blocks and treatments are the only real effects and interaction
does not exist, the expected value of the mean square error is the experimental
error variance σ2. Suppose, however, that there is interaction occurring between
treatments and blocks as indicated by the model

yij = μ+ αi + βj + (αβ)ij + εij
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of Section 13.8. The expected value of the mean square error is then given as

E

[
SSE

(b− 1)(k − 1)

]
= σ2 +

1

(b− 1)(k − 1)

k∑
i=1

b∑
j=1

(αβ)2ij .

The treatment and block effects do not appear in the expected mean square error,
but the interaction effects do. Thus, if there is interaction in the model, the
mean square error reflects variation due to experimental error plus an interaction
contribution, and for this experimental plan, there is no way of separating them.

Interaction and the Interpretation of Main Effects

From an experimenter’s point of view it should seem necessary to arrive at a
significance test on the existence of interaction by separating true error variation
from that due to interaction. The main effects, A and B, take on a different
meaning in the presence of interaction. In the previous biological example, the
effect that drying time has on the amount of solids left in the yeast might very well
depend on the temperature to which the samples are exposed. In general, there
could be experimental situations in which factor A has a positive effect on the
response at one level of factor B, while at a different level of factor B the effect of
A is negative. We use the term positive effect here to indicate that the yield or
response increases as the levels of a given factor increase according to some defined
order. In the same sense, a negative effect corresponds to a decrease in response
for increasing levels of the factor.

Consider, for example, the following data on temperature (factor A at levels t1,
t2, and t3 in increasing order) and drying time d1, d2, and d3 (also in increasing
order). The response is percent solids. These data are completely hypothetical
and given to illustrate a point.

B

A d1 d2 d3 Total

t1 4.4 8.8 5.2 18.4
t2 7.5 8.5 2.4 18.4
t3 9.7 7.9 0.8 18.4

Total 21.6 25.2 8.4 55.2

Clearly the effect of temperature on percent solids is positive at the low drying
time d1 but negative for high drying time d3. This clear interaction between
temperature and drying time is obviously of interest to the biologist, but, based
on the totals of the responses for temperatures t1, t2, and t3, the temperature
sum of squares, SSA, will yield a value of zero. We say then that the presence of
interaction is masking the effect of temperature. Thus, if we consider the average
effect of temperature, averaged over drying time, there is no effect. This then
defines the main effect. But, of course, this is likely not what is pertinent to the
biologist.

Before drawing any final conclusions resulting from tests of significance on the
main effects and interaction effects, the experimenter should first observe
whether or not the test for interaction is significant. If interaction is
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not significant, then the results of the tests on the main effects are meaningful.
However, if interaction should be significant, then only those tests on the main
effects that turn out to be significant are meaningful. Nonsignificant main effects
in the presence of interaction might well be a result of masking and dictate the
need to observe the influence of each factor at fixed levels of the other.

A Graphical Look at Interaction

The presence of interaction as well as its scientific impact can be interpreted nicely
through the use of interaction plots. The plots clearly give a pictorial view of
the tendency in the data to show the effect of changing one factor as one moves
from one level to another of a second factor. Figure 14.1 illustrates the strong
temperature by drying time interaction. The interaction is revealed in nonparallel
lines.
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Figure 14.1: Interaction plot for temperature–drying time data.

The relatively strong temperature effect on percent solids at the lower dry-
ing time is reflected in the steep slope at d1. At the middle drying time d2 the
temperature has very little effect, while at the high drying time d3 the negative
slope illustrates a negative effect of temperature. Interaction plots such as this set
give the scientist a quick and meaningful interpretation of the interaction that is
present. It should be apparent that parallelism in the plots signals an absence
of interaction.

Need for Multiple Observations

Interaction and experimental error are separated in the two-factor experiment only
if multiple observations are taken at the various treatment combinations. For max-
imum efficiency, there should be the same number n of observations at each com-
bination. These should be true replications, not just repeated measurements. For
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example, in the yeast illustration, if we take n = 2 observations at each combina-
tion of temperature and drying time, there should be two separate samples and not
merely repeated measurements on the same sample. This allows variability due to
experimental units to appear in “error,” so the variation is not merely measurement
error.

14.3 Two-Factor Analysis of Variance

To present general formulas for the analysis of variance of a two-factor experiment
using repeated observations in a completely randomized design, we shall consider
the case of n replications of the treatment combinations determined by a levels of
factor A and b levels of factor B. The observations may be classified by means of a
rectangular array where the rows represent the levels of factor A and the columns
represent the levels of factor B. Each treatment combination defines a cell in our
array. Thus, we have ab cells, each cell containing n observations. Denoting the
kth observation taken at the ith level of factor A and the jth level of factor B by
yijk, Table 14.1 shows the abn observations.

Table 14.1: Two-Factor Experiment with n Replications

B

A 1 2 · · · b Total Mean

1 y111 y121 · · · y1b1 Y1.. ȳ1..
y112 y122 · · · y1b2
...

...
...

y11n y12n · · · y1bn
2 y211 y221 · · · y2b1 Y2.. ȳ2..

y212 y222 · · · y2b2
...

...
...

y21n y22n · · · y2bn
...

...
...

...
...

...
a ya11 ya21 · · · yab1 Ya.. ȳa..

ya12 ya22 · · · yab2
...

...
...

ya1n ya2n · · · yabn
Total Y.1. Y.2. · · · Y.b. Y...

Mean ȳ.1. ȳ.2. · · · ȳ.b. ȳ...

The observations in the (ij)th cell constitute a random sample of size n from a
population that is assumed to be normally distributed with mean μij and variance
σ2. All ab populations are assumed to have the same variance σ2. Let us define
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the following useful symbols, some of which are used in Table 14.1:

Yij. = sum of the observations in the (ij)th cell,

Yi.. = sum of the observations for the ith level of factor A,

Y.j. = sum of the observations for the jth level of factor B,

Y... = sum of all abn observations,

ȳij. = mean of the observations in the (ij)th cell,

ȳi.. = mean of the observations for the ith level of factor A,

ȳ.j. = mean of the observations for the jth level of factor B,

ȳ... = mean of all abn observations.

Unlike in the one-factor situation covered at length in Chapter 13, here we are
assuming that the populations, where n independent identically distributed ob-
servations are taken, are combinations of factors. Also we will assume throughout
that an equal number (n) of observations are taken at each factor combination. In
cases in which the sample sizes per combination are unequal, the computations are
more complicated but the concepts are transferable.

Model and Hypotheses for the Two-Factor Problem

Each observation in Table 14.1 may be written in the form

yijk = μij + εijk,

where εijk measures the deviations of the observed yijk values in the (ij)th cell
from the population mean μij . If we let (αβ)ij denote the interaction effect of the
ith level of factor A and the jth level of factor B, αi the effect of the ith level of
factor A, βj the effect of the jth level of factor B, and μ the overall mean, we can
write

μij = μ+ αi + βj + (αβ)ij ,

and then

yijk = μ+ αi + βj + (αβ)ij + εijk,

on which we impose the restrictions

a∑
i=1

αi = 0,

b∑
j=1

βj = 0,

a∑
i=1

(αβ)ij = 0,

b∑
j=1

(αβ)ij = 0.

The three hypotheses to be tested are as follows:

1. H ′
0: α1 = α2 = · · · = αa = 0,

H ′
1: At least one of the αi is not equal to zero.

2. H
′′
0 : β1 = β2 = · · · = βb = 0,

H
′′
1 : At least one of the βj is not equal to zero.
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3. H
′′′
0 : (αβ)11 = (αβ)12 = · · · = (αβ)ab = 0,

H
′′′
1 : At least one of the (αβ)ij is not equal to zero.

We warned the reader about the problem of masking of main effects when inter-
action is a heavy contributor in the model. It is recommended that the interaction
test result be considered first. The interpretation of the main effect test follows,
and the nature of the scientific conclusion depends on whether interaction is found.
If interaction is ruled out, then hypotheses 1 and 2 above can be tested and the
interpretation is quite simple. However, if interaction is found to be present the
interpretation can be more complicated, as we have seen from the discussion of the
drying time and temperature in the previous section. In what follows, the structure
of the tests of hypotheses 1, 2, and 3 will be discussed. Interpretation of results
will be incorporated in the discussion of the analysis in Example 14.1.

The tests of the hypotheses above will be based on a comparison of independent
estimates of σ2 provided by splitting the total sum of squares of our data into four
components by means of the following identity.

Partitioning of Variability in the Two-Factor Case

Theorem 14.1: Sum-of-Squares Identity

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)
2 = bn

a∑
i=1

(ȳi.. − ȳ...)
2 + an

b∑
j=1

(ȳ.j. − ȳ...)
2

+ n

a∑
i=1

b∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2 +

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳij.)
2

Symbolically, we write the sum-of-squares identity as

SST = SSA+ SSB + SS(AB) + SSE,

where SSA and SSB are called the sums of squares for the main effects A and
B, respectively, SS(AB) is called the interaction sum of squares for A and B, and
SSE is the error sum of squares. The degrees of freedom are partitioned according
to the identity

abn− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1).

Formation of Mean Squares

If we divide each of the sums of squares on the right side of the sum-of-squares
identity by its corresponding number of degrees of freedom, we obtain the four
statistics

S2
1 =

SSA

a− 1
, S2

2 =
SSB

b− 1
, S2

3 =
SS(AB)

(a− 1)(b− 1)
, S2 =

SSE

ab(n− 1)
.

All of these variance estimates are independent estimates of σ2 under the condition
that there are no effects αi, βj , and, of course, (αβ)ij . If we interpret the sums of
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squares as functions of the independent random variables y111, y112, . . . , yabn, it is
not difficult to verify that

E(S2
1) = E

[
SSA

a− 1

]
= σ2 +

nb

a− 1

a∑
i=1

α2
i ,

E(S2
2) = E

[
SSB

b− 1

]
= σ2 +

na

b− 1

b∑
j=1

β2
j ,

E(S2
3) = E

[
SS(AB)

(a− 1)(b− 1)

]
= σ2 +

n

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(αβ)2ij ,

E(S2) = E

[
SSE

ab(n− 1)

]
= σ2,

from which we immediately observe that all four estimates of σ2 are unbiased when
H ′

0, H
′′
0 , and H

′′′
0 are true.

To test the hypothesis H ′
0, that the effects of factors A are all equal to zero, we

compute the following ratio:

F-Test for
Factor A f1 =

s21
s2

,

which is a value of the random variable F1 having the F-distribution with a− 1
and ab(n−1) degrees of freedom when H

′
0 is true. The null hypothesis is rejected

at the α-level of significance when f1 > fα[a− 1, ab(n− 1)].

Similarly, to test the hypothesis H
′′
0 that the effects of factor B are all equal to

zero, we compute the following ratio:

F-Test for
Factor B f2 =

s22
s2

,

which is a value of the random variable F2 having the F-distribution with b− 1
and ab(n− 1) degrees of freedom when H

′′
0 is true. This hypothesis is rejected

at the α-level of significance when f2 > fα[b− 1, ab(n− 1)].

Finally, to test the hypothesis H
′′′
0 , that the interaction effects are all equal to zero,

we compute the following ratio:

F-Test for
Interaction f3 =

s23
s2

,

which is a value of the random variable F3 having the F-distribution with
(a − 1)(b − 1) and ab(n − 1) degrees of freedom when H

′′′
0 is true. We con-

clude that, at the α-level of significance, interaction is present when f3 >
fα[(a− 1)(b− 1), ab(n− 1)].

As indicated in Section 14.2, it is advisable to interpret the test for interaction
before attempting to draw inferences on the main effects. If interaction is not sig-
nificant, there is certainly evidence that the tests on main effects are interpretable.
Rejection of hypothesis 1 on page 566 implies that the response means at the levels
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of factor A are significantly different, while rejection of hypothesis 2 implies a simi-
lar condition for the means at levels of factor B. However, a significant interaction
could very well imply that the data should be analyzed in a somewhat different
manner—perhaps observing the effect of factor A at fixed levels of factor
B, and so forth.

The computations in an analysis-of-variance problem, for a two-factor experi-
ment with n replications, are usually summarized as in Table 14.2.

Table 14.2: Analysis of Variance for the Two-Factor Experiment with n Replications

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:

A SSA a− 1 s21 = SSA
a−1 f1 =

s21
s2

B SSB b− 1 s22 = SSB
b−1 f2 =

s22
s2

Two-factor
interactions:

AB SS(AB) (a− 1)(b− 1) s23 = SS(AB)
(a−1)(b−1) f3 =

s23
s2

Error SSE ab(n− 1) s2 = SSE
ab(n−1)

Total SST abn− 1

Example 14.1: In an experiment conducted to determine which of 3 different missile systems is
preferable, the propellant burning rate for 24 static firings was measured. Four dif-
ferent propellant types were used. The experiment yielded duplicate observations
of burning rates at each combination of the treatments.

The data, after coding, are given in Table 14.3. Test the following hypotheses:
(a) H

′
0: there is no difference in the mean propellant burning rates when different

missile systems are used, (b) H
′′
0 : there is no difference in the mean propellant

burning rates of the 4 propellant types, (c) H
′′′
0 : there is no interaction between

the different missile systems and the different propellant types.

Table 14.3: Propellant Burning Rates

Missile Propellant Type

System b1 b2 b3 b4

a1 34.0 30.1 29.8 29.0
32.7 32.8 26.7 28.9

a2 32.0 30.2 28.7 27.6
33.2 29.8 28.1 27.8

a3 28.4 27.3 29.7 28.8
29.3 28.9 27.3 29.1

Solution : 1. (a) H
′
0: α1 = α2 = α3 = 0.

(b) H
′′
0 : β1 = β2 = β3 = β4 = 0.
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(c) H
′′′
0 : (αβ)11 = (αβ)12 = · · · = (αβ)34 = 0.

2. (a) H
′
1: At least one of the αi is not equal to zero.

(b) H
′′
1 : At least one of the βj is not equal to zero.

(c) H
′′′
1 : At least one of the (αβ)ij is not equal to zero.

The sum-of-squares formula is used as described in Theorem 14.1. The analysis
of variance is shown in Table 14.4.

Table 14.4: Analysis of Variance for the Data of Table 14.3

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Missile system 14.52 2 7.26 5.84
Propellant type 40.08 3 13.36 10.75
Interaction 22.16 6 3.69 2.97
Error 14.91 12 1.24

Total 91.68 23

The reader is directed to a SAS GLM Procedure (General Linear Models) for
analysis of the burning rate data in Figure 14.2. Note how the “model” (11 degrees
of freedom) is initially tested and the system, type, and system by type interac-
tion are tested separately. The F-test on the model (P = 0.0030) is testing the
accumulation of the two main effects and the interaction.

(a) Reject H
′
0 and conclude that different missile systems result in different mean

propellant burning rates. The P -value is approximately 0.0169.

(b) Reject H
′′
0 and conclude that the mean propellant burning rates are not the

same for the four propellant types. The P -value is approximately 0.0010.

(c) Interaction is barely insignificant at the 0.05 level, but the P -value of approx-
imately 0.0513 would indicate that interaction must be taken seriously.

At this point we should draw some type of interpretation of the interaction. It
should be emphasized that statistical significance of a main effect merely implies
that marginal means are significantly different. However, consider the two-way
table of averages in Table 14.5.

Table 14.5: Interpretation of Interaction

b1 b2 b3 b4 Average

a1 33.35 31.45 28.25 28.95 30.50
a2 32.60 30.00 28.40 27.70 29.68
a3 28.85 28.10 28.50 28.95 28.60

Average 31.60 29.85 28.38 28.53

It is apparent that more important information exists in the body of the table—
trends that are inconsistent with the trend depicted by marginal averages. Table
14.5 certainly suggests that the effect of propellant type depends on the system
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The GLM Procedure

Dependent Variable: rate

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 11 76.76833333 6.97893939 5.62 0.0030

Error 12 14.91000000 1.24250000

Corrected Total 23 91.67833333

R-Square Coeff Var Root MSE rate Mean

0.837366 3.766854 1.114675 29.59167

Source DF Type III SS Mean Square F Value Pr > F

system 2 14.52333333 7.26166667 5.84 0.0169

type 3 40.08166667 13.36055556 10.75 0.0010

system*type 6 22.16333333 3.69388889 2.97 0.0512

Figure 14.2: SAS printout of the analysis of the propellant rate data of Table 14.3.

being used. For example, for system 3 the propellant-type effect does not appear
to be important, although it does have a large effect if either system 1 or system
2 is used. This explains the “significant” interaction between these two factors.
More will be revealed subsequently concerning this interaction.

Example 14.2: Referring to Example 14.1, choose two orthogonal contrasts to partition the sum
of squares for the missile systems into single-degree-of-freedom components to be
used in comparing systems 1 and 2 versus 3, and system 1 versus system 2.

Solution : The contrast for comparing systems 1 and 2 with 3 is

w1 = μ1. + μ2. − 2μ3..

A second contrast, orthogonal to w1, for comparing system 1 with system 2, is
given by w2 = μ1. − μ2.. The single-degree-of-freedom sums of squares are

SSw1 =
[244.0 + 237.4− (2)(228.8)]2

(8)[(1)2 + (1)2 + (−2)2]
= 11.80

and

SSw2 =
(244.0− 237.4)2

(8)[(1)2 + (−1)2]
= 2.72.

Notice that SSw1 + SSw2 = SSA, as expected. The computed f-values corre-
sponding to w1 and w2 are, respectively,

f1 =
11.80

1.24
= 9.5 and f2 =

2.72

1.24
= 2.2.

Compared to the critical value f0.05(1, 12) = 4.75, we find f1 to be significant.
In fact, the P-value is less than 0.01. Thus, the first contrast indicates that the
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hypothesis

H0:
1

2
(μ1. + μ2.) = μ3.

is rejected. Since f2 < 4.75, the mean burning rates of the first and second systems
are not significantly different.

Impact of Significant Interaction in Example 14.1

If the hypothesis of no interaction in Example 14.1 is true, we could make the
general comparisons of Example 14.2 regarding our missile systems rather than
separate comparisons for each propellant. Similarly, we might make general com-
parisons among the propellants rather than separate comparisons for each missile
system. For example, we could compare propellants 1 and 2 with 3 and 4 and
also propellant 1 versus propellant 2. The resulting f-ratios, each with 1 and 12
degrees of freedom, turn out to be 24.81 and 7.39, respectively, and both are quite
significant at the 0.05 level.

From propellant averages there appears to be evidence that propellant 1 gives
the highest mean burning rate. A prudent experimenter might be somewhat cau-
tious in drawing overall conclusions in a problem such as this one, where the f-ratio
for interaction is barely below the 0.05 critical value. For example, the overall evi-
dence, 31.60 versus 29.85 on the average for the two propellants, certainly indicates
that propellant 1 is superior, in terms of a higher burning rate, to propellant 2.
However, if we restrict ourselves to system 3, where we have an average of 28.85
for propellant 1 as opposed to 28.10 for propellant 2, there appears to be little
or no difference between these two propellants. In fact, there appears to be a
stabilization of burning rates for the different propellants if we operate with sys-
tem 3. There is certainly overall evidence which indicates that system 1 gives a
higher burning rate than system 3, but if we restrict ourselves to propellant 4, this
conclusion does not appear to hold.

The analyst can conduct a simple t-test using average burning rates for system
3 in order to display conclusive evidence that interaction is producing considerable
difficulty in allowing broad conclusions on main effects. Consider a comparison of
propellant 1 against propellant 2 only using system 3. Borrowing an estimate of
σ2 from the overall analysis, that is, using s2 = 1.24 with 12 degrees of freedom,
we have

|t| = 0.75√
2s2/n

=
0.75√
1.24

= 0.67,

which is not even close to being significant. This illustration suggests that one must
be cautious about strict interpretation of main effects in the presence of interaction.

Graphical Analysis for the Two-Factor Problem of Example 14.1

Many of the same types of graphical displays that were suggested in the one-factor
problems certainly apply in the two-factor case. Two-dimensional plots of cell
means or treatment combination means can provide insight into the presence of
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interactions between the two factors. In addition, a plot of residuals against fitted
values may well provide an indication of whether or not the homogeneous variance
assumption holds. Often, of course, a violation of the homogeneous variance as-
sumption involves an increase in the error variance as the response numbers get
larger. As a result, this plot may point out the violation.

Figure 14.3 shows the plot of cell means in the case of the missile system
propellant illustration in Example 14.1. Notice how graphically (in this case) the
lack of parallelism shows through. Note the flatness of the part of the figure showing
the propellant effect for system 3. This illustrates interaction among the factors.
Figure 14.4 shows the plot of residuals against fitted values for the same data.
There is no apparent sign of difficulty with the homogeneous variance assumption.
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Figure 14.3: Plot of cell means for data of Example 14.1. Numbers represent missile
systems.
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Figure 14.4: Residual plot of data of Example 14.1.
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Example 14.3: An electrical engineer is investigating a plasma etching process used in semicon-
ductor manufacturing. It is of interest to study the effects of two factors, the C2F6

gas flow rate (A) and the power applied to the cathode (B). The response is the
etch rate. Each factor is run at 3 levels, and 2 experimental runs on etch rate are
made for each of the 9 combinations. The setup is that of a completely randomized
design. The data are given in Table 14.6. The etch rate is in A◦/min.

Table 14.6: Data for Example 14.3

Power Supplied
C2F6 Flow Rate 1 2 3

1 288 488 670
360 465 720

2 385 482 692
411 521 724

3 488 595 761
462 612 801

The levels of the factors are in ascending order, with level 1 being low level and
level 3 being the highest.

(a) Show an analysis of variance table and draw conclusions, beginning with the
test on interaction.

(b) Do tests on main effects and draw conclusions.

Solution : A SAS output is given in Figure 14.5. From the output we learn the following.

The GLM Procedure

Dependent Variable: etchrate

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 8 379508.7778 47438.5972 61.00 <.0001

Error 9 6999.5000 777.7222

Corrected Total 17 386508.2778

R-Square Coeff Var Root MSE etchrate Mean

0.981890 5.057714 27.88767 551.3889

Source DF Type III SS Mean Square F Value Pr > F

c2f6 2 46343.1111 23171.5556 29.79 0.0001

power 2 330003.4444 165001.7222 212.16 <.0001

c2f6*power 4 3162.2222 790.5556 1.02 0.4485

Figure 14.5: SAS printout for Example 14.3.

(a) The P-value for the test of interaction is 0.4485. We can conclude that there
is no significant interaction.

(b) There is a significant difference in mean etch rate for the 3 levels of C2F6 flow
rate. Duncan’s test shows that the mean etch rate for level 3 is significantly
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higher than that for level 2 and the rate for level 2 is significantly higher than
that for level 1. See Figure 14.6(a).

There is a significant difference in mean etch rate based on the level of power
to the cathode. Duncan’s test revealed that the etch rate for level 3 is sig-
nificantly higher than that for level 2 and the rate for level 2 is significantly
higher than that for level 1. See Figure 14.6(b).

Duncan Grouping Mean N c2f6

A 619.83 6 3

B 535.83 6 2

C 498.50 6 1

(a)

Duncan Grouping Mean N power

A 728.00 6 3

B 527.17 6 2

C 399.00 6 1

(b)

Figure 14.6: SAS output, for Example 14.3. (a) Duncan’s test on gas flow rate; (b) Duncan’s test on
power.

Exercises

14.1 An experiment was conducted to study the ef-
fects of temperature and type of oven on the life of
a particular component. Four types of ovens and
3 temperature levels were used in the experiment.
Twenty-four pieces were assigned randomly, two to
each combination of treatments, and the following re-
sults recorded.

Oven

Temperature (◦F) O1 O2 O3 O4

500 227 214 225 260
221 259 236 229

550 187 181 232 246
208 179 198 273

600 174 198 178 206
202 194 213 219

Using a 0.05 level of significance, test the hypothesis
that

(a) different temperatures have no effect on the life of
the component;

(b) different ovens have no effect on the life of the com-
ponent;

(c) the type of oven and temperature do not interact.

14.2 To ascertain the stability of vitamin C in re-
constituted frozen orange juice concentrate stored in a
refrigerator for a period of up to one week, the study
Vitamin C Retention in Reconstituted Frozen Orange
Juice was conducted by the Department of Human Nu-
trition and Foods at Virginia Tech. Three types of
frozen orange juice concentrate were tested using 3 dif-
ferent time periods. The time periods refer to the num-
ber of days from when the orange juice was blended

until it was tested. The results, in milligrams of ascor-
bic acid per liter, were recorded. Use a 0.05 level of
significance to test the hypothesis that

(a) there is no difference in ascorbic acid contents
among the different brands of orange juice concen-
trate;

(b) there is no difference in ascorbic acid contents for
the different time periods;

(c) the brands of orange juice concentrate and the
number of days from the time the juice was blended
until it was tested do not interact.

Time (days)
Brand 0 3 7

Richfood 52.6 54.2 49.4 49.2 42.7 48.8
49.8 46.5 42.8 53.2 40.4 47.6

Sealed-Sweet 56.0 48.0 48.8 44.0 49.2 44.0
49.6 48.4 44.0 42.4 42.0 43.2

Minute Maid 52.5 52.0 48.0 47.0 48.5 43.3
51.8 53.6 48.2 49.6 45.2 47.6

14.3 Three strains of rats were studied under 2 envi-
ronmental conditions for their performance in a maze
test. The error scores for the 48 rats were recorded.

Strain
Environment Bright Mixed Dull

Free 28 12 33 83 101 94
22 23 36 14 33 56
25 10 41 76 122 83
36 86 22 58 35 23

Restricted 72 32 60 89 136 120
48 93 35 126 38 153
25 31 83 110 64 128
91 19 99 118 87 140
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Use a 0.01 level of significance to test the hypothesis
that

(a) there is no difference in error scores for different
environments;

(b) there is no difference in error scores for different
strains;

(c) the environments and strains of rats do not inter-
act.

14.4 Corrosion fatigue in metals has been defined as
the simultaneous action of cyclic stress and chemical
attack on a metal structure. A widely used technique
for minimizing corrosion fatigue damage in aluminum
involves the application of a protective coating. A
study conducted by the Department of Mechanical En-
gineering at Virginia Tech used 3 different levels of hu-
midity

Low: 20–25% relative humidity

Medium: 55–60% relative humidity

High: 86–91% relative humidity

and 3 types of surface coatings

Uncoated: no coating

Anodized: sulfuric acid anodic oxide coating

Conversion: chromate chemical conversion coating

The corrosion fatigue data, expressed in thousands of
cycles to failure, were recorded as follows:

Relative Humidity
Coating Low Medium High

Uncoated
361
466

1069

469
937

1357

314
244
261

522
739
134

1344
1027
1011

1216
1097
1011

Anodized
114

1236
533

1032
92

211

322
306
68

471
130
398

78
387
130

466
107
327

Conversion
130
841

1595

1482
529
754

252
105
847

874
755
573

586
402
846

524
751
529

(a) Perform an analysis of variance with α = 0.05 to
test for significant main and interaction effects.

(b) Use Duncan’s multiple-range test at the 0.05 level
of significance to determine which humidity levels
result in different corrosion fatigue damage.

14.5 To determine which muscles need to be sub-
jected to a conditioning program in order to improve
one’s performance on the flat serve used in tennis, a
study was conducted by the Department of Health,
Physical Education and Recreation at Virginia Tech.

Five different muscles

1: anterior deltoid 4: middle deltoid

2: pectorial major 5: triceps

3: posterior deltoid

were tested on each of 3 subjects, and the experiment
was carried out 3 times for each treatment combina-
tion. The electromyographic data, recorded during the
serve, are presented here.

Muscle

Subject 1 2 3 4 5

1 32 5 58 10 19
59 1.5 61 10 20
38 2 66 14 23

2 63 10 64 45 43
60 9 78 61 61
50 7 78 71 42

3 43 41 26 63 61
54 43 29 46 85
47 42 23 55 95

Use a 0.01 level of significance to test the hypothesis
that

(a) different subjects have equal electromyographic
measurements;

(b) different muscles have no effect on electromyo-
graphic measurements;

(c) subjects and types of muscle do not interact.

14.6 An experiment was conducted to determine
whether additives increase the adhesiveness of rubber
products. Sixteen products were made with the new
additive and another 16 without the new additive. The
observed adhesiveness was as recorded below.

Temperature (◦C)

50 60 70 80

2.3 3.4 3.8 3.9
Without Additive 2.9 3.7 3.9 3.2

3.1 3.6 4.1 3.0
3.2 3.2 3.8 2.7

4.3 3.8 3.9 3.5
With Additive 3.9 3.8 4.0 3.6

3.9 3.9 3.7 3.8
4.2 3.5 3.6 3.9

Perform an analysis of variance to test for significant
main and interaction effects.

14.7 The extraction rate of a certain polymer is
known to depend on the reaction temperature and
the amount of catalyst used. An experiment was con-
ducted at four levels of temperature and five levels of
the catalyst, and the extraction rate was recorded in
the following table.
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Amount of Catalyst

0.5% 0.6% 0.7% 0.8% 0.9%

50◦C 38 45 57 59 57
41 47 59 61 58

60◦C 44 56 70 73 61
43 57 69 72 58

70◦C 44 56 70 73 61
47 60 67 61 59

80◦C 49 62 70 62 53
47 65 55 69 58

Perform an analysis of variance. Test for significant
main and interaction effects.

14.8 In Myers, Montgomery, and Anderson-Cook
(2009), a scenario is discussed involving an auto
bumper plating process. The response is the thickness
of the material. Factors that may impact the thickness
include amount of nickel (A) and pH (B). A two-factor
experiment is designed. The plan is a completely ran-
domized design in which the individual bumpers are
assigned randomly to the factor combinations. Three
levels of pH and two levels of nickel content are involved
in the experiment. The thickness data, in cm × 10−3,
are as follows:

Nickel Content pH

(grams) 5 5.5 6

18 250 211 221
195 172 150
188 165 170

10 115 88 69
165 112 101
142 108 72

(a) Display the analysis-of-variance table with tests for
both main effects and interaction. Show P-values.

(b) Give engineering conclusions. What have you
learned from the analysis of the data?

(c) Show a plot that depicts either a presence or an
absence of interaction.

14.9 An engineer is interested in the effects of cut-
ting speed and tool geometry on the life in hours of
a machine tool. Two cutting speeds and two different
geometries are used. Three experimental tests are ac-
complished at each of the four combinations. The data
are as follows.

Tool Cutting Speed
Geometry Low High

1 22 28 20 34 37 29
2 18 15 16 11 10 10

(a) Show an analysis-of-variance table with tests on in-
teraction and main effects.

(b) Comment on the effect that interaction has on the
test on cutting speed.

(c) Do secondary tests that will allow the engineer to
learn the true impact of cutting speed.

(d) Show a plot that graphically displays the interac-
tion effect.

14.10 Two factors in a manufacturing process for an
integrated circuit are studied in a two-factor experi-
ment. The purpose of the experiment is to learn their
effect on the resistivity of the wafer. The factors are
implant dose (2 levels) and furnace position (3 levels).
Experimentation is costly so only one experimental run
is made at each combination. The data are as follows.

Dose Position

1 15.5 14.8 21.3
2 27.2 24.9 26.1

It is to be assumed that no interaction exists between
these two factors.

(a) Write the model and explain terms.

(b) Show the analysis-of-variance table.

(c) Explain the 2 “error” degrees of freedom.

(d) Use Tukey’s test to do multiple-comparison tests on
furnace position. Explain what the results show.

14.11 A study was done to determine the impact of
two factors, method of analysis and the laboratory do-
ing the analysis, on the level of sulfur content in coal.
Twenty-eight coal specimens were randomly assigned
to 14 factor combinations, the structure of the experi-
mental units represented by combinations of seven lab-
oratories and two methods of analysis with two speci-
mens per factor combination. The data, expressed in
percent of sulfur, are as follows:

Method

Laboratory 1 2
1 0.109 0.105 0.105 0.108
2 0.129 0.122 0.127 0.124
3 0.115 0.112 0.109 0.111
4 0.108 0.108 0.117 0.118
5 0.097 0.096 0.110 0.097
6 0.114 0.119 0.116 0.122
7 0.155 0.145 0.164 0.160

(The data are taken from G. Taguchi, “Signal to
Noise Ratio and Its Applications to Testing Material,”
Reports of Statistical Application Research, Union of
Japanese Scientists and Engineers, Vol. 18, No. 4,
1971.)

(a) Do an analysis of variance and show results in an
analysis-of-variance table.

(b) Is interaction significant? If so, discuss what it
means to the scientist. Use a P-value in your con-
clusion.

(c) Are the individual main effects, laboratory, and
method of analysis statistically significant? Discuss
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what is learned and let your answer be couched in
the context of any significant interaction.

(d) Do an interaction plot that illustrates the effect of
interaction.

(e) Do a test comparing methods 1 and 2 at laboratory
1 and do the same test at laboratory 7. Comment
on what these results illustrate.

14.12 In an experiment conducted in the Civil Engi-
neering Department at Virginia Tech, growth of a cer-
tain type of algae in water was observed as a function
of time and the dosage of copper added to the water.
The data are as follows. Response is in units of algae.

Time in Days

Copper 5 12 18

1 0.30 0.37 0.25
0.34 0.36 0.23
0.32 0.35 0.24

2 0.24 0.30 0.27
0.23 0.32 0.25
0.22 0.31 0.25

3 0.20 0.30 0.27
0.28 0.31 0.29
0.24 0.30 0.25

(a) Do an analysis of variance and show the analysis-
of-variance table.

(b) Comment concerning whether the data are suffi-
cient to show a time effect on algae concentration.

(c) Do the same for copper content. Does the level of
copper impact algae concentration?

(d) Comment on the results of the test for interaction.
How is the effect of copper content influenced by
time?

14.13 In Myers, Classical and Modern Regression
with Applications (Duxbury Classic Series, 2nd edition,
1990), an experiment is described in which the Envi-
ronmental Protection Agency seeks to determine the
effect of two water treatment methods on magnesium
uptake. Magnesium levels in grams per cubic centime-
ter (cc) are measured, and two different time levels are
incorporated into the experiment. The data are as fol-
lows:

Treatment
Time (hr) 1 2

1 2.19 2.15 2.16 2.03 2.01 2.04
2 2.01 2.03 2.04 1.88 1.86 1.91

(a) Do an interaction plot. What is your impression?

(b) Do an analysis of variance and show tests for the
main effects and interaction.

(c) Give scientific findings regarding how time and

treatment influence magnesium uptake.

(d) Fit the appropriate regression model with treat-
ment as a categorical variable. Include interaction
in the model.

(e) Is interaction significant in the regression model?

14.14 Consider the data set in Exercise 14.12 and an-
swer the following questions.

(a) Both factors, copper and time, are quantitative in
nature. As a result, a regression model may be of
interest. Describe what might be an appropriate
model using x1 = copper content and x2 = time.
Fit the model to the data, showing regression coef-
ficients and a t-test on each.

(b) Fit the model

Y = β0 + β1x1 + β2x2 + β12x1x2

+ β11x
2
1 + β22x

2
2 + ε,

and compare it to the one you chose in (a). Which
is more appropriate? Use R2

adj as a criterion.

14.15 The purpose of the study The Incorporation of
a Chelating Agent into a Flame Retardant Finish of a
Cotton Flannelette and the Evaluation of Selected Fab-
ric Properties, conducted at Virginia Tech, was to eval-
uate the use of a chelating agent as part of the flame
retardant finish of cotton flannelette by determining its
effect upon flammability after the fabric is laundered
under specific conditions. There were two treatments
at two levels. Two baths were prepared, one with car-
boxymethyl cellulose (bath I) and one without (bath
II). Half of the fabric was laundered 5 times and half
was laundered 10 times. There were 12 pieces of fab-
ric in each bath/number of launderings combination.
After the washings, the lengths of fabric that burned
and the burn times were measured. Burn times (in
seconds) were recorded as follows:

Launderings Bath I Bath II

5

10

13.7
25.5
14.0
14.0
27.2
14.9
10.8
14.2

23.0
15.8
29.4
12.3
16.8
17.1
13.5
27.4

15.7
14.8
9.7

12.3
12.9
13.0
25.5
11.5

6.2
4.4

16.0
3.9

18.2
14.7
10.6
17.7

5.4
5.0
2.5
2.5
8.8

17.1
5.8

18.3

5.0
3.3
1.6
7.1

14.5
13.9
7.3
9.9

(a) Perform an analysis of variance. Is there a signifi-
cant interaction term?

(b) Are there main effect differences? Discuss.
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14.4 Three-Factor Experiments

In this section, we consider an experiment with three factors, A, B, and C, at a, b,
and c levels, respectively, in a completely randomized experimental design. Assume
again that we have n observations for each of the abc treatment combinations. We
shall proceed to outline significance tests for the three main effects and interactions
involved. It is hoped that the reader can then use the description given here to
generalize the analysis to k > 3 factors.

Model for the
Three-Factor
Experiment

The model for the three-factor experiment is

yijkl = μ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl,

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , c; and l = 1, 2, . . . , n, where αi,
βj , and γk are the main effects and (αβ)ij , (αγ)ik, and (βγ)jk are the two-
factor interaction effects that have the same interpretation as in the two-factor
experiment.

The term (αβγ)ijk is called the three-factor interaction effect, a term that
represents a nonadditivity of the (αβ)ij over the different levels of the factor C.
As before, the sum of all main effects is zero and the sum over any subscript of the
two- and three-factor interaction effects is zero. In many experimental situations,
these higher-order interactions are insignificant and their mean squares reflect only
random variation, but we shall outline the analysis in its most general form.

Again, in order that valid significance tests can be made, we must assume that
the errors are values of independent and normally distributed random variables,
each with mean 0 and common variance σ2.

The general philosophy concerning the analysis is the same as that discussed for
the one- and two-factor experiments. The sum of squares is partitioned into eight
terms, each representing a source of variation from which we obtain independent
estimates of σ2 when all the main effects and interaction effects are zero. If the
effects of any given factor or interaction are not all zero, then the mean square
will estimate the error variance plus a component due to the systematic effect in
question.

Sum of Squares
for a

Three-Factor
Experiment

SSA = bcn

a∑
i=1

(ȳi... − ȳ....)
2 SS(AB) = cn

∑
i

∑
j

(ȳij.. − ȳi... − ȳ.j.. + ȳ....)
2

SSB = acn
b∑

j=1

(ȳ.j.. − ȳ....)
2 SS(AC) = bn

∑
i

∑
k

(ȳi.k. − ȳi... − ȳ..k. + ȳ....)
2

SSC = abn
c∑

k=1

(ȳ..k. − ȳ....)
2 SS(BC) = an

∑
j

∑
k

(ȳ.jk. − ȳ.j.. − ȳ..k. + ȳ....)
2

SS(ABC) = n
∑
i

∑
j

∑
k

(ȳijk. − ȳij.. − ȳi.k. − ȳ.jk. + ȳi... + ȳ.j.. + ȳ..k. − ȳ....)
2

SST =
∑
i

∑
j

∑
k

∑
l

(yijkl − ȳ....)
2 SSE =

∑
i

∑
j

∑
k

∑
l

(yijkl − ȳijk.)
2
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Although we emphasize interpretation of annotated computer printout in this
section rather than being concerned with laborious computation of sums of squares,
we do offer the following as the sums of squares for the three main effects and
interactions. Notice the obvious extension from the two- to three-factor problem.

The averages in the formulas are defined as follows:
ȳ.... = average of all abcn observations,

ȳi... = average of the observations for the ith level of factor A,

ȳ.j.. = average of the observations for the jth level of factor B,

ȳ..k. = average of the observations for the kth level of factor C,

ȳij.. = average of the observations for the ith level of A and the jth level of B,

ȳi.k. = average of the observations for the ith level of A and the kth level of C,

ȳ.jk. = average of the observations for the jth level of B and the kth level of C,

ȳijk. = average of the observations for the (ijk)th treatment combination.

The computations in an analysis-of-variance table for a three-factor problem
with n replicated runs at each factor combination are summarized in Table 14.7.

Table 14.7: ANOVA for the Three-Factor Experiment with n Replications

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:

A SSA a− 1 s21 f1 =
s21
s2

B SSB b− 1 s22 f2 =
s22
s2

C SSC c− 1 s23 f3 =
s23
s2

Two-factor interaction:

AB SS(AB) (a− 1)(b− 1) s24 f4 =
s24
s2

AC SS(AC) (a− 1)(c− 1) s25 f5 =
s25
s2

BC SS(BC) (b− 1)(c− 1) s26 f6 =
s26
s2

Three-factor interaction:

ABC SS(ABC) (a− 1)(b− 1)(c− 1) s27 f7 =
s27
s2

Error SSE abc(n− 1) s2

Total SST abcn− 1

For the three-factor experiment with a single experimental run per combination,
we may use the analysis of Table 14.7 by setting n = 1 and using the ABC
interaction sum of squares for SSE. In this case, we are assuming that the (αβγ)ijk
interaction effects are all equal to zero so that

E

[
SS(ABC)

(a− 1)(b− 1)(c− 1)

]
= σ2 +

n

(a− 1)(b− 1)(c− 1)

a∑
i=1

b∑
j=1

c∑
k=1

(αβγ)2ijk = σ2.
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That is, SS(ABC) represents variation due only to experimental error. Its mean
square thereby provides an unbiased estimate of the error variance. With n = 1
and SSE = SS(ABC), the error sum of squares is found by subtracting the sums
of squares of the main effects and two-factor interactions from the total sum of
squares.

Example 14.4: In the production of a particular material, three variables are of interest: A, the
operator effect (three operators): B, the catalyst used in the experiment (three
catalysts); and C, the washing time of the product following the cooling process
(15 minutes and 20 minutes). Three runs were made at each combination of factors.
It was felt that all interactions among the factors should be studied. The coded
yields are in Table 14.8. Perform an analysis of variance to test for significant
effects.

Table 14.8: Data for Example 14.4

Washing Time, C
15 Minutes 20 Minutes
Catalyst, B Catalyst, B

Operator, A 1 2 3 1 2 3
1 10.7 10.3 11.2 10.9 10.5 12.2

10.8 10.2 11.6 12.1 11.1 11.7
11.3 10.5 12.0 11.5 10.3 11.0

2 11.4 10.2 10.7 9.8 12.6 10.8
11.8 10.9 10.5 11.3 7.5 10.2
11.5 10.5 10.2 10.9 9.9 11.5

3 13.6 12.0 11.1 10.7 10.2 11.9
14.1 11.6 11.0 11.7 11.5 11.6
14.5 11.5 11.5 12.7 10.9 12.2

Solution : Table 14.9 shows an analysis of variance of the data given above. None of the
interactions show a significant effect at the α = 0.05 level. However, the P-value
for BC is 0.0610; thus, it should not be ignored. The operator and catalyst effects
are significant, while the effect of washing time is not significant.

Impact of Interaction BC

More should be discussed regarding Example 14.4, particularly about dealing with
the effect that the interaction between catalyst and washing time is having on the
test on the washing time main effect (factor C). Recall our discussion in Section
14.2. Illustrations were given of how the presence of interaction could change the
interpretation that we make regarding main effects. In Example 14.4, the BC
interaction is significant at approximately the 0.06 level. Suppose, however, that
we observe a two-way table of means as in Table 14.10.

It is clear why washing time was found not to be significant. A non-thorough
analyst may get the impression that washing time can be eliminated from any
future study in which yield is being measured. However, it is obvious how the
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Table 14.9: ANOVA for a Three-Factor Experiment in a Completely Randomized Design

Source df Sum of Squares Mean Square F-Value P-Value

A
B
AB
C
AC
BC
ABC
Error

Total

2
2
4
1
2
2
4
36
53

13.98
10.18
4.77
1.19
2.91
3.63
4.91
21.61
63.19

6.99
5.09
1.19
1.19
1.46
1.82
1.23
0.60

11.64
8.48
1.99
1.97
2.43
3.03
2.04

0.0001
0.0010
0.1172
0.1686
0.1027
0.0610
0.1089

Table 14.10: Two-Way Table of Means for Example 14.4

Washing Time, C

Catalyst, B 15 min 20 min

1 12.19 11.29
2 10.86 10.50
3 11.09 11.46

Means 11.38 11.08

effect of washing time changes from a negative effect for the first catalyst to what
appears to be a positive effect for the third catalyst. If we merely focus on the
data for catalyst 1, a simple comparison between the means at the two washing
times will produce a simple t-statistic:

t =
12.19− 11.29√

0.6(2/9)
= 2.5,

which is significant at a level less than 0.02. Thus, an important negative effect
of washing time for catalyst 1 might very well be ignored if the analyst makes the
incorrect broad interpretation of the insignificant F-ratio for washing time.

Pooling in Multifactor Models

We have described the three-factor model and its analysis in the most general
form by including all possible interactions in the model. Of course, there are
many situations where it is known a priori that the model should not contain
certain interactions. We can then take advantage of this knowledge by combining
or pooling the sums of squares corresponding to negligible interactions with the
error sum of squares to form a new estimator for σ2 with a larger number of degrees
of freedom. For example, in a metallurgy experiment designed to study the effect
on film thickness of three important processing variables, suppose it is known
that factor A, acid concentration, does not interact with factors B and C. The
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Table 14.11: ANOVA with Factor A Noninteracting

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:

A SSA a− 1 s21 f1 =
s21
s2

B SSB b− 1 s22 f2 =
s22
s2

C SSC c− 1 s23 f3 =
s23
s2

Two-factor interaction:

BC SS(BC) (b− 1)(c− 1) s24 f4 =
s24
s2

Error SSE Subtraction s2

Total SST abcn− 1

sums of squares SSA, SSB, SSC, and SS(BC) are computed using the methods
described earlier in this section. The mean squares for the remaining effects will
now all independently estimate the error variance σ2. Therefore, we form our new
mean square error by pooling SS(AB), SS(AC), SS(ABC), and SSE, along
with the corresponding degrees of freedom. The resulting denominator for the
significance tests is then the mean square error given by

s2 =
SS(AB) + SS(AC) + SS(ABC) + SSE

(a− 1)(b− 1) + (a− 1)(c− 1) + (a− 1)(b− 1)(c− 1) + abc(n− 1)
.

Computationally, of course, one obtains the pooled sum of squares and the pooled
degrees of freedom by subtraction once SST and the sums of squares for the existing
effects are computed. The analysis-of-variance table would then take the form of
Table 14.11.

Factorial Experiments in Blocks

In this chapter, we have assumed that the experimental design used is a completely
randomized design. By interpreting the levels of factor A in Table 14.11 as dif-
ferent blocks, we then have the analysis-of-variance procedure for a two-factor
experiment in a randomized block design. For example, if we interpret the op-
erators in Example 14.4 as blocks and assume no interaction between blocks and
the other two factors, the analysis of variance takes the form of Table 14.12 rather
than that of Table 14.9. The reader can verify that the mean square error is also

s2 =
4.77 + 2.91 + 4.91 + 21.61

4 + 2 + 4 + 36
= 0.74,

which demonstrates the pooling of the sums of squares for the nonexisting inter-
action effects. Note that factor B, catalyst, has a significant effect on yield.
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Table 14.12: ANOVA for a Two-Factor Experiment in a Randomized Block Design

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f P-Value

Blocks 13.98 2 6.99
Main effect:
B 10.18 2 5.09 6.88 0.0024
C 1.18 1 1.18 1.59 0.2130

Two-factor interaction:
BC 3.64 2 1.82 2.46 0.0966

Error 34.21 46 0.74

Total 63.19 53

Example 14.5: An experiment was conducted to determine the effects of temperature, pressure,
and stirring rate on product filtration rate. This was done in a pilot plant. The
experiment was run at two levels of each factor. In addition, it was decided that
two batches of raw materials should be used, where batches were treated as blocks.
Eight experimental runs were made in random order for each batch of raw materials.
It is thought that all two-factor interactions may be of interest. No interactions
with batches are assumed to exist. The data appear in Table 14.13. “L” and “H”
imply low and high levels, respectively. The filtration rate is in gallons per hour.

(a) Show the complete ANOVA table. Pool all “interactions” with blocks into
error.

(b) What interactions appear to be significant?

(c) Create plots to reveal and interpret the significant interactions. Explain what
the plot means to the engineer.

Table 14.13: Data for Example 14.5

Batch 1

Low Stirring Rate High Stirring Rate

Temp. Pressure L Pressure H Temp. Pressure L Pressure H
L 43 49 L 44 47
H 64 68 H 97 102

Batch 2

Low Stirring Rate High Stirring Rate

Temp. Pressure L Pressure H Temp. Pressure L Pressure H
L 49 57 L 51 55
H 70 76 H 103 106

Uploaded By: anonymousSTUDENTS-HUB.com



14.4 Three-Factor Experiments 585

Solution : (a) The SAS printout is given in Figure 14.7.

(b) As seen in Figure 14.7, the temperature by stirring rate (strate) interaction
appears to be highly significant. The pressure by stirring rate interaction
also appears to be significant. Incidentally, if one were to do further pooling
by combining the insignificant interactions with error, the conclusions would
remain the same and the P-value for the pressure by stirring rate interaction
would become stronger, namely 0.0517.

(c) The main effects for both stirring rate and temperature are highly significant,
as shown in Figure 14.7. A look at the interaction plot of Figure 14.8(a) shows
that the effect of stirring rate is dependent upon the level of temperature. At
the low level of temperature the stirring rate effect is negligible, whereas at
the high level of temperature stirring rate has a strong positive effect on mean
filtration rate. In Figure 14.8(b), the interaction between pressure and stirring
rate, though not as pronounced as that of Figure 14.8(a), still shows a slight
inconsistency of the stirring rate effect across pressure.

Source DF Type III SS Mean Square F Value Pr > F

batch 1 175.562500 175.562500 177.14 <.0001

pressure 1 95.062500 95.062500 95.92 <.0001

temp 1 5292.562500 5292.562500 5340.24 <.0001

pressure*temp 1 0.562500 0.562500 0.57 0.4758

strate 1 1040.062500 1040.062500 1049.43 <.0001

pressure*strate 1 5.062500 5.062500 5.11 0.0583

temp*strate 1 1072.562500 1072.562500 1082.23 <.0001

pressure*temp*strate 1 1.562500 1.562500 1.58 0.2495

Error 7 6.937500 0.991071

Corrected Total 15 7689.937500

Figure 14.7: ANOVA for Example 14.5, batch interaction pooled with error.
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(a) Temperature versus stirring rate.
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(b) Pressure versus stirring rate.

Figure 14.8: Interaction plots for Example 14.5.
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Exercises

14.16 Consider an experimental situation involving
factors A, B, and C, where we assume a three-way
fixed effects model of the form yijkl = μ + αi + βj +
γk+(βγ)jk+εijkl. All other interactions are considered
to be nonexistent or negligible. The data are presented
here.

B1 B2

C1 C2 C3 C1 C2 C3

A1 4.0 3.4 3.9 4.4 3.1 3.1
4.9 4.1 4.3 3.4 3.5 3.7

A2 3.6 2.8 3.1 2.7 2.9 3.7
3.9 3.2 3.5 3.0 3.2 4.2

A3 4.8 3.3 3.6 3.6 2.9 2.9
3.7 3.8 4.2 3.8 3.3 3.5

A4 3.6 3.2 3.2 2.2 2.9 3.6
3.9 2.8 3.4 3.5 3.2 4.3

(a) Perform a test of significance on the BC interaction
at the α = 0.05 level.

(b) Perform tests of significance on the main effects A,
B, and C using a pooled mean square error at the
α = 0.05 level.

14.17 The following data are measurements from an
experiment conducted using three factors A, B, and C,
all fixed effects:

C1 C2 C3

B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 15.0 14.8 15.9 16.8 14.2 13.2 15.8 15.5 19.2
18.5 13.6 14.8 15.4 12.9 11.6 14.3 13.7 13.5
22.1 12.2 13.6 14.3 13.0 10.1 13.0 12.6 11.1

A2 11.3 17.2 16.1 18.9 15.4 12.4 12.7 17.3 7.8
14.6 15.5 14.7 17.3 17.0 13.6 14.2 15.8 11.5
18.2 14.2 13.4 16.1 18.6 15.2 15.9 14.6 12.2

(a) Perform tests of significance on all interactions at
the α = 0.05 level.

(b) Perform tests of significance on the main effects at
the α = 0.05 level.

(c) Give an explanation of how a significant interaction
has masked the effect of factor C.

14.18 The method of X-ray fluorescence is an impor-
tant analytical tool for determining the concentration
of material in solid missile propellants. In the paper
An X-ray Fluorescence Method for Analyzing Polybu-
tadiene Acrylic Acid (PBAA) Propellants (Quarterly
Report, RK-TR-62-1, Army Ordinance Missile Com-
mand, 1962), it is postulated that the propellant mix-
ing process and analysis time have an influence on the
homogeneity of the material and hence on the accu-
racy of X-ray intensity measurements. An experiment
was conducted using 3 factors: A, the mixing condi-

tions (4 levels); B, the analysis time (2 levels); and
C, the method of loading propellant into sample hold-
ers (hot and room temperature). The following data,
which represent the weight percent of ammonium per-
chlorate in a particular propellant, were recorded.

Method of Loading, C
Hot Room Temp.

A B1 B2 B1 B2

1 38.62 38.45 39.82 39.82
37.20 38.64 39.15 40.26
38.02 38.75 39.78 39.72

2 37.67 37.81 39.53 39.56
37.57 37.75 39.76 39.25
37.85 37.91 39.90 39.04

3 37.51 37.21 39.34 39.74
37.74 37.42 39.60 39.49
37.58 37.79 39.62 39.45

4 37.52 37.60 40.09 39.36
37.15 37.55 39.63 39.38
37.51 37.91 39.67 39.00

(a) Perform an analysis of variance with α = 0.01 to
test for significant main and interaction effects.

(b) Discuss the influence of the three factors on the
weight percent of ammonium perchlorate. Let your
discussion involve the role of any significant inter-
action.

14.19 Corrosion fatigue in metals has been defined
as the simultaneous action of cyclic stress and chem-
ical attack on a metal structure. In the study Effect
of Humidity and Several Surface Coatings on the Fa-
tigue Life of 2024-T351 Aluminum Alloy, conducted by
the Department of Mechanical Engineering at Virginia
Tech, a technique involving the application of a protec-
tive chromate coating was used to minimize corrosion
fatigue damage in aluminum. Three factors were used
in the investigation, with 5 replicates for each treat-
ment combination: coating, at 2 levels, and humidity
and shear stress, both with 3 levels. The fatigue data,
recorded in thousands of cycles to failure, are presented
here.

(a) Perform an analysis of variance with α = 0.01 to
test for significant main and interaction effects.

(b) Make a recommendation for combinations of the
three factors that would result in low fatigue dam-
age.
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Shear Stress (psi)

Coating Humidity 13,000 17,00020,000

Uncoated Low
(20–25% RH)

4580
10,126
1341
6414
3549

5252
897

1465
2694
1017

361
466

1069
469
937

Medium
(50–60% RH)

2858
8829

10,914
4067
2595

799
3471
685
810

3409

314
244
261
522
739

High
(86–91% RH)

6489
5248
6816
5860
5901

1862
2710
2632
2131
2470

1344
1027
663

1216
1097

Chromated Low
(20–25% RH)

5395
2768
1821
3604
4106

4035
2022
914

2036
3524

130
841

1595
1482
529

Medium
(50–60% RH)

4833
7414

10,022
7463

21,906

1847
1684
3042
4482
996

252
105
847
874
755

High
(86–91% RH)

3287
5200
5493
4145
3336

1319
929

1263
2236
1392

586
402
846
524
751

14.20 For a study of the hardness of gold dental fill-
ings, five randomly chosen dentists were assigned com-
binations of three methods of condensation and two
types of gold. The hardness was measured. (See
Hoaglin, Mosteller, and Tukey, 1991.) Let the den-
tists play the role of blocks. The data are presented
here.

(a) State the appropriate model with the assumptions.

(b) Is there a significant interaction between method
of condensation and type of gold filling material?

(c) Is there one method of condensation that seems to
be best? Explain.

Type

Dentist Method Gold Foil Goldent

1 1 792 824
2 772 772
3 782 803

2 1 803 803
2 752 772
3 715 707

(cont.)

Type

Dentist Method Gold Foil Goldent

3 1 715 724
2 792 715
3 762 606

4 1 673 946
2 657 743
3 690 245

5 1 634 715
2 649 724
3 724 627

14.21 Electronic copiers make copies by gluing black
ink on paper, using static electricity. Heating and glu-
ing the ink on the paper comprise the final stage of
the copying process. The gluing power during this fi-
nal process determines the quality of the copy. It is
postulated that temperature, surface state of the glu-
ing roller, and hardness of the press roller influence the
gluing power of the copier. An experiment is run with
treatments consisting of a combination of these three
factors at each of three levels. The following data show
the gluing power for each treatment combination. Per-
form an analysis of variance with α = 0.05 to test for
significant main and interaction effects.

Surface
State of Hardness of the
Gluing Press Roller
Roller 20 40 60

Low Soft 0.52 0.44 0.54 0.52 0.60 0.55
Temp. 0.57 0.53 0.65 0.56 0.78 0.68

Medium 0.64 0.59 0.79 0.73 0.49 0.48
0.58 0.64 0.79 0.78 0.74 0.50

Hard 0.67 0.77 0.58 0.68 0.55 0.65
0.74 0.65 0.57 0.59 0.57 0.58

Medium Soft 0.46 0.40 0.31 0.49 0.56 0.42
Temp. 0.58 0.37 0.48 0.66 0.49 0.49

Medium 0.60 0.43 0.66 0.57 0.64 0.54
0.62 0.61 0.72 0.56 0.74 0.56

Hard 0.53 0.65 0.53 0.45 0.56 0.66
0.66 0.56 0.59 0.47 0.71 0.67

High Soft 0.52 0.44 0.54 0.52 0.65 0.49
Temp. 0.57 0.53 0.65 0.56 0.65 0.52

Medium 0.53 0.65 0.53 0.45 0.49 0.48
0.66 0.56 0.59 0.47 0.74 0.50

Hard 0.43 0.43 0.48 0.31 0.55 0.65
0.47 0.44 0.43 0.27 0.57 0.58

14.22 Consider the data set in Exercise 14.21.

(a) Construct an interaction plot for any two-factor in-
teraction that is significant.

(b) Do a normal probability plot of residuals and com-
ment.

14.23 Consider combinations of three factors in the
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removal of dirt from standard loads of laundry. The
first factor is the brand of the detergent, X, Y , or Z.
The second factor is the type of detergent, liquid or
powder. The third factor is the temperature of the wa-
ter, hot or warm. The experiment was replicated three
times. Response is percent dirt removal. The data are
as follows:

Brand Type Temperature

X Powder Hot 85 88 80
Warm 82 83 85

Liquid Hot 78 75 72
Warm 75 75 73

Y Powder Hot 90 92 92
Warm 88 86 88

Liquid Hot 78 76 70
Warm 76 77 76

Z Powder Hot 85 87 88
Warm 76 74 78

Liquid Hot 60 70 68
Warm 55 57 54

(a) Are there significant interaction effects at the α =
0.05 level?

(b) Are there significant differences between the three
brands of detergent?

(c) Which combination of factors would you prefer to
use?

14.24 A scientist collects experimental data on the
radius of a propellant grain, y, as a function of pow-
der temperature, extrusion rate, and die temperature.
Results of the three-factor experiment are as follows:

Powder Temp

150 190
Die Temp Die Temp

Rate 220 250 220 250

12 82 124 88 129
24 114 157 121 164

Resources are not available to make repeated experi-
mental trials at the eight combinations of factors. It

is believed that extrusion rate does not interact with
die temperature and that the three-factor interaction
should be negligible. Thus, these two interactions may
be pooled to produce a 2 d.f. “error” term.

(a) Do an analysis of variance that includes the three
main effects and two two-factor interactions. De-
termine what effects influence the radius of the pro-
pellant grain.

(b) Construct interaction plots for the powder temper-
ature by die temperature and powder temperature
by extrusion rate interactions.

(c) Comment on the consistency in the appearance of
the interaction plots and the tests on the two in-
teractions in the ANOVA.

14.25 In the book Design of Experiments for Qual-
ity Improvement, published by the Japanese Standards
Association (1989), a study is reported on the extrac-
tion of polyethylene by using a solvent and how the
amount of gel (proportion) is influenced by three fac-
tors: the type of solvent, extraction temperature, and
extraction time. A factorial experiment was designed,
and the following data were collected on proportion of
gel.

Time
Solvent Temp. 4 8 16
Ethanol 120 94.0 94.0 93.8 94.2 91.1 90.5

80 95.3 95.1 94.9 95.3 92.5 92.4

Toluene 120 94.6 94.5 93.6 94.1 91.1 91.0
80 95.4 95.4 95.6 96.0 92.1 92.1

(a) Do an analysis of variance and determine what fac-
tors and interactions influence the proportion of
gel.

(b) Construct an interaction plot for any two-factor in-
teraction that is significant. In addition, explain
what conclusion can be drawn from the presence of
the interaction.

(c) Do a normal probability plot of residuals and com-
ment.

14.5 Factorial Experiments for Random Effects
and Mixed Models

In a two-factor experiment with random effects, we have the model

Yijk = μ+Ai +Bj + (AB)ij + εijk,

for i = 1, 2, . . . , a; j = 1, 2, . . . , b; and k = 1, 2, . . . , n, where the Ai, Bj , (AB)ij ,
and εijk are independent random variables with means 0 and variances σ2

α, σ
2
β ,

σ2
αβ , and σ2, respectively. The sums of squares for random effects experiments are

computed in exactly the same way as for fixed effects experiments. We are now
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interested in testing hypotheses of the form

H
′
0: σ2

α = 0, H
′′
0 : σ2

β = 0, H
′′′
0 : σ2

αβ = 0,

H
′
1: σ2

α �= 0, H
′′
1 : σ2

β �= 0, H
′′′
1 : σ2

αβ �= 0,

where the denominator in the f-ratio is not necessarily the mean square error. The
appropriate denominator can be determined by examining the expected values of
the various mean squares. These are shown in Table 14.14.

Table 14.14: Expected Mean Squares for a Two-Factor Random Effects Experiment

Source of Degrees of Mean Expected
Variation Freedom Square Mean Square

A a− 1 s21 σ2 + nσ2
αβ + bnσ2

α

B b− 1 s22 σ2 + nσ2
αβ + anσ2

β

AB (a− 1)(b− 1) s23 σ2 + nσ2
αβ

Error ab(n− 1) s2 σ2

Total abn− 1

From Table 14.14 we see that H
′
0 and H

′′
0 are tested by using s23 in the de-

nominator of the f-ratio, whereas H
′′′
0 is tested using s2 in the denominator. The

unbiased estimates of the variance components are

σ̂2 = s2, σ̂2
αβ =

s23 − s2

n
, σ̂2

α =
s21 − s23

bn
, σ̂2

β =
s22 − s23
an

.

Table 14.15: Expected Mean Squares for a Three-Factor Random Effects Experiment

Source of Degrees of Mean Expected
Variation Freedom Square Mean Square

A a− 1 s21 σ2 + nσ2
αβγ + cnσ2

αβ + bnσ2
αγ + bcnσ2

α

B b− 1 s22 σ2 + nσ2
αβγ + cnσ2

αβ + anσ2
βγ + acnσ2

β

C c− 1 s23 σ2 + nσ2
αβγ + bnσ2

αγ + anσ2
βγ + abnσ2

γ

AB (a− 1)(b− 1) s24 σ2 + nσ2
αβγ + cnσ2

αβ

AC (a− 1)(c− 1) s25 σ2 + nσ2
αβγ + bnσ2

αγ

BC (b− 1)(c− 1) s26 σ2 + nσ2
αβγ + anσ2

βγ

ABC (a− 1)(b− 1)(c− 1) s27 σ2 + nσ2
αβγ

Error abc(n− 1) s2 σ2

Total abcn− 1

The expected mean squares for the three-factor experiment with random effects
in a completely randomized design are shown in Table 14.15. It is evident from the
expected mean squares of Table 14.15 that one can form appropriate f-ratios for
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testing all two-factor and three-factor interaction variance components. However,
to test a hypothesis of the form

H0: σ2
α = 0,

H1: σ2
α �= 0,

there appears to be no appropriate f-ratio unless we have found one or more of the
two-factor interaction variance components not significant. Suppose, for example,
that we have compared s25 (mean square AC) with s27 (mean square ABC) and
found σ2

αγ to be negligible. We could then argue that the term σ2
αγ should be

dropped from all the expected mean squares of Table 14.15; then the ratio s21/s
2
4

provides a test for the significance of the variance component σ2
α. Therefore, if we

are to test hypotheses concerning the variance components of the main effects, it is
necessary first to investigate the significance of the two-factor interaction compo-
nents. An approximate test derived by Satterthwaite (1946; see the Bibliography)
may be used when certain two-factor interaction variance components are found
to be significant and hence must remain a part of the expected mean square.

Example 14.6: In a study to determine which are the important sources of variation in an industrial
process, 3 measurements are taken on yield for 3 operators chosen randomly and 4
batches of raw materials chosen randomly. It is decided that a statistical test should
be made at the 0.05 level of significance to determine if the variance components
due to batches, operators, and interaction are significant. In addition, estimates of
variance components are to be computed. The data are given in Table 14.16, with
the response being percent by weight.

Table 14.16: Data for Example 14.6

Batch

Operator 1 2 3 4

1 66.9 68.3 69.0 69.3
68.1 67.4 69.8 70.9
67.2 67.7 67.5 71.4

2 66.3 68.1 69.7 69.4
65.4 66.9 68.8 69.6
65.8 67.6 69.2 70.0

3 65.6 66.0 67.1 67.9
66.3 66.9 66.2 68.4
65.2 67.3 67.4 68.7

Solution : The sums of squares are found in the usual way, with the following results:

SST (total) = 84.5564, SSE (error) = 10.6733,

SSA (operators) = 18.2106, SSB (batches) = 50.1564,

SS(AB) (interaction) = 5.5161.

All other computations are carried out and exhibited in Table 14.17. Since

f0.05(2, 6) = 5.14, f0.05(3, 6) = 4.76, and f0.05(6, 24) = 2.51,
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we find the operator and batch variance components to be significant. Although
the interaction variance is not significant at the α = 0.05 level, the P-value is 0.095.
Estimates of the main effect variance components are

σ̂2
α =

9.1053− 0.9194

12
= 0.68, σ̂2

β =
16.7188− 0.9194

9
= 1.76.

Table 14.17: Analysis of Variance for Example 14.6

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Operators 18.2106 2 9.1053 9.90
Batches 50.1564 3 16.7188 18.18
Interaction 5.5161 6 0.9194 2.07
Error 10.6733 24 0.4447

Total 84.5564 35

Mixed Model Experiment

There are situations where the experiment dictates the assumption of a mixed
model (i.e., a mixture of random and fixed effects). For example, for the case of
two factors, we may have

Yijk = μ+Ai +Bj + (AB)ij + εijk,

for i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n. The Ai may be independent
random variables, independent of εijk, and the Bj may be fixed effects. The mixed
nature of the model requires that the interaction terms be random variables. As a
result, the relevant hypotheses are of the form

H
′
0: σ2

α = 0, H
′′
0 : B1 = B2 = · · · = Bb = 0, H

′′′
0 : σ2

αβ = 0,

H
′
1: σ2

α �= 0, H
′′
1 : At least one the Bj is not zero, H

′′′
1 : σ2

αβ �= 0.

Again, the computations of sums of squares are identical to those of fixed and
random effects situations, and the F-test is dictated by the expected mean squares.
Table 14.18 provides the expected mean squares for the two-factor mixed model
problem.

Table 14.18: Expected Mean Squares for Two-Factor Mixed Model Experiment

Factor Expected Mean Square

A (random) σ2 + bnσ2
α

B (fixed) σ2 + nσ2
αβ + an

b−1

∑
j

B2
j

AB (random) σ2 + nσ2
αβ

Error σ2
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From the nature of the expected mean squares it becomes clear that the test on
the random effect employs the mean square error s2 as the denominator,
whereas the test on the fixed effect uses the interaction mean square. Suppose
we now consider three factors. Here, of course, we must take into account the
situation where one factor is fixed and the situation in which two factors are fixed.
Table 14.19 covers both situations.

Table 14.19: Expected Mean Squares for Mixed Model Factorial Experiments in Three Factors

A Random A Random, B Random

A σ2 + bcnσ2
α σ2 + cnσ2

αβ + bcnσ2
α

B σ2 + cnσ2
αβ + acn

b∑
j=1

B2
j

b−1 σ2 + cnσ2
αβ + acnσ2

β

C σ2 + bnσ2
αγ + abn

c∑
k=1

C2
k

c−1 σ2 + nσ2
αβγ + anσ2

βγ + bnσ2
αγ + abn

c∑
k=1

C2
k

c−1

AB σ2 + cnσ2
αβ σ2 + cnσ2

αβ

AC σ2 + bnσ2
αγ σ2 + nσ2

αβγ + bnσ2
αγ

BC σ2 + nσ2
αβγ + an

∑
j

∑
k

(BC)2jk
(b−1)(c−1) σ2 + nσ2

αβγ + anσ2
βγ

ABC σ2 + nσ2
αβγ σ2 + nσ2

αβγ

Error σ2 σ2

Note that in the case of A random, all effects have proper f-tests. But in the case
of A and B random, the main effect C must be tested using a Satterthwaite-type
procedure similar to that used in the random effects experiment.

Exercises

14.26 Assuming a random effects experiment for Ex-
ercise 14.2 on page 575, estimate the variance compo-
nents for brand of orange juice concentrate, for number
of days from when orange juice was blended until it was
tested, and for experimental error.

14.27 To estimate the various components of variabil-
ity in a filtration process, the percent of material lost
in the mother liquor is measured for 12 experimental
conditions, with 3 runs on each condition. Three filters
and 4 operators are selected at random for use in the
experiment.

(a) Test the hypothesis of no interaction variance com-
ponent between filters and operators at the α =
0.05 level of significance.

(b) Test the hypotheses that the operators and the fil-
ters have no effect on the variability of the filtration
process at the α = 0.05 level of significance.

(c) Estimate the components of variance due to filters,
operators, and experimental error.

Operator

Filter 1 2 3 4

1 16.2 15.9 15.6 14.9
16.8 15.1 15.9 15.2
17.1 14.5 16.1 14.9

2 16.6 16.0 16.1 15.4
16.9 16.3 16.0 14.6
16.8 16.5 17.2 15.9

3 16.7 16.5 16.4 16.1
16.9 16.9 17.4 15.4
17.1 16.8 16.9 15.6

14.28 A defense contractor is interested in studying
an inspection process to detect failure or fatigue of
transformer parts. Three levels of inspections are used
by three randomly chosen inspectors. Five lots are used
for each combination in the study. The factor levels are
given in the data. The response is in failures per 1000
pieces.
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(a) Write an appropriate model, with assumptions.

(b) Use analysis of variance to test the appropriate hy-
pothesis for inspector, inspection level, and inter-
action.

Inspection Level
Full Reduced

Military Military
Inspector Inspection Inspection Commercial

A 7.50 7.42 7.08 6.17 6.15 5.52
5.85 5.89 5.65 5.30 5.48 5.48
5.35 5.02 5.98

B 7.58 6.52 7.68 5.86 6.17 6.20
6.54 5.64 5.28 5.38 5.44 5.75
5.12 4.87 5.68

C 7.70 6.82 7.19 6.19 6.21 5.66
6.42 5.39 5.85 5.35 5.36 5.90
5.35 5.01 6.12

14.29 Consider the following analysis of variance for
a random effects experiment:

Source of Degrees of Mean
Variation Freedom Square

A
B
C
AB
AC
BC
ABC
Error

3
1
2
3
6
2
6

24

140
480
325
15
24
18
2
5

Total 47

Test for significant variance components among all
main effects and interaction effects at the 0.01 level
of significance

(a) by using a pooled estimate of error when appropri-
ate;

(b) by not pooling sums of squares of insignificant ef-
fects.

14.30 A plant manager would like to show that the
yield of a woven fabric in the plant does not depend on
machine operator or time of day and is consistently
high. Four randomly selected operators and 3 ran-
domly selected hours of the day are chosen for the
study. The yield is measured in yards produced per
minute. Samples are taken on 3 randomly chosen days.

(a) Write the appropriate model.

(b) Evaluate the variance components for operator and
time.

(c) Draw conclusions.

Operator

Time 1 2 3 4

1 9.5 9.8 9.8 10.0
9.8 10.1 10.3 9.7
10.0 9.6 9.7 10.2

2 10.2 10.1 10.2 10.3
9.9 9.8 9.8 10.1
9.5 9.7 9.7 9.9

3 10.5 10.4 9.9 10.0
10.2 10.2 10.3 10.1
9.3 9.8 10.2 9.7

14.31 A manufacturer of latex house paint (brand A)
would like to show that its paint is more robust to
the material being painted than that of its two closest
competitors. The response is the time, in years, until
chipping occurs. The study involves the three brands
of paint and three randomly chosen materials. Two
pieces of material are used for each combination.

Brand of Paint
Material A B C

A 5.50 5.15 4.75 4.60 5.10 5.20
B 5.60 5.55 5.50 5.60 5.40 5.50
C 5.40 5.48 5.05 4.95 4.50 4.55

(a) What is this type of model called?

(b) Analyze the data, using the appropriate model.

(c) Did the manufacturer of brand A support its claim
with the data?

14.32 A process engineer wants to determine if the
power setting on the machines used to fill certain types
of cereal boxes results in a significant effect on the ac-
tual weight of the product. The study consists of 3
randomly chosen types of cereal manufactured by the
company and 3 fixed power settings. Weight is mea-
sured for 4 different randomly selected boxes of cereal
at each combination. The desired weight is 400 grams.
The data are presented here.

Power Cereal Type
Setting 1 2 3
Low 395 390 392 392 402 405

401 400 394 401 399 399
Current 396 399 390 392 404 403

400 402 395 502 400 399
High 410 408 404 406 415 412

408 407 401 400 413 415

(a) Give the appropriate model, and list the assump-
tion being made.

(b) Is there a significant effect due to the power set-
ting?

(c) Is there a significant variance component due to
cereal type?
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Review Exercises

14.33 The Statistics Consulting Center at Virginia
Tech was involved in analyzing a set of data taken by
personnel in the Human Nutrition and Foods Depart-
ment in which it was of interest to study the effects
of flour type and percent sweetener on certain physical
attributes of a type of cake. All-purpose flour and cake
flour were used, and the percent sweetener was varied
at four levels. The following data show information
on specific gravity of cake samples. Three cakes were
prepared at each of the eight factor combinations.

Sweetener Flour
Concentration All-Purpose Cake

0
50
75

100

0.90 0.87 0.90
0.86 0.89 0.91
0.93 0.88 0.87
0.79 0.82 0.80

0.91 0.90 0.80
0.88 0.82 0.83
0.86 0.85 0.80
0.86 0.85 0.85

(a) Treat the analysis as a two-factor analysis of vari-
ance. Test for differences between flour type. Test
for differences between sweetener concentration.

(b) Discuss the effect of interaction, if any. Give P-
values on all tests.

14.34 An experiment was conducted in the Depart-
ment of Food Science at Virginia Tech. It was of inter-
est to characterize the texture of certain types of fish
in the herring family. The effect of sauce types used
in preparing the fish was also studied. The response
in the experiment was “texture value,” measured with
a machine that sliced the fish product. The following
are data on texture values:

Fish Type
Unbleached Bleached

Sauce Type Menhaden Menhaden Herring
Sour Cream 27.6

47.8
53.8

57.4
71.1

64.0
66.5
53.8

66.9
66.8

107.0
110.4
83.1

83.9
93.4

Wine Sauce 49.8
11.8
16.1

31.0
35.1

48.3
54.6
41.8

62.2
43.6

88.0
108.2
105.2

95.2
86.7

(a) Do an analysis of variance. Determine whether or
not there is an interaction between sauce type and
fish type.

(b) Based on your results from part (a) and on F-tests
on main effects, determine if there is a significant
difference in texture due to sauce types, and deter-
mine whether there is a significant difference due
to fish types.

14.35 A study was made to determine if humidity
conditions have an effect on the force required to pull
apart pieces of glued plastic. Three types of plastic
were tested using 4 different levels of humidity. The

results, in kilograms, are as follows:

Humidity

Plastic Type 30% 50% 70% 90%

A 39.0 33.1 33.8 33.0
42.8 37.8 30.7 32.9

B 36.9 27.2 29.7 28.5
41.0 26.8 29.1 27.9

C 27.4 29.2 26.7 30.9
30.3 29.9 32.0 31.5

(a) Assuming a fixed effects experiment, perform an
analysis of variance and test the hypothesis of no
interaction between humidity and plastic type at
the 0.05 level of significance.

(b) Using only plastics A and B and the value of s2

from part (a), once again test for the presence of
interaction at the 0.05 level of significance.

14.36 Personnel in the Materials Engineering Depart-
ment at Virginia Tech conducted an experiment to
study the effects of environmental factors on the sta-
bility of a certain type of copper-nickel alloy. The basic
response was the fatigue life of the material. The fac-
tors are level of stress and environment. The data are
as follows:

Stress Level

Environment Low Medium High

Dry 11.08 13.12 14.18
Hydrogen 10.98 13.04 14.90

11.24 13.37 15.10
High 10.75 12.73 14.15
Humidity 10.52 12.87 14.42
(95%) 10.43 12.95 14.25

(a) Do an analysis of variance to test for interaction
between the factors. Use α = 0.05.

(b) Based on part (a), do an analysis on the two main
effects and draw conclusions. Use a P-value ap-
proach in drawing conclusions.

14.37 In the experiment of Review Exercise 14.33,
cake volume was also used as a response. The units
are cubic inches. Test for interaction between factors
and discuss main effects. Assume that both factors are
fixed effects.

Sweetener Flour
Concentration All-Purpose Cake

0
50
75

100

4.48 3.98 4.42
3.68 5.04 3.72
3.92 3.82 4.06
3.26 3.80 3.40

4.12 4.92 5.10
5.00 4.26 4.34
4.82 4.34 4.40
4.32 4.18 4.30
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14.38 A control valve needs to be very sensitive to
the input voltage, thus generating a good output volt-
age. An engineer turns the control bolts to change
the input voltage. The book SN-Ratio for the Quality
Evaluation, published by the Japanese Standards As-
sociation (1988), described a study on how these three
factors (relative position of control bolts, control range
of bolts, and input voltage) affect the sensitivity of a
control valve. The factors and their levels are shown
below. The data show the sensitivity of a control valve.
Factor A, relative position of control bolts:

center −0.5, center, and center +0.5
Factor B, control range of bolts:

2, 4.5, and 7 (mm)
Factor C, input voltage:

100, 120, and 150 (V)

C
A B C1 C2 C3

A1 B1 151 135 151 135 151 138
A1 B2 178 171 180 173 181 174
A1 B3 204 190 205 190 206 192
A2 B1 156 148 158 149 158 150
A2 B2 183 168 183 170 183 172
A2 B3 210 204 211 203 213 204
A3 B1 161 145 162 148 163 148
A3 B2 189 182 191 184 192 183
A3 B3 215 202 216 203 217 205

Perform an analysis of variance with α = 0.05 to test
for significant main and interaction effects. Draw con-
clusions.

14.39 Exercise 14.25 on page 588 describes an exper-
iment involving the extraction of polyethylene through
use of a solvent.

Time
Solvent Temp. 4 8 16
Ethanol 120

80
94.0 94.0
95.3 95.1

93.8 94.2
94.9 95.3

91.1 90.5
92.5 92.4

Toluene 120
80

94.6 94.5
95.4 95.4

93.6 94.1
95.6 96.0

91.1 91.0
92.1 92.1

(a) Do a different sort of analysis on the data. Fit an
appropriate regression model with a solvent cate-
gorical variable, a temperature term, a time term, a
temperature by time interaction, a solvent by tem-
perature interaction, and a solvent by time interac-
tion. Do t-tests on all coefficients and report your
findings.

(b) Do your findings suggest that different models are
appropriate for ethanol and toluene, or are they
equivalent apart from the intercepts? Explain.

(c) Do you find any conclusions here that contra-
dict conclusions drawn in your solution of Exercise
14.25? Explain.

14.40 In the book SN-Ratio for the Quality Evalua-
tion, published by the Japanese Standards Association

(1988), a study on how tire air pressure affects the ma-
neuverability of an automobile was described. Three
different tire air pressures were compared on three dif-
ferent driving surfaces. The three air pressures were
both left- and right-side tires inflated to 6 kgf/cm2,
left-side tires inflated to 6 kgf/cm2 and right-side tires
inflated to 3 kgf/cm2, and both left- and right-side tires
inflated to 3 kgf/cm2. The three driving surfaces were
asphalt, dry asphalt, and dry cement. The turning ra-
dius of a test vehicle was observed twice for each level
of tire pressure on each of the three different driving
surfaces.

Tire Air Pressure
Driving Surface 1 2 3
Asphalt 44.0 25.5 34.2 37.2 27.4 42.8
Dry Asphalt 31.9 33.7 31.8 27.6 43.7 38.2
Dry Cement 27.3 39.5 46.6 28.1 35.5 34.6

Perform an analysis of variance of the above data.
Comment on the interpretation of the main and in-
teraction effects.

14.41 The manufacturer of a certain brand of freeze-
dried coffee hopes to shorten the process time without
jeopardizing the integrity of the product. The process
engineer wants to use 3 temperatures for the drying
chamber and 4 drying times. The current drying time
is 3 hours at a temperature of −15◦C. The flavor re-
sponse is an average of scores of 4 professional judges.
The score is on a scale from 1 to 10, with 10 being the
best. The data are as shown in the following table.

Temperature
Time −20◦C −15◦C −10◦C
1 hr 9.60 9.63 9.55 9.50 9.40 9.43
1.5 hr 9.75 9.73 9.60 9.61 9.55 9.48
2 hr 9.82 9.93 9.81 9.78 9.50 9.52
3 hr 9.78 9.81 9.80 9.75 9.55 9.58

(a) What type of model should be used? State assump-
tions.

(b) Analyze the data appropriately.

(c) Write a brief report to the vice-president in charge
and make a recommendation for future manufac-
turing of this product.

14.42 To ascertain the number of tellers needed dur-
ing peak hours of operation, data were collected by
an urban bank. Four tellers were studied during three
“busy” times: (1) weekdays between 10:00 and 11:00
A.M., (2) weekday afternoons between 2:00 and 3:00
P.M., and (3) Saturday mornings between 11:00 A.M.

and 12:00 noon. An analyst chose four randomly se-
lected times within each of the three time periods for
each of the four teller positions over a period of months,
and the numbers of customers serviced were observed.
The data are as follows:
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Time Period
Teller 1 2 3

1 18 24 17 22 25 29 23 32 29 30 21 34
2 16 11 19 14 23 32 25 17 27 29 18 16
3 12 19 11 22 27 33 27 24 25 20 29 15
4 11 9 13 8 10 7 19 8 11 9 17 9

It is assumed that the number of customers served is a
Poisson random variable.

(a) Discuss the danger in doing a standard analysis of
variance on the data above. What assumptions, if

any, would be violated?

(b) Construct a standard ANOVA table that includes
F-tests on main effects and interactions. If interac-
tions and main effects are found to be significant,
give scientific conclusions. What have we learned?
Be sure to interpret any significant interaction. Use
your own judgment regarding P-values.

(c) Do the entire analysis again using an appropriate
transformation on the response. Do you see any
differences in your findings? Comment.

14.6 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

One of the most confusing issues in the analysis of factorial experiments resides in
the interpretation of main effects in the presence of interaction. The presence of a
relatively large P-value for a main effect when interactions are clearly present may
tempt the analyst to conclude “no significant main effect.” However, one must
understand that if a main effect is involved in a significant interaction, then the
main effect is influencing the response. The nature of the effect is inconsistent
across levels of other effects. The nature of the role of the main effect can be
deduced from interaction plots.

In light of what is communicated in the preceding paragraph, there is danger
of a substantial misuse of statistics when one employs a multiple comparison test
on main effects in the clear presence of interaction among the factors.

One must be cautious in the analysis of a factorial experiment when the assump-
tion of a complete randomized design is made when in fact complete randomization
is not carried out. For example, it is common to encounter factors that are very
difficult to change. As a result, factor levels may need to be held without change
for long periods of time throughout the experiment. For instance, a temperature
factor is a common example. Moving temperature up and down in a randomization
scheme is a costly plan, and most experimenters will refuse to do it. Experimental
designs with restrictions in randomization are quite common and are called split
plot designs. They are beyond the scope of the book, but presentations are found
in Montgomery (2008a).

Many of the concepts discussed in this chapter carry over into Chapter 15 (e.g.,
the importance of randomization and the role of interaction in the interpretation
of results). However, there are two areas covered in Chapter 15 that represent
an expansion of principles dealt with both in Chapter 13 and in this chapter. In
Chapter 15, problem solving through the use of factorial experiments is done with
regression analysis since most of the factors are assumed to be quantitative and
measured on a continuum (e.g., temperature and time). Prediction equations are
developed from the data of the designed experiment, and they are used for process
improvement or even process optimization. In addition, development is given on
the topic of fractional factorials, in which only a portion or fraction of the entire
factorial experiment is implemented due to the prohibitive cost of doing the entire
experiment.
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Chapter 15

2k Factorial Experiments
and Fractions

15.1 Introduction

We have already been exposed to certain experimental design concepts. The sam-
pling plan for the simple t-test on the mean of a normal population and the analy-
sis of variance involve randomly allocating pre-chosen treatments to experimental
units. The randomized block design, where treatments are assigned to units within
relatively homogeneous blocks, involves restricted randomization.

In this chapter, we give special attention to experimental designs in which the
experimental plan calls for the study of the effect on a response of k factors, each at
two levels. These are commonly known as 2k factorial experiments. We often
denote the levels as “high” and “low” even though this notation may be arbitrary
in the case of qualitative variables. The complete factorial design requires that
each level of every factor occur with each level of every other factor, giving a total
of 2k treatment combinations.

Factor Screening and Sequential Experimentation

Often, when experimentation is conducted either on a research or on a development
level, a well-planned experimental design is a stage of what is truly a sequential
plan of experimentation. More often than not, the scientists and engineers at
the outset of a study may not be aware of which factors are important or what
are appropriate ranges for the potential factors on which experimentation should
be conducted. For example, in the text Response Surface Methodology by Myers,
Montgomery, and Anderson-Cook (2009), one example is given of an investigation
of a pilot plant experiment in which four factors—temperature, pressure, concen-
tration of formaldehyde, and steering rate—are varied in order to establish their
influence on the response, filtration rate of a certain chemical product. Even at the
pilot plant level, the scientists are not certain if all four factors should be involved
in the model. In addition, the eventual goal is to determine the proper settings
of contributing factors that maximize the filtration rate. Thus, there is a need
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to determine the proper region of experimentation. These questions can be
answered only if the total experimental plan is done sequentially. Many experimen-
tal endeavors are plans that feature iterative learning, the type of learning that is
consistent with the scientific method, with the word iterative implying stage-wise
experimentation.

Generally, the initial stage of the ideal sequential plan is variable or factor
screening, a procedure that involves an inexpensive experimental design using
the candidate factors. This is particularly important when the plan involves a
complex system like a manufacturing process. The information received from the
results of a screening design is used to design one or more subsequent experiments
in which adjustments in the important factors are made, the adjustments that
provide improvements in the system or process.

The 2k factorial experiments and fractions of the 2k are powerful tools that
are ideal screening designs. They are simple, practical, and intuitively appealing.
Many of the general concepts discussed in Chapter 14 continue to apply. However,
there are graphical methods that provide useful intuition in the analysis of the
two-level designs.

Screening Designs for Large Numbers of Factors

When k is small, say k = 2 or even k = 3, the utility of the 2k factorial for factor
screening is clear. Analysis of variance and/or regression analysis as discussed and
illustrated in Chapters 12, 13, and 14 remain useful as tools. In addition, graphical
approaches are helpful.

If k is large, say as large as 6, 7, or 8, the number of factor combinations and
thus experimental runs required for the 2k factorial often becomes prohibitive. For
example, suppose one is interested in carrying out a screening design involving
k = 8 factors. There may be interest in gaining information on all k = 8 main

effects as well as the k(k−1)
2 = 28 two-factor interactions. However, including

28 = 256 runs would appear to make the study much too large and be wasteful
for studying 28 + 8 = 36 effects. But, as we will illustrate in future sections, when
k is large we can gain considerable information in an efficient manner by using
only a fraction of the complete 2k factorial experiment. This class of designs is the
class of fractional factorial designs. The goal is to retain high-quality information
on main effects and interesting interactions even though the size of the design is
reduced considerably.

15.2 The 2k Factorial: Calculation of Effects and Analysis of
Variance

Consider initially a 22 factorial with factors A and B and n experimental obser-
vations per factor combination. It is useful to use the symbols (1), a, b, and ab
to signify the design points, where the presence of a lowercase letter implies that
the factor (A or B) is at the high level. Thus, absence of the lower case implies
that the factor is at the low level. So ab is the design point (+,+), a is (+,−), b
is (−,+) and (1) is (−,−). There are situations in which the notation also stands
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for the response data at the design point in question. As an introduction to the
calculation of important effects that aid in the determination of the influence of
the factors and sums of squares that are incorporated into analysis of variance
computations, we have Table 15.1.

Table 15.1: A 22 Factorial Experiment

A Mean

B

{
b

(1)

ab

a

b+ab
2n

(1)+a
2n

Mean (1)+b
2n

a+ab
2n

In this table, (1), a, b, and ab signify totals of the n response values at the
individual design points. The simplicity of the 22 factorial lies in the fact that
apart from experimental error, important information comes to the analyst in
single-degree-of-freedom components, one each for the two main effects A and B
and one degree of freedom for interaction AB. The information retrieved on all
these takes the form of three contrasts. Let us define the following contrasts
among the treatment totals:

A contrast = ab+ a− b− (1),

B contrast = ab− a+ b− (1),

AB contrast = ab− a− b+ (1).

The three effects from the experiment involve these contrasts and appeal to com-
mon sense and intuition. The two computed main effects are of the form

effect = ȳH − ȳL,

where ȳH and ȳL are average response at the high, or “+” level and average
response at the low, or “−” level, respectively. As a result,

Calculation of
Main Effects A =

ab+ a− b− (1)

2n
=

A contrast

2n

and

B =
ab− a+ b− (1)

2n
=

B contrast

2n
.

The quantity A is seen to be the difference between the mean responses at the
low and high levels of factor A. In fact, we call A the main effect of factor A.
Similarly, B is the main effect of factor B. Apparent interaction in the data is
observed by inspecting the difference between ab− b and a− (1) or between ab− a
and b− (1) in Table 15.1. If, for example,

ab− a ≈ b− (1) or ab− a− b+ (1) ≈ 0,
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a line connecting the responses for each level of factor A at the high level of factor
B will be approximately parallel to a line connecting the responses for each level of
factor A at the low level of factor B. The nonparallel lines of Figure 15.1 suggest
the presence of interaction. To test whether this apparent interaction is significant,
a third contrast in the treatment totals orthogonal to the main effect contrasts,
called the interaction effect, is constructed by evaluating

Interaction Effect
AB =

ab− a− b+ (1)

2n
=

AB contrast

2n
.

Level of A

R
es

po
ns

e

(1)

b
a

ab

Low High

Low Level of B

High Level of B

Figure 15.1: Response suggesting apparent interaction.

Example 15.1: Consider the data in Tables 15.2 and 15.3 with n = 1 for a 22 factorial experiment.

Table 15.2: 22 Factorial with No Interaction

B

A − +

+ 50 70
− 80 100

Table 15.3: 22 Factorial with Interaction

B

A − +

+ 50 70
− 80 40

The numbers in the cells in Tables 15.2 and 15.3 clearly illustrate how contrasts
and the resulting calculation of the two main effects and resulting conclusions can
be highly influenced by the presence of interaction. In Table 15.2, the effect of A
is −30 at both the low and high levels of factor B and the effect of B is 20 at both
the low and high levels of factor A. This “consistency of effect” (no interaction)
can be very important information to the analyst. The main effects are

A =
70 + 50

2
− 100 + 80

2
= 60− 90 = −30,

B =
100 + 70

2
− 80 + 50

2
= 85− 65 = 20,

while the interaction effect is

AB =
100 + 50

2
− 80 + 70

2
= 75− 75 = 0.
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On the other hand, in Table 15.3 the effect of A is once again −30 at the low level
of B but +30 at the high level of B. This “inconsistency of effect” (interaction)
also is present for B across levels of A. In these cases, the main effects can be
meaningless and, in fact, highly misleading. For example, the effect of A is

A =
50 + 70

2
− 80 + 40

2
= 0,

since there is a complete “masking” of the effect as one averages over levels of B.
The strong interaction is illustrated by the calculated effect

AB =
70 + 80

2
− 50 + 40

2
= 30.

Here it is convenient to illustrate the scenarios of Tables 15.2 and 15.3 with inter-
action plots. Note the parallelism in the plot of Figure 15.2 and the interaction
that is apparent in Figure 15.3.
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Figure 15.2: Interaction plot for data of
Table 15.2.
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Figure 15.3: Interaction plot for data of
Table 15.3.

Computation of Sums of Squares

We take advantage of the fact that in the 22 factorial, or for that matter in the
general 2k factorial experiment, each main effect and interaction effect has an as-
sociated single degree of freedom. Therefore, we can write 2k − 1 orthogonal
single-degree-of-freedom contrasts in the treatment combinations, each accounting
for variation due to some main or interaction effect. Thus, under the usual in-
dependence and normality assumptions in the experimental model, we can make
tests to determine if the contrast reflects systematic variation or merely chance or
random variation. The sums of squares for each contrast are found by following
the procedures given in Section 13.5. Writing

Y1.. = b+ (1), Y2.. = ab+ a, c1 = −1, and c2 = 1,
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602 Chapter 15 2k Factorial Experiments and Fractions

where Y1.. and Y2.. are the total of 2n observations, we have

SSA = SSwA =

(
2∑

i=1

ciYi..

)2

2n
2∑

i=1

c2i

=
[ab+ a− b− (1)]2

22n
=

(A contrast)2

22n
,

with 1 degree of freedom. Similarly, we find that

SSB =
[ab+ b− a− (1)]2

22n
=

(B contrast)2

22n

and

SS(AB) =
[ab+ (1)− a− b]2

22n
=

(AB contrast)2

22n
.

Each contrast has l degree of freedom, whereas the error sum of squares, with
22(n− 1) degrees of freedom, is obtained by subtraction from the formula

SSE = SST − SSA− SSB − SS(AB).

In computing the sums of squares for the main effects A and B and the inter-
action effect AB, it is convenient to present the total responses of the treatment
combinations along with the appropriate algebraic signs for each contrast, as in
Table 15.4. The main effects are obtained as simple comparisons between the low
and high levels. Therefore, we assign a positive sign to the treatment combination
that is at the high level of a given factor and a negative sign to the treatment
combination at the low level. The positive and negative signs for the interaction
effect are obtained by multiplying the corresponding signs of the contrasts of the
interacting factors.

Table 15.4: Signs for Contrasts in a 22 Factorial Experiment

Treatment Factorial Effect

Combination A B AB

(1) – – +
a + – –
b – + –
ab + + +

The 23 Factorial

Let us now consider an experiment using three factors, A, B, and C, each with
levels −1 and +1. This is a 23 factorial experiment giving the eight treatment
combinations (1), a, b, c, ab, ac, bc, and abc. The treatment combinations and
the appropriate algebraic signs for each contrast used in computing the sums of
squares for the main effects and interaction effects are presented in Table 15.5.
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Table 15.5: Signs for Contrasts in a 23 Factorial Experiment

Treatment Factorial Effect (symbolic)

Combination A B C AB AC BC ABC

(1) − − − + + + −
a + − − − − + +
b − + − − + − +
c − − + + − − +
ab + + − + − − −
ac + − + − + − −
bc − + + − − + −
abc + + + + + + +

−1 +1
−1

+1

−1

+1

A

C

B
(1) a

abb

c

bc abc

ac

Figure 15.4: Geometric view of 23.

It is helpful to discuss and illustrate the geometry of the 23 factorial much as
we illustrated that of the 22 factorial in Figure 15.1. For the 23, the eight design
points represent the vertices of a cube, as shown in Figure 15.4.

The columns of Table 15.5 represent the signs that are used for the contrasts
and thus computation of seven effects and corresponding sums of squares. These
columns are analogous to those given in Table 15.4 for the case of the 22. Seven
effects are available since there are eight design points. For example,

A =
a+ ab+ ac+ abc− (1)− b− c− bc

4n
,

AB =
(1) + c+ ab+ abc− a− b− ac− bc

4n
,

and so on. The sums of squares are merely given by

SS(effect) =
(contrast)2

23n
.

An inspection of Table 15.5 reveals that for the 23 experiment all contrasts
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among the seven are mutually orthogonal, and therefore the seven effects are as-
sessed independently.

Effects and Sums of Squares for the 2k

For a 2k factorial experiment the single-degree-of-freedom sums of squares for the
main effects and interaction effects are obtained by squaring the appropriate con-
trasts in the treatment totals and dividing by 2kn, where n is the number of
replications of the treatment combinations.

As before, an effect is always calculated by subtracting the average response at
the “low” level from the average response at the “high” level. The high and low
for main effects are quite clear. The symbolic high and low for interactions are
evident from information as in Table 15.5.

The orthogonality property has the same importance here as it does for the
material on comparisons discussed in Chapter 13. Orthogonality of contrasts im-
plies that the estimated effects and thus the sums of squares are independent. This
independence is readily illustrated in the 23 factorial experiment if the responses,
with factor A at its high level, are increased by an amount x in Table 15.5. Only
the A contrast leads to a larger sum of squares, since the x effect cancels out in
the formation of the six remaining contrasts as a result of the two positive and two
negative signs associated with treatment combinations in which A is at the high
level.

There are additional advantages produced by orthogonality. These are pointed
out when we discuss the 2k factorial experiment in regression situations.

15.3 Nonreplicated 2k Factorial Experiment
The full 2k factorial may often involve considerable experimentation, particularly
when k is large. As a result, replication of each factor combination is often not
feasible. If all effects, including all interactions, are included in the model of the
experiment, no degrees of freedom are allowed for error. Often, when k is large,
the data analyst will pool sums of squares and corresponding degrees of freedom
for high-order interactions that are known or assumed to be negligible. This will
produce F-tests for main effects and lower-order interactions.

Diagnostic Plotting with Nonreplicated 2k Factorial Experiments
Normal probability plotting can be a very useful methodology for determining the
relative importance of effects in a reasonably large two-level factored experiment
when there is no replication. This type of diagnostic plot can be particularly
useful when the data analyst is hesitant to pool high-order interactions for fear
that some of the effects pooled in the “error” may truly be real effects and not
merely random. The reader should bear in mind that all effects that are not real
(i.e., they are independent estimates of zero) follow a normal distribution with
mean near zero and constant variance. For example, in a 24 factorial experiment,
we are reminded that all effects (keep in mind that n = 1) are of the form

AB =
contrast

8
= ȳH − ȳL,
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where ȳH is the average of eight independent experimental runs at the high, or
“+,” level and ȳL is the average of eight independent runs at the low, or “−,”
level. Thus, the variance of each contrast is Var(ȳH − ȳL) = σ2/4. For any
real effects, E(ȳH − ȳL) �= 0. Thus, normal probability plotting should reveal
“significant” effects as those that fall off the straight line that depicts realizations
of independent, identically distributed normal random variables.

The probability plotting can take one of many forms. The reader is referred to
Chapter 8, where these plots were first presented. The empirical normal quantile-
quantile plot may be used. The plotting procedure that makes use of normal
probability paper may also be used. In addition, there are several other types
of diagnostic normal probability plots. In summary, the procedure for diagnostic
effect plots is as follows.

Probability Effect
Plots for

Nonreplicated 24

Factorial
Experiments

1. Calculate effects as

effect =
contrast

2k−1
.

2. Construct a normal probability plot of all effects.

3. Effects that fall off the straight line should be considered real effects.

Further comments regarding normal probability plotting of effects are in order.
First, the data analyst may feel frustrated if he or she uses these plots with a small
experiment. On the other hand, the plotting is likely to give satisfying results when
there is effect sparsity—many effects that are truly not real. This sparsity will be
evident in large experiments where high-order interactions are not likely to be real.

Case Study 15.1: Injection Molding: Many manufacturing companies in the United States and
abroad use molded parts as components. Shrinkage is often a major problem.
Often, a molded die for a part is built larger than nominal to allow for part shrink-
age. In the following experimental situation, a new die is being produced, and
ultimately it is important to find the proper process settings to minimize shrink-
age. In the following experiment, the response values are deviations from nominal
(i.e., shrinkage). The factors and levels are as follows:

Coded Levels

−1 +1

A. Injection velocity (ft/sec)
B. Mold temperature (◦C)
C. Mold pressure (psi)
D. Back pressure (psi)

1.0
100
500
75

2.0
150
1000
120

The purpose of the experiment was to determine what effects (main effects and
interaction effects) influence shrinkage. The experiment was considered a prelim-
inary screening experiment from which the factors for a more complete analysis
might be determined. Also, it was hoped that some insight might be gained into
how the important factors impact shrinkage. The data from a nonreplicated 24

factorial experiment are given in Table 15.6.

Uploaded By: anonymousSTUDENTS-HUB.com
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Table 15.6: Data for Case Study 15.1

Factor Response Factor Response
Combination (cm × 104) Combination (cm × 104)

(1)
a
b
ab
c
ac
bc
abc

72.68
71.74
76.09
93.19
71.25
70.59
70.92
104.96

d
ad
bd
abd
cd
acd
bcd
abcd

73.52
75.97
74.28
92.87
79.34
75.12
79.67
97.80

Initially, effects were calculated and placed on a normal probability plot. The
calculated effects are as follows:

A = 10.5613, BD = −2.2787, B = 12.4463,

C = 2.4138, D = 2.1438, AB = 11.4038,

AC = 1.2613, AD = −1.8238, BC = 1.8163,

CD = 1.4088, ABC = 2.8588, ABD = −1.7813,

ACD = −3.0438, BCD = −0.4788, ABCD = −1.3063.

The normal quantile-quantile plot is shown in Figure 15.5. The plot seems to
imply that effects A, B, and AB stand out as being important. The signs of the
important effects indicate the preliminary conclusions.
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Figure 15.5: Normal quantile-quantile plot of effects for Case Study 15.1.
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1. An increase in injection velocity from 1.0 to 2.0 increases shrinkage.

2. An increase in mold temperature from 100◦C to 150◦C increases shrinkage.

3. There is an interaction between injection velocity and mold temperature; al-
though both main effects are important, it is crucial that we understand the
impact of the two-factor interaction.

Interpretation of Two-Factor Interaction

As one would expect, a two-way table of means provides ease in interpretation of
the AB interaction. Consider the two-factor situation in Table 15.7.

Table 15.7: Illustration of Two-Factor Interaction

B (temperature)

A (velocity) 100 150

2 73.355 97.205
1 74.1975 75.240

Notice that the large sample mean at high velocity and high temperature cre-
ated the significant interaction. The shrinkage increases in a nonadditive
manner. Mold temperature appears to have a positive effect despite the velocity
level. But the effect is greatest at high velocity. The velocity effect is very slight
at low temperature but clearly is positive at high mold temperature. To control
shrinkage at a low level, one should avoid using high injection velocity and high
mold temperature simultaneously. All of these results are illustrated graphically in
Figure 15.6.
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Figure 15.6: Interaction plot for Case Study 15.1.
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Analysis with Pooled Mean Square Error: Annotated Computer Printout

It may be of interest to observe an analysis of variance of the injection molding data
with high-order interactions pooled to form a mean square error. Interactions of
order three and four are pooled. Figure 15.7 shows a SAS PROC GLM printout.
The analysis of variance reveals essentially the same conclusion as that of the
normal probability plot.

The tests and P-values shown in Figure 15.7 require interpretation. A signif-
icant P-value suggests that the effect differs significantly from zero. The tests on
main effects (which in the presence of interactions may be regarded as the effects
averaged over the levels of the other factors) indicate significance for effects A and
B. The signs of the effects are also important. An increase in the level from low

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 10 1689.237462 168.923746 9.37 0.0117

Error 5 90.180831 18.036166

Corrected Total 15 1779.418294

R-Square Coeff Var Root MSE y Mean

0.949320 5.308667 4.246901 79.99938

Source DF Type III SS Mean Square F Value Pr > F

A 1 446.1600062 446.1600062 24.74 0.0042

B 1 619.6365563 619.6365563 34.36 0.0020

C 1 23.3047563 23.3047563 1.29 0.3072

D 1 18.3826563 18.3826563 1.02 0.3590

A*B 1 520.1820562 520.1820562 28.84 0.0030

A*C 1 6.3630063 6.3630063 0.35 0.5784

A*D 1 13.3042562 13.3042562 0.74 0.4297

B*C 1 13.1950562 13.1950562 0.73 0.4314

B*D 1 20.7708062 20.7708062 1.15 0.3322

C*D 1 7.9383063 7.9383063 0.44 0.5364

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 79.99937500 1.06172520 75.35 <.0001

A 5.28062500 1.06172520 4.97 0.0042

B 6.22312500 1.06172520 5.86 0.0020

C 1.20687500 1.06172520 1.14 0.3072

D 1.07187500 1.06172520 1.01 0.3590

A*B 5.70187500 1.06172520 5.37 0.0030

A*C 0.63062500 1.06172520 0.59 0.5784

A*D -0.91187500 1.06172520 -0.86 0.4297

B*C 0.90812500 1.06172520 0.86 0.4314

B*D -1.13937500 1.06172520 -1.07 0.3322

C*D 0.70437500 1.06172520 0.66 0.5364

Figure 15.7: SAS printout for data of Case Study 15.1.
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to high of A, injection velocity, results in increased shrinkage. The same is true for
B. However, because of the significant interaction AB, main effect interpretations
may be viewed as trends across the levels of the other factors. The impact of the
significant AB interaction is better understood by using a two-way table of means.

Exercises

15.1 The following data are obtained from a 23 fac-
torial experiment replicated three times. Evaluate the
sums of squares for all factorial effects by the contrast
method. Draw conclusions.

Treatment
Combination Rep 1 Rep 2 Rep 3

(1) 12 19 10
a 15 20 16
b 24 16 17
ab 23 17 27
c 17 25 21
ac 16 19 19
bc 24 23 29
abc 28 25 20

15.2 In an experiment conducted by the Mining Engi-
neering Department at Virginia Tech to study a partic-
ular filtering system for coal, a coagulant was added to
a solution in a tank containing coal and sludge, which
was then placed in a recirculation system in order that
the coal could be washed. Three factors were varied in
the experimental process:

Factor A: percent solids circulated initially
in the overflow

Factor B: flow rate of the polymer
Factor C: pH of the tank

The amount of solids in the underflow of the cleans-
ing system determines how clean the coal has become.
Two levels of each factor were used and two experi-
mental runs were made for each of the 23 = 8 combi-
nations. The response measurements in percent solids
by weight in the underflow of the circulation system
are as specified in the following table:

Treatment Response

Combination Replication 1 Replication 2

(1)
a
b
ab
c
ac
bc
abc

4.65
21.42
12.66
18.27
7.93

13.18
6.51

18.23

5.81
21.35
12.56
16.62
7.88

12.87
6.26

17.83

Assuming that all interactions are potentially impor-

tant, do a complete analysis of the data. Use P-values
in your conclusion.

15.3 In a metallurgy experiment, it is desired to test
the effect of four factors and their interactions on the
concentration (percent by weight) of a particular phos-
phorus compound in casting material. The variables
are A, percent phosphorus in the refinement; B, per-
cent remelted material; C, fluxing time; and D, holding
time. The four factors are varied in a 24 factorial exper-
iment with two castings taken at each factor combina-
tion. The 32 castings were made in random order. The
following table shows the data and an ANOVA table is
given in Figure 15.8 on page 610. Discuss the effects of
the factors and their interactions on the concentration
of the phosphorus compound.

Weight
Treatment % of Phosphorus Compound

Combination Rep 1 Rep 2 Total

(1) 30.3 28.6 58.9
a 28.5 31.4 59.9
b 24.5 25.6 50.1
ab 25.9 27.2 53.1
c 24.8 23.4 48.2
ac 26.9 23.8 50.7
bc 24.8 27.8 52.6
abc 22.2 24.9 47.1
d 31.7 33.5 65.2
ad 24.6 26.2 50.8
bd 27.6 30.6 58.2
abd 26.3 27.8 54.1
cd 29.9 27.7 57.6
acd 26.8 24.2 51.0
bcd 26.4 24.9 51.3
abcd 26.9 29.3 56.2

Total 428.1 436.9 865.0

15.4 A preliminary experiment is conducted to study
the effects of four factors and their interactions on the
output of a certain machining operation. Two runs are
made at each of the treatment combinations in order to
supply a measure of pure experimental error. Two lev-
els of each factor are used, resulting in the data shown
next page. Make tests on all main effects and interac-
tions at the 0.05 level of significance. Draw conclusions.
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Source of Sum of Degrees of Mean Computed
Variation Effects Squares Freedom Square f P-Value

Main effect :
A
B
C
D

Two-factor interaction :
AB
AC
AD
BC
BD
CD

Three-factor interaction :
ABC
ABD
ACD
BCD

Four-factor interaction :
ABCD

Error

−1.2000
−1.2250
−2.2250
1.4875

0.9875
0.6125

−1.3250
1.1875
0.6250
0.7000

−0.5500
1.7375
1.4875

−0.8625

0.7000

11.52
12.01
39.61
17.70

7.80
3.00

14.05
11.28
3.13
3.92

2.42
24.15
17.70
5.95

3.92
39.36

1
1
1
1

1
1
1
1
1
1

1
1
1
1

1
16

11.52
12.01
39.61
17.70

7.80
3.00

14.05
11.28
3.13
3.92

2.42
24.15
17.70
5.95

3.92
2.46

4.68
4.88

16.10
7.20

3.17
1.22
5.71
4.59
1.27
1.59

0.98
9.82
7.20
2.42

1.59

0.0459
0.0421
0.0010
0.0163

0.0939
0.2857
0.0295
0.0480
0.2763
0.2249

0.3360
0.0064
0.0163
0.1394

0.2249

Total 217.51 31

Figure 15.8: ANOVA table for Exercise 15.3.

Treatment
Combination Replicate 1 Replicate 2

(1)
a
b
c
d
ab
ac
ad
bc
bd
cd
abc
abd
acd
bcd
abcd

7.9
9.1
8.6

10.4
7.1

11.1
16.4
7.1

12.6
4.7
7.4

21.9
9.8

13.8
10.2
12.8

9.6
10.2
5.8

12.0
8.3

12.3
15.5
8.7

15.2
5.8

10.9
21.9
7.8

11.2
11.1
14.3

15.5 In the study An X-Ray Fluorescence Method for
Analyzing Polybutadiene-Acrylic Acid (PBAA) Propel-
lants (Quarterly Reports, RK-TR-62-1, Army Ord-
nance Missile Command), an experiment was con-
ducted to determine whether or not there was a signif-
icant difference in the amount of aluminum obtained

in an analysis with certain levels of certain processing
variables. The data are shown below.

Phys. Mixing Blade Nitrogen
Obs. State Time Speed Condition Aluminum

1 1 1 2 2 16.3
2 1 2 2 2 16.0
3 1 1 1 1 16.2
4 1 2 1 2 16.1
5 1 1 1 2 16.0
6 1 2 1 1 16.0
7 1 2 2 1 15.5
8 1 1 2 1 15.9
9 2 1 2 2 16.7
10 2 2 2 2 16.1
11 2 1 1 1 16.3
12 2 2 1 2 15.8
13 2 1 1 2 15.9
14 2 2 1 1 15.9
15 2 2 2 1 15.6
16 2 1 2 1 15.8

The variables in the data are given as below.
A: mixing time

level 1: 2 hours
level 2: 4 hours
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B: blade speed
level 1: 36 rpm
level 2: 78 rpm

C: condition of nitrogen passed over propellant
level 1: dry
level 2: 72% relative humidity

D: physical state of propellant
level 1: uncured
level 2: cured

Assuming all three- and four-factor interactions to be
negligible, analyze the data. Use a 0.05 level of signif-
icance. Write a brief report summarizing the findings.

15.6 It is important to study the effect of the concen-
tration of the reactant and the feed rate on the viscosity
of the product from a chemical process. Let the reac-
tant concentration be factor A, at levels 15% and 25%.
Let the feed rate be factor B, with levels 20 lb/hr and
30 lb/hr. The experiment involves two experimental
runs at each of the four combinations (L = low and H
= high). The viscosity readings are as follows.

H 132 149
137 152

B

145 154
L 147 150

L H
A

(a) Assuming a model containing two main effects and
an interaction, calculate the three effects. Do you
have any interpretation at this point?

(b) Do an analysis of variance and test for interaction.
Give conclusions.

(c) Test for main effects and give final conclusions re-
garding the importance of all these effects.

15.7 Consider Exercise 15.3. It is of interest to the
researcher to learn not only that AD, BC, and possibly
AB are important, but also what they mean scientif-
ically. Show two-dimensional interaction plots for all
three and give an interpretation.

15.8 Consider Exercise 15.3 once again. Three-factor
interactions are often not significant, and even if they
are, they are difficult to interpret. The interaction
ABD appears to be important. To gain some sense

of interpretation, show two AD interaction plots, one
for B = −1 and the other for B = +1. From the ap-
pearance of these, give an interpretation of the ABD
interaction.

15.9 Consider Exercise 15.6. Use a +1 and −1 scaling
for “high” and “low,” respectively, and do a multiple
linear regression with the model

Yi = β0 + β1x1i + β2x2i + β12x1ix2i + εi,

with x1i = reactant concentration (−1,+1) and x2i =
feed rate (−1,+1).

(a) Compute regression coefficients.

(b) How do the coefficients b1, b2, and b12 relate to the
effects you found in Exercise 15.6(a)?

(c) In your regression analysis, do t-tests on b1, b2, and
b12. How do these test results relate to those in Ex-
ercise 15.6(b) and (c)?

15.10 Consider Exercise 15.5. Compute all 15 effects
and do normal probability plots of the effects.

(a) Does it appear as if your assumption of negligible
three- and four-factor interactions has merit?

(b) Are the results of the effect plots consistent with
what you communicated about the importance of
main effects and two-factor interactions in your
summary report?

15.11 In Myers, Montgomery, and Anderson-Cook
(2009), a data set is discussed in which a 23 factorial
is used by an engineer to study the effects of cutting
speed (A), tool geometry (B), and cutting angle (C)
on the life (in hours) of a machine tool. Two levels of
each factor are chosen, and duplicates are run at each
design point with the order of the runs being random.
The data are presented here.

A B C Life

(1) − − − 22, 31
a + − − 32, 43
b − + − 35, 34
ab + + − 35, 47
c − − + 44, 45
ac + − + 40, 37
bc − + + 60, 50
abc + + + 39, 41

(a) Calculate all seven effects. Which appear, based
on their magnitude, to be important?

(b) Do an analysis of variance and observe P -values.

(c) Do your results in (a) and (b) agree?
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(d) The engineer felt confident that cutting speed and
cutting angle should interact. If this interaction is
significant, draw an interaction plot and discuss the
engineering meaning of the interaction.

15.12 Consider Exercise 15.11. Suppose there was
some experimental difficulty in making the runs. In
fact, the total experiment had to be halted after only 4
runs. As a result, the abbreviated experiment is given
by

Life

a 43
b 35
c 44
abc 39

With only these runs, we have the signs for contrasts
given by

A B C AB AC BC ABC

a + − − − − + +
b − + − − + − +
c − − + + − − +
abc + + + + + + +

Comment. In your comments, determine whether or
not the contrasts are orthogonal. Which are and which
are not? Are main effects orthogonal to each other? In
this abbreviated experiment (called a fractional facto-
rial), can we study interactions independent of main
effects? Is it a useful experiment if we are convinced
that interactions are negligible? Explain.

15.4 Factorial Experiments in a Regression Setting

Thus far in this chapter, we have mostly confined our discussion of analysis of the
data for a 2k factorial to the method of analysis of variance. The only reference
to an alternative analysis resides in Exercise 15.9. Indeed, this exercise introduces
much of what motivates the present section. There are situations in which model
fitting is important and the factors under study can be controlled. For example,
a biologist may wish to study the growth of a certain type of algae in the water,
and so a model that looks at units of algae as a function of the amount of a
pollutant and, say, time would be very helpful. Thus, the study involves a factorial
experiment in a laboratory setting in which concentration of the pollutant and
time are the factors. As we shall discuss later in this section, a more precise model
can be fitted if the factors are controlled in a factorial array, with the 2k factorial
often being a useful choice. In many biological and chemical processes, the levels
of the regressor variables can and should be controlled.

Recall that the regression model employed in Chapter 12 can be written in
matrix notation as

y = Xβ + ε.

The X matrix is referred to as the model matrix. Suppose, for example, that a
23 factorial experiment is employed with the variables

Temperature: 150◦C 200◦C
Humidity: 15% 20%
Pressure (psi): 1000 1500

The familiar +1, −1 levels can be generated through the following centering
and scaling to design units:

x1 =
temperature− 175

25
, x2 =

humidity− 17.5

2.5
, x3 =

pressure− 1250

250
.
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As a result, the X matrix becomes

x1 x2 x3 Design Identification

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
a
b
c
ab
ac
bc
abc

It is now seen that the contrasts illustrated and discussed in Section 15.2 are
directly related to regression coefficients. Notice that all the columns of the X
matrix in our 23 example are orthogonal. As a result, the computation of regression
coefficients as described in Section 12.3 becomes

b =

⎡⎢⎢⎣
b0
b1
b2
b3

⎤⎥⎥⎦ = (X′X)−1X′y =

(
1

8
I

)
X′y

=
1

8

⎡⎢⎢⎣
a+ ab+ ac+ abc+ (1) + b+ c+ bc
a+ ab+ ac+ abc− (1)− b− c− bc
b+ ab+ bc+ abc− (1)− a− c− ac
c+ ac+ bc+ abc− (1)− a− b− ab

⎤⎥⎥⎦ ,

where a, ab, and so on, are response measures.
One can now see that the notion of calculated main effects, which has been

emphasized throughout this chapter with 2k factorials, is related to coefficients in
a fitted regression model when factors are quantitative. In fact, for a 2k with,
say, n experimental runs per design point, the relationships between effects and
regression coefficients are as follows:

Effect =
contrast

2k−1(n)

Regression coefficient =
contrast

2k(n)
=

effect

2
.

This relationship should make sense to the reader, since a regression coefficient
bj is an average rate of change in response per unit change in xj . Of course, as one
goes from −1 to +1 in xj (low to high), the design variable changes by 2 units.

Example 15.2: Consider an experiment where an engineer desires to fit a linear regression of yield
y against holding time x1 and flexing time x2 in a certain chemical system. All
other factors are held fixed. The data in the natural units are given in Table 15.8.
Estimate the multiple linear regression model.

Solution : The fitted regression model is

ŷ = b0 + b1x1 + b2x2.
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Table 15.8: Data for Example 15.2

Holding Time (hr) Flexing Time (hr) Yield (%)

0.5 0.10 28
0.8 0.10 39
0.5 0.20 32
0.8 0.20 46

The design units are

x1 =
holding time− 0.65

0.15
, x2 =

flexing time− 0.15

0.05

and the X matrix is
x1 x2⎡⎢⎢⎣

1
1
1
1

−1
1

−1
1

−1
−1
1
1

⎤⎥⎥⎦
with the regression coefficients

⎡⎣b0b1
b2

⎤⎦ = (X′X)−1X′y =

⎡⎢⎢⎢⎢⎣
(1) + a+ b+ ab

4
a+ ab− (1)− b

4
b+ ab− (1)− a

4

⎤⎥⎥⎥⎥⎦ =

⎡⎣36.256.25
2.75

⎤⎦ .

Thus, the least squares regression equation is

ŷ = 36.25 + 6.25x1 + 2.75x2.

This example provides an illustration of the use of the two-level factorial ex-
periment in a regression setting. The four experimental runs in the 22 design
were used to calculate a regression equation, with the obvious interpretation of the
regression coefficients. The value b1 = 6.25 represents the estimated increase in
response (percent yield) per design unit change (0.15 hour) in holding time. The
value b2 = 2.75 represents a similar rate of change for flexing time.

Interaction in the Regression Model

The interaction contrasts discussed in Section 15.2 have definite interpretations in
the regression context. In fact, interactions are accounted for in regression models
by product terms. For example, in Example 15.2, the model with interaction is

y = b0 + b1x1 + b2x2 + b12x1x2

with b0, b1, b2 as before and

b12 =
ab+ (1)− a− b

4
=

46 + 28− 39− 32

4
= 0.75.
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Thus, the regression equation expressing two linear main effects and interaction is

ŷ = 36.25 + 6.25x1 + 2.75x2 + 0.75x1x2.

The regression context provides a framework in which the reader should better
understand the advantage of orthogonality that is enjoyed by the 2k factorial. In
Section 15.2, the merits of orthogonality were discussed from the point of view of
analysis of variance of the data in a 2k factorial experiment. It was pointed out
that orthogonality among effects leads to independence among the sums of squares.
Of course, the presence of regression variables certainly does not rule out the use
of analysis of variance. In fact, f-tests are conducted just as they were described
in Section 15.2. Of course, a distinction must be made. In the case of ANOVA,
the hypotheses evolve from population means, while in the regression case, the
hypotheses involve regression coefficients.

For instance, consider the experimental design in Exercise 15.2 on page 609.
Each factor is continuous. Suppose that the levels are

A (x1): 20% 40%
B (x2): 5 lb/sec 10 lb/sec
C (x3): 5 5.5

and we have, for design levels,

x1 =
% solids− 30

10
, x2 =

flow rate− 7.5

2.5
, x3 =

pH− 5.25

0.25
.

Suppose that it is of interest to fit a multiple regression model in which all linear
coefficients and available interactions are to be considered. In addition, the engineer
wants to obtain some insight into what levels of the factor will maximize cleansing
(i.e., maximize the response). This problem will be the subject of Case Study 15.2.

Case Study 15.2: Coal Cleansing Experiment1: Figure 15.9 represents annotated computer print-
out for the regression analysis for the fitted model

ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3,

where x1, x2, and x3 are percent solids, flow rate, and pH of the system, respec-
tively. The computer system used is SAS PROC REG.

Note the parameter estimates, standard error, and P-values in the printout.
The parameter estimates represent coefficients in the model. All model coefficients
are significant except the x2x3 term (BC interaction). Note also that residuals,
confidence intervals, and prediction intervals appear as discussed in the regression
material in Chapters 11 and 12.

The reader can use the values of the model coefficients and predicted values
from the printout to ascertain what combination of the factors results in max-
imum cleansing efficiency. Factor A (percent solids circulated) has a large
positive coefficient, suggesting a high value for percent solids. In addition, a low
value for factor C (pH of the tank) is suggested. Though the B main effect (flow
rate of the polymer) coefficient is positive, the rather large positive coefficient of

1See Exercise 15.2.
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Dependent Variable: Y

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 490.23499 70.03357 254.43 <.0001

Error 8 2.20205 0.27526

Corrected Total 15 492.43704

Root MSE 0.52465 R-Square 0.9955

Dependent Mean 12.75188 Adj R-Sq 0.9916

Coeff Var 4.11429

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 12.75188 0.13116 97.22 <.0001

A 1 4.71938 0.13116 35.98 <.0001

B 1 0.86563 0.13116 6.60 0.0002

C 1 -1.41563 0.13116 -10.79 <.0001

AB 1 -0.59938 0.13116 -4.57 0.0018

AC 1 -0.52813 0.13116 -4.03 0.0038

BC 1 0.00562 0.13116 0.04 0.9668

ABC 1 2.23063 0.13116 17.01 <.0001

Dependent Predicted Std Error

Obs Variable Value Mean Predict 95% CL Mean 95% CL Predict Residual

1 4.6500 5.2300 0.3710 4.3745 6.0855 3.7483 6.7117 -0.5800

2 21.4200 21.3850 0.3710 20.5295 22.2405 19.9033 22.8667 0.0350

3 12.6600 12.6100 0.3710 11.7545 13.4655 11.1283 14.0917 0.0500

4 18.2700 17.4450 0.3710 16.5895 18.3005 15.9633 18.9267 0.8250

5 7.9300 7.9050 0.3710 7.0495 8.7605 6.4233 9.3867 0.0250

6 13.1800 13.0250 0.3710 12.1695 13.8805 11.5433 14.5067 0.1550

7 6.5100 6.3850 0.3710 5.5295 7.2405 4.9033 7.8667 0.1250

8 18.2300 18.0300 0.3710 17.1745 18.8855 16.5483 19.5117 0.2000

9 5.8100 5.2300 0.3710 4.3745 6.0855 3.7483 6.7117 0.5800

10 21.3500 21.3850 0.3710 20.5295 22.2405 19.9033 22.8667 -0.0350

11 12.5600 12.6100 0.3710 11.7545 13.4655 11.1283 14.0917 -0.0500

12 16.6200 17.4450 0.3710 16.5895 18.3005 15.9633 18.9267 -0.8250

13 7.8800 7.9050 0.3710 7.0495 8.7605 6.4233 9.3867 -0.0250

14 12.8700 13.0250 0.3710 12.1695 13.8805 11.5433 14.5067 -0.1550

15 6.2600 6.3850 0.3710 5.5295 7.2405 4.9033 7.8667 -0.1250

16 17.8300 18.0300 0.3710 17.1745 18.8855 16.5483 19.5117 -0.2000

Figure 15.9: SAS printout for data of Case Study 15.2.

x1x2x3 (ABC) suggests that flow rate should be at the low level to enhance effi-
ciency. Indeed, the regression model generated in the SAS printout suggests that
the combination of factors that may produce optimum results, or perhaps suggest
direction for further experimentation, is given by

A: high level
B: low level
C: low level
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15.5 The Orthogonal Design

In experimental situations where it is appropriate to fit models that are linear in the
design variables and possibly should involve interactions or product terms, there
are advantages gained from the two-level orthogonal design, or orthogonal array.
By an orthogonal design we mean one in which there is orthogonality among the
columns of the X matrix. For example, consider the X matrix for the 22 factorial
of Example 15.2. Notice that all three columns are mutually orthogonal. The X
matrix for the 23 factorial also contains orthogonal columns. The 23 factorial with
interactions would yield an X matrix of the type

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1

−1
1

−1
−1
1
1

−1
1

−1
−1
1

−1
1

−1
1
1

−1
−1
−1
1

−1
1
1
1

1
−1
−1
1
1

−1
−1
1

1
−1
1

−1
−1
1

−1
1

1
1

−1
−1
−1
−1
1
1

−1
1
1
1

−1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The outline of degrees of freedom is

Source d.f.
Regression 3
Lack of fit 4 (x1x2, x1x3, x2x3, x1x2x3)
Error (pure) 8

Total 15

The 8 degrees of freedom for pure error are obtained from the duplicate runs at
each design point. Lack-of-fit degrees of freedom may be viewed as the difference
between the number of distinct design points and the number of total model terms;
in this case, there are 8 points and 4 model terms.

Standard Error of Coefficients and T-Tests

In previous sections, we showed how the designer of an experiment may exploit
the notion of orthogonality to design a regression experiment with coefficients that
attain minimum variance on a per cost basis. We should be able to make use
of our exposure to regression in Section 12.4 to compute estimates of variances
of coefficients and hence their standard errors. It is also of interest to note the
relationship between the t-statistic on a coefficient and the F-statistic described
and illustrated in previous chapters.

Recall from Section 12.4 that the variances and covariances of coefficients ap-
pear in A−1, or, in terms of present notation, the variance-covariance matrix of
coefficients is

σ2A−1 = σ2(X′X)−1.

In the case of the 2k factorial experiment, the columns of X are mutually orthog-
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onal, imposing a very special structure. In general, for the 2k we can write

x1 x2 · · · xk x1x2 · · ·
X = [1 ± 1 ±1 · · · ± 1 ± 1 · · · ],

where each column contains 2k or 2kn entries, where n is the number of replicate
runs at each design point. Thus, formation of X′X yields

X′X = 2knIp,

where I is the identity matrix of dimension p, the number of model parameters.

Example 15.3: Consider a 23 factorial design with duplicated runs fitted to the model

E(Y ) = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3.

Give expressions for the standard errors of the least squares estimates of b0, b1, b2,
b3, b12, b13, and b23.

Solution : x1 x2 x3 x1x2 x1x3 x2x3

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1

−1
1

−1
−1
1
1

−1
1

−1
−1
1

−1
1

−1
1
1

−1
−1
−1
1

−1
1
1
1

1
−1
−1
1
1

−1
−1
1

1
−1
1

−1
−1
1

−1
1

1
1

−1
−1
−1
−1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with each unit viewed as being repeated (i.e., each observation is duplicated). As
a result,

X′X = 16I7.

Thus,

(X′X)−1 =
1

16
I7.

From the foregoing it should be clear that the variances of all coefficients for a
2k factorial with n runs at each design point are

Var(bj) =
σ2

2kn
,

and, of course, all covariances are zero. As a result, standard errors of coefficients
are calculated as

sbj = s

√
1

2kn
,

where s is found from the square root of the mean square error (hopefully obtained
from adequate replication). Thus, in our case with the 23,

sbj = s

(
1

4

)
.
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Example 15.4: Consider the metallurgy experiment in Exercise 15.3 on page 609. Suppose that
the fitted model is

E(Y ) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2 + β13x1x3

+ β14x1x4 + β23x2x3 + β24x2x4 + β34x3x4.

What are the standard errors of the least squares regression coefficients?
Solution : Standard errors of all coefficients for the 2k factorial are equal and are

sbj = s

√
1

2kn
,

which in this illustration is

sbj = s

√
1

(16)(2)
.

In this case, the pure mean square error is given by s2 = 2.46 (16 degrees of
freedom). Thus,

sbj = 0.28.

The standard errors of coefficients can be used to construct t-statistics on all
coefficients. These t-values are related to the F-statistics in the analysis of variance.
We have already demonstrated that an F-statistic on a coefficient, using the 2k

factorial, is

f =
(contrast)2

(2kn)s2
.

This is the form of the F-statistics on page 610 for the metallurgy experiment
(Exercise 15.3). It is easy to verify that if we write

t =
bj
sbj

, where bj =
contrast

2kn
,

then

t2 =
(contrast)2

s22kn
= f.

As a result, the usual relationship holds between t-statistics on coefficients and
the F-values. As we might expect, the only difference between the use of t and F
in assessing significance lies in the fact that the t-statistic indicates the sign, or
direction, of the effect of the coefficient.

It would appear that the 2k factorial plan would handle many practical situa-
tions in which regression models are fitted. It can accommodate linear and inter-
action terms, providing optimal estimates of all coefficients (from a variance point
of view). However, when k is large, the number of design points required is very
large. Often, portions of the total design can be used and still allow orthogonality
with all its advantages. These designs are discussed in Section 15.6.
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A More Thorough Look at the Orthogonality Property in the 2k Factorial

We have learned that for the case of the 2k factorial all the information that is
delivered to the analyst about the main effects and interactions is in the form of
contrasts. These “2k − 1 pieces of information” carry a single degree of freedom
apiece and they are independent of each other. In an analysis of variance, they
manifest themselves as effects, whereas if a regression model is being constructed,
the effects turn out to be regression coefficients, apart from a factor of 2. With
either form of analysis, significance tests can be carried out and the t-test for
a given effect is numerically the same as that for the corresponding regression
coefficient. In the case of ANOVA, variable screening and scientific interpretation
of interactions are important, whereas in the case of a regression analysis, a model
may be used to predict response and/or determine which factor/level combinations
are optimum (e.g. maximize yield or maximize cleaning efficiency, as in the case
of Case Study 15.2).

It turns out that the orthogonality property is important whether the analysis
is to be ANOVA or regression. The orthogonality among the columns of X, the
model matrix in, say, Example 15.3, provides special conditions that have an im-
portant impact on the variance of effects or regression coefficients. In fact,
it has already become apparent that the orthogonal design results in equality of
variance for all effects or coefficients. Thus, in this way, the precision, for purposes
of estimation or testing, is the same for all coefficients, main effects, or interac-
tions. In addition, if the regression model contains only linear terms and thus only
main effects are of interest, the following conditions result in the minimization of
variances of all effects (or, correspondingly, first-order regression coefficients).

Conditions for
Minimum

Variances of
Coefficients

If the regression model contains terms no higher than first order, and if the
ranges on the variables are given by xj ∈ [−1,+1] for j = 1, 2, . . . , k, then
Var(bj)/σ

2, for j = 1, 2, . . . , k, is minimized if the design is orthogonal and all
xi levels in the design are at ±1 for i = 1, 2, . . . , k.

Thus, in terms of coefficients of model terms or main effects, orthogonality in the
2k is a very desirable property.

Another approach to a better understanding of the “balance” provided by the
23 is to look at the situation graphically. All of the contrasts that are orthogonal
and thus mutually independent are shown graphically in Figure 15.10. In the
graphs, the planes of the squares whose vertices contain the responses labeled “+”
are compared to those containing the responses labeled “−.” Those given in (a)
show contrasts for main effects and should be obvious to the reader. Those in (b)
show the planes representing “+” vertices and “−” vertices for the three two-factor
interaction contrasts. In (c), we see the geometric representation of the contrasts
for the three-factor (ABC) interaction.

Center Runs with 2k Designs

In the situation in which the 2k design is implemented with continuous design
variables and one is seeking to fit a linear regression model, the use of replicated
runs in the design center can be extremely useful. In fact, quite apart from
the advantages that will be discussed in what follows, a majority of scientists and
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Figure 15.10: Geometric presentation of contrasts for the 23 factorial design.
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engineers would consider center runs (i.e., the runs at xi = 0 for i = 1, 2, . . . , k)
as not only a reasonable practice but something that was intuitively appealing. In
many areas of application of the 2k design, the scientist desires to determine if he
or she might benefit from moving to a different region of interest in the factors.
In many cases, the center (i.e., the point (0, 0, . . . , 0) in the coded factors) is often
either the current operating conditions of the process or at least those conditions
that are considered “currently optimum.” So it is often the case that the scientist
will require data on the response at the center.

Center Runs and Lack of Fit

In addition to the intuitive appeal of the augmentation of the 2k with center runs,
a second advantage is enjoyed that relates to the kind of model that is fitted to the
data. Consider, for example, the case with k = 2, illustrated in Figure 15.11.

(0, 0)

�1 �1
A(x1)

�1

�1

B(x2)

Figure 15.11: A 22 design with center runs.

It is clear that without the center runs the model terms are the intercept, x1,
x2, x1x2. These account for the four model degrees of freedom delivered by the
four design points, apart from any replication. Since each factor has response infor-
mation available only at two locations {−1,+1}, no “pure” second-order curvature
terms can be accommodated in the model (i.e, x2

1 or x2
2). But the information

at (0, 0) produces an additional model degree of freedom. While this important
degree of freedom does not allow both x2

1 and x2
2 to be used in the model, it does

allow for testing the significance of a linear combination of x2
1 and x2

2. For nc center
runs, there are then nc − 1 degrees of freedom available for replication or “pure”
error. This allows an estimate of σ2 for testing the model terms and significance
of the 1 d.f. for quadratic lack of fit. The concept here is very much like that
discussed in the lack-of-fit material in Chapter 11.

In order to gain a complete understanding of how the lack-of-fit test works,
assume that for k = 2 the true model contains the full second-order complement
of terms, including x2

1 and x2
2. In other words,

E(Y ) = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2.
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Now, consider the contrast

ȳf − ȳ0,

where ȳf is the average response at the factorial locations and ȳ0 is the average
response at the center point. It can be shown easily (see Review Exercise 15.46)
that

E(ȳf − ȳ0) = β11 + β22,

and, in fact, for the general case with k factors,

E(ȳf − ȳ0) =
k∑

i=1

βii.

As a result, the lack-of-fit test is a simple t-test (or F = t2) with

tnc−1 =
ȳf − ȳ0
sȳf−ȳ0

=
ȳf − ȳ0√

MSE(1/nf + 1/nc)
,

where nf is the number of factorial points and MSE is simply the sample variance
of the response values at (0, 0, . . . , 0).

Example 15.5: This example is taken from Myers, Montgomery, and Anderson-Cook (2009). A
chemical engineer is attempting to model the percent conversion in a process. There
are two variables of interest, reaction time and reaction temperature. In an attempt
to arrive at the appropriate model, a preliminary experiment was conducted in a
22 factorial using the current region of interest in reaction time and temperature.
Single runs were made at each of the four factorial points and five runs were made
at the design center in order that a lack-of-fit test for curvature could be conducted.
Figure 15.12 shows the design region and the experimental runs on yield.

The time and temperature readings at the center are, of course, 35 minutes
and 145◦C. The estimates of the main effects and single interaction coefficient are
computed through contrasts, just as before. The center runs play no role in
the computation of b1, b2, and b12. This should be intuitively reasonable to
the reader. The intercept is merely ȳ for the entire experiment. This value is
ȳ = 40.4444. The standard errors are found through the use of diagonal elements
of (X′X)−1, as discussed earlier. For this case,

x1 x2 x1x2

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1

−1
−1
1
1
0
0
0
0
0

−1
1

−1
1
0
0
0
0
0

1
−1
−1
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 15.12: 22 factorial with 5 center runs.

After the computations, we have

b0 = 40.4444, b1 = 0.7750, b2 = 0.3250, b12 = −0.0250,

sb0 = 0.06231, sb1 = 0.09347, sb2 = 0.09347, sb12 = 0.09347,

tb0 = 649.07 tb1 = 8.29 tb2 = 3.48 tb12 = −0.27 (P = 0.800).

The contrast ȳf − ȳ0 = 40.425− 40.46 = −0.035, and the t-statistic that tests for
curvature is given by

t =
40.425− 40.46√
0.0430(1/4 + 1/5)

= 0.251 (P = 0.814).

As a result, it appears as if the appropriate model should contain only first-order
terms (apart from the intercept).

An Intuitive Look at the Test on Curvature

If one considers the simple case of a single design variable with runs at −1 and +1,
it should seem clear that the average response at −1 and +1 should be close to the
response at 0, the center, if the model is first order in nature. Any deviation would
certainly suggest curvature. This is simple to extend to two variables. Consider
Figure 15.13.

The figure shows the plane on y that passes through the y values of the fac-
torial points. This is the plane that would represent the perfect fit for the model
containing x1, x2, and x1x2. If the model contains no quadratic curvature (i.e.,
β11 = β22 = 0), we would expect the response at (0, 0) to be at or near the plane.
If the response is far away from the plane, as in the case of Figure 15.13, then it
can be seen graphically that quadratic curvature is present.
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Responses at (0, 0)

B (x2)

A (x1)
�

1

0

�

1

�1

0

�1

y

Figure 15.13: 22 factorial with runs at (0, 0).

Exercises

15.13 Consider a 25 experiment where the experi-
mental runs are on 4 different machines. Use the ma-
chines as blocks, and assume that all main effects and
two-factor interactions may be important.

(a) Which runs would be made on each of the 4 ma-
chines?

(b) Which effects are confounded with blocks?

15.14 An experiment is described in Myers, Mont-
gomery, and Anderson-Cook (2009) in which optimum
conditions are sought for storing bovine semen to ob-
tain maximum survival. The variables are percent
sodium citrate, percent glycerol, and equilibration time
in hours. The response is percent survival of the motile
spermatozoa. The natural levels are found in the above
reference. The data with coded levels for the factorial
portion of the design and the center runs are given.

(a) Fit a linear regression model to the data and deter-
mine which linear and interaction terms are signif-
icant. Assume that the x1x2x3 interaction is neg-
ligible.

(b) Test for quadratic lack of fit and comment.

x1, % x3

Sodium x2, % Equilibration %
Citrate Glycerol Time Survival

−1
1

−1
1

−1
1

−1
1
0
0

−1
−1
1
1

−1
−1
1
1
0
0

−1
−1
1
1

−1
−1
1
1
0
0

57
40
19
40
54
41
21
43
63
61

15.15 Oil producers are interested in nickel alloys
that are strong and corrosion resistant. An experiment
was conducted in which yield strengths were compared
for nickel alloy tensile specimens charged in solutions
of sulfuric acid saturated with carbon disulfide. Two
alloys were compared: a 75% nickel composition and
a 30% nickel composition. The alloys were tested un-
der two different charging times, 25 and 50 days. A 23
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factorial was conducted with the following factors:

% sulfuric acid: 4%, 6% (x1)

charging time: 25 days, 50 days (x2)

nickel composition: 30%, 75% (x3)

A specimen was prepared for each of the 8 conditions.
Since the engineers were not certain of the nature of the
model (i.e., whether or not quadratic terms would be
needed), a third level (middle level) was incorporated,
and 4 center runs were employed using 4 specimens at
5% sulfuric acid, 37.5 days, and 52.5% nickel composi-
tion. The following are the yield strengths in kilograms
per square inch.

Charging Time

25 Days 50 Days

Nickel Sulfuric Acid Sulfuric Acid

Comp. 4% 6% 4% 6%

75% 52.5 56.5 47.9 47.2
30% 50.2 50.8 47.4 41.7

The center runs gave the following strengths:

51.6, 51.4, 52.4, 52.9

(a) Test to determine which main effects and interac-
tions should be involved in the fitted model.

(b) Test for quadratic curvature.

(c) If quadratic curvature is significant, how many
additional design points are needed to determine
which quadratic terms should be included in the
model?

15.16 Suppose a second replicate of the experiment
in Exercise 15.13 could be performed.

(a) Would a second replication of the blocking scheme
of Exercise 15.13 be the best choice?

(b) If the answer to part (a) is no, give the layout for
a better choice for the second replicate.

(c) What concept did you use in your design selection?

15.17 Consider Figure 15.14, which represents a 22

factorial with 3 center runs. If quadratic curvature is
significant, what additional design points would you
select that might allow the estimation of the terms
x2
1, x

2
2? Explain.

(0, 0)

x1

�1, 1 1, 1

�1, �1 1, �1

x2

Figure 15.14: Graph for Exercise 15.17.

15.6 Fractional Factorial Experiments

The 2k factorial experiment can become quite demanding, in terms of the number
of experimental units required, when k is large. One of the real advantages of
this experimental plan is that it allows a degree of freedom for each interaction.
However, in many experimental situations, it is known that certain interactions are
negligible, and thus it would be a waste of experimental effort to use the complete
factorial experiment. In fact, the experimenter may have an economic constraint
that disallows taking observations at all of the 2k treatment combinations. When k
is large, we can often make use of a fractional factorial experiment where per-
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15.6 Fractional Factorial Experiments 627

haps one-half, one-fourth, or even one-eighth of the total factorial plan is actually
carried out.

Construction of 1
2
Fraction

The construction of the half-replicate design is identical to the allocation of the
2k factorial experiment into two blocks. We begin by selecting a defining contrast
that is to be completely sacrificed. We then construct the two blocks accordingly
and choose either of them as the experimental plan.

A 1
2 fraction of a 2k factorial is often referred to as a 2k−1 design, the latter

indicating the number of design points. Our first illustration of a 2k−1 will be a 1
2

of 23, or a 23−1, design. In other words, the scientist or engineer cannot use the
full complement (i.e., the full 23 with 8 design points) and hence must settle for a
design with only four design points. The question is, of the design points (1), a,
b, ab, ac, c, bc, and abc, which four design points would result in the most useful
design? The answer, along with the important concepts involved, appears in the
table of + and − signs displaying contrasts for the full 23. Consider Table 15.9.

Table 15.9: Contrasts for the Seven Available Effects for a 23 Factorial Experiment

Treatment Effects

Combination I A B C AB AC BC ABC

23−1 a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +

23−1 ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −

Note that the two 1
2 fractions are {a, b, c, abc} and {ab, ac, bc, (1)}. Note also

from Table 15.9 that in both designs ABC has no contrast but all other effects
do have contrasts. In one of the fractions we have ABC containing all + signs,
and in the other fraction the ABC effect contains all − signs. As a result, we say
that the top design in the table is described by ABC = I and the bottom design
by ABC = −I. The interaction ABC is called the design generator, and
ABC = I (or ABC = −I for the second design) is called the defining relation.

Aliases in the 23−1

If we focus on the ABC = I design (the upper 23−1), it becomes apparent that
six effects contain contrasts. This produces the initial appearance that all effects
can be studied apart from ABC. However, the reader can certainly recall that
with only four design points, even if points are replicated, the degrees of freedom
available (apart from experimental error) are
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Regression model terms 3
Intercept 1

4

A closer look suggests that the seven effects are not orthogonal, and each contrast
is represented in another effect. In fact, using ≡ to signify identical contrasts,
we have

A ≡ BC; B ≡ AC; C ≡ AB.

As a result, within a pair an effect cannot be estimated independently of its alias
“partner.” The effects

A =
a+ abc− b− c

2
and BC =

a+ abc− b− c

2

will produce the same numerical result and thus contain the same information.
In fact, it is often said that they share a degree of freedom. In truth, the
estimated effect actually estimates the sum, namely A+ BC. We say that A and
BC are aliases, B and AC are aliases, and C and AB are aliases.

For the ABC = −I fraction we can observe that the aliases are the same as
those for the ABC = I fraction, apart from sign. Thus, we have

A ≡ −BC; B ≡ −AC; C ≡ −AB.

The two fractions appear on corners of the cubes in Figures 15.15(a) and
15.15(b).

A

C

B

a

b

c

abc

(a ) The ABC = I  fraction
A

C

B

(1)
ab

bc

ac

(b ) The AB C = − I  fraction

Figure 15.15: The 1
2 fractions of the 23 factorial.

How Aliases Are Determined in General

In general, for a 2k−1, each effect, apart from that defined by the generator, will
have a single alias partner. The effect defined by the generator will not be aliased
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by another effect but rather will be aliased with the mean since the least squares
estimator will be the mean. To determine the alias for each effect, one merely
begins with the defining relation, say ABC = I for the 23−1. Then to find, say, the
alias for effect A, multiply A by both sides of the equation ABC = I and reduce
any exponent by modulo 2. For example,

A ·ABC = A, thus, BC ≡ A.

In a similar fashion,

B ≡ B ·ABC ≡ AB2C ≡ AC,

and, of course,

C ≡ C ·ABC ≡ ABC2 ≡ AB.

Now for the second fraction (i.e., defined by the relation ABC = −I),

A ≡ −BC; B ≡ −AC; C ≡ −AB.

As a result, the numerical value of effect A is actually estimating A−BC. Similarly,
the value of B estimates B −AC, and the value of C estimates C −AB.

Formal Construction of the 2k−1

A clear understanding of the concept of aliasing makes it very simple to understand
the construction of the 2k−1. We begin with investigation of the 23−1. There are
three factors and four design points required. The procedure begins with a full
factorial in k − 1 = 2 factors A and B. Then a third factor is added according
to the desired alias structures. For example, with ABC as the generator, clearly
C = ±AB. Thus, C = AB or C = −AB is found to supplement the full factorial
in A and B. Table 15.10 illustrates what is a very simple procedure.

Table 15.10: Construction of the Two 23−1 Designs

Basic 22 23−1; ABC = I 23−1; ABC = −I

A B A B C = AB A B C = −AB

− − − − + − − −
+ − + − − + − +
− + − + − − + +
+ + + + + + + −

Note that we saw earlier that ABC = I gives the design points a, b, c, and abc
while ABC = −I gives (1), ac, bc, and ab. Earlier we were able to construct the
same designs using the table of contrasts in Table 15.9. However, as the design
becomes more complicated with higher fractions, these contrast tables become
more difficult to deal with.

Consider now a 24−1 (i.e., a 1
2 of a 24 factorial design) involving factors A, B,

C, and D. As in the case of the 23−1, the highest-order interaction, in this case
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ABCD, is used as the generator. We must keep in mind that ABCD = I; the
defining relation suggests that the information on ABCD is sacrificed. Here we
begin with the full 23 in A, B, and C and form D = ±ABC to generate the two
24−1 designs. Table 15.11 illustrates the construction of both designs.

Table 15.11: Construction of the Two 24−1 Designs

Basic 23 24−1; ABCD = I 24−1; ABCD = −I

A B C A B C D = ABC A B C D = −ABC

− − − − − − − − − − +
+ − − + − − + + − − −
− + − − + − + − + − −
+ + − + + − − + + − +
− − + − − + + − − + −
+ − + + − + − + − + +
− + + − + + − − + + +
+ + + + + + + + + + −

Here, using the notation a, b, c, and so on, we have the following designs:

ABCD = I, (1), ad, bd, ab, cd, ac, bc, abcd

ABCD = −I, d, a, b, abd, c, acd, bcd, abc.

The aliases in the case of the 24−1 are found as illustrated earlier for the 23−1.
Each effect has a single alias partner and is found by multiplication via the use of
the defining relation. For example, the alias for A for the ABCD = I design is
given by

A = A ·ABCD = A2BCD = BCD.

The alias for AB is given by

AB = AB ·ABCD = A2B2CD = CD.

As we can observe easily, main effects are aliased with three-factor interactions and
two-factor interactions are aliased with other two-factor interactions. A complete
listing is given by

A = BCD AB = CD

B = ACD AC = BD

C = ABD AD = BC

D = ABC.

Construction of the 1
4
Fraction

In the case of the 1
4 fraction, two interactions are selected to be sacrificed rather

than one, and the third results from finding the generalized interaction of the
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selected two. Note that this is very much like the construction of four blocks.
The fraction used is simply one of the blocks. A simple example aids a great
deal in seeing the connection to the construction of the 1

2 fraction. Consider the
construction of 1

4 of a 25 factorial (i.e., a 25−2), with factors A, B, C, D, and E.
One procedure that avoids the confounding of two main effects is the choice
of ABD and ACE as the interactions that correspond to the two generators, giving
ABD = I and ACE = I as the defining relations. The third interaction sacrificed
would then be (ABD)(ACE) = A2BCDE = BCDE. For the construction of the
design, we begin with a 25−2 = 23 factorial in A, B, and C. We use the interactions
ABD and ACE to supply the generators, so the 23 factorial in A, B, and C is
supplemented by factor D = ±AB and E = ±AC. Thus, one of the fractions is
given by

A B C D = AB E = AC⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− − − + +
+ − − − −
− + − − +
+ + − + −
− − + + −
+ − + − +
− + + − −
+ + + + +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

de
a
be
abd
cd
ace
bc
abcde

The other three fractions are found by using the generators {D = −AB,E = AC},
{D = AB,E = −AC}, and {D = −AB,E = −AC}. Consider an analysis of the
above 25−2 design. It contains eight design points to study five factors. The aliases
for main effects are given by

A(ABD) ≡ BD A(ACE) ≡ CE A(BCDE) ≡ ABCDE

B ≡ AD ≡ ABCE ≡ CDE

C ≡ ABCD ≡ AE ≡ BDE

D ≡ AB ≡ ACDE ≡ BCE

E ≡ ABDE ≡ AC ≡ BCD

Aliases for other effects can be found in the same fashion. The breakdown of
degrees of freedom is given by (apart from replication)

Main effects 5
Lack of fit 2 (CD = BE, BC = DE)

Total 7

We list interactions only through degree 2 in the lack of fit.
Consider now the case of a 26−2, which allows 16 design points to study six

factors. Once again two design generators are chosen. A pragmatic choice to
supplement a 26−2 = 24 full factorial in A, B, C, and D is to use E = ±ABC and
F = ±BCD. The construction is given in Table 15.12.

Obviously, with eight more design points than in the 25−2, the aliases for main
effects will not present as difficult a problem. In fact, note that with defining
relations ABCE = ±I, BCDF = ±I, and (ABCE)(BCDF ) = ADEF = ±I,
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Table 15.12: A 26−2 Design

Treatment
A B C D E = ABC F = BCD Combination

−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+

−
−
+
+
−
−
+
+
−
−
+
+
−
−
+
+

−
−
−
−
+
+
+
+
−
−
−
−
+
+
+
+

−
−
−
−
−
−
−
−
+
+
+
+
+
+
+
+

−
+
+
−
+
−
−
+
−
+
+
−
+
−
−
+

−
−
+
+
+
+
−
−
+
+
−
−
−
−
+
+

(1)
ae
bef
abf
cef
acf
bc
abce
df
adef
bde
abd
cde
acd
bcdf
abcdef

main effects will be aliased with interactions that are no less complex than those
of third order. The alias structure for main effects is written

A ≡ BCE ≡ ABCDF ≡ DEF, D ≡ ABCDE ≡ BCF ≡ AEF,

B ≡ ACE ≡ CDF ≡ ABDEF, E ≡ ABC ≡ BCDEF ≡ ADF,

C ≡ ABE ≡ BDF ≡ ACDEF, F ≡ ABCEF ≡ BCD ≡ ADE,

each with a single degree of freedom. For the two-factor interactions,

AB ≡ CE ≡ ACDF ≡ BDEF, AF ≡ BCEF ≡ ABCD ≡ DE,

AC ≡ BE ≡ ABDF ≡ CDEF, BD ≡ ACDE ≡ CF ≡ ABEF,

AD ≡ BCDE ≡ ABCF ≡ EF, BF ≡ ACEF ≡ CD ≡ ABDE,

AE ≡ BC ≡ ABCDEF ≡ DF.

Here, of course, there is some aliasing among the two-factor interactions. The
remaining 2 degrees of freedom are accounted for by the following groups:

ABD ≡ CDE ≡ ACF ≡ BEF, ACD ≡ BDE ≡ ABF ≡ CEF.

It becomes evident that we should always be aware of what the alias structure
is for a fractional experiment before we finally recommend the experimental plan.
Proper choice in defining contrasts is important, since it dictates the alias structure.

15.7 Analysis of Fractional Factorial Experiments

The difficulty of making formal significance tests using data from fractional factorial
experiments lies in the determination of the proper error term. Unless there are
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data available from prior experiments, the error must come from a pooling of
contrasts representing effects that are presumed to be negligible.

Sums of squares for individual effects are found by using essentially the same
procedures given for the complete factorial. We can form a contrast in the treat-
ment combinations by constructing the table of positive and negative signs. For
example, for a half-replicate of a 23 factorial experiment with ABC the defining
contrast, one possible set of treatment combinations, along with the appropriate
algebraic sign for each contrast used in computing effects and the sums of squares
for the various effects, is presented in Table 15.13.

Table 15.13: Signs for Contrasts in a Half-Replicate of a 23 Factorial Experiment

Treatment Factorial Effect
Combination A B C AB AC BC ABC

a
b
c
abc

+
−
−
+

−
+
−
+

−
−
+
+

−
−
+
+

−
+
−
+

+
−
−
+

+
+
+
+

Note that in Table 15.13 the A and BC contrasts are identical, illustrating the
aliasing. Also, B ≡ AC and C ≡ AB. In this situation, we have three orthogonal
contrasts representing the 3 degrees of freedom available. If two observations were
obtained for each of the four treatment combinations, we would then have an
estimate of the error variance with 4 degrees of freedom. Assuming the interaction
effects to be negligible, we could test all the main effects for significance.

An example effect and corresponding sum of squares is

A =
a− b− c+ abc

2n
, SSA =

(a− b− c+ abc)2

22n
.

In general, the single-degree-of-freedom sum of squares for any effect in a 2−p

fraction of a 2k factorial experiment (p < k) is obtained by squaring contrasts in
the treatment totals selected and dividing by 2k−pn, where n is the number of
replications of these treatment combinations.

Example 15.6: Suppose that we wish to use a half-replicate to study the effects of five factors,
each at two levels, on some response, and it is known that whatever the effect
of each factor, it will be constant for each level of the other factors. In other
words, there are no interactions. Let the defining contrast be ABCDE, causing
main effects to be aliased with four-factor interactions. The pooling of contrasts
involving interactions provides 15 − 5 = 10 degrees of freedom for error. Perform
an analysis of variance on the data in Table 15.14, testing all main effects for
significance at the 0.05 level.

Solution : The sums of squares and effects for the main effects are

SSA =
(11.3− 15.6− · · · − 14.7 + 13.2)2

25−1
=

(−17.5)2

16
= 19.14,
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Table 15.14: Data for Example 15.6

Treatment Response Treatment Response
a
b
c
d
e
abc
abd
acd

11.3
15.6
12.7
10.4
9.2
11.0
8.9
9.6

bcd
abe
ace
ade
bce
bde
cde
abcde

14.1
14.2
11.7
9.4
16.2
13.9
14.7
13.2

A = − 17.5
8 = −2.19,

SSB =
(−11.3 + 15.6− · · · − 14.7 + 13.2)2

25−1
=

(18.1)2

16
= 20.48,

B = 18.1
8 = 2.26,

SSC =
(−11.3− 15.6 + · · ·+ 14.7 + 13.2)2

25−1
=

(10.3)2

16
= 6.63,

C = 10.3
8 = 1.21,

SSD =
(−11.3− 15.6− · · ·+ 14.7 + 13.2)2

25−1
=

(−7.7)2

16
= 3.71,

D = −7.7
8 = −0.96,

SSE =
(−11.3− 15.6− · · ·+ 14.7 + 13.2)2

25−1
=

(8.9)2

16
= 4.95,

E = 8.9
8 = 1.11.

All other calculations and tests of significance are summarized in Table 15.15.
The tests indicate that factor A has a significant negative effect on the response,
whereas factor B has a significant positive effect. Factors C, D, and E are not
significant at the 0.05 level.

Exercises

15.18 List the aliases for the various effects in a
25 factorial experiment when the defining contrast is
ACDE.

15.19 (a) Obtain a 1
2
fraction of a 24 factorial design

using BCD as the defining contrast.

(b) Divide the 1
2
fraction into 2 blocks of 4 units each

by confounding ABC.

(c) Show the analysis-of-variance table (sources of vari-
ation and degrees of freedom) for testing all uncon-
founded main effects, assuming that all interaction
effects are negligible.

15.20 Construct a 1
4
fraction of a 26 factorial design

using ABCD and BDEF as the defining contrasts.
Show what effects are aliased with the six main effects.
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Table 15.15: Analysis of Variance for the Data of a Half-Replicate of a 25 Factorial
Experiment

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Main effect:
A
B
C
D
E

Error

19.14
20.48
6.63
3.71
4.95
30.83

1
1
1
1
1
10

19.14
20.48
6.63
3.71
4.95
3.08

6.21
6.65
2.15
1.20
1.61

Total 85.74 15

15.21 (a) Using the defining contrasts ABCE and
ABDF , obtain a 1

4
fraction of a 26 design.

(b) Show the analysis-of-variance table (sources of vari-
ation and degrees of freedom) for all appropriate
tests, assuming that E and F do not interact and
all three-factor and higher interactions are negligi-
ble.

15.22 Seven factors are varied at two levels in an ex-
periment involving only 16 trials. A 1

8
fraction of a

27 factorial experiment is used, with the defining con-
trasts being ACD, BEF , and CEG. The data are as
follows:

Treat. Treat.
Comb. Response Comb. Response

(1)
ad
abce
cdef
acef
bcde
abdf
bf

31.6
28.7
33.1
33.6
33.7
34.2
32.5
27.8

acg
cdg
beg
adefg
efg
abdeg
bcdfg
abcfg

31.1
32.0
32.8
35.3
32.4
35.3
35.6
35.1

Perform an analysis of variance on all seven main ef-
fects, assuming that interactions are negligible. Use a
0.05 level of significance.

15.23 An experiment is conducted so that an en-
gineer can gain insight into the influence of sealing
temperature A, cooling bar temperature B, percent
polyethylene additive C, and pressure D on the seal
strength (in grams per inch) of a bread-wrapper stock.
A 1

2
fraction of a 24 factorial experiment is used, with

the defining contrast being ABCD. The data are pre-
sented here. Perform an analysis of variance on main
effects only. Use α = 0.05.

A B C D Response

−1
1

−1
1

−1
1

−1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
−1
−1
1
1
1
1

−1
1
1

−1
1

−1
−1
1

6.6
6.9
7.9
6.1
9.2
6.8

10.4
7.3

15.24 In an experiment conducted at the Department
of Mechanical Engineering and analyzed by the Statis-
tics Consulting Center at Virginia Tech, a sensor de-
tects an electrical charge each time a turbine blade
makes one rotation. The sensor then measures the am-
plitude of the electrical current. Six factors are rpm A,
temperature B, gap between blades C, gap between
blade and casing D, location of input E, and location
of detection F . A 1

4
fraction of a 26 factorial experi-

ment is used, with defining contrasts being ABCE and
BCDF . The data are as follows:

A B C D E F Response

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
−1
−1
1
1
1
1

−1
−1
−1
−1
1
1
1
1

−1
−1
−1
−1
−1
−1
−1
−1
1
1
1
1
1
1
1
1

−1
1
1

−1
1

−1
−1
1

−1
1
1

−1
1

−1
−1
1

−1
−1
1
1
1
1

−1
−1
1
1

−1
−1
−1
−1
1
1

3.89
10.46
25.98
39.88
61.88
3.22
8.94

20.29
32.07
50.76
2.80
8.15

16.80
25.47
44.44
2.45
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Perform an analysis of variance on main effects and
two-factor interactions, assuming that all three-factor
and higher interactions are negligible. Use α = 0.05.

15.25 In the study Durability of Rubber to Steel Ad-
hesively Bonded Joints, conducted at the Department
of Environmental Science and Mechanics and analyzed
by the Statistics Consulting Center at Virginia Tech,
an experimenter measured the number of breakdowns
in an adhesive seal. It was postulated that concentra-
tion of seawater A, temperature B, pH C, voltage D,
and stress E influence the breakdown of an adhesive
seal. A 1

2
fraction of a 25 factorial experiment was

used, with the defining contrast being ABCDE. The
data are as follows:

A B C D E Response

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
1
1

−1
−1
−1
−1
1
1
1
1

−1
−1
−1
−1
1
1
1
1

−1
−1
−1
−1
−1
−1
−1
−1
1
1
1
1
1
1
1
1

1
−1
−1
1

−1
1
1

−1
−1
1
1

−1
1

−1
−1
1

462
746
714

1070
474
832
764

1087
522
854
773

1068
572
831
819

1104
Perform an analysis of variance on main effects and two
factor interactions AD, AE, BD, BE, assuming that
all three-factor and higher interactions are negligible.
Use α = 0.05.

15.26 Consider a 25−1 design with factors A, B, C,
D, and E. Construct the design by beginning with a
24 and use E = ABCD as the generator. Show all

aliases.

15.27 There are six factors and only eight design
points can be used. Construct a 26−3 by beginning
with a 23 and use D = AB, E = −AC, and F = BC
as the generators.

15.28 Consider Exercise 15.27. Construct another
26−3 that is different from the design chosen in Ex-
ercise 15.27.

15.29 For Exercise 15.27, give all aliases for the six
main effects.

15.30 In Myers, Montgomery, and Anderson-Cook
(2009), an application is discussed in which an engi-
neer is concerned with the effects on the cracking of a
titanium alloy. The three factors are A, temperature;
B, titanium content; and C, amount of grain refiner.
The following table gives a portion of the design and
the response, crack length induced in the sample of the
alloy.

A B C Response

−1
1
1

−1

−1
1

−1
1

−1
−1
1
1

0.5269
2.3380
4.0060
3.3640

(a) What is the defining relation?

(b) Give aliases for all three main effects assuming that
two-factor interactions may be real.

(c) Assuming that interactions are negligible, which
main factor is most important?

(d) At what level would you suggest the factor named
in (c) be for final production, high or low?

(e) At what levels would you suggest the other factors
be for final production?

(f) What hazards lie in the recommendations you
made in (d) and (e)? Be thorough in your answer.

15.8 Higher Fractions and Screening Designs

Some industrial situations require the analyst to determine which of a large number
of controllable factors have an impact on some important response. The factors
may be qualitative or class variables, regression variables, or a mixture of both.
The analytical procedure may involve analysis of variance, regression, or both.
Often the regression model used involves only linear main effects, although a few
interactions may be estimated. The situation calls for variable screening and the
resulting experimental designs are known as screening designs. Clearly, two-level
orthogonal designs that are saturated or nearly saturated are viable candidates.
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Design Resolution

Two-level orthogonal designs are often classified according to their resolution, the
latter determined through the following definition.

Definition 15.1: The resolution of a two-level orthogonal design is the length of the smallest
(least complex) interaction among the set of defining contrasts.

If the design is constructed as a full or fractional factorial (i.e., either a 2k or
a 2k−p design, p = 1, 2, . . . , k − 1), the notion of design resolution is an aid in
categorizing the impact of the aliasing. For example, a resolution II design would
have little use, since there would be at least one instance of aliasing of one main
effect with another. A resolution III design will have all main effects (linear effects)
orthogonal to each other. However, there will be some aliasing among linear effects
and two-factor interactions. Clearly, then, if the analyst is interested in studying
main effects (linear effects in the case of regression) and there are no two-factor
interactions, a design of resolution at least III is required.

15.9 Construction of Resolution III and IV Designs
with 8, 16, and 32 Design Points

Useful designs of resolution III and IV can be constructed for 2 to 7 variables with
8 design points. We begin with a 23 factorial that has been symbolically saturated
with interactions.

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1

−1
−1
1
1

−1
1

−1
−1
1

−1
1

−1
1
1

−1
−1
−1
1

−1
1
1
1

1
−1
−1
1
1

−1
−1
1

1
−1
1

−1
−1
1

−1
1

1
1

−1
−1
−1
−1
1
1

−1
1
1
1

−1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is clear that a resolution III design can be constructed merely by replacing

interaction columns by new main effects through 7 variables. For example, we may
define

x4 = x1x2 (defining contrast ABD)

x5 = x1x3 (defining contrast ACE)

x6 = x2x3 (defining contrast BCF )

x7 = x1x2x3 (defining contrast ABCG)

and obtain a 2−4 fraction of a 27 factorial. The preceding expressions identify
the chosen defining contrasts. Eleven additional defining contrasts result, and all
defining contrasts contain at least three letters. Thus, the design is a resolution III
design. Clearly, if we begin with a subset of the augmented columns and conclude
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Table 15.16: Some Resolution III, IV, V, VI and VII 2k−p Designs

Number of Number of
Factors Design Points Generators

3 23−1
III 4 C = ±AB

4 24−1
IV 8 D = ±ABC

5 25−2
III 8 D = ±AB; E = ±AC

6 26−1
V I 32 F = ±ABCDE
26−2
IV 16 E = ±ABC; F = ±BCD
26−3
III 8 D = ±AB; F = ±BC; E = ±AC

7 27−1
V II 64 G = ±ABCDEF
27−2
IV 32 E = ±ABC; G = ±ABDE
27−3
IV 16 E = ±ABC; F = ±BCD; G = ±ACD
27−4
III 8 D = ±AB; E = ±AC; F = ±BC; G = ±ABC

8 28−2
V 64 G = ±ABCD; H = ±ABEF
28−3
IV 32 F = ±ABC; G = ±ABD; H = ±BCDE
28−4
IV 16 E = ±BCD; F = ±ACD; G = ±ABC; H = ±ABD

with a design involving fewer than 7 design variables, the result is a resolution III
design in fewer than 7 variables.

A similar set of possible designs can be constructed for 16 design points by
beginning with a 24 saturated with interactions. Definitions of variables that cor-
respond to these interactions produce resolution III designs through 15 variables.
In a similar fashion, designs containing 32 runs can be constructed by beginning
with a 25.

Table 15.16 provides guidelines for constructing 8, 16, 32, and 64 point designs
that are resolution III, IV and even V. The table gives the number of factors, the
number of runs, and the generators that are used to produce the 2k−p designs. The
generator given is used to augment the full factorial containing k − p factors.

15.10 Other Two-Level Resolution III Designs;
The Plackett-Burman Designs

A family of designs developed by Plackett and Burman (1946; see the Bibliography)
fills sample size voids that exist with the fractional factorials. The latter are
useful with sample sizes 2r (i.e., they involve sample sizes 4, 8, 16, 32, 64, . . . ). The
Plackett-Burman designs involve 4r design points, and thus designs of sizes 12,
20, 24, 28, and so on, are available. These two-level Plackett-Burman designs are
resolution III designs and are very simple to construct. “Basic lines” are given for
each sample size. These lines of + and − signs are n− 1 in number. To construct
the columns of the design matrix, we begin with the basic line and do a cyclic
permutation on the columns until k (the desired number of variables) columns
are formed. Then we fill in the last row with negative signs. The result will be
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a resolution III design with k variables (k = 1, 2, . . . , N). The basic lines are as
follows:

N = 12 + + − + + + − − − + −
N = 16 + + + + − + − + + − − + − − −
N = 20 + + − − + + + + − + − + − − − − + + −
N = 24 + + + + + − + − + + − − + + − − + − + − − − −

Example 15.7: Construct a two-level screening design with 6 variables containing 12 design points.
Solution : Begin with the basic line in the initial column. The second column is formed by

bringing the bottom entry of the first column to the top of the second column
and repeating the first column. The third column is formed in the same fashion,
using entries in the second column. When there is a sufficient number of columns,
simply fill in the last row with negative signs. The resulting design is as
follows:

x1 x2 x3 x4 x5 x6⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
+
−
+
+
+
−
−
−
+
−
−

−
+
+
−
+
+
+
−
−
−
+
−

+
−
+
+
−
+
+
+
−
−
−
−

−
+
−
+
+
−
+
+
+
−
−
−

−
−
+
−
+
+
−
+
+
+
−
−

−
−
−
+
−
+
+
−
+
+
+
−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The Plackett-Burman designs are popular in industry for screening situations.

Because they are resolution III designs, all linear effects are orthogonal. For any
sample size, the user has available a design for k = 2, 3, . . . , N − 1 variables.

The alias structure for the Plackett-Burman design is very complicated, and
thus the user cannot construct the design with complete control over the alias
structure, as in the case of 2k or 2k−p designs. However, in the case of regression
models, the Plackett-Burman design can accommodate interactions (although they
will not be orthogonal) when sufficient degrees of freedom are available.

15.11 Introduction to Response Surface Methodology

In Case Study 15.2, a regression model was fitted to a set of data with the specific
goal of finding conditions on those design variables that optimize (maximize) the
cleansing efficiency of coal. The model contained three linear main effects, three
two-factor interaction terms, and one three-factor interaction term. The model re-
sponse was the cleansing efficiency, and the optimum conditions on x1, x2, and x3
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were found by using the signs and the magnitude of the model coefficients. In this
example, a two-level design was employed for process improvement or process op-
timization. In many areas of science and engineering, the application is expanded
to involve more complicated models and designs, and this collection of techniques
is called response surface methodology (RSM). It encompasses both graph-
ical and analytical approaches. The term response surface is derived from the
appearance of the multidimensional surface of constant estimated response from a
second-order model, i.e., a model with first- and second-order terms. An example
will follow.

The Second-Order Response Surface Model

In many industrial examples of process optimization, a second-order response sur-
face model is used. For the case of, say, k = 2 process variables, or design variables,
and a single response y, the model is given by

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε.

Here we have k = 2 first-order terms, two pure second-order, or quadratic, terms,
and one interaction term given by β12x1x2. The terms x1 and x2 are taken to be
in the familiar ±1 coded form. The ε term designates the usual model error. In
general, for k design variables the model will contain 1 + k+ k+

(
k
2

)
model terms,

and hence the experimental design must contain at least a like number of design
points. In addition, the quadratic terms require that the design variables be fixed
in the design with at least three levels. The resulting design is referred to as a
second-order design. Illustrations will follow.

The following central composite design (CCD) and example is taken from
Myers, Montgomery, and Anderson-Cook (2009). Perhaps the most popular class
of second-order designs is the class of central composite designs. The example given
in Table 15.17 involves a chemical process in which reaction temperature, ξ1, and
reactant concentration, ξ2, are shown at their natural levels. They also appear in
coded form. There are five levels of each of the two factors. In addition, we have
the order in which the observations on x1 and x2 were run. The column on the
right gives values of the response y, the percent conversion of the process. The first
four design points represent the familiar factorial points at levels ±1. The next
four points are called axial points. They are followed by the center runs that were
discussed and illustrated earlier in this chapter. Thus, the five levels of each of the
two factors are −1, +1, −1.414, +1.414, and 0. A clear picture of the geometry of
the central composite design for this k = 2 example appears in Figure 15.16. This
figure illustrates the source of the term axial points.These four points are on the
factor axes at an axial distance of α =

√
2 = 1.414 from the design center. In fact,

for this particular CCD, the perimeter points, axial and factorial, are all at the
distance

√
2 from the design center, and as a result we have eight equally spaced

points on a circle plus four replications at the design center.

Example 15.8: Response Surface Analysis: An analysis of the data in the two-variable example
may involve the fitting of a second-order response function. The resulting response
surface can be used analytically or graphically to determine the impact that x1
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Table 15.17: Central Composite Design for Example 15.8

Temperature (◦C) Concentration (%)
Observation Run ξ1 ξ2 x1 x2 y

1
2
3
4
5
6
7
8
9
10
11
12

4
12
11
5
6
7
1
3
8
10
9
2

200
250
200
250
189.65
260.35
225
225
225
225
225
225

15
15
25
25
20
20
12.93
27.07
20
20
20
20

43
78
69
73
48
78
65
74
76
79
83
81

−1 −1
1 −1

−1 1
1 1

−1.414 0
1.414 0
0 −1.414
0 1.414
0 0
0 0
0 0
0 0

ξ1, Temperature ( C)

x1

ξ
2,
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Figure 15.16: Central composite design for Example 15.8.

and x2 have on percent conversion of the process. The coefficients in the response
function are determined by the method of least squares developed in Chapter 12
and illustrated throughout this chapter. The resulting second-order response model
is given in the coded variables as

ŷ = 79.75 + 10.18x1 + 4.22x2 − 8.50x2
1 − 5.25x2

2 − 7.75x1x2,

whereas in the natural variables it is given by

ŷ = −1080.22 + 7.7671ξ1 + 23.1932ξ2 − 0.0136ξ21 − 0.2100ξ22 − 0.0620ξ1ξ2.

Since the current example contains only two design variables, the most illumi-
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nating approach to determining the nature of the response surface in the design
region is through two- or three-dimensional graphics. It is of interest to determine
what levels of temperature x1 and concentration x2 produce a desirable estimated
percent conversion, ŷ. The estimated response function above was plotted in three
dimensions, and the resulting response surface is shown in Figure 15.17. The height
of the surface is ŷ in percent. It is readily seen from this figure why the term re-
sponse surface is employed. In cases where only two design variables are used,
two-dimensional contour plotting can be useful. Thus, make note of Figure 15.18.
Contours of constant estimated conversion are seen as slices from the response sur-
face. Note that the viewer of either figure can readily observe which coordinates
of temperature and concentration produce the largest estimated percent conver-
sion. In the plots, the coordinates are given in both coded units and natural units.
Notice that the largest estimated conversion is at approximately 240◦C and 20%
concentration. The maximum estimated (or predicted) response at that location
is 82.47%.

189.7
201.4

213.2
225.0

236.8
248.6

260.4

12.93
15.29

17.64
20.00

22.36
24.71

27.07

16.41

38.43

60.45

82.47

ξ1 (
temperature, °

C)ξ2 (concentration, %)

C
on

ce
nt

ra
tio

n

−1.414
−1

0

1
1.414

x1

−1.414
−1

0

1
1.414

x2

Figure 15.17: Plot for the response surface prediction conversion for Example 15.8.

Other Comments Concerning Response Surface Analysis

The book by Myers, Montgomery, and Anderson-Cook (2009) provides a great
deal of information concerning both design and analysis of RSM. The graphical
illustration we have used here can be augmented by analytical results that provide
information about the nature of the response surface inside the design region.
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Figure 15.18: Contour plot of predicted conversion for Example 15.8.

Other computations can be used to determine whether the location of the optimum
conditions is, in fact, inside or remote from the experimental design region. There
are many important considerations when one is required to determine appropriate
conditions for future operation of a process.

Other material in Myers, Montgomery, and Anderson-Cook (2009) deals with
further experimental design issues. For example, the CCD, while the most generally
useful design, is not the only class of design used in RSM. Many others are discussed
in the aforementioned text. Also, the CCD discussed here is a special case in which
k = 2. The more general k > 2 case is discussed in Myers, Montgomery, and
Anderson-Cook (2009).

15.12 Robust Parameter Design

In this chapter, we have emphasized the notion of using design of experiments
(DOE) to learn about engineering and scientific processes. In the case where the
process involves a product, DOE can be used to provide product improvement or
quality improvement. As we pointed out in Chapter 1, much importance has been
attached to the use of statistical methods in product improvement. An important
aspect of this quality improvement effort that surfaced in the 1980s and continued
through the 1990s is to design quality into processes and products at the research
stage or the process design stage. One often requires DOE in the development of
processes that have the following properties:

1. Insensitive (robust) to environmental conditions
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2. Insensitive (robust) to factors difficult to control

3. Provide minimum variation in performance

The methods used to attain the desirable characteristics in 1, 2, and 3 are a part
of what is referred to as robust parameter design, or RPD (see Taguchi, 1991;
Taguchi and Wu, 1985; and Kackar, 1985, in the Bibliography). The term design
in this context refers to the design of the process or system; parameter refers to
the parameters in the system. These are what we have been calling factors or
variables.

It is very clear that goals 1, 2, and 3 above are quite noble. For example,
a petroleum engineer may have a fine gasoline blend that performs quite well as
long as conditions are ideal and stable. However, the performance may deteriorate
because of changes in environmental conditions, such as type of driver, weather
conditions, type of engine, and so forth. A scientist at a food company may have
a cake mix that is quite good unless the user does not exactly follow directions on
the box, directions that deal with oven temperature, baking time, and so forth. A
product or process whose performance is consistent when exposed to these changing
environmental conditions is called a robust product or robust process. (See
Myers, Montgomery, and Anderson-Cook, 2009, in the Bibliography.)

Control and Noise Variables

Taguchi (1991) emphasized the notion of using two classes of design variables in a
study involving RPD: control factors and noise factors.

Definition 15.2: Control factors are variables that can be controlled both in the experiment and
in the process. Noise factors are variables that may or may not be controlled
in the experiment but cannot be controlled in the process (or not controlled well
in the process).

An important approach is to use control variables and noise variables in the
same experiment as fixed effects. Orthogonal designs or orthogonal arrays are
popular designs to use in this effort.

Goal of Robust
Parameter Design

The goal of robust parameter design is to choose the levels of the control vari-
ables (i.e., the design of the process) that are most robust (insensitive) to changes
in the noise variables.

It should be noted that changes in the noise variables actually imply changes during
the process, changes in the field, changes in the environment, changes in handling
or usage by the consumer, and so forth.

The Product Array

One approach to the design of experiments involving both control and noise vari-
ables is to use an experimental plan that calls for an orthogonal design for both
the control and the noise variables separately. The complete experiment, then, is
merely the product or crossing of these two orthogonal designs. The following is a
simple example of a product array with two control and two noise variables.
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Example 15.9: In the article “The Taguchi Approach to Parameter Design” in Quality Progress,
December 1987, D. M. Byrne and S. Taguchi discuss an interesting example in
which a method is sought for attaching an electrometric connector to a nylon
tube so as to deliver the pull-off performance required for an automotive engine
application. The objective is to find controllable conditions that maximize pull-off
force. Among the controllable variables are A, connector wall thickness, and B,
insertion depth. During routine operation there are several variables that cannot
be controlled, although they will be controlled during the experiment. Among
them are C, conditioning time, and D, conditioning temperature. Three levels are
taken for each control variable and two for each noise variable. As a result, the
crossed array is as follows. The control array is a 3 × 3 array, and the noise
array is a familiar 22 factorial with (1), c, d, and cd representing the four factor
combinations. The purpose of the noise factor is to create the kind of variability
in the response, pull-off force, that might be expected in day-to-day operation with
the process. The design is shown in Table 15.18.

Table 15.18: Design for Example 15.9

B (depth)
Shallow Medium Deep

Thin (1) (1) (1)
c c c
d d d
cd cd cd

Medium (1) (1) (1)
c c c

A (wall thickness)
d d d
cd cd cd

Thick (1) (1) (1)
c c c
d d d
cd cd cd

Case Study 15.3: Solder Process Optimization: In an experiment described in Understanding
Industrial Designed Experiments by Schmidt and Launsby (1991; see the Bibli-
ography), solder process optimization is accomplished by a printed circuit-board
assembly plant. Parts are inserted either manually or automatically into a bare
board with a circuit printed on it. After the parts are inserted, the board is put
through a wave solder machine, which is used to connect all the parts into the
circuit. Boards are placed on a conveyor and taken through a series of steps. They
are bathed in a flux mixture to remove oxide. To minimize warpage, they are
preheated before the solder is applied. Soldering takes place as the boards move
across the wave of solder. The object of the experiment is to minimize the number
of solder defects per million joints. The control factors and levels are as given in
Table 15.19.
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Table 15.19: Control Factors for Case Study 15.3

Factor (−1) (+1)

A, solder pot temperature (◦F)
B, conveyor speed (ft/min)
C, flux density
D, preheat temperature
E, wave height (in.)

480
7.2
0.9◦

150
0.5

510
10
1.0◦

200
0.6

These factors are easy to control at the experimental level but are more formidable
at the plant or process level.

Noise Factors: Tolerances on Control Factors

Often in processes such as this one, the natural noise factors are tolerances on the
control factors. For example, in the actual on-line process, solder pot temperature
and conveyor-belt speed are difficult to control. It is known that the control of
temperature is within ±5◦F and the control of conveyor-belt speed is within ±0.2
ft/min. It is certainly conceivable that variability in the product response (solder-
ing performance) is increased because of an inability to control these two factors
at some nominal levels. The third noise factor is the type of assembly involved.
In practice, one of two types of assemblies will be used. Thus, we have the noise
factors given in Table 15.20.

Table 15.20: Noise Factors for Case Study 15.3

Factor (−1) (+1)

A*, solder pot temperature tolerance (◦F)
(deviation from nominal)

B*, conveyor speed tolerance (ft/min)
(deviation from ideal)

C*, assembly type

−5

−0.2

1

+5

+0.2

2

Both the control array (inner array) and the noise array (outer array) were
chosen to be fractional factorials, the former a 1

4 of a 25 and the latter a 1
2 of a 23.

The crossed array and the response values are shown in Table 15.21. The first three
columns of the inner array represent a 23. The fourth and fifth columns are formed
by D = −AC and E = −BC. Thus, the defining interactions for the inner array
are ACD, BCE, and ABDE. The outer array is a standard resolution III fraction
of a 23. Notice that each inner array point contains runs from the outer array.
Thus, four response values are observed at each combination of the control array.
Figure 15.19 displays plots which reveal the effect of temperature and density on
the mean response.
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Table 15.21: Crossed Arrays and Response Values for Case Study 15.3

Inner Array Outer Array
A B C D E (1) a*b* a*c* b*c* ȳ sy
1
1
1
1

−1
−1
−1
−1

1
1

−1
−1
1
1

−1
−1

1
−1
1

−1
1

−1
1

−1

−1
1

−1
1
1

−1
1

−1

−1
1
1

−1
−1
1
1

−1

194
136
185
47
295
234
328
186

197
136
261
125
216
159
326
187

193
132
264
127
204
231
247
105

275
136
264
42
293
157
322
104

214.75
135.00
243.50
85.25
252.00
195.25
305.75
145.50

40.20
2.00
39.03
47.11
48.75
43.04
39.25
47.35

Low High

(−1) (+1)

120

185

250

M
ea

n,
   

   
   

   
   

y

Solder Pot Temperature

Low High

(−1) (+1)

120

185

250

M
ea

n,
   

   
   

   
   

y

Flux Density

Figure 15.19: Plot showing the influence of factors on the mean response.

Simultaneous Analysis of Process Mean and Variance

In most examples using RPD, the analyst is interested in finding conditions on
the control variables that give suitable values for the mean response ȳ. However,
varying the noise variables produces information on the process variance σ2

y that
might be anticipated in the process. Obviously a robust product is one for which
the process is consistent and thus has a small process variance. RPD may involve
the simultaneous analysis of ȳ and sy.

It turns out that temperature and flux density are the most important factors
in Case Study 15.3. They seem to influence both sy and ȳ. Fortunately, high
temperature and low flux density are preferable for both. From Figure 15.19, the
“optimum” conditions are

solder temperature = 510◦F, flux density = 0.9◦.
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Alternative Approaches to Robust Parameter Design

One approach suggested by many is to model the sample mean and sample variance
separately. Separate modeling often helps the experimenter to obtain a better
understanding of the process involved. In the following example, we illustrate this
approach with the solder process experiment.

Case Study 15.4: Consider the data set of Case Study 15.3. An alternative approach is to fit separate
models for the mean ȳ and the sample standard deviation. Suppose that we use the
usual +1 and −1 coding for the control factors. Based on the apparent importance
of solder pot temperature x1 and flux density x2, linear regression on the response
(number of errors per million joints) produces

ŷ = 197.125− 27.5x1 + 57.875x2.

To find the most robust levels of temperature and flux density, it is impor-
tant to procure a compromise between the mean response and variability, which
requires a modeling of the variability. An important tool in this regard is the log
transformation (see Bartlett and Kendall, 1946, or Carroll and Ruppert, 1988):

ln s2 = γ0 + γ1(x1) + γ2(x2).

This modeling process produces the following result:

̂ln s2 = 6.6975− 0.7458x1 + 0.6150x2.

The log linear model finds extensive use for modeling sample variance, since the
log transformation on the sample variance lends itself to use of the method of
least squares. This results from the fact that normality and homogeneous variance
assumptions are often quite good when one uses ln s2 rather than s2 as the model
response.

The analysis that is important to the scientist or engineer makes use of the
two models simultaneously. A graphical approach can be very useful. Figure 15.20
shows simple plots of the mean and standard deviation models simultaneously. As
one would expect, the location of temperature and flux density that minimizes
the mean number of errors is the same as that which minimizes variability, namely
high temperature and low flux density. The graphical multiple response surface ap-
proach allows the user to see tradeoffs between process mean and process variability.
For this example, the engineer may be dissatisfied with the extreme conditions in
solder temperature and flux density. The figure offers estimates of how much is
lost as one moves away from the optimum mean and variability conditions to any
intermediate conditions.

In Case Study 15.4, values for control variables were chosen that gave desirable
conditions for both the mean and the variance of the process. The mean and
variance were taken across the distribution of noise variables in the process and
were modeled separately, and appropriate conditions were found through a dual
response surface approach. Since Case Study 15.4 involved two models (mean and
variance), this can be viewed as a dual response surface analysis. Fortunately,
in this example the same conditions on the two relevant control variables, solder
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Figure 15.20: Mean and standard deviation for Case Study 15.4.

temperature and flux density, were optimal for both the process mean and the
variance. Much of the time in practice some type of compromise between the
mean and variance would need to be invoked.

The approach illustrated in Case Study 15.4 involves finding optimal process
conditions when the data used are from a product array (or crossed array) type of
experimental design. Often, using the product array, a cross between two designs,
can be very costly. However, the development of dual response surface models, i.e.,
a model for the mean and a model for the variance, can be accomplished without
a product array. A design that involves both control and noise variables is often
called a combined array. This type of design and the resulting analysis can be used
to determine what conditions on the control variables are most robust (insensitive)
to variation in the noise variables. This can be viewed as tantamount to finding
control levels that minimize the process variance produced by movement in the
noise variables.

The Role of the Control-by-Noise Interaction

The structure of the process variance is greatly determined by the nature of the
control-by-noise interaction. The nature of the nonhomogeneity of process vari-
ance is a function of which control variables interact with which noise variables.
Specifically, as we will illustrate, those control variables that interact with one or
more noise variables can be the object of the analysis. For example, let us consider
an illustration used in Myers, Montgomery, and Anderson-Cook (2009) involving
two control variables and a single noise variable with the data given in Table 15.22.
A and B are control variables and C is a noise variable.

One can illustrate the interactions AC and BC with plots, as given in Figure
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Table 15.22: Experimental Data in a Crossed Array

Inner Array Outer Array
A B C = −1 C = +1 Response Mean
−1
−1
1
1

−1
1

−1
1

11
7
10
10

15
8
26
14

13.0
7.5
18.0
12.0

15.21. One must understand that while A and B are held constant in the process
C follows a probability distribution during the process. Given this information, it
becomes clear that A = −1 and B = +1 are levels that produce smaller values for
the process variance, while A = +1 and B = −1 give larger values. Thus, we say
that A = −1 and B = +1 are robust values, i.e., insensitive to inevitable changes
in the noise variable C during the process.

−1 C +1

10

20

y

A = − 1

A = + 1

(a) AC interaction plot.

−1 C +1

10

20

y

B = + 1

B = − 1

(b) BC interaction plot.

Figure 15.21: Interaction plots for the data in Table 15.22.

In the above example, we say that both A and B are dispersion effects (i.e.
both factors impact the process variance). In addition, both factors are location
effects since the mean of y changes as both factors move from −1 to +1.

Analysis Involving the Model Containing Both Control and Noise Variables

While it has been emphasized that noise variables are not constant during the
working of the process, analysis that results in desirable or even optimal condi-
tions on the control variables is best accomplished through an experiment in which
both control and noise variables are fixed effects. Thus, both main effects in the
control and noise variables and all the important control-by-noise interactions can
be evaluated. This model in x and z, often called a response model, can both
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directly and indirectly provide useful information regarding the process. The re-
sponse model is actually a response surface model in vector x and vector z, where
x contains control variables and z the noise variables. Certain operations allow
models to be generated for the process mean and variance much as in Case Study
15.4. Details are supplied in Myers, Montgomery, and Anderson-Cook (2009); we
will illustrate with a very simple example. Consider the data of Table 15.22 on
page 650 with control variables A and B and noise variable C. There are eight
experimental runs in a 22 × 2, or 23, factorial. Thus, the response model can be
written

y(x, z) = β0 + β1x1 + β2x2 + β3z + β12x1x2 + β1zx1z + β2zx2z + ε.

We will not include the three-factor interaction in the regression model. A, B, and
C in Table 15.22 are represented by x1, x2, and z, respectively, in the model. We
assume that the error term ε has the usual independence and constant variance
properties.

The Mean and Variance Response Surfaces

The process mean and variance response surfaces are best understood by consid-
ering the expectation and variance of z across the process. We assume that the
noise variable C [denoted by z in y(x, z)] is continuous with mean 0 and variance
σ2
z . The process mean and variance models may be viewed as

Ez[y(x, z)] = β0 + β1x1 + β2x2 + β12x1x2,

Varz[y(x, z)] = σ2 + σ2
z(β3 + β1zx1 + β2zx2)

2 = σ2 + σ2
z l

2
x,

where lx is the slope ∂y(x,z)
∂z in the direction of z. As we indicated earlier, note how

the interactions of factors A and B with the noise variable C are key components
of the process variance.

Though we have already analyzed the current example through plots in Figure
15.21, which displayed the role of AB and AC interactions, it is instructive to look
at the analysis in light of Ez[y(x, z)] and Varz[y(x, z)] above. In this example, the
reader can easily verify the estimate b1z for β1z is 15/8 while the estimate b2z for
β2z is −15/8. The coefficient b3 = 25/8. Thus, the condition x1 = +1 and x2 = −1
results in a process variance estimate of

V̂arz[y(x, z)] = σ2 + σ2
z(b3 + b1zx1 + b2zx2)

2

= σ2 + σ2
z

[
25

8
+

(
15

8

)
(1) +

(−15

8

)
(−1)

]2
= σ2 + σ2

z

(
55

8

)2

,

whereas for x1 = −1 and x2 = 1, we have

V̂arz[y(x, z)] = σ2 + σ2
z(b3 + b1zx1 + b2zx2)

2

= σ2 + σ2
z

[
25

8
+

(
15

8

)
(−1) +

(
15

8

)
(−1)

]2
= σ2 + σ2

z

(−5

8

)2

.

Thus, for the most desirable (robust) condition of x1 = −1 and x2 = 1, the
estimated process variance due to the noise variable C (or z) is (25/64)σ2

z . The
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most undesirable condition, the condition of maximum process variance (i.e., x1 =
+1 and x2 = −1), produces an estimated process variance of (3025/64)σ2

z . As
far as the mean response is concerned, Figure 15.21 indicates that if maximum
response is desired x1 = +1 and x2 = −1 produce the best result.

−1
z

+1

y

x1 = + 1

x1 = − 1

(a) x1z interaction plot.

−1
z

+1

y

x2 = + 1

x2 = − 1

(b) x2z interaction plot.

Figure 15.22: Interaction plots for the data in Exercise 15.31.

Exercises

15.31 Consider an example in which there are two
control variables x1 and x2 and a single noise variable
z. The goal is to determine the levels of x1 and x2 that
are robust to changes in z, i.e., levels of x1 and x2 that
minimize the variance produced in the response y as z
moves between −1 and +1. The variables x1 and x2 are
at two levels, −1 and +1, in the experiment. The data
produce the plots in Figure 15.22 above. Note that
x1 and x2 interact with the noise variable z. What
settings on x1 and x2 (−1 or +1 for each) result in
minimum variance in y? Explain.

15.32 Consider the following 23 factorial with control
variables x1 and x2 and noise variable z. Can x1 and
x2 be chosen at levels for which Var(y) is minimized?
Explain why or why not.

z = −1 z = +1
x2 = −1 x2 = +1 x2 = −1 x2 = +1

x1 = −1
x1 = +1

4
1

6
3

8
3

10
5

15.33 Consider Case Study 15.1 involving the injec-
tion molding data. Suppose mold temperature is dif-
ficult to control and thus it can be assumed that in
the process it follows a normal distribution with mean

0 and variance σ2
z . Of concern is the variance of the

shrinkage response in the process itself. In the analysis
of Figure 15.7, it is clear that mold temperature, injec-
tion velocity, and the interaction between the two are
the only important factors.

(a) Can the setting on velocity be used to create some
type of control on the process variance in shrinkage
which arises due to the inability to control temper-
ature? Explain.

(b) Using parameter estimates from Figure 15.7, give
an estimate of the following models:

(i)mean shrinkage across the distribution of tem-
perature;

(ii)shrinkage variance as a function of σ2
z .

(c) Use the estimated variance model to determine the
level of velocity that minimizes the shrinkage vari-
ance.

(d) Use the mean shrinkage model to determine what
value of velocity minimizes mean shrinkage.

(e) Are your results above consistent with your anal-
ysis from the interaction plot in Figure 15.6? Ex-
plain.

15.34 In Case Study 15.2 involving the coal cleans-
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ing data, the percent solids in the process system is
known to vary uncontrollably during the process and
is viewed as a noise factor with mean 0 and variance
σ2
z . The response, cleansing efficiency, has a mean and

variance that change behavior during the process. Use
only significant terms in the following parts.

(a) Use the estimates in Figure 15.9 to develop the pro-
cess mean efficiency and variance models.

(b) What factor (or factors) might be controlled at cer-
tain levels to control or otherwise minimize the pro-
cess variance?

(c) What conditions of factors B and C within the de-
sign region maximize the estimated mean?

(d) What level of C would you suggest for minimization
of process variance when B = 1? When B = −1?

15.35 Use the coal cleansing data of Exercise 15.2 on
page 609 to fit a model of the type

E(Y ) = β0 + β1x1 + β2x2 + β3x3,

where the levels are

x1, percent solids: 8, 12

x2, flow rate: 150, 250 gal/min

x3, pH: 5, 6

Center and scale the variables to design units. Also
conduct a test for lack of fit, and comment concerning
the adequacy of the linear regression model.

15.36 A 25 factorial plan is used to build a regres-
sion model containing first-order coefficients and model
terms for all two-factor interactions. Duplicate runs are
made for each factor. Outline the analysis-of-variance
table, showing degrees of freedom for regression, lack
of fit, and pure error.

15.37 Consider the 1
16

of the 27 factorial discussed in
Section 15.9. List the additional 11 defining contrasts.

15.38 Construct a Plackett-Burman design for 10
variables containing 24 experimental runs.

Review Exercises

15.39 A Plackett-Burman design was used to study
the rheological properties of high-molecular-weight
copolymers. Two levels of each of six variables were
fixed in the experiment. The viscosity of the poly-
mer is the response. The data were analyzed by the
Statistics Consulting Center at Virginia Tech for per-
sonnel in the Chemical Engineering Department at the
University. The variables are as follows: hard block
chemistry x1, nitrogen flow rate x2, heat-up time x3,
percent compression x4, scans (high and low) x5, per-
cent strain x6. The data are presented here.

Obs. x1 x2 x3 x4 x5 x6 y

1
2
3
4
5
6
7
8
9

10
11
12

1
1

−1
1
1
1

−1
−1
−1
1

−1
−1

−1
1
1

−1
1
1
1

−1
−1
−1
1

−1

1
−1
1
1

−1
1
1
1

−1
−1
−1
−1

−1
1

−1
1
1

−1
1
1
1

−1
−1
−1

−1
−1
1

−1
1
1

−1
1
1
1

−1
−1

−1
−1
−1
1

−1
1
1

−1
1
1
1

−1

194,700
588,400

7533
514,100
277,300
493,500

8969
18,340
6793

160,400
7008
3637

Build a regression equation relating viscosity to the
levels of the six variables. Conduct t-tests for all main
effects. Recommend factors that should be retained for
future studies and those that should not. Use the resid-
ual mean square (5 degrees of freedom) as a measure
of experimental error.

15.40 A large petroleum company in the Southwest
regularly conducts experiments to test additives to
drilling fluids. Plastic viscosity is a rheological mea-
sure reflecting the thickness of the fluid. Various poly-
mers are added to the fluid to increase viscosity. The
following is a data set in which two polymers are used
at two levels each and the viscosity measured. The
concentration of the polymers is indicated as “low” or
“high.” Conduct an analysis of the 22 factorial ex-
periment. Test for effects for the two polymers and
interaction.

Polymer 1
Polymer 2 Low High

Low
High

3.0
11.7

3.5
12.0

11.3
21.7

12.0
22.4

15.41 A 22 factorial experiment is analyzed by the
Statistics Consulting Center at Virginia Tech. The
client is a member of the Department of Housing, Inte-
rior Design, and Resource Management. The client is
interested in comparing cold start to preheating ovens
in terms of total energy delivered to the product. In ad-
dition, convection is being compared to regular mode.
Four experimental runs are made at each of the four
factor combinations. Following are the data from the
experiment:
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Preheat Cold
Convection
Mode

618
629

619.3
611

575
574

573.7
572

Regular
Mode

581
581

585.7
595

558
562

562
566

Do an analysis of variance to study main effects and
interaction. Draw conclusions.

15.42 In the study “The Use of Regression Analy-
sis for Correcting Matrix Effects in the X-Ray Fluo-
rescence Analysis of Pyrotechnic Compositions,” pub-
lished in the Proceedings of the Tenth Conference on
the Design of Experiments in Army Research Devel-
opment and Testing, ARO-D Report 65-3 (1965), an
experiment was conducted in which the concentrations
of four components of a propellant mixture and the
weights of fine and coarse particles in the slurry were
each allowed to vary. Factors A, B, C, and D, each
at two levels, represent the concentrations of the four
components, and factors E and F , also at two levels,
represent the weights of the fine and coarse particles
present in the slurry. The goal of the analysis was
to determine if the X-ray intensity ratios associated
with component 1 of the propellant were significantly
influenced by varying the concentrations of the vari-
ous components and the weights of the particles in the
mixture. A 1

8
fraction of a 26 factorial experiment was

used, with the defining contrasts being ADE, BCE,
and ACF . The data shown here represent the total of
a pair of intensity readings.
The pooled mean square error with 8 degrees of free-
dom is given by 0.02005. Analyze the data using a
0.05 level of significance to determine if the concentra-
tions of the components and the weights of the fine and
coarse particles present in the slurry have a significant
influence on the intensity ratios associated with com-

ponent 1. Assume that no interaction exists among the
six factors.

Treatment Intensity
Batch Combination Ratio Total

1 abef 2.2480
2 cdef 1.8570
3 (1) 2.2428
4 ace 2.3270
5 bde 1.8830
6 abcd 1.8078
7 adf 2.1424
8 bcf 1.9122

15.43 Use Table 15.16 to construct a 16-run design
with 8 factors that is resolution IV.

15.44 Verify that your design in Review Exercise
15.43 is indeed resolution IV.

15.45 Construct a design that contains 9 design
points, is orthogonal, contains 12 total runs and 3 de-
grees of freedom for replication error, and allows for a
lack-of-fit test for pure quadratic curvature.

15.46 Consider a design which is a 23−1
III with 2 cen-

ter runs. Consider ȳf as the average response at the
design parameter and ȳ0 as the average response at the
design center. Suppose the true regression model is

E(Y ) = β0 + β1x1 + β2x2 + β3x3

+ β11x
2
1 + β22x

2
2 + β33x

2
3.

(a) Give (and verify) E(ȳf − ȳ0).

(b) Explain what you have learned from the result in
(a).

15.13 Potential Misconceptions and Hazards;
Relationship to Material in Other Chapters

In the use of fractional factorial experiments, one of the most important consider-
ations that the analyst must be aware of is the design resolution. A design of low
resolution is smaller (and hence cheaper) than one of higher resolution. However,
a price is paid for the cheaper design. The design of lower resolution has heavier
aliasing than one of higher resolution. For example, if the researcher has expec-
tations that two-factor interactions may be important, then resolution III should
not be used. A resolution III design is strictly a main effects plan.
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Chapter 16

Nonparametric Statistics

16.1 Nonparametric Tests

Most of the hypothesis-testing procedures discussed in previous chapters are based
on the assumption that the random samples are selected from normal populations.
Fortunately, most of these tests are still reliable when we experience slight depar-
tures from normality, particularly when the sample size is large. Traditionally,
these testing procedures have been referred to as parametric methods. In this
chapter, we consider a number of alternative test procedures, called nonparamet-
ric or distribution-free methods, that often assume no knowledge whatsoever
about the distributions of the underlying populations, except perhaps that they
are continuous.

Nonparametric, or distribution-free procedures, are used with increasing fre-
quency by data analysts. There are many applications in science and engineering
where the data are reported as values not on a continuum but rather on an ordinal
scale such that it is quite natural to assign ranks to the data. In fact, the reader
may notice quite early in this chapter that the distribution-free methods described
here involve an analysis of ranks. Most analysts find the computations involved in
nonparametric methods to be very appealing and intuitive.

For an example where a nonparametric test is applicable, consider the situation
in which two judges rank five brands of premium beer by assigning a rank of 1 to
the brand believed to have the best overall quality, a rank of 2 to the second best,
and so forth. A nonparametric test could then be used to determine whether there
is any agreement between the two judges.

We should also point out that there are a number of disadvantages associ-
ated with nonparametric tests. Primarily, they do not utilize all the information
provided by the sample, and thus a nonparametric test will be less efficient than
the corresponding parametric procedure when both methods are applicable. Con-
sequently, to achieve the same power, a nonparametric test will require a larger
sample size than will the corresponding parametric test.

As we indicated earlier, slight departures from normality result in minor devi-
ations from the ideal for the standard parametric tests. This is particularly true
for the t-test and the F-test. In the case of the t-test and the F-test, the P-value
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quoted may be slightly in error if there is a moderate violation of the normality
assumption.

In summary, if a parametric and a nonparametric test are both applicable to
the same set of data, we should carry out the more efficient parametric technique.
However, we should recognize that the assumptions of normality often cannot be
justified and that we do not always have quantitative measurements. It is fortu-
nate that statisticians have provided us with a number of useful nonparametric
procedures. Armed with nonparametric techniques, the data analyst has more
ammunition to accommodate a wider variety of experimental situations. It should
be pointed out that even under the standard normal theory assumptions, the ef-
ficiencies of the nonparametric techniques are remarkably close to those of the
corresponding parametric procedure. On the other hand, serious departures from
normality will render the nonparametric method much more efficient than the
parametric procedure.

Sign Test

The reader should recall that the procedures discussed in Section 10.4 for testing the
null hypothesis that μ = μ0 are valid only if the population is approximately normal
or if the sample is large. If n < 30 and the population is decidedly nonnormal, we
must resort to a nonparametric test.

The sign test is used to test hypotheses on a population median. In the case
of many of the nonparametric procedures, the mean is replaced by the median as
the pertinent location parameter under test. Recall that the sample median was
defined in Section 1.3. The population counterpart, denoted by μ̃, has an analogous
definition. Given a random variable X, μ̃ is defined such that P (X > μ̃) ≤ 0.5 and
P (X < μ̃) ≤ 0.5. In the continuous case,

P (X > μ̃) = P (X < μ̃) = 0.5.

Of course, if the distribution is symmetric, the population mean and median are
equal. In testing the null hypothesis H0 that μ̃ = μ̃0 against an appropriate
alternative, on the basis of a random sample of size n, we replace each sample
value exceeding μ̃0 with a plus sign and each sample value less than μ̃0 with a
minus sign. If the null hypothesis is true and the population is symmetric, the
sum of the plus signs should be approximately equal to the sum of the minus signs.
When one sign appears more frequently than it should based on chance alone, we
reject the hypothesis that the population median μ̃ is equal to μ̃0.

In theory, the sign test is applicable only in situations where μ̃0 cannot equal
the value of any of the observations. Although there is a zero probability of obtain-
ing a sample observation exactly equal to μ̃0 when the population is continuous,
nevertheless, in practice a sample value equal to μ̃0 will often occur from a lack of
precision in recording the data. When sample values equal to μ̃0 are observed, they
are excluded from the analysis and the sample size is correspondingly reduced.

The appropriate test statistic for the sign test is the binomial random variable
X, representing the number of plus signs in our random sample. If the null hy-
pothesis that μ̃ = μ̃0 is true, the probability that a sample value results in either
a plus or a minus sign is equal to 1/2. Therefore, to test the null hypothesis that
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μ̃ = μ̃0, we actually test the null hypothesis that the number of plus signs is a value
of a random variable having the binomial distribution with the parameter p = 1/2.
P-values for both one-sided and two-sided alternatives can then be calculated using
this binomial distribution. For example, in testing

H0: μ̃ = μ̃0,

H1: μ̃ < μ̃0,

we shall reject H0 in favor of H1 only if the proportion of plus signs is sufficiently
less than 1/2, that is, when the value x of our random variable is small. Hence, if
the computed P-value

P = P (X ≤ x when p = 1/2)

is less than or equal to some preselected significance level α, we reject H0 in favor
of H1. For example, when n = 15 and x = 3, we find from Table A.1 that

P = P (X ≤ 3 when p = 1/2) =
3∑

x=0

b

(
x; 15,

1

2

)
= 0.0176,

so the null hypothesis μ̃ = μ̃0 can certainly be rejected at the 0.05 level of signifi-
cance but not at the 0.01 level.

To test the hypothesis

H0: μ̃ = μ̃0,

H1: μ̃ > μ̃0,

we reject H0 in favor of H1 only if the proportion of plus signs is sufficiently greater
than 1/2, that is, when x is large. Hence, if the computed P-value

P = P (X ≥ x when p = 1/2)

is less than α, we reject H0 in favor of H1. Finally, to test the hypothesis

H0: μ̃ = μ̃0,

H1: μ̃ �= μ̃0,

we reject H0 in favor of H1 when the proportion of plus signs is significantly less
than or greater than 1/2. This, of course, is equivalent to x being sufficiently small
or sufficiently large. Therefore, if x < n/2 and the computed P-value

P = 2P (X ≤ x when p = 1/2)

is less than or equal to α, or if x > n/2 and the computed P-value

P = 2P (X ≥ x when p = 1/2)

is less than or equal to α, we reject H0 in favor of H1.
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Whenever n > 10, binomial probabilities with p = 1/2 can be approximated
from the normal curve, since np = nq > 5. Suppose, for example, that we wish to
test the hypothesis

H0: μ̃ = μ̃0,

H1: μ̃ < μ̃0,

at the α = 0.05 level of significance, for a random sample of size n = 20 that yields
x = 6 plus signs. Using the normal curve approximation with

μ̃ = np = (20)(0.5) = 10

and

σ =
√
npq =

√
(20)(0.5)(0.5) = 2.236,

we find that

z =
6.5− 10

2.236
= −1.57.

Therefore,

P = P (X ≤ 6) ≈ P (Z < −1.57) = 0.0582,

which leads to the nonrejection of the null hypothesis.

Example 16.1: The following data represent the number of hours that a rechargeable hedge trim-
mer operates before a recharge is required:

1.5, 2.2, 0.9, 1.3, 2.0, 1.6, 1.8, 1.5, 2.0, 1.2, 1.7.

Use the sign test to test the hypothesis, at the 0.05 level of significance, that this
particular trimmer operates a median of 1.8 hours before requiring a recharge.

Solution : 1. H0: μ̃ = 1.8.

2. H1: μ̃ �= 1.8.

3. α = 0.05.

4. Test statistic: Binomial variable X with p = 1
2 .

5. Computations: Replacing each value by the symbol “+” if it exceeds 1.8 and
by the symbol “−” if it is less than 1.8 and discarding the one measurement
that equals 1.8, we obtain the sequence

− + − − + − − + − −
for which n = 10, x = 3, and n/2 = 5. Therefore, from Table A.1 the
computed P-value is

P = 2P

(
X ≤ 3 when p =

1

2

)
= 2

3∑
x=0

b

(
x; 10,

1

2

)
= 0.3438 > 0.05.
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6. Decision: Do not reject the null hypothesis and conclude that the median
operating time is not significantly different from 1.8 hours.

We can also use the sign test to test the null hypothesis μ̃1 − μ̃2 = d0 for
paired observations. Here we replace each difference, di, with a plus or minus
sign depending on whether the adjusted difference, di − d0, is positive or negative.
Throughout this section, we have assumed that the populations are symmetric.
However, even if populations are skewed, we can carry out the same test procedure,
but the hypotheses refer to the population medians rather than the means.

Example 16.2: A taxi company is trying to decide whether the use of radial tires instead of regular
belted tires improves fuel economy. Sixteen cars are equipped with radial tires and
driven over a prescribed test course. Without changing drivers, the same cars are
then equipped with the regular belted tires and driven once again over the test
course. The gasoline consumption, in kilometers per liter, is given in Table 16.1.
Can we conclude at the 0.05 level of significance that cars equipped with radial
tires obtain better fuel economy than those equipped with regular belted tires?

Table 16.1: Data for Example 16.2

Car 1 2 3 4 5 6 7 8
Radial Tires 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0
Belted Tires 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8

Car 9 10 11 12 13 14 15 16
Radial Tires 7.4 4.9 6.1 5.2 5.7 6.9 6.8 4.9
Belted Tires 6.9 4.9 6.0 4.9 5.3 6.5 7.1 4.8

Solution : Let μ̃1 and μ̃2 represent the median kilometers per liter for cars equipped with
radial and belted tires, respectively.

1. H0: μ̃1 − μ̃2 = 0.

2. H1: μ̃1 − μ̃2 > 0.

3. α = 0.05.

4. Test statistic: Binomial variable X with p = 1/2.

5. Computations: After replacing each positive difference by a “+” symbol and
each negative difference by a “−” symbol and then discarding the two zero
differences, we obtain the sequence

+ − + + − + + + + + + + − +

for which n = 14 and x = 11. Using the normal curve approximation, we find

z =
10.5− 7√

(14)(0.5)(0.5)
= 1.87,

and then

P = P (X ≥ 11) ≈ P (Z > 1.87) = 0.0307.
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6. Decision: Reject H0 and conclude that, on the average, radial tires do improve
fuel economy.

Not only is the sign test one of the simplest nonparametric procedures to ap-
ply; it has the additional advantage of being applicable to dichotomous data that
cannot be recorded on a numerical scale but can be represented by positive and
negative responses. For example, the sign test is applicable in experiments where
a qualitative response such as “hit” or “miss” is recorded, and in sensory-type ex-
periments where a plus or minus sign is recorded depending on whether the taste
tester correctly or incorrectly identifies the desired ingredient.

We shall attempt to make comparisons between many of the nonparametric
procedures and the corresponding parametric tests. In the case of the sign test the
competition is, of course, the t-test. If we are sampling from a normal distribution,
the use of the t-test will result in a larger power for the test. If the distribu-
tion is merely symmetric, though not normal, the t-test is preferred in terms of
power unless the distribution has extremely “heavy tails” compared to the normal
distribution.

16.2 Signed-Rank Test

The reader should note that the sign test utilizes only the plus and minus signs
of the differences between the observations and μ̃0 in the one-sample case, or the
plus and minus signs of the differences between the pairs of observations in the
paired-sample case; it does not take into consideration the magnitudes of these
differences. A test utilizing both direction and magnitude, proposed in 1945 by
Frank Wilcoxon, is now commonly referred to as theWilcoxon signed-rank test.

The analyst can extract more information from the data in a nonparametric
fashion if it is reasonable to invoke an additional restriction on the distribution
from which the data were taken. The Wilcoxon signed-rank test applies in the case
of a symmetric continuous distribution. Under this condition, we can test the
null hypothesis μ̃ = μ̃0. We first subtract μ̃0 from each sample value, discarding all
differences equal to zero. The remaining differences are then ranked without regard
to sign. A rank of 1 is assigned to the smallest absolute difference (i.e., without
sign), a rank of 2 to the next smallest, and so on. When the absolute value of two
or more differences is the same, assign to each the average of the ranks that would
have been assigned if the differences were distinguishable. For example, if the fifth
and sixth smallest differences are equal in absolute value, each is assigned a rank
of 5.5. If the hypothesis μ̃ = μ̃0 is true, the total of the ranks corresponding to the
positive differences should nearly equal the total of the ranks corresponding to the
negative differences. Let us represent these totals by w+ and w−, respectively. We
designate the smaller of w+ and w− by w.

In selecting repeated samples, we would expect w+ and w−, and therefore w,
to vary. Thus, we may think of w+, w−, and w as values of the corresponding
random variables W+, W−, and W . The null hypothesis μ̃ = μ̃0 can be rejected
in favor of the alternative μ̃ < μ̃0 only if w+ is small and w− is large. Likewise,
the alternative μ̃ > μ̃0 can be accepted only if w+ is large and w− is small. For
a two-sided alternative, we may reject H0 in favor of H1 if either w+ or w−, and
hence w, is sufficiently small. Therefore, no matter what the alternative hypothesis

Uploaded By: anonymousSTUDENTS-HUB.com



16.2 Signed-Rank Test 661

may be, we reject the null hypothesis when the value of the appropriate statistic
W+, W−, or W is sufficiently small.

Two Samples with Paired Observations

To test the null hypothesis that we are sampling two continuous symmetric pop-
ulations with μ̃1 = μ̃2 for the paired-sample case, we rank the differences of the
paired observations without regard to sign and proceed as in the single-sample
case. The various test procedures for both the single- and paired-sample cases are
summarized in Table 16.2.

Table 16.2: Signed-Rank Test

H0 H1 Compute

μ̃ = μ̃0

⎧⎨⎩ μ̃ < μ̃0

μ̃ > μ̃0

μ̃ �= μ̃0

w+

w−
w

μ̃1 = μ̃2

⎧⎨⎩ μ̃1 < μ̃2

μ̃1 > μ̃2

μ̃1 �= μ̃2

w+

w−
w

It is not difficult to show that whenever n < 5 and the level of significance does
not exceed 0.05 for a one-tailed test or 0.10 for a two-tailed test, all possible values
of w+, w−, or w will lead to the acceptance of the null hypothesis. However, when
5 ≤ n ≤ 30, Table A.16 shows approximate critical values of W+ and W− for levels
of significance equal to 0.01, 0.025, and 0.05 for a one-tailed test and critical values
of W for levels of significance equal to 0.02, 0.05, and 0.10 for a two-tailed test.
The null hypothesis is rejected if the computed value w+, w−, or w is less than
or equal to the appropriate tabled value. For example, when n = 12, Table A.16
shows that a value of w+ ≤ 17 is required for the one-sided alternative μ̃ < μ̃0 to
be significant at the 0.05 level.

Example 16.3: Rework Example 16.1 by using the signed-rank test.
Solution : 1. H0: μ̃ = 1.8.

2. H1: μ̃ �= 1.8.

3. α = 0.05.

4. Critical region: Since n = 10 after discarding the one measurement that equals
1.8, Table A.16 shows the critical region to be w ≤ 8.

5. Computations: Subtracting 1.8 from each measurement and then ranking the
differences without regard to sign, we have

di −0.3 0.4 −0.9 −0.5 0.2 −0.2 −0.3 0.2 −0.6 −0.1

Ranks 5.5 7 10 8 3 3 5.5 3 9 1

Now w+ = 13 and w− = 42, so w = 13, the smaller of w+ and w−.
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6. Decision: As before, do not reject H0 and conclude that the median operating
time is not significantly different from 1.8 hours.

The signed-rank test can also be used to test the null hypothesis that μ̃1− μ̃2 =
d0. In this case, the populations need not be symmetric. As with the sign test, we
subtract d0 from each difference, rank the adjusted differences without regard to
sign, and apply the same procedure as above.

Example 16.4: It is claimed that a college senior can increase his or her score in the major field
area of the graduate record examination by at least 50 points if he or she is provided
with sample problems in advance. To test this claim, 20 college seniors are divided
into 10 pairs such that the students in each matched pair have almost the same
overall grade-point averages for their first 3 years in college. Sample problems and
answers are provided at random to one member of each pair 1 week prior to the
examination. The examination scores are given in Table 16.3.

Table 16.3: Data for Example 16.4

Pair

1 2 3 4 5 6 7 8 9 10

With Sample Problems 531 621 663 579 451 660 591 719 543 575
Without Sample Problems 509 540 688 502 424 683 568 748 530 524

Test the null hypothesis, at the 0.05 level of significance, that sample problems
increase scores by 50 points against the alternative hypothesis that the increase is
less than 50 points.

Solution : Let μ̃1 and μ̃2 represent the median scores of all students taking the test in question
with and without sample problems, respectively.

1. H0: μ̃1 − μ̃2 = 50.

2. H1: μ̃1 − μ̃2 < 50.

3. α = 0.05.

4. Critical region: Since n = 10, Table A.16 shows the critical region to be
w+ ≤ 11.

5. Computations:

Pair

1 2 3 4 5 6 7 8 9 10

di
di − d0

22
−28

81
31

−25
−75

77
27

27
−23

−23
−73

23
−27

−29
−79

13
−37

51
1

Ranks 5 6 9 3.5 2 8 3.5 10 7 1

Now we find that w+ = 6 + 3.5 + 1 = 10.5.

6. Decision: Reject H0 and conclude that sample problems do not, on average,
increase one’s graduate record score by as much as 50 points.
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Normal Approximation for Large Samples

When n ≥ 15, the sampling distribution of W+ (or W−) approaches the normal
distribution with mean and variance given by

μW+
=

n(n+ 1)

4
and σ2

W+
=

n(n+ 1)(2n+ 1)

24
.

Therefore, when n exceeds the largest value in Table A.16, the statistic

Z =
W+ − μW+

σW+

can be used to determine the critical region for the test.

Exercises

16.1 The following data represent the time, in min-
utes, that a patient has to wait during 12 visits to a
doctor’s office before being seen by the doctor:

17 15 20 20 32 28
12 26 25 25 35 24

Use the sign test at the 0.05 level of significance to test
the doctor’s claim that the median waiting time for her
patients is not more than 20 minutes.

16.2 The following data represent the number of
hours of flight training received by 18 student pilots
from a certain instructor prior to their first solo flight:

9 12 18 14 12 14 12 10 16
11 9 11 13 11 13 15 13 14

Using binomial probabilities from Table A.1, perform
a sign test at the 0.02 level of significance to test the
instructor’s claim that the median time required before
his students’ solo is 12 hours of flight training.

16.3 A food inspector examined 16 jars of a certain
brand of jam to determine the percent of foreign im-
purities. The following data were recorded:

2.4 2.3 3.1 2.2 2.3 1.2 1.0 2.4
1.7 1.1 4.2 1.9 1.7 3.6 1.6 2.3

Using the normal approximation to the binomial dis-
tribution, perform a sign test at the 0.05 level of signif-
icance to test the null hypothesis that the median per-
cent of impurities in this brand of jam is 2.5% against
the alternative that the median percent of impurities
is not 2.5%.

16.4 A paint supplier claims that a new additive will
reduce the drying time of its acrylic paint. To test this
claim, 12 panels of wood were painted, one-half of each
panel with paint containing the regular additive and
the other half with paint containing the new additive.
The drying times, in hours, were recorded as follows:

Drying Time (hours)

Panel New Additive Regular Additive

1
2
3
4
5
6
7
8
9

10
11
12

6.4
5.8
7.4
5.5
6.3
7.8
8.6
8.2
7.0
4.9
5.9
6.5

6.6
5.8
7.8
5.7
6.0
8.4
8.8
8.4
7.3
5.8
5.8
6.5

Use the sign test at the 0.05 level to test the null hy-
pothesis that the new additive is no better than the
regular additive in reducing the drying time of this
kind of paint.

16.5 It is claimed that a new diet will reduce a per-
son’s weight by 4.5 kilograms, on average, in a period
of 2 weeks. The weights of 10 women were recorded
before and after a 2-week period during which they
followed this diet, yielding the following data:

Woman Weight Before Weight After

1
2
3
4
5
6
7
8
9

10

58.5
60.3
61.7
69.0
64.0
62.6
56.7
63.6
68.2
59.4

60.0
54.9
58.1
62.1
58.5
59.9
54.4
60.2
62.3
58.7

Use the sign test at the 0.05 level of significance to
test the hypothesis that the diet reduces the median
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weight by 4.5 kilograms against the alternative hypoth-
esis that the median weight loss is less than 4.5 kilo-
grams.

16.6 Two types of instruments for measuring the
amount of sulfur monoxide in the atmosphere are be-
ing compared in an air-pollution experiment. The fol-
lowing readings were recorded daily for a period of 2
weeks:

Sulfur Monoxide

Day Instrument A Instrument B

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.96
0.82
0.75
0.61
0.89
0.64
0.81
0.68
0.65
0.84
0.59
0.94
0.91
0.77

0.87
0.74
0.63
0.55
0.76
0.70
0.69
0.57
0.53
0.88
0.51
0.79
0.84
0.63

Using the normal approximation to the binomial distri-
bution, perform a sign test to determine whether the
different instruments lead to different results. Use a
0.05 level of significance.

16.7 The following figures give the systolic blood
pressure of 16 joggers before and after an 8-kilometer
run:

Jogger Before After

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

158
149
160
155
164
138
163
159
165
145
150
161
132
155
146
159

164
158
163
160
172
147
167
169
173
147
156
164
133
161
154
170

Use the sign test at the 0.05 level of significance to test
the null hypothesis that jogging 8 kilometers increases
the median systolic blood pressure by 8 points against
the alternative that the increase in the median is less
than 8 points.

16.8 Analyze the data of Exercise 16.1 by using the
signed-rank test.

16.9 Analyze the data of Exercise 16.2 by using the
signed-rank test.

16.10 The weights of 5 people before they stopped
smoking and 5 weeks after they stopped smoking, in
kilograms, are as follows:

Individual

1 2 3 4 5

Before 66 80 69 52 75
After 71 82 68 56 73

Use the signed-rank test for paired observations to test
the hypothesis, at the 0.05 level of significance, that
giving up smoking has no effect on a person’s weight
against the alternative that one’s weight increases if he
or she quits smoking.

16.11 Rework Exercise 16.5 by using the signed-rank
test.

16.12 The following are the numbers of prescriptions
filled by two pharmacies over a 20-day period:

Day Pharmacy A Pharmacy B
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

19
21
15
17
24
12
19
14
20
18
23
21
17
12
16
15
20
18
14
22

17
15
12
12
16
15
11
13
14
21
19
15
11
10
20
12
13
17
16
18

Use the signed-rank test at the 0.01 level of significance
to determine whether the two pharmacies, on average,
fill the same number of prescriptions against the alter-
native that pharmacy A fills more prescriptions than
pharmacy B.

16.13 Rework Exercise 16.7 by using the signed-rank
test.

16.14 Rework Exercise 16.6 by using the signed-rank
test.
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16.3 Wilcoxon Rank-Sum Test

As we indicated earlier, the nonparametric procedure is generally an appropriate
alternative to the normal theory test when the normality assumption does not hold.
When we are interested in testing equality of means of two continuous distributions
that are obviously nonnormal, and samples are independent (i.e., there is no pairing
of observations), the Wilcoxon rank-sum test or Wilcoxon two-sample test
is an appropriate alternative to the two-sample t-test described in Chapter 10.

We shall test the null hypothesis H0 that μ̃1 = μ̃2 against some suitable alter-
native. First we select a random sample from each of the populations. Let n1 be
the number of observations in the smaller sample, and n2 the number of observa-
tions in the larger sample. When the samples are of equal size, n1 and n2 may be
randomly assigned. Arrange the n1 + n2 observations of the combined samples in
ascending order and substitute a rank of 1, 2, . . . , n1 + n2 for each observation. In
the case of ties (identical observations), we replace the observations by the mean
of the ranks that the observations would have if they were distinguishable. For
example, if the seventh and eighth observations were identical, we would assign a
rank of 7.5 to each of the two observations.

The sum of the ranks corresponding to the n1 observations in the smaller sample
is denoted by w1. Similarly, the value w2 represents the sum of the n2 ranks
corresponding to the larger sample. The total w1+w2 depends only on the number
of observations in the two samples and is in no way affected by the results of the
experiment. Hence, if n1 = 3 and n2 = 4, then w1 + w2 = 1 + 2 + · · · + 7 = 28,
regardless of the numerical values of the observations. In general,

w1 + w2 =
(n1 + n2)(n1 + n2 + 1)

2
,

the arithmetic sum of the integers 1, 2, . . . , n1 + n2. Once we have determined w1,
it may be easier to find w2 by the formula

w2 =
(n1 + n2)(n1 + n2 + 1)

2
− w1.

In choosing repeated samples of sizes n1 and n2, we would expect w1, and
therefore w2, to vary. Thus, we may think of w1 and w2 as values of the random
variables W1 and W2, respectively. The null hypothesis μ̃1 = μ̃2 will be rejected
in favor of the alternative μ̃1 < μ̃2 only if w1 is small and w2 is large. Likewise,
the alternative μ̃1 > μ̃2 can be accepted only if w1 is large and w2 is small. For a
two-tailed test, we may reject H0 in favor of H1 if w1 is small and w2 is large or
if w1 is large and w2 is small. In other words, the alternative μ̃1 < μ̃2 is accepted
if w1 is sufficiently small; the alternative μ̃1 > μ̃2 is accepted if w2 is sufficiently
small; and the alternative μ̃1 �= μ̃2 is accepted if the minimum of w1 and w2 is
sufficiently small. In actual practice, we usually base our decision on the value

u1 = w1 − n1(n1 + 1)

2
or u2 = w2 − n2(n2 + 1)

2

of the related statistic U1 or U2 or on the value u of the statistic U , the minimum
of U1 and U2. These statistics simplify the construction of tables of critical values,
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since both U1 and U2 have symmetric sampling distributions and assume values in
the interval from 0 to n1n2 such that u1 + u2 = n1n2.

From the formulas for u1 and u2 we see that u1 will be small when w1 is small
and u2 will be small when w2 is small. Consequently, the null hypothesis will
be rejected whenever the appropriate statistic U1, U2, or U assumes a value less
than or equal to the desired critical value given in Table A.17. The various test
procedures are summarized in Table 16.4.

Table 16.4: Rank-Sum Test

H0 H1 Compute

μ̃1 = μ̃2

⎧⎨⎩ μ̃1 < μ̃2

μ̃1 > μ̃2

μ̃1 �= μ̃2

u1

u2

u

Table A.17 gives critical values of U1 and U2 for levels of significance equal
to 0.001, 0.01, 0.025, and 0.05 for a one-tailed test, and critical values of U for
levels of significance equal to 0.002, 0.02, 0.05, and 0.10 for a two-tailed test. If
the observed value of u1, u2, or u is less than or equal to the tabled critical
value, the null hypothesis is rejected at the level of significance indicated by the
table. Suppose, for example, that we wish to test the null hypothesis that μ̃1 = μ̃2

against the one-sided alternative that μ̃1 < μ̃2 at the 0.05 level of significance for
random samples of sizes n1 = 3 and n2 = 5 that yield the value w1 = 8. It follows
that

u1 = 8− (3)(4)

2
= 2.

Our one-tailed test is based on the statistic U1. Using Table A.17, we reject the
null hypothesis of equal means when u1 ≤ 1. Since u1 = 2 does not fall in the
rejection region, the null hypothesis cannot be rejected.

Example 16.5: The nicotine content of two brands of cigarettes, measured in milligrams, was found
to be as follows:

Brand A 2.1 4.0 6.3 5.4 4.8 3.7 6.1 3.3

Brand B 4.1 0.6 3.1 2.5 4.0 6.2 1.6 2.2 1.9 5.4

Test the hypothesis, at the 0.05 level of significance, that the median nicotine
contents of the two brands are equal against the alternative that they are unequal.

Solution : 1. H0: μ̃1 = μ̃2.

2. H1: μ̃1 �= μ̃2.

3. α = 0.05.

4. Critical region: u ≤ 17 (from Table A.17).

5. Computations: The observations are arranged in ascending order and ranks
from 1 to 18 assigned.
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Original Data Ranks Original Data Ranks
0.6 1 4.0 10.5*
1.6 2 4.0 10.5
1.9 3 4.1 12
2.1 4* 4.8 13*
2.2 5 5.4 14.5*
2.5 6 5.4 14.5
3.1 7 6.1 16*
3.3 8* 6.2 17
3.7 9* 6.3 18*

*The ranks marked with an asterisk belong to sample A.

Now

w1 = 4 + 8 + 9 + 10.5 + 13 + 14.5 + 16 + 18 = 93

and

w2 =
(18)(19)

2
− 93 = 78.

Therefore,

u1 = 93− (8)(9)

2
= 57, u2 = 78− (10)(11)

2
= 23.

6. Decision: Do not reject the null hypothesis H0 and conclude that there is
no significant difference in the median nicotine contents of the two brands of
cigarettes.

Normal Theory Approximation for Two Samples

When both n1 and n2 exceed 8, the sampling distribution of U1 (or U2) approaches
the normal distribution with mean and variance given by

μU1
=

n1n2

2
and σ2

U1
=

n1n2(n1 + n2 + 1)

12
.

Consequently, when n2 is greater than 20, the maximum value in Table A.17, and
n1 is at least 9, we can use the statistic

Z =
U1 − μU1

σU1

for our test, with the critical region falling in either or both tails of the standard
normal distribution, depending on the form of H1.

The use of the Wilcoxon rank-sum test is not restricted to nonnormal popula-
tions. It can be used in place of the two-sample t-test when the populations are
normal, although the power will be smaller. The Wilcoxon rank-sum test is always
superior to the t-test for decidedly nonnormal populations.
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16.4 Kruskal-Wallis Test

In Chapters 13, 14, and 15, the technique of analysis of variance was prominent
as an analytical technique for testing equality of k ≥ 2 population means. Again,
however, the reader should recall that normality must be assumed in order for the
F-test to be theoretically correct. In this section, we investigate a nonparametric
alternative to analysis of variance.

The Kruskal-Wallis test, also called the Kruskal-Wallis H test, is a gen-
eralization of the rank-sum test to the case of k > 2 samples. It is used to test
the null hypothesis H0 that k independent samples are from identical populations.
Introduced in 1952 by W. H. Kruskal and W. A. Wallis, the test is a nonpara-
metric procedure for testing the equality of means in the one-factor analysis of
variance when the experimenter wishes to avoid the assumption that the samples
were selected from normal populations.

Let ni (i = 1, 2, . . . , k) be the number of observations in the ith sample. First,
we combine all k samples and arrange the n = n1 + n2 + · · · + nk observations in
ascending order, substituting the appropriate rank from 1, 2, . . . , n for each obser-
vation. In the case of ties (identical observations), we follow the usual procedure
of replacing the observations by the mean of the ranks that the observations would
have if they were distinguishable. The sum of the ranks corresponding to the ni

observations in the ith sample is denoted by the random variable Ri. Now let us
consider the statistic

H =
12

n(n+ 1)

k∑
i=1

R2
i

ni
− 3(n+ 1),

which is approximated very well by a chi-squared distribution with k−1 degrees of
freedom when H0 is true, provided each sample consists of at least 5 observations.
The fact that h, the assumed value of H, is large when the independent samples
come from populations that are not identical allows us to establish the following
decision criterion for testing H0:

Kruskal-Wallis
Test

To test the null hypothesis H0 that k independent samples are from identical
populations, compute

h =
12

n(n+ 1)

k∑
i=1

r2i
ni

− 3(n+ 1),

where ri is the assumed value of Ri, for i = 1, 2, . . . , k. If h falls in the critical
region H > χ2

α with v = k − 1 degrees of freedom, reject H0 at the α-level of
significance; otherwise, fail to reject H0.

Example 16.6: In an experiment to determine which of three different missile systems is preferable,
the propellant burning rate is measured. The data, after coding, are given in Table
16.5. Use the Kruskal-Wallis test and a significance level of α = 0.05 to test the
hypothesis that the propellant burning rates are the same for the three missile
systems.
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Table 16.5: Propellant Burning Rates

Missile System
1 2 3

24.0 16.7 22.8 23.2 19.8 18.1 18.4 19.1 17.3
19.8 18.9 17.6 20.2 17.8 17.3 19.7 18.9

18.8 19.3

Solution : 1. H0: μ1 = μ2 = μ3.

2. H1: The three means are not all equal.

3. α = 0.05.

4. Critical region: h > χ2
0.05 = 5.991, for v = 2 degrees of freedom.

5. Computations: In Table 16.6, we convert the 19 observations to ranks and
sum the ranks for each missile system.

Table 16.6: Ranks for Propellant Burning Rates

Missile System
1 2 3
19 18 7
1 14.5 11

17 6 2.5
14.5 4 2.5
9.5 16 13

r1 = 61.0 5 9.5

r2 = 63.5 8
12

r3 = 65.5

Now, substituting n1 = 5, n2 = 6, n3 = 8 and r1 = 61.0, r2 = 63.5, r3 = 65.5,
our test statistic H assumes the value

h =
12

(19)(20)

(
61.02

5
+

63.52

6
+

65.52

8

)
− (3)(20) = 1.66.

6. Decision: Since h = 1.66 does not fall in the critical region h > 5.991, we
have insufficient evidence to reject the hypothesis that the propellant burning
rates are the same for the three missile systems.
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Exercises

16.15 A cigarette manufacturer claims that the tar
content of brand B cigarettes is lower than that of
brand A cigarettes. To test this claim, the follow-
ing determinations of tar content, in milligrams, were
recorded:

Brand A 1 12 9 13 11 14
Brand B 8 10 7

Use the rank-sum test with α = 0.05 to test whether
the claim is valid.

16.16 To find out whether a new serum will arrest
leukemia, nine patients, who have all reached an ad-
vanced stage of the disease, are selected. Five patients
receive the treatment and four do not. The survival
times, in years, from the time the experiment com-
menced are

Treatment 2.1 5.3 1.4 4.6 0.9
No treatment 1.9 0.5 2.8 3.1

Use the rank-sum test, at the 0.05 level of significance,
to determine if the serum is effective.

16.17 The following data represent the number of
hours that two different types of scientific pocket cal-
culators operate before a recharge is required.

Calculator A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1
Calculator B 3.8 4.8 4.3 4.2 4.0 4.9 4.5 5.2 4.5

Use the rank-sum test with α = 0.01 to determine if
calculator A operates longer than calculator B on a full
battery charge.

16.18 A fishing line is being manufactured by two
processes. To determine if there is a difference in the
mean breaking strength of the lines, 10 pieces manu-
factured by each process are selected and then tested
for breaking strength. The results are as follows:

Process 1 10.4 9.8 11.5 10.0 9.9
9.6 10.9 11.8 9.3 10.7

Process 2 8.7 11.2 9.8 10.1 10.8
9.5 11.0 9.8 10.5 9.9

Use the rank-sum test with α = 0.1 to determine
if there is a difference between the mean breaking
strengths of the lines manufactured by the two pro-
cesses.

16.19 From a mathematics class of 12 equally capable
students using programmed materials, 5 students are

selected at random and given additional instruction by
the teacher. The results on the final examination are
as follows:

Grade
Additional
Instruction 87 69 78 91 80
No Additional
Instruction 75 88 64 82 93 79 67

Use the rank-sum test with α = 0.05 to determine if
the additional instruction affects the average grade.

16.20 The following data represent the weights, in
kilograms, of personal luggage carried on various flights
by a member of a baseball team and a member of a
basketball team.

Luggage Weight (kilograms)
Baseball Player Basketball Player
16.3 20.0 18.6
18.1 15.0 15.4
15.9 18.6 15.6
14.1 14.5 18.3
17.7 19.1 17.4
16.3 13.6 14.8
13.2 17.2 16.5

15.4 16.3
17.7 18.1
18.6 16.8
12.7 14.1
15.0 13.6
15.9 16.3

Use the rank-sum test with α = 0.05 to test the null hy-
pothesis that the two athletes carry the same amount
of luggage on the average against the alternative hy-
pothesis that the average weights of luggage for the two
athletes are different.

16.21 The following data represent the operating
times in hours for three types of scientific pocket cal-
culators before a recharge is required:

Calculator
A B C

4.9 6.1 4.3
4.6 5.2

5.5 5.4 6.2
5.8 5.5 5.2

4.8

6.4 6.8 5.6
6.5 6.3 6.6

Use the Kruskal-Wallis test, at the 0.01 level of signif-
icance, to test the hypothesis that the operating times
for all three calculators are equal.

16.22 In Exercise 13.6 on page 519, use the Kruskal-
Wallis test at the 0.05 level of significance to determine
if the organic chemical solvents differ significantly in
sorption rate.
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16.5 Runs Test

In applying the many statistical concepts discussed throughout this book, it was
always assumed that the sample data had been collected by some randomization
procedure. The runs test, based on the order in which the sample observations
are obtained, is a useful technique for testing the null hypothesis H0 that the
observations have indeed been drawn at random.

To illustrate the runs test, let us suppose that 12 people are polled to find out if
they use a certain product. We would seriously question the assumed randomness
of the sample if all 12 people were of the same sex. We shall designate a male and a
female by the symbols M and F , respectively, and record the outcomes according
to their sex in the order in which they occur. A typical sequence for the experiment
might be

M M︸ ︷︷ ︸F F F︸ ︷︷ ︸ M︸︷︷︸F F︸ ︷︷ ︸M M M M︸ ︷︷ ︸,
where we have grouped subsequences of identical symbols. Such groupings are
called runs.

Definition 16.1: A run is a subsequence of one or more identical symbols representing a common
property of the data.

Regardless of whether the sample measurements represent qualitative or quan-
titative data, the runs test divides the data into two mutually exclusive categories:
male or female; defective or nondefective; heads or tails; above or below the me-
dian; and so forth. Consequently, a sequence will always be limited to two distinct
symbols. Let n1 be the number of symbols associated with the category that oc-
curs the least and n2 be the number of symbols that belong to the other category.
Then the sample size n = n1 + n2.

For the n = 12 symbols in our poll, we have five runs, with the first containing
two M’s, the second containing three F’s, and so on. If the number of runs is larger
or smaller than what we would expect by chance, the hypothesis that the sample
was drawn at random should be rejected. Certainly, a sample resulting in only two
runs,

M M M M M M M F F F F F

or the reverse, is most unlikely to occur from a random selection process. Such
a result indicates that the first 7 people interviewed were all males, followed by 5
females. Likewise, if the sample resulted in the maximum number of 12 runs, as
in the alternating sequence

M F M F M F M F M F M F,

we would again be suspicious of the order in which the individuals were selected
for the poll.

The runs test for randomness is based on the random variable V , the total
number of runs that occur in the complete sequence of the experiment. In Table
A.18, values of P (V ≤ v∗ when H0 is true) are given for v∗ = 2, 3, . . . , 20 runs and
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values of n1 and n2 less than or equal to 10. The P-values for both one-tailed and
two-tailed tests can be obtained using these tabled values.

For the poll taken previously, we exhibit a total of 5 F’s and 7 M’s. Hence,
with n1 = 5, n2 = 7, and v = 5, we note from Table A.18 that the P-value for a
two-tailed test is

P = 2P (V ≤ 5 when H0 is true) = 0.394 > 0.05.

That is, the value v = 5 is reasonable at the 0.05 level of significance when H0

is true, and therefore we have insufficient evidence to reject the hypothesis of
randomness in our sample.

When the number of runs is large (for example, if v = 11 while n1 = 5 and
n2 = 7), the P-value for a two-tailed test is

P = 2P (V ≥ 11 when H0 is true) = 2[1− P (V ≤ 10 when H0 is true)]

= 2(1− 0.992) = 0.016 < 0.05,

which leads us to reject the hypothesis that the sample values occurred at random.
The runs test can also be used to detect departures from randomness of a

sequence of quantitative measurements over time, caused by trends or periodicities.
Replacing each measurement, in the order in which it was collected, by a plus
symbol if it falls above the median or by a minus symbol if it falls below the
median and omitting all measurements that are exactly equal to the median, we
generate a sequence of plus and minus symbols that is tested for randomness as
illustrated in the following example.

Example 16.7: A machine dispenses acrylic paint thinner into containers. Would you say that
the amount of paint thinner being dispensed by this machine varies randomly if
the contents of the next 15 containers are measured and found to be 3.6, 3.9, 4.1,
3.6, 3.8, 3.7, 3.4, 4.0, 3.8, 4.1, 3.9, 4.0, 3.8, 4.2, and 4.1 liters? Use a 0.1 level of
significance.

Solution : 1. H0: Sequence is random.

2. H1: Sequence is not random.

3. α = 0.1.

4. Test statistic: V , the total number of runs.

5. Computations: For the given sample, we find x̃ = 3.9. Replacing each mea-
surement by the symbol “+” if it falls above 3.9 or by the symbol “−” if it
falls below 3.9 and omitting the two measurements that equal 3.9, we obtain
the sequence

− + − − − − + − + + − + +

for which n1 = 6, n2 = 7, and v = 8. Therefore, from Table A.18, the
computed P-value is

P = 2P (V ≥ 8 when H0 is true)

= 2[1− P (V ≤ 8 when H0 is true)] = 2(0.5) = 1.

6. Decision: Do not reject the hypothesis that the sequence of measurements
varies randomly.
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The runs test, although less powerful, can also be used as an alternative to
the Wilcoxon two-sample test to test the claim that two random samples come
from populations having the same distributions and therefore equal means. If the
populations are symmetric, rejection of the claim of equal distributions is equivalent
to accepting the alternative hypothesis that the means are not equal. In performing
the test, we first combine the observations from both samples and arrange them
in ascending order. Now assign the letter A to each observation taken from one of
the populations and the letter B to each observation from the other population,
thereby generating a sequence consisting of the symbols A and B. If observations
from one population are tied with observations from the other population, the
sequence of A and B symbols generated will not be unique and consequently the
number of runs is unlikely to be unique. Procedures for breaking ties usually result
in additional tedious computations, and for this reason we might prefer to apply
the Wilcoxon rank-sum test whenever these situations occur.

To illustrate the use of runs in testing for equal means, consider the survival
times of the leukemia patients of Exercise 16.16 on page 670, for which we have

0.5 0.9 1.4 1.9 2.1 2.8 3.1 4.6 5.3
B A A B A B B A A

resulting in v = 6 runs. If the two symmetric populations have equal means, the
observations from the two samples will be intermingled, resulting in many runs.
However, if the population means are significantly different, we would expect most
of the observations for one of the two samples to be smaller than those for the
other sample. In the extreme case where the populations do not overlap, we would
obtain a sequence of the form

A A A A A B B B B or B B B B A A A A A

and in either case there would be only two runs. Consequently, the hypothesis of
equal population means will be rejected at the α-level of significance only when v
is small enough so that

P = P (V ≤ v when H0 is true) ≤ α,

implying a one-tailed test.
Returning to the data of Exercise 16.16 on page 670, for which n1 = 4, n2 = 5,

and v = 6, we find from Table A.18 that

P = P (V ≤ 6 when H0 is true) = 0.786 > 0.05

and therefore fail to reject the null hypothesis of equal means. Hence, we conclude
that the new serum does not prolong life by arresting leukemia.

When n1 and n2 increase in size, the sampling distribution of V approaches the
normal distribution with mean and variance given by

μV =
2n1n2

n1 + n2
+ 1 and σ2

V =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
.

Consequently, when n1 and n2 are both greater than 10, we can use the statistic

Z =
V − μV

σV

to establish the critical region for the runs test.
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16.6 Tolerance Limits

Tolerance limits for a normal distribution of measurements were discussed in Chap-
ter 9. In this section, we consider a method for constructing tolerance intervals
that is independent of the shape of the underlying distribution. As we might sus-
pect, for a reasonable degree of confidence they will be substantially longer than
those constructed assuming normality, and the sample size required is generally
very large. Nonparametric tolerance limits are stated in terms of the smallest and
largest observations in our sample.

Two-Sided
Tolerance Limits

For any distribution of measurements, two-sided tolerance limits are indicated by
the smallest and largest observations in a sample of size n, where n is determined
so that one can assert with 100(1−γ)% confidence that at least the proportion
1− α of the distribution is included between the sample extremes.

Table A.19 gives required sample sizes for selected values of γ and 1 − α. For
example, when γ = 0.01 and 1 − α = 0.95, we must choose a random sample of
size n = 130 in order to be 99% confident that at least 95% of the distribution of
measurements is included between the sample extremes.

Instead of determining the sample size n such that a specified proportion of
measurements is contained between the sample extremes, it is desirable in many
industrial processes to determine the sample size such that a fixed proportion of
the population falls below the largest (or above the smallest) observation in the
sample. Such limits are called one-sided tolerance limits.

One-Sided
Tolerance Limits

For any distribution of measurements, a one-sided tolerance limit is determined
by the smallest (largest) observation in a sample of size n, where n is determined
so that one can assert with 100(1−γ)% confidence that at least the proportion
1 − α of the distribution will exceed the smallest (be less than the largest)
observation in the sample.

Table A.20 shows required sample sizes corresponding to selected values of γ
and 1−α. Hence, when γ = 0.05 and 1−α = 0.70, we must choose a sample of size
n = 9 in order to be 95% confident that 70% of our distribution of measurements
will exceed the smallest observation in the sample.

16.7 Rank Correlation Coefficient

In Chapter 11, we used the sample correlation coefficient r to measure the pop-
ulation correlation coefficient ρ, the linear relationship between two continuous
variables X and Y . If ranks 1, 2, . . . , n are assigned to the x observations in or-
der of magnitude and similarly to the y observations, and if these ranks are then
substituted for the actual numerical values in the formula for the correlation coef-
ficient in Chapter 11, we obtain the nonparametric counterpart of the conventional
correlation coefficient. A correlation coefficient calculated in this manner is known
as the Spearman rank correlation coefficient and is denoted by rs. When
there are no ties among either set of measurements, the formula for rs reduces to
a much simpler expression involving the differences di between the ranks assigned
to the n pairs of x’s and y’s, which we now state.
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Rank Correlation
Coefficient

A nonparametric measure of association between two variables X and Y is given
by the rank correlation coefficient

rs = 1− 6

n(n2 − 1)

n∑
i=1

d2i ,

where di is the difference between the ranks assigned to xi and yi and n is the
number of pairs of data.

In practice, the preceding formula is also used when there are ties among ei-
ther the x or y observations. The ranks for tied observations are assigned as in
the signed-rank test by averaging the ranks that would have been assigned if the
observations were distinguishable.

The value of rs will usually be close to the value obtained by finding r based
on numerical measurements and is interpreted in much the same way. As before,
the value of rs will range from −1 to +1. A value of +1 or −1 indicates perfect
association between X and Y , the plus sign occurring for identical rankings and
the minus sign occurring for reverse rankings. When rs is close to zero, we conclude
that the variables are uncorrelated.

Example 16.8: The figures listed in Table 16.7, released by the Federal Trade Commission, show
the milligrams of tar and nicotine found in 10 brands of cigarettes. Calculate the
rank correlation coefficient to measure the degree of relationship between tar and
nicotine content in cigarettes.

Table 16.7: Tar and Nicotine Contents

Cigarette Brand Tar Content Nicotine Content

Viceroy 14 0.9
Marlboro 17 1.1
Chesterfield 28 1.6
Kool 17 1.3
Kent 16 1.0
Raleigh 13 0.8
Old Gold 24 1.5
Philip Morris 25 1.4
Oasis 18 1.2
Players 31 2.0

Solution : Let X and Y represent the tar and nicotine contents, respectively. First we assign
ranks to each set of measurements, with the rank of 1 assigned to the lowest
number in each set, the rank of 2 to the second lowest number in each set, and
so forth, until the rank of 10 is assigned to the largest number. Table 16.8 shows
the individual rankings of the measurements and the differences in ranks for the
10 pairs of observations.
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Table 16.8: Rankings for Tar and Nicotine Content

Cigarette Brand x i y i d i

Viceroy
Marlboro
Chesterfield
Kool
Kent
Raleigh
Old Gold
Philip Morris
Oasis
Players

2.0
4.5
9.0
4.5
3.0
1.0
7.0
8.0
6.0
10.0

2.0
4.0
9.0
6.0
3.0
1.0
8.0
7.0
5.0

10.0

0.0
0.5
0.0

−1.5
0.0
0.0

−1.0
1.0
1.0
0.0

Substituting into the formula for rs, we find that

rs = 1− (6)(5.50)

(10)(100− 1)
= 0.967,

indicating a high positive correlation between the amounts of tar and nicotine
found in cigarettes.

Some advantages to using rs rather than r do exist. For instance, we no longer
assume the underlying relationship between X and Y to be linear and therefore,
when the data possess a distinct curvilinear relationship, the rank correlation co-
efficient will likely be more reliable than the conventional measure. A second ad-
vantage to using the rank correlation coefficient is the fact that no assumptions of
normality are made concerning the distributions of X and Y . Perhaps the greatest
advantage occurs when we are unable to make meaningful numerical measurements
but nevertheless can establish rankings. Such is the case, for example, when dif-
ferent judges rank a group of individuals according to some attribute. The rank
correlation coefficient can be used in this situation as a measure of the consistency
of the two judges.

To test the hypothesis that ρ = 0 by using a rank correlation coefficient, one
needs to consider the sampling distribution of the rs-values under the assumption
of no correlation. Critical values for α = 0.05, 0.025, 0.01, and 0.005 have been
calculated and appear in Table A.21. The setup of this table is similar to that of
the table of critical values for the t-distribution except for the left column, which
now gives the number of pairs of observations rather than the degrees of freedom.
Since the distribution of the rs-values is symmetric about zero when ρ = 0, the
rs-value that leaves an area of α to the left is equal to the negative of the rs-value
that leaves an area of α to the right. For a two-sided alternative hypothesis, the
critical region of size α falls equally in the two tails of the distribution. For a test
in which the alternative hypothesis is negative, the critical region is entirely in the
left tail of the distribution, and when the alternative is positive, the critical region
is placed entirely in the right tail.
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Example 16.9: Refer to Example 16.8 and test the hypothesis that the correlation between the
amounts of tar and nicotine found in cigarettes is zero against the alternative that
it is greater than zero. Use a 0.01 level of significance.

Solution : 1. H0: ρ = 0.

2. H1: ρ > 0.

3. α = 0.01.

4. Critical region: rs > 0.745 from Table A.21.

5. Computations: From Example 16.8, rs = 0.967.

6. Decision: Reject H0 and conclude that there is a significant correlation be-
tween the amounts of tar and nicotine found in cigarettes.

Under the assumption of no correlation, it can be shown that the distribution
of the rs-values approaches a normal distribution with a mean of 0 and a standard
deviation of 1/

√
n− 1 as n increases. Consequently, when n exceeds the values

given in Table A.21, one can test for a significant correlation by computing

z =
rs − 0

1/
√
n− 1

= rs
√
n− 1

and comparing with critical values of the standard normal distribution shown in
Table A.3.

Exercises

16.23 A random sample of 15 adults living in a small
town were selected to estimate the proportion of voters
favoring a certain candidate for mayor. Each individual
was also asked if he or she was a college graduate. By
letting Y and N designate the responses of “yes” and
“no” to the education question, the following sequence
was obtained:

N N N N Y Y N Y Y N Y N N N N

Use the runs test at the 0.1 level of significance to de-
termine if the sequence supports the contention that
the sample was selected at random.

16.24 A silver-plating process is used to coat a cer-
tain type of serving tray. When the process is in con-
trol, the thickness of the silver on the trays will vary
randomly following a normal distribution with a mean
of 0.02 millimeter and a standard deviation of 0.005
millimeter. Suppose that the next 12 trays examined
show the following thicknesses of silver: 0.019, 0.021,
0.020, 0.019, 0.020, 0.018, 0.023, 0.021, 0.024, 0.022,
0.023, 0.022. Use the runs test to determine if the
fluctuations in thickness from one tray to another are
random. Let α = 0.05.

16.25 Use the runs test to test, at level 0.01, whether
there is a difference in the average operating time for
the two calculators of Exercise 16.17 on page 670.

16.26 In an industrial production line, items are in-
spected periodically for defectives. The following is a
sequence of defective items, D, and nondefective items,
N , produced by this production line:

D D N N N D N N D D N N N N

N D D D N N D N N N N D N D

Use the large-sample theory for the runs test, with a
significance level of 0.05, to determine whether the de-
fectives are occurring at random.

16.27 Assuming that the measurements of Exercise
1.14 on page 30 were recorded successively from left
to right as they were collected, use the runs test, with
α = 0.05, to test the hypothesis that the data represent
a random sequence.

16.28 How large a sample is required to be 95% con-
fident that at least 85% of the distribution of measure-
ments is included between the sample extremes?
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16.29 What is the probability that the range of a
random sample of size 24 includes at least 90% of the
population?

16.30 How large a sample is required to be 99% con-
fident that at least 80% of the population will be less
than the largest observation in the sample?

16.31 What is the probability that at least 95% of a
population will exceed the smallest value in a random
sample of size n = 135?

16.32 The following table gives the recorded grades
for 10 students on a midterm test and the final exam-
ination in a calculus course:

Midterm Final
Student Test Examination

L.S.A.
W.P.B.
R.W.K.
J.R.L.
J.K.L.
D.L.P.
B.L.P.
D.W.M.
M.N.M.
R.H.S.

84
98
91
72
86
93
80
0

92
87

73
63
87
66
78
78
91
0

88
77

(a) Calculate the rank correlation coefficient.

(b) Test the null hypothesis that ρ = 0 against the
alternative that ρ > 0. Use α = 0.025.

16.33 With reference to the data of Exercise 11.1 on
page 398,

(a) calculate the rank correlation coefficient;

(b) test the null hypothesis, at the 0.05 level of sig-
nificance, that ρ = 0 against the alternative that
ρ �= 0. Compare your results with those obtained
in Exercise 11.44 on page 435.

16.34 Calculate the rank correlation coefficient for
the daily rainfall and amount of particulate removed
in Exercise 11.13 on page 400.

16.35 With reference to the weights and chest sizes
of infants in Exercise 11.47 on page 436,

(a) calculate the rank correlation coefficient;

(b) test the hypothesis, at the 0.025 level of signif-
icance, that ρ = 0 against the alternative that
ρ > 0.

16.36 A consumer panel tests nine brands of mi-
crowave ovens for overall quality. The ranks assigned
by the panel and the suggested retail prices are as fol-
lows:

Panel Suggested
Manufacturer Rating Price

A
B
C
D
E
F
G
H
I

6
9
2
8
5
1
7
4
3

$480
395
575
550
510
545
400
465
420

Is there a significant relationship between the quality
and the price of a microwave oven? Use a 0.05 level of
significance.

16.37 Two judges at a college homecoming parade
rank eight floats in the following order:

Float

1 2 3 4 5 6 7 8

Judge A 5 8 4 3 6 2 7 1
Judge B 7 5 4 2 8 1 6 3

(a) Calculate the rank correlation coefficient.

(b) Test the null hypothesis that ρ = 0 against the
alternative that ρ > 0. Use α = 0.05.

16.38 In the article called “Risky Assumptions” by
Paul Slovic, Baruch Fischoff, and Sarah Lichtenstein,
published in Psychology Today (June 1980), the risk of
dying in the United States from 30 activities and tech-
nologies is ranked by members of the League of Women
Voters and also by experts who are professionally in-
volved in assessing risks. The rankings are as shown in
Table 16.9.

(a) Calculate the rank correlation coefficient.

(b) Test the null hypothesis of zero correlation between
the rankings of the League of Women Voters and
the experts against the alternative that the corre-
lation is not zero. Use a 0.05 level of significance.
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Table 16.9: The Ranking Data for Exercise 16.38

Activity or Activity or
Technology Risk Voters Experts Technology Risk Voters Experts

Nuclear power
Handguns
Motorcycles
Private aviation
Pesticides
Fire fighting
Hunting
Mountain climing
Commercial aviation
Swimming
Skiing
Football
Food preservatives
Power mowers
Home appliances

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

20
4
6

12
8

18
23
29
16
10
30
27
14
28
22

Motor vehicles
Smoking
Alcoholic beverages
Police work
Surgery
Large construction
Spray cans
Bicycles
Electric power
Contraceptives
X-rays
Railroads
Food coloring
Antibiotics
Vaccinations

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

1
2
3

17
5

13
26
15
9

11
7

19
21
24
25

Review Exercises

16.39 A study by a chemical company compared the
drainage properties of two different polymers. Ten dif-
ferent sludges were used, and both polymers were al-
lowed to drain in each sludge. The free drainage was
measured in mL/min.

Sludge Type Polymer A Polymer B

1
2
3
4
5
6
7
8
9

10

12.7
14.6
18.6
17.5
11.8
16.9
19.9
17.6
15.6
16.0

12.0
15.0
19.2
17.3
12.2
16.6
20.1
17.6
16.0
16.1

(a) Use the sign test at the 0.05 level to test the null
hypothesis that polymer A has the same median
drainage as polymer B.

(b) Use the signed-rank test to test the hypotheses of
part (a).

16.40 In Review Exercise 13.45 on page 555, use the
Kruskal-Wallis test, at the 0.05 level of significance, to
determine if the chemical analyses performed by the
four laboratories give, on average, the same results.

16.41 Use the data from Exercise 13.14 on page 530
to see if the median amount of nitrogen lost in perspi-
ration is different for the three levels of dietary protein.
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Chapter 17

Statistical Quality Control

17.1 Introduction

The notion of using sampling and statistical analysis techniques in a production
setting had its beginning in the 1920s. The objective of this highly successful
concept is the systematic reduction of variability and the accompanying isolation
of sources of difficulties during production. In 1924, Walter A. Shewhart of the Bell
Telephone Laboratories developed the concept of a control chart. However, it was
not until World War II that the use of control charts became widespread. This was
due to the importance of maintaining quality in production processes during that
period. In the 1950s and 1960s, the development of quality control and the general
area of quality assurance grew rapidly, particularly with the emergence of the space
program in the United States. There has been widespread and successful use of
quality control in Japan thanks to the efforts of W. Edwards Deming, who served
as a consultant in Japan following World War II. Quality control has been, and is,
an important ingredient in the development of Japan’s industry and economy.

Quality control is receiving increasing attention as a management tool in which
important characteristics of a product are observed, assessed, and compared with
some type of standard. The various procedures in quality control involve consider-
able use of sampling procedures and statistical principles that have been presented
in previous chapters. The primary users of quality control are, of course, indus-
trial corporations. It has become clear that an effective quality control program
enhances the quality of the product being produced and increases profits. This is
particularly true today since products are produced in such high volume. Before
the movement toward quality control methods, quality often suffered because of
lack of efficiency, which, of course, increases cost.

The Control Chart

The purpose of a control chart is to determine if the performance of a process
is maintaining an acceptable level of quality. It is expected, of course, that any
process will experience natural variability, that is, variability due to essentially
unimportant and uncontrollable sources of variation. On the other hand, a process
may experience more serious types of variability in key performance measures.

681
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These sources of variability may arise from one of several types of nonrandom
“assignable causes,” such as operator errors or improperly adjusted dials on a
machine. A process operating in this state is called out of control. A process
experiencing only chance variation is said to be in statistical control. Of course, a
successful production process may operate in an in-control state for a long period.
It is presumed that during this period, the process is producing an acceptable
product. However, there may be either a gradual or a sudden “shift” that requires
detection.

A control chart is intended as a device to detect the nonrandom or out-of-
control state of a process. Typically, the control chart takes the form indicated in
Figure 17.1. It is important that the shift be detected quickly so that the problem
can be corrected. Obviously, if detection is slow, many defective or nonconforming
items are produced, resulting in considerable waste and increased cost.

1 2 3 4 5 6 7 8 9 10
7

8

9

10

11

12

13

Time

C
ha

ra
ct

er
is

tic

Figure 17.1: Typical control chart.

Some type of quality characteristic must be under consideration, and units of
the process must be sampled over time. Say, for example, the characteristic is the
circumference of an engine bearing. The centerline represents the average value of
the characteristic when the process is in control. The points depicted in the figure
represent results of, say, sample averages of this characteristic, with the samples
taken over time. The upper control limit and the lower control limit are chosen
in such a way that one would expect all sample points to be covered by these
boundaries if the process is in control. As a result, the general complexion of the
plotted points over time determines whether or not the process is concluded to be
in control. The “in control” evidence is produced by a random pattern of points,
with all plotted values being inside the control limits. When a point falls outside
the control limits, this is taken to be evidence of a process that is out of control,
and a search for the assignable cause is suggested. In addition, a nonrandom
pattern of points may be considered suspicious and certainly an indication that an
investigation for the appropriate corrective action is needed.
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17.2 Nature of the Control Limits

The fundamental ideas on which control charts are based are similar in structure to
those of hypothesis testing. Control limits are established to control the probability
of making the error of concluding that the process is out of control when in fact
it is not. This corresponds to the probability of making a type I error if we were
testing the null hypothesis that the process is in control. On the other hand, we
must be attentive to an error of the second kind, namely, not finding the process
out of control when in fact it is (type II error). Thus, the choice of control limits
is similar to the choice of a critical region.

As in the case of hypothesis testing, the sample size at each point is important.
The choice of sample size depends to a large extent on the sensitivity or power of
detection of the out-of-control state. In this application, the notion of power is very
similar to that of the hypothesis-testing situation. Clearly, the larger the sample
at each time period, the quicker the detection of an out-of-control process. In a
sense, the control limits actually define what the user considers as being in control.
In other words, the latitude given by the control limits must depend in some sense
on the process variability. As a result, the computation of the control limits will
naturally depend on data taken from the process results. Thus, any quality control
application must have its beginning with computation from a preliminary sample
or set of samples which will establish both the centerline and the quality control
limits.

17.3 Purposes of the Control Chart

One obvious purpose of the control chart is mere surveillance of the process, that
is, to determine if changes need to be made. In addition, the constant systematic
gathering of data often allows management to assess process capability. Clearly, if a
single performance characteristic is important, continual sampling and estimation
of the mean and standard deviation of that performance characteristic provide
an update on what the process can do in terms of mean performance and random
variation. This is valuable even if the process stays in control for long periods. The
systematic and formal structure of the control chart can often prevent overreaction
to changes that represent only random fluctuations. Obviously, in many situations,
changes brought about by overreaction can create serious problems that are difficult
to solve.

Quality characteristics of control charts fall generally into two categories, vari-
ables and attributes. As a result, types of control charts often take the same
classifications. In the case of the variables type of chart, the characteristic is usu-
ally a measurement on a continuum, such as diameter or weight. For the attribute
chart, the characteristic reflects whether the individual product conforms (defective
or not). Applications for these two distinct situations are obvious.

In the case of the variables chart, control must be exerted on both central ten-
dency and variability. A quality control analyst must be concerned about whether
there has been a shift in values of the performance characteristic on average. In
addition, there will always be a concern about whether some change in process con-
ditions results in a decrease in precision (i.e., an increase in variability). Separate
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control charts are essential for dealing with these two concepts. Central tendency
is controlled by the X̄-chart, where means of relatively small samples are plotted
on a control chart. Variability around the mean is controlled by the range in the
sample, or the sample standard deviation. In the case of attribute sampling, the
proportion defective from a sample is often the quantity plotted on the chart. In
the following section, we discuss the development of control charts for the variables
type of performance characteristic.

17.4 Control Charts for Variables

Providing an example is a relatively easy way to explain the rudiments of the X̄-
chart for variables. Suppose that quality control charts are to be used on a process
for manufacturing a certain engine part. Suppose the process mean is μ = 50 mm
and the standard deviation is σ = 0.01 mm. Suppose that groups of 5 are sampled
every hour and the values of the sample mean X̄ are recorded and plotted on a
chart like the one in Figure 17.2. The limits for the X̄-charts are based on the
standard deviation of the random variable X̄. We know from material in Chapter
8 that for the average of independent observations in a sample of size n,

σX̄ =
σ√
n
,

where σ is the standard deviation of an individual observation. The control limits
are designed to result in a small probability that a given value of X̄ is outside the
limits given that, indeed, the process is in control (i.e., μ = 50). If we invoke the
Central Limit Theorem, we have that under the condition that the process is in
control,

X̄ ∼ N

(
50,

0.01√
5

)
.

As a result, 100(1− α)% of the X̄-values fall inside the limits when the process is
in control if we use the limits

LCL = μ− zα/2
σ√
n
= 50− zα/2(0.0045), UCL = μ+ zα/2

σ√
n
= 50 + zα/2(0.0045).

Here LCL and UCL stand for lower control limit and upper control limit, respec-
tively. Often the X̄-charts are based on limits that are referred to as “three-sigma”
limits, referring, of course, to zα/2 = 3 and limits that become

μ ± 3
σ√
n
.

In our illustration, the upper and lower limits become

LCL = 50− 3(0.0045) = 49.9865, UCL = 50 + 3(0.0045) = 50.0135.

Thus, if we view the structure of the 3σ limits from the point of view of hypothesis
testing, for a given sample point, the probability is 0.0026 that the X̄-value falls
outside control limits, given that the process is in control. This is the probability
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Figure 17.2: The 3σ control limits for the engine part example.

of the analyst erroneously determining that the process is out of control (see Table
A.3).

The example above not only illustrates the X̄-chart for variables, but also
should provide the reader with insight into the nature of control charts in general.
The centerline generally reflects the ideal value of an important parameter. Control
limits are established from knowledge of the sampling properties of the statistic
that estimates the parameter in question. They very often involve a multiple of the
standard deviation of the statistic. It has become general practice to use 3σ limits.
In the case of the X̄-chart provided here, the Central Limit Theorem provides the
user with a good approximation of the probability of falsely ruling that the process
is out of control. In general, though, the user may not be able to rely on the
normality of the statistic on the centerline. As a result, the exact probability of
“type I error” may not be known. Despite this, it has become fairly standard to
use the kσ limits. While use of the 3σ limits is widespread, at times the user may
wish to deviate from this approach. A smaller multiple of σ may be appropriate
when it is important to quickly detect an out-of-control situation. Because of
economic considerations, it may prove costly to allow a process to continue to run
out of control for even short periods, while the cost of the search and correction of
assignable causes may be relatively small. Clearly, in this case, control limits that
are tighter than 3σ limits are appropriate.

Rational Subgroups

The sample values to be used in a quality control effort are divided into subgroups,
with a sample representing a subgroup. As we indicated earlier, time order of pro-
duction is certainly a natural basis for selection of the subgroups. We may view the
quality control effort very simply as (1) sampling, (2) detection of an out-of-control
state, and (3) a search for assignable causes that may be occurring over time. The
selection of the basis for these sample groups would appear to be straightforward,
but the choice of these subgroups of sampling information can have an important
effect on the success of the quality control program. These subgroups are often
called rational subgroups. Generally, if the analyst is interested in detecting a

Uploaded By: anonymousSTUDENTS-HUB.com



686 Chapter 17 Statistical Quality Control

shift in location, the subgroups should be chosen so that within-subgroup variabil-
ity is small and assignable causes, if they are present, have the greatest chance
of being detected. Thus, we want to choose the subgroups in such a way as to
maximize the between-subgroup variability. Choosing units in a subgroup that are
produced close together in time, for example, is a reasonable approach. On the
other hand, control charts are often used to control variability, in which case the
performance statistic is variability within the sample. Thus, it is more important
to choose the rational subgroups to maximize the within-sample variability. In this
case, the observations in the subgroups should behave more like a random sample
and the variability within samples needs to be a depiction of the variability of the
process.

It is important to note that control charts on variability should be established
before the development of charts on center of location (say, X̄-charts). Any control
chart on center of location will certainly depend on variability. For example, we
have seen an illustration of the central tendency chart and it depends on σ. In the
sections that follow, an estimate of σ from the data will be discussed.

X̄-Chart with Estimated Parameters

In the foregoing, we have illustrated notions of the X̄-chart that make use of the
Central Limit Theorem and employ known values of the process mean and standard
deviation. As we indicated earlier, the control limits

LCL = μ− zα/2
σ√
n
, UCL = μ+ zα/2

σ√
n

are used, and an X̄-value falling outside these limits is viewed as evidence that the
mean μ has changed and thus the process may be out of control.

In many practical situations, it is unreasonable to assume that we know μ and
σ. As a result, estimates must be supplied from data taken when the process
is in control. Typically, the estimates are determined during a period in which
background information or start-up information is gathered. A basis for rational
subgroups is chosen, and data are gathered with samples of size n in each subgroup.
The sample sizes are usually small, say 4, 5, or 6, and k samples are taken, with
k being at least 20. During this period in which it is assumed that the process is
in control, the user establishes estimates of μ and σ on which the control chart is
based. The important information gathered during this period includes the sample
means in the subgroup, the overall mean, and the sample range in each subgroup.
In the following paragraphs, we outline how this information is used to develop the
control chart.

A portion of the sample information from these k samples takes the form
X̄1, X̄2, . . . , X̄k, where the random variable X̄i is the average of the values in the
ith sample. Obviously, the overall average is the random variable

¯̄X =
1

k

k∑
i=1

X̄i.

This is the appropriate estimator of the process mean and, as a result, is the cen-
terline in the X̄ control chart. In quality control applications, it is often convenient
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to estimate σ from the information related to the ranges in the samples rather than
sample standard deviations. Let us define

Ri = Xmax,i −Xmin,i

as the range for the data in the ith sample. Here Xmax,i and Xmin,i are the largest
and smallest observations, respectively, in the sample. The appropriate estimate
of σ is a function of the average range

R̄ =
1

k

k∑
i=1

Ri.

An estimate of σ, say σ̂, is obtained by

σ̂ =
R̄

d2
,

where d2 is a constant depending on the sample size. Values of d2 are shown in
Table A.22.

Use of the range in producing an estimate of σ has roots in quality-control-type
applications, particularly since the range was so easy to compute, compared to
other variability estimates, in the era when efficient computation was still an issue.
The assumption of normality of the individual observations is implicit in the X̄-
chart. Of course, the existence of the Central Limit Theorem is certainly helpful in
this regard. Under the assumption of normality, we make use of a random variable
called the relative range, given by

W =
R

σ
.

It turns out that the moments of W are simple functions of the sample size n (see
the reference to Montgomery, 2000b, in the Bibliography). The expected value of
W is often referred to as d2. Thus, by taking the expected value of W above, we
have

E(R)

σ
= d2.

As a result, the rationale for the estimate σ̂ = R̄/d2 is readily understood. It is
well known that the range method produces an efficient estimator of σ in relatively
small samples. This makes the estimator particularly attractive in quality control
applications, since the sample sizes in the subgroups are generally small. Using
the range method for estimation of σ results in control charts with the following
parameters:

UCL = ¯̄X +
3R̄

d2
√
n
, centerline = ¯̄X, LCL = ¯̄X − 3R̄

d2
√
n
.

Defining the quantity

A2 =
3

d2
√
n
,
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we have that

UCL = ¯̄X +A2R̄, LCL = ¯̄X −A2R̄.

To simplify the structure, the user of X̄-charts often finds values of A2 tabulated.
Values of A2 are given for various sample sizes in Table A.22.

R-Charts to Control Variation

Up to this point, all illustrations and details have dealt with the quality control
analysts’ attempts at detection of out-of-control conditions produced by a shift in
the mean. The control limits are based on the distribution of the random variable
X̄ and depend on the assumption of normality of the individual observations. It
is important for control to be applied to variability as well as center of location.
In fact, many experts believe that control of variability of the performance char-
acteristic is more important and should be established before center of location is
considered. Process variability can be controlled through the use of plots of the
sample range. A plot over time of the sample ranges is called an R-chart. The
same general structure can be used as in the case of the X̄-chart, with R̄ being the
centerline and the control limits depending on an estimate of the standard devia-
tion of the random variable R. Thus, as in the case of the X̄-chart, 3σ limits are
established where “3σ” implies 3σR. The quantity σR must be estimated from the
data just as σX̄ is estimated.

The estimate of σR, the standard deviation, is also based on the distribution
of the relative range

W =
R

σ
.

The standard deviation ofW is a known function of the sample size and is generally
denoted by d3. As a result,

σR = σd3.

We can now replace σ by σ̂ = R̄/d2, and thus the estimator of σR is

σ̂R =
R̄d3
d2

.

Thus, the quantities that define the R-chart are

UCL = R̄D4, centerline = R̄, LCL = R̄D3,

where the constants D4 and D3 (depending only on n) are

D4 = 1 + 3
d3
d2

, D3 = 1− 3
d3
d2

.

The constants D4 and D3 are tabulated in Table A.22.
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X̄- and R-Charts for Variables

A process manufacturing missile component parts is being controlled, with the
performance characteristic being the tensile strength in pounds per square inch.
Samples of size 5 each are taken every hour and 25 samples are reported. The data
are shown in Table 17.1.

Table 17.1: Sample Information on Tensile Strength Data

Sample Number Observations X̄i Ri

1 1515 1518 1512 1498 1511 1510.8 20
2 1504 1511 1507 1499 1502 1504.6 12
3 1517 1513 1504 1521 1520 1515.0 17
4 1497 1503 1510 1508 1502 1504.0 13
5 1507 1502 1497 1509 1512 1505.4 15
6 1519 1522 1523 1517 1511 1518.4 12
7 1498 1497 1507 1511 1508 1504.2 14
8 1511 1518 1507 1503 1509 1509.6 15
9 1506 1503 1498 1508 1506 1504.2 10
10 1503 1506 1511 1501 1500 1504.2 11
11 1499 1503 1507 1503 1501 1502.6 8
12 1507 1503 1502 1500 1501 1502.6 7
13 1500 1506 1501 1498 1507 1502.4 9
14 1501 1509 1503 1508 1503 1504.8 8
15 1507 1508 1502 1509 1501 1505.4 8
16 1511 1509 1503 1510 1507 1508.0 8
17 1508 1511 1513 1509 1506 1509.4 7
18 1508 1509 1512 1515 1519 1512.6 11
19 1520 1517 1519 1522 1516 1518.8 6
20 1506 1511 1517 1516 1508 1511.6 11
21 1500 1498 1503 1504 1508 1502.6 10
22 1511 1514 1509 1508 1506 1509.6 8
23 1505 1508 1500 1509 1503 1505.0 9
24 1501 1498 1505 1502 1505 1502.2 7
25 1509 1511 1507 1500 1499 1505.2 12

As we indicated earlier, it is important initially to establish “in control” condi-
tions on variability. The calculated centerline for the R-chart is

R̄ =
1

25

25∑
i=1

Ri = 10.72.

We find from Table A.22 that for n = 5, D3 = 0 and D4 = 2.114. As a result, the
control limits for the R-chart are

LCL = R̄D3 = (10.72)(0) = 0,

UCL = R̄D4 = (10.72)(2.114) = 22.6621.
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The R-chart is shown in Figure 17.3. None of the plotted ranges fall outside the
control limits. As a result, there is no indication of an out-of-control situation.
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Figure 17.3: R-chart for the tensile strength example.

The X̄-chart can now be constructed for the tensile strength readings. The
centerline is

¯̄X =
1

25

25∑
i=1

X̄i = 1507.328.

For samples of size 5, we find A2 = 0.577 from Table A.22. Thus, the control limits
are

UCL = ¯̄X +A2R̄ = 1507.328 + (0.577)(10.72) = 1513.5134,

LCL = ¯̄X −A2R̄ = 1507.328− (0.577)(10.72) = 1501.1426.

The X̄-chart is shown in Figure 17.4. As the reader can observe, three values fall
outside the control limits. As a result, the control limits for X̄ should not be used
for line quality control.

Further Comments about Control Charts for Variables

A process may appear to be in control and, in fact, may stay in control for a long
period. Does this necessarily mean that the process is operating successfully? A
process that is operating in control is merely one in which the process mean and
variability are stable. Apparently, no serious changes have occurred. “In control”
implies that the process remains consistent with natural variability. Quality control
charts may be viewed as a method in which the inherent natural variability governs
the width of the control limits. There is no implication, however, to what extent
an in-control process satisfies predetermined specifications required of the process.
Specifications are limits that are established by the consumer. If the current natural
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Figure 17.4: X̄-chart for the tensile strength example.

variability of the process is larger than that dictated by the specifications, the
process will not produce items that meet specifications with high frequency, even
though the process is stable and in control.

We have alluded to the normality assumption on the individual observations
in a variables control chart. For the X̄-chart, if the individual observations are
normal, the statistic X̄ is normal. As a result, the quality control analyst has
control over the probability of type I error in this case. If the individual X’s are
not normal, X̄ is approximately normal and thus there is approximate control
over the probability of type I error for the case in which σ is known. However,
the use of the range method for estimating the standard deviation also depends
on the normality assumption. Studies regarding the robustness of the X̄-chart to
departures from normality indicate that for samples of size k ≥ 4 the X̄ chart
results in an α-risk close to that advertised (see the work by Montgomery, 2000b,
and Schilling and Nelson, 1976, in the Bibliography). We indicated earlier that
the ±kσR approach to the R-chart is a matter of convenience and tradition. Even
if the distribution of individual observations is normal, the distribution of R is
not normal. In fact, the distribution of R is not even symmetric. The symmetric
control limits of ±kσR only give an approximation to the α-risk, and in some cases
the approximation is not particularly good.

Choice of Sample Size (Operating Characteristic Function)
in the Case of the X̄-Chart

Scientists and engineers dealing in quality control often refer to factors that affect
the design of the control chart. Components that determine the design of the chart
include the sample size taken in each subgroup, the width of the control limits, and
the frequency of sampling. All of these factors depend to a large extent on economic
and practical considerations. Frequency of sampling obviously depends on the cost
of sampling and the cost incurred if the process continues out of control for a long
period. These same factors affect the width of the “in-control” region. The cost
that is associated with investigation and search for assignable causes has an impact
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on the width of the region and on frequency of sampling. A considerable amount
of attention has been devoted to optimal design of control charts, and extensive
details will not be given here. The reader should refer to the work by Montgomery
(2000b) cited in the Bibliography for an excellent historical account of much of this
research.

Choice of sample size and frequency of sampling involves balancing available
resources allocated to these two efforts. In many cases, the analyst may need to
make changes in the strategy until the proper balance is achieved. The analyst
should always be aware that if the cost of producing nonconforming items is great,
a high sampling frequency with relatively small sample size is a proper strategy.

Many factors must be taken into consideration in the choice of a sample size.
In the illustrations and discussion, we have emphasized the use of n = 4, 5, or
6. These values are considered relatively small for general problems in statistical
inference but perhaps proper sample sizes for quality control. One justification, of
course, is that quality control is a continuing process and the results produced by
one sample or set of units will be followed by results from many more. Thus, the
“effective” sample size of the entire quality control effort is many times larger than
that used in a subgroup. It is generally considered to be more effective to sample
frequently with a small sample size.

The analyst can make use of the notion of the power of a test to gain some
insight into the effectiveness of the sample size chosen. This is particularly impor-
tant since small sample sizes are usually used in each subgroup. Refer to Chapters
10 and 13 for a discussion of the power of formal tests on means and the analysis
of variance. Although formal tests of hypotheses are not actually being conducted
in quality control, one can treat the sampling information as if the strategy at each
subgroup were to test a hypothesis, either on the population mean μ or on the
standard deviation σ. Of interest is the probability of detection of an out-of-control
condition for a given sample and, perhaps more important, the expected number
of runs required for detection. The probability of detection of a specified out-of-
control condition corresponds to the power of a test. It is not our intention to show
development of the power for all of the types of control charts presented here, but
rather to show the development for the X̄-chart and present power results for the
R-chart.

Consider the X̄-chart for σ known. Suppose that the in-control state has μ =
μ0. A study of the role of the subgroup sample size is tantamount to investigating
the β-risk, that is, the probability that an X̄-value remains inside the control limits
given that, indeed, a shift in the mean has occurred. Suppose that the form the
shift takes is

μ = μ0 + rσ.

Again, making use of the normality of X̄, we have

β = P (LCL ≤ X̄ ≤ UCL | μ = μ0 + rσ).

For the case of kσ limits,

LCL = μ0 − kσ√
n

and UCL = μ0 +
kσ√
n
.
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As a result, if we denote by Z the standard normal random variable,

β = P

[
Z <

(
μ0 + kσ/

√
n− μ

σ/
√
n

)]
− P

[
Z <

(
μ0 − kσ/

√
n− μ

σ/
√
n

)]
= P

{
Z <

[
μ0 + kσ/

√
n− (μ+ rσ)

σ/
√
n

]}
− P

{
Z <

[
μ0 − kσ/

√
n− (μ+ rσ)

σ/
√
n

]}
= P (Z < k − r

√
n)− P (Z < −k − r

√
n).

Notice the role of n, r, and k in the expression for the β-risk. The probability of
not detecting a specific shift clearly increases with an increase in k, as expected.
β decreases with an increase in r, the magnitude of the shift, and decreases with
an increase in the sample size n.

It should be emphasized that the expression above results in the β-risk (prob-
ability of type II error) for the case of a single sample. For example, suppose that
in the case of a sample of size 4, a shift of σ occurs in the mean. The probability
of detecting the shift (power) in the first sample following the shift is (assuming
3σ limits)

1− β = 1− [P (Z < 1)− P (Z < −5)] = 0.1587.

On the other hand, the probability of detecting a shift of 2σ is

1− β = 1− [P (Z < −1)− P (Z < −7)] = 0.8413.

The results above illustrate a fairly modest probability of detecting a shift of mag-
nitude σ and a fairly high probability of detecting a shift of magnitude 2σ. The
complete picture of how, say, 3σ control limits perform for the X̄-chart described
here is depicted in Figure 17.5. Rather than plotting the power functions, a plot
is given of β against r, where the shift in the mean is of magnitude rσ. Of course,
the sample sizes of n = 4, 5, 6 result in a small probability of detecting a shift of
1.0σ or even 1.5σ on the first sample after the shift.

But if sampling is done frequently, the probability may not be as important
as the average or expected number of runs required before detection of the shift.
Quick detection is important and is certainly possible even though the probability
of detection on the first sample is not high. It turns out that X̄-charts with these
small samples will result in relatively rapid detection. If β is the probability of
not detecting a shift on the first sample following the shift, then the probability
of detecting the shift on the sth sample after the shift is (assuming independent
samples)

Ps = (1− β)βs−1.

The reader should recognize this as an application of the geometric distribution.
The average or expected value of the number of samples required for detection is

∞∑
s=1

sβs−1(1− β) =
1

1− β
.

Thus, the expected number of samples required to detect the shift in the mean is
the reciprocal of the power (i.e., the probability of detection on the first sample
following the shift).
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Figure 17.5: Operating characteristic curves for the X̄-chart with 3σ limits. Here
β is the type II probability error on the first sample after a shift in the mean of
rσ.

Example 17.1: In a certain quality control effort, it is important for the quality control analyst
to quickly detect shifts in the mean of ±σ while using a 3σ control chart with a
sample size n = 4. The expected number of samples that are required following the
shift for the detection of the out-of-control state can be an aid in the assessment
of the quality control procedure.

From Figure 17.5, for n = 4 and r = 1, it can be seen that β ≈ 0.84. If we
allow s to denote the number of samples required to detect the shift, the mean of
s is

E(s) =
1

1− β
=

1

0.16
= 6.25.

Thus, on the average, seven subgroups are required before detection of a shift of
±σ.

Choice of Sample Size for the R-Chart

The OC curve for the R-chart is shown in Figure 17.6. Since the R-chart is used
for control of the process standard deviation, the β-risk is plotted as a function of
the in-control standard deviation, σ0, and the standard deviation after the process
goes out of control. The latter standard deviation will be denoted σ1. Let

λ =
σ1

σ0
.

For various sample sizes, β is plotted against λ.
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Figure 17.6: Operating characteristic curve for the R-charts with 3σ limits.

X̄- and S-Charts for Variables

It is natural for the student of statistics to anticipate use of the sample variance
in the X̄-chart and in a chart to control variability. The range is efficient as an
estimator for σ, but this efficiency decreases as the sample size gets larger. For n
as large as 10, the familiar statistic

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2

should be used in the control chart for both the mean and the variability. The
reader should recall from Chapter 9 that S2 is an unbiased estimator for σ2 but
that S is not unbiased for σ. It has become customary to correct S for bias in
control chart applications. We know, in general, that

E(S) �= σ.

In the case in which the Xi are independent and normally distributed with mean
μ and variance σ2,

E(S) = c4σ, where c4 =

(
2

n− 1

)1/2
Γ(n/2)

Γ[(n− 1)/2]

and Γ(·) refers to the gamma function (see Chapter 6). For example, for n = 5,
c4 = (3/8)

√
2π. In addition, the variance of the estimator S is

Var(S) = σ2(1− c24).
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We have established the properties of S that will allow us to write control limits
for both X̄ and S. To build a proper structure, we begin by assuming that σ is
known. Later we discuss estimating σ from a preliminary set of samples.

If the statistic S is plotted, the obvious control chart parameters are

UCL = c4σ + 3σ
√
1− c24, centerline = c4σ, LCL = c4σ − 3σ

√
1− c24.

As usual, the control limits are defined more succinctly through use of tabulated
constants. Let

B5 = c4 − 3
√
1− c24, B6 = c4 + 3

√
1− c24,

and thus we have

UCL = B6σ, centerline = c4σ, LCL = B5σ.

The values of B5 and B6 for various sample sizes are tabulated in Table A.22.
Now, of course, the control limits above serve as a basis for the development of

the quality control parameters for the situation that is most often seen in practice,
namely, that in which σ is unknown. We must once again assume that a set of base
samples or preliminary samples is taken to produce an estimate of σ during what is
assumed to be an “in-control” period. Sample standard deviations S1, S2, . . . , Sm

are obtained from samples that are each of size n. An unbiased estimator of the
type

S̄

c4
=

(
1

m

m∑
i=1

Si

)/
c4

is often used for σ. Here, of course, S̄, the average value of the sample standard
deviation in the preliminary sample, is the logical centerline in the control chart
to control variability. The upper and lower control limits are unbiased estimators
of the control limits that are appropriate for the case where σ is known. Since

E

(
S̄

c4

)
= σ,

the statistic S̄ is an appropriate centerline (as an unbiased estimator of c4σ) and
the quantities

S̄ − 3
S̄

c4

√
1− c24 and S̄ + 3

S̄

c4

√
1− c24

are the appropriate lower and upper 3σ control limits, respectively. As a result,
the centerline and limits for the S-chart to control variability are

LCL = B3S̄, centerline = S̄, UCL = B4S̄,

where

B3 = 1− 3

c4

√
1− c24, B4 = 1 +

3

c4

√
1− c24.

Uploaded By: anonymousSTUDENTS-HUB.com



17.5 Control Charts for Attributes 697

The constants B3 and B4 appear in Table A.22.
We can now write the parameters of the corresponding X̄-chart involving the

use of the sample standard deviation. Let us assume that S and X̄ are available
from the base preliminary sample. The centerline remains ¯̄X and the 3σ limits
are merely of the form ¯̄X ± 3σ̂/

√
n, where σ̂ is an unbiased estimator. We simply

supply S̄/c4 as an estimator for σ, and thus we have

LCL = ¯̄X −A3S̄, centerline = ¯̄X, UCL = ¯̄X +A3S̄,

where

A3 =
3

c4
√
n
.

The constant A3 appears for various sample sizes in Table A.22.

Example 17.2: Containers are produced by a process where the volume of the containers is subject
to quality control. Twenty-five samples of size 5 each were used to establish the
quality control parameters. Information from these samples is documented in Table
17.2.

From Table A.22, B3 = 0, B4 = 2.089, and A3 = 1.427. As a result, the control
limits for X̄ are given by

UCL = ¯̄X +A3S̄ = 62.3771, LCL = ¯̄X −A3S̄ = 62.2741,

and the control limits for the S-chart are

LCL = B3S̄ = 0, UCL = B4S̄ = 0.0754.

Figures 17.7 and 17.8 show the X̄ and S control charts, respectively, for this
example. Sample information for all 25 samples in the preliminary data set is
plotted on the charts. Control seems to have been established after the first few
samples.

17.5 Control Charts for Attributes

As we indicated earlier in this chapter, many industrial applications of quality
control require that the quality characteristic indicate no more than that the item
“conforms.” In other words, there is no continuous measurement that is crucial
to the performance of the item. An obvious illustration of this type of sampling,
called sampling for attributes, is the performance of a light bulb, which either
performs satisfactorily or does not. The item is either defective or not de-
fective. Manufactured metal pieces may contain deformities. Containers from a
production line may leak. In both of these cases, a defective item negates usage by
the customer. The standard control chart for this situation is the p-chart, or chart
for fraction defective. As we might expect, the probability distribution involved is
the binomial distribution. The reader is referred to Chapter 5 for background on
the binomial distribution.
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Table 17.2: Volume of Containers for 25 Samples in a Preliminary Sample (in cubic
centimeters)

Sample Observations X̄i Si

1 62.255 62.301 62.289 62.189 62.311 62.269 0.0495
2 62.187 62.225 62.337 62.297 62.307 62.271 0.0622
3 62.421 62.377 62.257 62.295 62.222 62.314 0.0829
4 62.301 62.315 62.293 62.317 62.409 62.327 0.0469
5 62.400 62.375 62.295 62.272 62.372 62.343 0.0558
6 62.372 62.275 62.315 62.372 62.302 62.327 0.0434
7 62.297 62.303 62.337 62.392 62.344 62.335 0.0381
8 62.325 62.362 62.351 62.371 62.397 62.361 0.0264
9 62.327 62.297 62.318 62.342 62.318 62.320 0.0163
10 62.297 62.325 62.303 62.307 62.333 62.313 0.0153
11 62.315 62.366 62.308 62.318 62.319 62.325 0.0232
12 62.297 62.322 62.344 62.342 62.313 62.324 0.0198
13 62.375 62.287 62.362 62.319 62.382 62.345 0.0406
14 62.317 62.321 62.297 62.372 62.319 62.325 0.0279
15 62.299 62.307 62.383 62.341 62.394 62.345 0.0431
16 62.308 62.319 62.344 62.319 62.378 62.334 0.0281
17 62.319 62.357 62.277 62.315 62.295 62.313 0.0300
18 62.333 62.362 62.292 62.327 62.314 62.326 0.0257
19 62.313 62.387 62.315 62.318 62.341 62.335 0.0313
20 62.375 62.321 62.354 62.342 62.375 62.353 0.0230
21 62.399 62.308 62.292 62.372 62.299 62.334 0.0483
22 62.309 62.403 62.318 62.295 62.317 62.328 0.0427
23 62.293 62.293 62.342 62.315 62.349 62.318 0.0264
24 62.388 62.308 62.315 62.392 62.303 62.341 0.0448
25 62.324 62.318 62.315 62.295 62.319 62.314 0.0111

¯̄X = 62.3256
S̄ = 0.0361

The p-Chart for Fraction Defective

Any manufactured item may have several characteristics that are important and
should be examined by an inspector. However, the entire development here focuses
on a single characteristic. Suppose that for all items the probability of a defective
item is p, and that all items are being produced independently. Then, in a random
sample of n items produced, allowing X to be the number of defective items, we
have

P (X = x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n.

As one might suspect, the mean and variance of the binomial random variable
will play an important role in the development of the control chart. The reader
should recall that

E(X) = np and Var(X) = np(1− p).
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Figure 17.7: The X̄-chart with control limits es-
tablished by the data of Example 17.2.

0 10 20 30

0.01

0.03

0.05

0.07

0.09

UCL

LCL

Sample Number

S

Figure 17.8: The S-chart with control limits estab-
lished by the data of Example 17.2.

An unbiased estimator of p is the fraction defective or the proportion de-
fective, p̂, where

p̂ =
number of defectives in the sample of size n

n
.

As in the case of the variables control charts, the distributional properties of p
are important in the development of the control chart. We know that

E(p̂) = p, Var(p̂) =
p(1− p)

n
.

Here we apply the same 3σ principles that we use for the variables charts. Let us
assume initially that p is known. The structure, then, of the control charts involves
the use of 3σ limits with

σ̂ =

√
p(1− p)

n
.

Thus, the limits are

LCL = p− 3

√
p(1− p)

n
, UCL = p+ 3

√
p(1− p)

n
,

with the process considered in control when the p̂-values from the sample lie inside
the control limits.

Generally, of course, the value of p is not known and must be estimated from
a base set of samples very much like the case of μ and σ in the variables charts.
Assume that there are m preliminary samples of size n. For a given sample, each of
the n observations is reported as either “defective” or “not defective.” The obvious
unbiased estimator for p to use in the control chart is

p̄ =
1

m

m∑
i=1

p̂i,
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where p̂i is the proportion defective in the ith sample. As a result, the control
limits are

LCL = p̄− 3

√
p̄(1− p̄)

n
, centerline = p̄, UCL = p̄+ 3

√
p̄(1− p̄)

n
.

Example 17.3: Consider the data shown in Table 17.3 on the number of defective electronic com-
ponents in samples of size 50. Twenty samples were taken in order to establish
preliminary control chart values. The control charts determined by this preliminary
period will have centerline p̄ = 0.088 and control limits

LCL = p̄− 3

√
p̄(1− p̄)

50
= −0.0322 and UCL = p̄+ 3

√
p̄(1− p̄)

50
= 0.2082.

Table 17.3: Data for Example 17.3 to Establish Control Limits for p-Charts,
Samples of Size 50

Number of Fraction Defective
Sample Defective Components p̂i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

8
6
5
7
2
5
3
8
4
4
3
1
5
4
4
2
3
5
6
3

0.16
0.12
0.10
0.14
0.04
0.10
0.06
0.16
0.08
0.08
0.06
0.02
0.10
0.08
0.08
0.04
0.06
0.10
0.12
0.06

p̄ = 0.088

Obviously, with a computed value that is negative, the LCL will be set to zero.
It is apparent from the values of the control limits that the process is in control
during this preliminary period.

Choice of Sample Size for the p-Chart

The choice of sample size for the p-chart for attributes involves the same general
types of considerations as that of the chart for variables. A sample size is required
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that is sufficiently large to have a high probability of detection of an out-of-control
condition when, in fact, a specified change in p has occurred. There is no best
method for choice of sample size. However, one reasonable approach, suggested by
Duncan (1986; see the Bibliography), is to choose n so that there is probability 0.5
that we detect a shift in p of a particular amount. The resulting solution for n is
quite simple. Suppose that the normal approximation to the binomial distribution
applies. We wish, under the condition that p has shifted to, say, p1 > p0, that

P (p̂ ≥ UCL) = P

[
Z ≥ UCL− p1√

p1(1− p1)/n

]
= 0.5.

Since P (Z > 0) = 0.5, we set

UCL− p1√
p1(1− p1)/n

= 0.

Substituting

p+ 3

√
p(1− p)

n
= UCL,

we have

(p− p1) + 3

√
p(1− p)

n
= 0.

We can now solve for n, the size of each sample:

n =
9

Δ2
p(1− p),

where, of course, Δ is the “shift” in the value of p, and p is the probability of a
defective on which the control limits are based. However, if the control charts are
based on kσ limits, then

n =
k2

Δ2
p(1− p).

Example 17.4: Suppose that an attribute quality control chart is being designed with a value of
p = 0.01 for the in-control probability of a defective. What is the sample size per
subgroup producing a probability of 0.5 that a process shift to p = p1 = 0.05 will
be detected? The resulting p-chart will involve 3σ limits.

Solution : Here we have Δ = 0.04. The appropriate sample size is

n =
9

(0.04)2
(0.01)(0.99) = 55.69 ≈ 56.
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Control Charts for Defects (Use of the Poisson Model)

In the preceding development, we assumed that the item under consideration is one
that is either defective (i.e., nonfunctional) or not defective. In the latter case, it is
functional and thus acceptable to the consumer. In many situations, this “defective
or not” approach is too simplistic. Units may contain defects or nonconformities
but still function quite well for the consumer. Indeed, in this case, it may be
important to exert control on the number of defects or number of nonconformities.
This type of quality control effort finds application when the units are either not
simplistic or large. For example, the number of defects may be quite useful as the
object of control when the single item or unit is, say, a personal computer. Another
example is a unit defined by 50 feet of manufactured pipeline, where the number
of defective welds is the object of quality control; the number of defects in 50 feet
of manufactured carpeting; or the number of “bubbles” in a large manufactured
sheet of glass.

It is clear from what we describe here that the binomial distribution is not
appropriate. The total number of nonconformities in a unit or the average number
per unit can be used as the measure for the control chart. Often it is assumed that
the number of nonconformities in a sample of items follows the Poisson distribution.
This type of chart is often called a C-chart.

Suppose that the number of defects X in one unit of product follows the Poisson
distribution with parameter λ. (Here t = 1 for the Poisson model.) Recall that for
the Poisson distribution,

P (X = x) =
e−λλx

x!
, x = 0, 1, 2, . . . .

Here, the random variable X is the number of nonconformities. In Chapter 5, we
learned that the mean and variance of the Poisson random variable are both λ.
Thus, if the quality control chart were to be structured according to the usual 3σ
limits, we could have, for λ known,

UCL = λ+ 3
√
λ, centerline = λ, LCL = λ− 3

√
λ.

As usual, λ often must come from an estimator from the data. An unbiased
estimate of λ is the average number of nonconformities per sample. Denote this
estimate by λ̂. Thus, the control chart has the limits

UCL = λ̂+ 3
√

λ̂, centerline = λ̂, LCL = λ̂− 3
√
λ̂.

Example 17.5: Table 17.4 represents the number of defects in 20 successive samples of sheet metal
rolls each 100 feet long. A control chart is to be developed from these preliminary
data for the purpose of controlling the number of defects in such samples. The
estimate of the Poisson parameter λ is given by λ̂ = 5.95. As a result, the control
limits suggested by these preliminary data are

UCL = λ̂+ 3
√
λ̂ = 13.2678 and LCL = λ̂− 3

√
λ̂ = −1.3678,

with LCL being set to zero.
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Table 17.4: Data for Example 17.5; Control Involves Number of Defects in Sheet Metal Rolls

Sample Number Number of Defects Sample Number Number of Defects
1 8 11 3
2 7 12 7
3 5 13 5
4 4 14 9
5 4 15 7
6 7 16 7
7 6 17 8
8 4 18 6
9 5 19 7
10 6 20 4

Ave. 5.95

Figure 17.9 shows a plot of the preliminary data with the control limits revealed.
Table 17.5 shows additional data taken from the production process. For each

sample, the unit on which the chart was based, namely 100 feet of the metal, was
inspected. The information on 20 samples is included. Figure 17.10 shows a plot
of the additional production data. It is clear that the process is in control, at least
through the period for which the data were taken.

Table 17.5: Additional Data from the Production Process of Example 17.5

Sample Number Number of Defects Sample Number Number of Defects
1 3 11 7
2 5 12 5
3 8 13 9
4 5 14 4
5 8 15 6
6 4 16 5
7 3 17 3
8 6 18 2
9 5 19 1
10 2 20 6

In Example 17.5, we have made very clear what the sampling or inspection unit
is, namely, 100 feet of metal. In many cases where the item is a specific one (e.g.,
a personal computer or a specific type of electronic device), the inspection unit
may be a set of items. For example, the analyst may decide to use 10 computers
in each subgroup and observe a count of the total number of defects found. Thus,
the preliminary sample for construction of the control chart would involve several
samples, each containing 10 computers. The choice of the sample size may depend
on many factors. Often, we may want a sample size that will ensure an LCL that
is positive.

The analyst may wish to use the average number of defects per sampling unit
as the basic measure in the control chart. For example, for the case of the personal
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Figure 17.9: Preliminary data plotted on the con-
trol chart for Example 17.5.
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Figure 17.10: Additional production data for Ex-
ample 17.5.

computer, let the random variable total number of defects

U =
total number of defects

n

be measured for each sample of, say, n = 10. We can use the method of moment-
generating functions to show that U is a Poisson random variable (see Review
Exercise 17.1) if we assume that the number of defects per sampling unit is Poisson
with parameter λ. Thus, the control chart for this situation is characterized by the
following:

UCL = Ū + 3

√
Ū

n
, centerline = Ū , LCL = Ū − 3

√
Ū

n
.

Here, of course, Ū is the average of the U -values in the preliminary or base data
set. The term Ū/n is derived from the result that

E(U) = λ, Var(U) =
λ

n
,

and thus Ū is an unbiased estimate of E(U) = λ and Ū/n is an unbiased estimate
of Var(U) = λ/n. This type of control chart is often called a U-chart.

In this section, we based our entire development of control charts on the Poisson
probability model. This model has been used in combination with the 3σ concept.
As we implied earlier in this chapter, the notion of 3σ limits has its roots in the
normal approximation, although many users feel that the concept works well as a
pragmatic tool even if normality is not even approximately correct. The difficulty,
of course, is that in the absence of normality, we cannot control the probability of
incorrect specification of an out-of-control state. In the case of the Poisson model,
when λ is small the distribution is quite asymmetric, a condition that may produce
undesirable results if we hold to the 3σ approach.
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17.6 Cusum Control Charts

The disadvantage of the Shewhart-type control charts, developed and illustrated in
the preceding sections, lies in their inability to detect small changes in the mean. A
quality control mechanism that has received considerable attention in the statistics
literature and usage in industry is the cumulative sum (cusum) chart. The
method for the cusum chart is simple and its appeal is intuitive. It should become
obvious to the reader why it is more responsive to small changes in the mean.
Consider a control chart for the mean with a reference level established at value
W . Consider particular observations X1, X2, . . . , Xr. The first r cusums are

S1 = X1 −W

S2 = S1 + (X2 −W )

S3 = S2 + (X3 −W )

...

Sr = Sr−1 + (Xr −W ).

It becomes clear that the cusum is merely the accumulation of differences from the
reference level. That is,

Sk =
k∑

i=1

(Xi −W ), k = 1, 2, . . . .

The cusum chart is, then, a plot of Sk against time.
Suppose that we consider the reference level W to be an acceptable value of the

mean μ. Clearly, if there is no shift in μ, the cusum chart should be approximately
horizontal, with some minor fluctuations balanced around zero. Now, if there is
only a moderate change in the mean, a relatively large change in the slope of the
cusum chart should result, since each new observation has a chance of contributing
a shift and the measure being plotted is accumulating these shifts. Of course,
the signal that the mean has shifted lies in the nature of the slope of the cusum
chart. The purpose of the chart is to detect changes that are moving away from
the reference level. A nonzero slope (in either direction) represents a change away
from the reference level. A positive slope indicates an increase in the mean above
the reference level, while a negative slope signals a decrease.

Cusum charts are often devised with a defined acceptable quality level (AQL)
and rejectable quality level (RQL) preestablished by the user. Both represent values
of the mean. These may be viewed as playing roles somewhat similar to those of
the null and alternative mean of hypothesis testing. Consider a situation where
the analyst hopes to detect an increase in the value of the process mean. We shall
use the notation μ0 for AQL and μ1 for RQL and let μ1 > μ0. The reference level
is now set at

W =
μ0 + μ1

2
.

The values of Sr (r = 1, 2, . . . .) will have a negative slope if the process mean is at
μ0 and a positive slope if the process mean is at μ1.

Uploaded By: anonymousSTUDENTS-HUB.com



/ /

706 Chapter 17 Statistical Quality Control

Decision Rule for Cusum Charts

As indicated earlier, the slope of the cusum chart provides the signal for action by
the quality control analyst. The decision rule calls for action if, at the rth sampling
period,

dr > h,

where h is a prespecified value called the length of the decision interval and

dr = Sr − min
1≤i≤r−1

Si.

In other words, action is taken if the data reveal that the current cusum value
exceeds by a specified amount the previous smallest cusum value.

A modification in the mechanics described above makes employing the method
easier. We have described a procedure that plots the cusums and computes differ-
ences. A simple modification involves plotting the differences directly and allows
for checking against the decision interval. The general expression for dr is quite
simple. For the cusum procedure where we are detecting increases in the mean,

dr = max[0, dr−1 + (Xr −W )].

The choice of the value of h is, of course, very important. We do not choose
in this book to provide the many details in the literature dealing with this choice.
The reader is referred to Ewan and Kemp, 1960, and Montgomery, 2000b (see
the Bibliography) for a thorough discussion. One important consideration is the
expected run length. Ideally, the expected run length is quite large under μ = μ0

and quite small when μ = μ1.

Review Exercises

17.1 Consider X1, X2, . . . , Xn independent Poisson
random variables with parameters μ1, μ2, . . . , μn. Use
the properties of moment-generating functions to show

that the random variable
n∑

i=1

Xi is a Poisson random

variable with mean
n∑

i=1

μi and variance
n∑

i=1

μi.

17.2 Consider the following data taken on subgroups
of size 5. The data contain 20 averages and ranges on
the diameter (in millimeters) of an important compo-
nent part of an engine. Display X̄- and R-charts. Does
the process appear to be in control?

Sample X̄ R

1 2.3972 0.0052
2 2.4191 0.0117
3 2.4215 0.0062
4 2.3917 0.0089
5 2.4151 0.0095
6 2.4027 0.0101
7 2.3921 0.0091
8 2.4171 0.0059

Sample X̄ R

9 2.3951 0.0068
10 2.4215 0.0048
11 2.3887 0.0082
12 2.4107 0.0032
13 2.4009 0.0077
14 2.3992 0.0107
15 2.3889 0.0025
16 2.4107 0.0138
17 2.4109 0.0037
18 2.3944 0.0052
19 2.3951 0.0038
20 2.4015 0.0017

17.3 Suppose for Review Exercise 17.2 that the buyer
has set specifications for the part. The specifications
require that the diameter fall in the range covered by
2.40000± 0.0100 mm. What proportion of units pro-
duced by this process will not conform to specifica-
tions?

17.4 For the situation of Review Exercise 17.2, give
numerical estimates of the mean and standard devia-
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tion of the diameter for the part being manufactured
in the process.

17.5 Consider the data of Table 17.1. Suppose that
additional samples of size 5 are taken and tensile
strength recorded. The sampling produces the follow-
ing results (in pounds per square inch).

Sample X̄ R

1 1511 22
2 1508 14
3 1522 11
4 1488 18
5 1519 6
6 1524 11
7 1519 8
8 1504 7
9 1500 8
10 1519 14

(a) Plot the data, using the X̄- and R-charts for the
preliminary data of Table 17.1.

(b) Does the process appear to be in control? If not,
explain why.

17.6 Consider an in-control process with mean μ = 25
and σ = 1.0. Suppose that subgroups of size 5 are
used with control limits μ± 3σ/

√
n, and centerline at

μ. Suppose that a shift occurs in the mean, and the
new mean is μ = 26.5.

(a) What is the average number of samples required
(following the shift) to detect the out-of-control sit-
uation?

(b) What is the standard deviation of the number of
runs required?

17.7 Consider the situation of Example 17.2. The fol-
lowing data are taken on additional samples of size 5.
Plot the X̄- and S-values on the X̄- and S-charts that
were produced with the data in the preliminary sam-
ple. Does the process appear to be in control? Explain
why or why not.

Sample X̄ Si

1 62.280 0.062
2 62.319 0.049
3 62.297 0.077
4 62.318 0.042
5 62.315 0.038
6 62.389 0.052
7 62.401 0.059
8 62.315 0.042
9 62.298 0.036
10 62.337 0.068

17.8 Samples of size 50 are taken every hour from a

process producing a certain type of item that is consid-
ered either defective or not defective. Twenty samples
are taken.

(a) Construct a control chart for control of proportion
defective.

(b) Does the process appear to be in control? Explain.

Number of Number of
Defective Defective

Sample Items Sample Items

1 4 11 2
2 3 12 4
3 5 13 1
4 3 14 2
5 2 15 3
6 2 16 1
7 2 17 1
8 1 18 2
9 4 19 3
10 3 20 1

17.9 For the situation of Review Exercise 17.8, sup-
pose that additional data are collected as follows:

Sample Number of Defective Items

1 3
2 4
3 2
4 2
5 3
6 1
7 3
8 5
9 7
10 7

Does the process appear to be in control? Explain.

17.10 A quality control effort is being undertaken for
a process where large steel plates are manufactured and
surface defects are of concern. The goal is to set up
a quality control chart for the number of defects per
plate. The data are given below. Set up the appropri-
ate control chart, using this sample information. Does
the process appear to be in control?

Number of Number of
Sample Defects Sample Defects

1 4 11 1
2 2 12 2
3 1 13 2
4 3 14 3
5 0 15 1
6 4 16 4
7 5 17 3
8 3 18 2
9 2 19 1
10 2 20 3
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Chapter 18

Bayesian Statistics

18.1 Bayesian Concepts

The classical methods of estimation that we have studied in this text are based
solely on information provided by the random sample. These methods essentially
interpret probabilities as relative frequencies. For example, in arriving at a 95%
confidence interval for μ, we interpret the statement

P (−1.96 < Z < 1.96) = 0.95

to mean that 95% of the time in repeated experiments Z will fall between −1.96
and 1.96. Since

Z =
X̄ − μ

σ/
√
n

for a normal sample with known variance, the probability statement here means
that 95% of the random intervals (X̄− 1.96σ/

√
n, X̄+1.96σ/

√
n) contain the true

mean μ. Another approach to statistical methods of estimation is called Bayesian
methodology. The main idea of the method comes from Bayes’ rule, described
in Section 2.7. The key difference between the Bayesian approach and the classical
or frequentist approach is that in Bayesian concepts, the parameters are viewed as
random variables.

Subjective Probability

Subjective probability is the foundation of Bayesian concepts. In Chapter 2, we
discussed two possible approaches to probability, namely the relative frequency and
the indifference approaches. The first one determines a probability as a consequence
of repeated experiments. For instance, to decide the free-throw percentage of a
basketball player, we can record the number of shots made and the total number
of attempts this player has made. The probability of hitting a free-throw for this
player can be calculated as the ratio of these two numbers. On the other hand,
if we have no knowledge of any bias in a die, the probability that a 3 will appear
in the next throw will be 1/6. Such an approach to probability interpretation is
based on the indifference rule.

709
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However, in many situations, the preceding probability interpretations cannot
be applied. For instance, consider the questions “What is the probability that
it will rain tomorrow?” “How likely is it that this stock will go up by the end
of the month?” and “What is the likelihood that two companies will be merged
together?” They can hardly be interpreted by the aforementioned approaches, and
the answers to these questions may be different for different people. Yet these
questions are constantly asked in daily life, and the approach used to explain these
probabilities is called subjective probability, which reflects one’s subjective opinion.

Conditional Perspective

Recall that in Chapters 9 through 17, all statistical inferences were based on the
fact that the parameters are unknown but fixed quantities, apart from those in
Section 9.14, in which the parameters were treated as variables and the maximum
likelihood estimates (MLEs) were calculated conditioning on the observed sample
data. In Bayesian statistics, not only are the parameters treated as variables as in
MLE calculation, but also they are treated as random.

Because the observed data are the only experimental results for the practitioner,
statistical inference is based on the actual observed data from a given experiment.
Such a view is called a conditional perspective. Furthermore, in Bayesian concepts,
since the parameters are treated as random, a probability distribution can be
specified, generally by using the subjective probability for the parameter. Such a
distribution is called a prior distribution and it usually reflects the experimenter’s
prior belief about the parameter. In the Bayesian perspective, once an experiment
is conducted and data are observed, all knowledge about the parameter is contained
in the actual observed data and in the prior information.

Bayesian Applications

Although Bayes’ rule is credited to Thomas Bayes, Bayesian applications were
first introduced by French scientist Pierre Simon Laplace, who published a paper
on using Bayesian inference on the unknown binomial proportions (for binomial
distribution, see Section 5.2).

Since the introduction of the Markov chain Monte Carlo (MCMC) computa-
tional tools for Bayesian analysis in the early 1990s, Bayesian statistics has become
more and more popular in statistical modeling and data analysis. Meanwhile,
methodology developments using Bayesian concepts have progressed dramatically,
and they are applied in fields such as bioinformatics, biology, business, engineer-
ing, environmental and ecology science, life science and health, medicine, and many
others.

18.2 Bayesian Inferences

Consider the problem of finding a point estimate of the parameter θ for the pop-
ulation with distribution f(x| θ), given θ. Denote by π(θ) the prior distribution
of θ. Suppose that a random sample of size n, denoted by x = (x1, x2, . . . , xn), is
observed.
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Definition 18.1: The distribution of θ, given x, which is called the posterior distribution, is given
by

π(θ|x) = f(x|θ)π(θ)
g(x)

,

where g(x) is the marginal distribution of x.

The marginal distribution of x in the above definition can be calculated using
the following formula:

g(x) =

⎧⎨⎩
∑
θ

f(x|θ)π(θ), θ is discrete,∫∞
−∞ f(x|θ)π(θ) dθ, θ is continuous.

Example 18.1: Assume that the prior distribution for the proportion of defectives produced by a
machine is

p 0.1 0.2
π(p) 0.6 0.4

Denote by x the number of defectives among a random sample of size 2. Find the
posterior probability distribution of p, given that x is observed.

Solution : The random variable X follows a binomial distribution

f(x|p) = b(x; 2, p) =

(
2

x

)
pxq2−x, x = 0, 1, 2.

The marginal distribution of x can be calculated as

g(x) = f(x|0.1)π(0.1) + f(x|0.2)π(0.2)

=

(
2

x

)
[(0.1)x(0.9)2−x(0.6) + (0.2)x(0.8)2−x(0.4)].

Hence, for x = 0, 1, 2, we obtain the marginal probabilities as
x 0 1 2

g(x) 0.742 0.236 0.022
The posterior probability of p = 0.1, given x, is

π(0.1|x) = f(x|0.1)π(0.1)
g(x)

=
(0.1)x(0.9)2−x(0.6)

(0.1)x(0.9)2−x(0.6) + (0.2)x(0.8)2−x(0.4)
,

and π(0.2|x) = 1− π(0.1|x).
Suppose that x = 0 is observed.

π(0.1|0) = f(0 | 0.1)π(0.1)
g(0)

=
(0.1)0(0.9)2−0(0.6)

0.742
= 0.6550,

and π(0.2|0) = 0.3450. If x = 1 is observed, π(0.1|1) = 0.4576, and π(0.2|1) =
0.5424. Finally, π(0.1|2) = 0.2727, and π(0.2|2) = 0.7273.

The prior distribution for Example 18.1 is discrete, although the natural range
of p is from 0 to 1. Consider the following example, where we have a prior distri-
bution covering the whole space for p.
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Example 18.2: Suppose that the prior distribution of p is uniform (i.e., π(p) = 1, for 0 < p <
1). Use the same random variable X as in Example 18.1 to find the posterior
distribution of p.

Solution : As in Example 18.1, we have

f(x|p) = b(x; 2, p) =

(
2

x

)
pxq2−x, x = 0, 1, 2.

The marginal distribution of x can be calculated as

g(x) =

∫ 1

0

f(x|p)π(p) dp =

(
2

x

)∫ 1

0

px(1− p)2−x dp.

The integral above can be evaluated at each x directly as g(0) = 1/3, g(1) = 1/3,
and g(2) = 1/3. Therefore, the posterior distribution of p, given x, is

π(p|x) =
(
2
x

)
px(1− p)2−x

1/3
= 3

(
2

x

)
px(1− p)2−x, 0 < p < 1.

The posterior distribution above is actually a beta distribution (see Section 6.8)
with parameters α = x + 1 and β = 3 − x. So, if x = 0 is observed, the posterior
distribution of p is a beta distribution with parameters (1, 3). The posterior mean

is μ = 1
1+3 = 1

4 and the posterior variance is σ2 = (1)(3)
(1+3)2(1+3+1) =

3
80 .

Using the posterior distribution, we can estimate the parameter(s) in a popu-
lation in a straightforward fashion. In computing posterior distributions, it is very
helpful if one is familiar with the distributions in Chapters 5 and 6. Note that
in Definition 18.1, the variable in the posterior distribution is θ, while x is given.
Thus, we can treat g(x) as a constant as we calculate the posterior distribution of
θ. Then the posterior distribution can be expressed as

π(θ|x) ∝ f(x|θ)π(θ),
where the symbol “∝” stands for is proportional to. In the calculation of the
posterior distribution above, we can leave the factors that do not depend on θ out
of the normalization constant, i.e., the marginal density g(x).

Example 18.3: Suppose that random variables X1, . . . , Xn are independent and from a Poisson
distribution with mean λ. Assume that the prior distribution of λ is exponential
with mean 1. Find the posterior distribution of λ when x̄ = 3 with n = 10.

Solution : The density function of X = (X1, . . . , Xn) is

f(x|λ) =
n∏

i=1

e−λλ
xi

xi!
= e−nλλ

n∑
i=1

xi

n∏
i=1

xi!
,

and the prior distribution is

π(θ) = e−λ, for λ > 0.
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18.2 Bayesian Inferences 713

Hence, using Definition 18.1 we obtain the posterior distribution of λ as

π(λ|x) ∝ f(x|λ)π(λ) = e−nλλ

n∑
i=1

xi

n∏
i=1

xi!
e−λ ∝ e−(n+1)λλ

n∑
i=1

xi

.

Referring to the gamma distribution in Section 6.6, we conclude that the posterior

distribution of λ follows a gamma distribution with parameters 1+
n∑

i=1

xi and
1

n+1 .

Hence, we have the posterior mean and variance of λ as
∑n

i=1 xi+1

n+1 and
∑n

i=1 xi+1

(n+1)2 .

So, when x̄ = 3 with n = 10, we have
∑10

i=1 xi = 30. Hence, the posterior
distribution of λ is a gamma distribution with parameters 31 and 1/11.

From Example 18.3 we observe that sometimes it is quite convenient to use
the “proportional to” technique in calculating the posterior distribution, especially
when the result can be formed to a commonly used distribution as described in
Chapters 5 and 6.

Point Estimation Using the Posterior Distribution

Once the posterior distribution is derived, we can easily use the summary of the
posterior distribution to make inferences on the population parameters. For in-
stance, the posterior mean, median, and mode can all be used to estimate the
parameter.

Example 18.4: Suppose that x = 1 is observed for Example 18.2. Find the posterior mean and
the posterior mode.

Solution : When x = 1, the posterior distribution of p can be expressed as

π(p|1) = 6p(1− p), for 0 < p < 1.

To calculate the mean of this distribution, we need to find∫ 1

0

6p2(1− p) dp = 6

(
1

3
− 1

4

)
=

1

2
.

To find the posterior mode, we need to obtain the value of p such that the posterior
distribution is maximized. Taking derivative of π(p) with respect to p, we obtain
6− 12p. Solving for p in 6− 12p = 0, we obtain p = 1/2. The second derivative is
−12, which implies that the posterior mode is achieved at p = 1/2.

Bayesian methods of estimation concerning the mean μ of a normal population
are based on the following example.

Example 18.5: If x̄ is the mean of a random sample of size n from a normal population with
known variance σ2, and the prior distribution of the population mean is a normal
distribution with known mean μ0 and known variance σ2

0 , then show that the
posterior distribution of the population mean is also a normal distribution with
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mean μ∗ and standard deviation σ∗, where

μ∗ =
σ2
0

σ2
0 + σ2/n

x̄+
σ2/n

σ2
0 + σ2/n

μ0 and σ∗ =

√
σ2
0σ

2

nσ2
0 + σ2

.

Solution : The density function of our sample is

f(x1, x2, . . . , xn | μ) = 1

(2π)n/2σn
exp

[
−1

2

n∑
i=1

(
xi − μ

σ

)2
]
,

for −∞ < xi < ∞ and i = 1, 2, . . . , n, and the prior is

π(μ) =
1√
2πσ0

exp

[
−1

2

(
μ− μ0

σ0

)2
]
, −∞ < μ < ∞.

Then the posterior distribution of μ is

π(μ|x) ∝ exp

{
−1

2

[
n∑

i=1

(
xi − μ

σ

)2

+

(
μ− μ0

σ0

)2
]}

∝ exp

{
−1

2

[
n(x̄− μ)2

σ2
+

(μ− μ0)
2

σ2
0

]}
,

due to

n∑
i=1

(xi − μ)2 =

n∑
i=1

(xi − x̄)2 + n(x̄− μ)2

from Section 8.5. Completing the squares for μ yields the posterior distribution

π(μ|x) ∝ exp

[
−1

2

(
μ− μ∗

σ∗

)2
]
,

where

μ∗ =
nx̄σ2

0 + μ0σ
2

nσ2
0 + σ2

, σ∗ =

√
σ2
0σ

2

nσ2
0 + σ2

.

This is a normal distribution with mean μ∗ and standard deviation σ∗.
The Central Limit Theorem allows us to use Example 18.5 also when we select

sufficiently large random samples (n ≥ 30 for many engineering experimental cases)
from nonnormal populations (the distribution is not very far from symmetric), and
when the prior distribution of the mean is approximately normal.

Several comments need to be made about Example 18.5. The posterior mean
μ∗ can also be written as

μ∗ =
σ2
0

σ2
0 + σ2/n

x̄+
σ2/n

σ2
0 + σ2/n

μ0,

which is a weighted average of the sample mean x̄ and the prior mean μ0. Since both
coefficients are between 0 and 1 and they sum to 1, the posterior mean μ∗ is always
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between x̄ and μ0. This means that the posterior estimation of μ is influenced by
both x̄ and μ0. Furthermore, the weight of x̄ depends on the prior variance as
well as the variance of the sample mean. For a large sample problem (n → ∞),
the posterior mean μ∗ → x̄. This means that the prior mean does not play any
role in estimating the population mean μ using the posterior distribution. This
is very reasonable since it indicates that when the amount of data is substantial,
information from the data will dominate the information on μ provided by the prior.
On the other hand, when the prior variance is large (σ2

0 → ∞), the posterior mean
μ∗ also goes to x̄. Note that for a normal distribution, the larger the variance,
the flatter the density function. The flatness of the normal distribution in this
case means that there is almost no subjective prior information available on the
parameter μ before the data are collected. Thus, it is reasonable that the posterior
estimation μ∗ only depends on the data value x̄.

Now consider the posterior standard deviation σ∗. This value can also be
written as

σ∗ =

√
σ2
0σ

2/n

σ2
0 + σ2/n

.

It is obvious that the value σ∗ is smaller than both σ0 and σ/
√
n, the prior stan-

dard deviation and the standard deviation of x̄, respectively. This suggests that
the posterior estimation is more accurate than both the prior and the sample data.
Hence, incorporating both the data and prior information results in better pos-
terior information than using any of the data or prior alone. This is a common
phenomenon in Bayesian inference. Furthermore, to compute μ∗ and σ∗ by the for-
mulas in Example 18.5, we have assumed that σ2 is known. Since this is generally
not the case, we shall replace σ2 by the sample variance s2 whenever n ≥ 30.

Bayesian Interval Estimation

Similar to the classical confidence interval, in Bayesian analysis we can calculate a
100(1− α)% Bayesian interval using the posterior distribution.

Definition 18.2: The interval a < θ < b will be called a 100(1− α)% Bayesian interval for θ if∫ a

−∞
π(θ|x) dθ =

∫ ∞

b

π(θ|x) dθ =
α

2
.

Recall that under the frequentist approach, the probability of a confidence
interval, say 95%, is interpreted as a coverage probability, which means that if an
experiment is repeated again and again (with considerable unobserved data), the
probability that the intervals calculated according to the rule will cover the true
parameter is 95%. However, in Bayesian interval interpretation, say for a 95%
interval, we can state that the probability of the unknown parameter falling into
the calculated interval (which only depends on the observed data) is 95%.

Example 18.6: Supposing that X ∼ b(x;n, p), with known n = 2, and the prior distribution of p
is uniform π(p) = 1, for 0 < p < 1, find a 95% Bayesian interval for p.
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Solution : As in Example 18.2, when x = 0, the posterior distribution is a beta distribution
with parameters 1 and 3, i.e., π(p|0) = 3(1− p)2, for 0 < p < 1. Thus, we need to
solve for a and b using Definition 18.2, which yields the following:

0.025 =

∫ a

0

3(1− p)2 dp = 1− (1− a)3

and

0.025 =

∫ 1

b

3(1− p)2 dp = (1− b)3.

The solutions to the above equations result in a = 0.0084 and b = 0.7076. There-
fore, the probability that p falls into (0.0084, 0.7076) is 95%.

For the normal population and normal prior case described in Example 18.5,
the posterior mean μ∗ is the Bayes estimate of the population mean μ, and a
100(1−α)%Bayesian interval for μ can be constructed by computing the interval

μ∗ − zα/2σ
∗ < μ < μ∗ + zα/2σ

∗,

which is centered at the posterior mean and contains 100(1−α)% of the posterior
probability.

Example 18.7: An electrical firm manufactures light bulbs that have a length of life that is ap-
proximately normally distributed with a standard deviation of 100 hours. Prior
experience leads us to believe that μ is a value of a normal random variable with a
mean μ0 = 800 hours and a standard deviation σ0 = 10 hours. If a random sample
of 25 bulbs has an average life of 780 hours, find a 95% Bayesian interval for μ.

Solution : According to Example 18.5, the posterior distribution of the mean is also a normal
distribution with mean

μ∗ =
(25)(780)(10)2 + (800)(100)2

(25)(10)2 + (100)2
= 796

and standard deviation

σ∗ =

√
(10)2(100)2

(25)(10)2 + (100)2
=

√
80.

The 95% Bayesian interval for μ is then given by

796− 1.96
√
80 < μ < 796 + 1.96

√
80,

or

778.5 < μ < 813.5.

Hence, we are 95% sure that μ will be between 778.5 and 813.5.
On the other hand, ignoring the prior information about μ, we could proceed

as in Section 9.4 and construct the classical 95% confidence interval

780− (1.96)

(
100√
25

)
< μ < 780 + (1.96)

(
100√
25

)
,

or 740.8 < μ < 819.2, which is seen to be wider than the corresponding Bayesian
interval.
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18.3 Bayes Estimates Using Decision Theory Framework

Using Bayesian methodology, the posterior distribution of a parameter can be
obtained. Bayes estimates can also be derived using the posterior distribution and
a loss function when a loss is incurred. A loss function is a function that describes
the cost of a decision associated with an event of interest. Here we only list a few
commonly used loss functions and their associated Bayes estimates.

Squared-Error Loss

Definition 18.3: The squared-error loss function is

L(θ, a) = (θ − a)2,

where θ is the parameter (or state of nature) and a an action (or estimate).

A Bayes estimate minimizes the posterior expected loss, given on the observed
sample data.

Theorem 18.1: The mean of the posterior distribution π(θ|x), denoted by θ∗, is the Bayes esti-
mate of θ under the squared-error loss function.

Example 18.8: Find the Bayes estimates of p, for all the values of x, for Example 18.1 when the
squared-error loss function is used.

Solution : When x = 0, p∗ = (0.1)(0.6550) + (0.2)(0.3450) = 0.1345.
When x = 1, p∗ = (0.1)(0.4576) + (0.2)(0.5424) = 0.1542.
When x = 2, p∗ = (0.1)(0.2727) + (0.2)(0.7273) = 0.1727.

Note that the classical estimate of p is p̂ = x/n = 0, 1/2, and 1, respectively,
for the x values at 0, 1, and 2. These classical estimates are very different from
the corresponding Bayes estimates.

Example 18.9: Repeat Example 18.8 in the situation of Example 18.2.
Solution : Since the posterior distribution of p is a B(x + 1, 3 − x) distribution (see Section

6.8 on page 201), the Bayes estimate of p is

p∗ = Eπ(p|x)(p) = 3

(
2

x

)∫ 1

0

px+1(1− p)2−x dp,

which yields p∗ = 1/4 for x = 0, p∗ = 1/2 for x = 1, and p∗ = 3/4 for x = 2,
respectively. Notice that when x = 1 is observed, the Bayes estimate and the
classical estimate p̂ are equivalent.

For the normal situation as described in Example 18.5, the Bayes estimate of
μ under the squared-error loss will be the posterior mean μ∗.

Example 18.10: Suppose that the sampling distribution of a random variable, X, is Poisson with
parameter λ. Assume that the prior distribution of λ follows a gamma distribution

Uploaded By: anonymousSTUDENTS-HUB.com



/ /

718 Chapter 18 Bayesian Statistics

with parameters (α, β). Find the Bayes estimate of λ under the squared-error loss
function.

Solution : Using Example 18.3, we conclude that the posterior distribution of λ follows a
gamma distribution with parameters (x+α, (1 + 1/β)−1). Using Theorem 6.4, we
obtain the posterior mean

λ̂ =
x+ α

1 + 1/β
.

Since the posterior mean is the Bayes estimate under the squared-error loss, λ̂ is
our Bayes estimate.

Absolute-Error Loss

The squared-error loss described above is similar to the least-squares concept we
discussed in connection with regression in Chapters 11 and 12. In this section, we
introduce another loss function as follows.

Definition 18.4: The absolute-error loss function is defined as

L(θ, a) = |θ − a|,

where θ is the parameter and a an action.

Theorem 18.2: The median of the posterior distribution π(θ|x), denoted by θ∗, is the Bayes
estimate of θ under the absolute-error loss function.

Example 18.11: Under the absolute-error loss, find the Bayes estimator for Example 18.9 when
x = 1 is observed.

Solution : Again, the posterior distribution of p is a B(x+1, 3−x). When x = 1, it is a beta
distribution with density π(p | x = 1) = 6x(1− x) for 0 < x < 1 and 0 otherwise.
The median of this distribution is the value of p∗ such that

1

2
=

∫ p∗

0

6p(1− p) dp = 3p∗2 − 2p∗3,

which yields the answer p∗ = 1
2 . Hence, the Bayes estimate in this case is 0.5.

Exercises

18.1 Estimate the proportion of defectives being pro-
duced by the machine in Example 18.1 if the random
sample of size 2 yields 2 defectives.

18.2 Let us assume that the prior distribution for the
proportion p of drinks from a vending machine that
overflow is

p 0.05 0.10 0.15
π(p) 0.3 0.5 0.2

If 2 of the next 9 drinks from this machine overflow,
find

(a) the posterior distribution for the proportion p;

(b) the Bayes estimate of p.
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18.3 Repeat Exercise 18.2 when 1 of the next 4 drinks
overflows and the uniform prior distribution is

π(p) = 10, 0.05 < p < 0.15.

18.4 Service calls come to a maintenance center ac-
cording to a Poisson process with λ calls per minute.
A data set of 20 one-minute periods yields an average
of 1.8 calls. If the prior for λ follows an exponential
distribution with mean 2, determine the posterior dis-
tribution of λ.

18.5 A previous study indicates that the percentage
of chain smokers, p, who have lung cancer follows a
beta distribution (see Section 6.8) with mean 70% and
standard deviation 10%. Suppose a new data set col-
lected shows that 81 out of 120 chain smokers have
lung cancer.

(a) Determine the posterior distribution of the percent-
age of chain smokers who have lung cancer by com-
bining the new data and the prior information.

(b) What is the posterior probability that p is larger
than 50%?

18.6 The developer of a new condominium complex
claims that 3 out of 5 buyers will prefer a two-bedroom
unit, while his banker claims that it would be more
correct to say that 7 out of 10 buyers will prefer a two-
bedroom unit. In previous predictions of this type, the
banker has been twice as reliable as the developer. If
12 of the next 15 condominiums sold in this complex
are two-bedroom units, find

(a) the posterior probabilities associated with the
claims of the developer and banker;

(b) a point estimate of the proportion of buyers who
prefer a two-bedroom unit.

18.7 The burn time for the first stage of a rocket is
a normal random variable with a standard deviation
of 0.8 minute. Assume a normal prior distribution for
μ with a mean of 8 minutes and a standard deviation
of 0.2 minute. If 10 of these rockets are fired and the
first stage has an average burn time of 9 minutes, find
a 95% Bayesian interval for μ.

18.8 The daily profit from a juice vending machine
placed in an office building is a value of a normal ran-
dom variable with unknown mean μ and variance σ2.
Of course, the mean will vary somewhat from building
to building, and the distributor feels that these average
daily profits can best be described by a normal distri-
bution with mean μ0 = $30.00 and standard deviation
σ0 = $1.75. If one of these juice machines, placed in
a certain building, showed an average daily profit of
x̄ = $24.90 during the first 30 days with a standard
deviation of s = $2.10, find

(a) a Bayes estimate of the true average daily profit for
this building;

(b) a 95% Bayesian interval of μ for this building;

(c) the probability that the average daily profit from
the machine in this building is between $24.00 and
$26.00.

18.9 The mathematics department of a large uni-
versity is designing a placement test to be given to
incoming freshman classes. Members of the depart-
ment feel that the average grade for this test will vary
from one freshman class to another. This variation of
the average class grade is expressed subjectively by a
normal distribution with mean μ0 = 72 and variance
σ2
0 = 5.76.

(a) What prior probability does the department assign
to the actual average grade being somewhere be-
tween 71.8 and 73.4 for next year’s freshman class?

(b) If the test is tried on a random sample of 100 stu-
dents from the next incoming freshman class, re-
sulting in an average grade of 70 with a variance of
64, construct a 95% Bayesian interval for μ.

(c) What posterior probability should the department
assign to the event of part (a)?

18.10 Suppose that in Example 18.7 the electrical
firm does not have enough prior information regard-
ing the population mean length of life to be able to
assume a normal distribution for μ. The firm believes,
however, that μ is surely between 770 and 830 hours,
and it is thought that a more realistic Bayesian ap-
proach would be to assume the prior distribution

π(μ) =
1

60
, 770 < μ < 830.

If a random sample of 25 bulbs gives an average life of
780 hours, follow the steps of the proof for Example
18.5 to find the posterior distribution

π(μ | x1, x2, . . . , x25).

18.11 Suppose that the time to failure T of a certain
hinge is an exponential random variable with probabil-
ity density

f(t) = θe−θt, t > 0.

From prior experience we are led to believe that θ is
a value of an exponential random variable with proba-
bility density

π(θ) = 2e−2θ, θ > 0.

If we have a sample of n observations on T , show that
the posterior distribution of Θ is a gamma distribution
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with parameters

α = n+ 1 and β =

(
n∑

i=1

ti + 2

)−1

.

18.12 Suppose that a sample consisting of 5, 6, 6, 7,
5, 6, 4, 9, 3, and 6 comes from a Poisson population
with mean λ. Assume that the parameter λ follows a
gamma distribution with parameters (3, 2). Under the
squared-error loss function, find the Bayes estimate of
λ.

18.13 A random variable X follows a negative bino-
mial distribution with parameters k = 5 and p [i.e.,
b∗(x; 5, p)]. Furthermore, we know that p follows a uni-
form distribution on the interval (0, 1). Find the Bayes
estimate of p under the squared-error loss function.

18.14 A random variable X follows an exponential
distribution with mean 1/β. Assume the prior distri-
bution of β is another exponential distribution with
mean 2.5. Determine the Bayes estimate of β under
the absolute-error loss function.

18.15 A random sample X1, . . . , Xn comes from
a uniform distribution (see Section 6.1) population
U(0, θ) with unknown θ. The data are given below:

0.13, 1.06, 1.65, 1.73, 0.95, 0.56, 2.14, 0.33, 1.22, 0.20,

1.55, 1.18, 0.71, 0.01, 0.42, 1.03, 0.43, 1.02, 0.83, 0.88

Suppose the prior distribution of θ has the density

π(θ) =

{
1
θ2
, θ > 1,

0, θ ≤ 1.

Determine the Bayes estimator under the absolute-
error loss function.
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Table A.1 Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1 0 0.9000 0.8000 0.7500 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 0.8100 0.6400 0.5625 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100
1 0.9900 0.9600 0.9375 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.7290 0.5120 0.4219 0.3430 0.2160 0.1250 0.0640 0.0270 0.0080 0.0010
1 0.9720 0.8960 0.8438 0.7840 0.6480 0.5000 0.3520 0.2160 0.1040 0.0280
2 0.9990 0.9920 0.9844 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.6561 0.4096 0.3164 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001
1 0.9477 0.8192 0.7383 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037
2 0.9963 0.9728 0.9492 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523
3 0.9999 0.9984 0.9961 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.5905 0.3277 0.2373 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000
1 0.9185 0.7373 0.6328 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005
2 0.9914 0.9421 0.8965 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086
3 0.9995 0.9933 0.9844 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815
4 1.0000 0.9997 0.9990 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.5314 0.2621 0.1780 0.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000
1 0.8857 0.6554 0.5339 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001
2 0.9842 0.9011 0.8306 0.7443 0.5443 0.3438 0.1792 0.0705 0.0170 0.0013
3 0.9987 0.9830 0.9624 0.9295 0.8208 0.6563 0.4557 0.2557 0.0989 0.0159
4 0.9999 0.9984 0.9954 0.9891 0.9590 0.8906 0.7667 0.5798 0.3446 0.1143
5 1.0000 0.9999 0.9998 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.4783 0.2097 0.1335 0.0824 0.0280 0.0078 0.0016 0.0002 0.0000
1 0.8503 0.5767 0.4449 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000
2 0.9743 0.8520 0.7564 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 0.0002
3 0.9973 0.9667 0.9294 0.8740 0.7102 0.5000 0.2898 0.1260 0.0333 0.0027
4 0.9998 0.9953 0.9871 0.9712 0.9037 0.7734 0.5801 0.3529 0.1480 0.0257
5 1.0000 0.9996 0.9987 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497
6 1.0000 0.9999 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

8 0 0.4305 0.1678 0.1001 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000
1 0.8131 0.5033 0.3671 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001
2 0.9619 0.7969 0.6785 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000
3 0.9950 0.9437 0.8862 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004
4 0.9996 0.9896 0.9727 0.9420 0.8263 0.6367 0.4059 0.1941 0.0563 0.0050
5 1.0000 0.9988 0.9958 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381
6 0.9999 0.9996 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869
7 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.3874 0.1342 0.0751 0.0404 0.0101 0.0020 0.0003 0.0000
1 0.7748 0.4362 0.3003 0.1960 0.0705 0.0195 0.0038 0.0004 0.0000
2 0.9470 0.7382 0.6007 0.4628 0.2318 0.0898 0.0250 0.0043 0.0003 0.0000
3 0.9917 0.9144 0.8343 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 0.0001
4 0.9991 0.9804 0.9511 0.9012 0.7334 0.5000 0.2666 0.0988 0.0196 0.0009
5 0.9999 0.9969 0.9900 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083
6 1.0000 0.9997 0.9987 0.9957 0.9750 0.9102 0.7682 0.5372 0.2618 0.0530
7 1.0000 0.9999 0.9996 0.9962 0.9805 0.9295 0.8040 0.5638 0.2252
8 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.3487 0.1074 0.0563 0.0282 0.0060 0.0010 0.0001 0.0000
1 0.7361 0.3758 0.2440 0.1493 0.0464 0.0107 0.0017 0.0001 0.0000
2 0.9298 0.6778 0.5256 0.3828 0.1673 0.0547 0.0123 0.0016 0.0001
3 0.9872 0.8791 0.7759 0.6496 0.3823 0.1719 0.0548 0.0106 0.0009 0.0000
4 0.9984 0.9672 0.9219 0.8497 0.6331 0.3770 0.1662 0.0473 0.0064 0.0001
5 0.9999 0.9936 0.9803 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016
6 1.0000 0.9991 0.9965 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128
7 0.9999 0.9996 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702
8 1.0000 1.0000 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639
9 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.3138 0.0859 0.0422 0.0198 0.0036 0.0005 0.0000
1 0.6974 0.3221 0.1971 0.1130 0.0302 0.0059 0.0007 0.0000
2 0.9104 0.6174 0.4552 0.3127 0.1189 0.0327 0.0059 0.0006 0.0000
3 0.9815 0.8389 0.7133 0.5696 0.2963 0.1133 0.0293 0.0043 0.0002
4 0.9972 0.9496 0.8854 0.7897 0.5328 0.2744 0.0994 0.0216 0.0020 0.0000
5 0.9997 0.9883 0.9657 0.9218 0.7535 0.5000 0.2465 0.0782 0.0117 0.0003
6 1.0000 0.9980 0.9924 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028
7 0.9998 0.9988 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185
8 1.0000 0.9999 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896
9 1.0000 1.0000 0.9993 0.9941 0.9698 0.8870 0.6779 0.3026

10 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862
11 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

12 0 0.2824 0.0687 0.0317 0.0138 0.0022 0.0002 0.0000
1 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.0003 0.0000
2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 0.0028 0.0002 0.0000
3 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001
4 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000
5 0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001
6 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005
7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043
8 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256
9 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109

10 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410
11 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176
12 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000
1 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000
2 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001
3 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 0.0078 0.0007 0.0000
4 0.9935 0.9009 0.7940 0.6543 0.3530 0.1334 0.0321 0.0040 0.0002
5 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000
6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001
7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009
8 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065
9 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342

10 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339
11 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787
12 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458
13 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.2288 0.0440 0.0178 0.0068 0.0008 0.0001 0.0000
1 0.5846 0.1979 0.1010 0.0475 0.0081 0.0009 0.0001
2 0.8416 0.4481 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000
3 0.9559 0.6982 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002
4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000
5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004
6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000
7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002
8 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015
9 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092

10 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441
11 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584
12 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154
13 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712
14 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

15 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000
1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000
2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000
3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001
4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000
5 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001
6 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008
7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000
8 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003
9 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022

10 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127
11 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556
12 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841
13 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510
14 1.0000 0.9995 0.9953 0.9648 0.7941
15 1.0000 1.0000 1.0000 1.0000

16 0 0.1853 0.0281 0.0100 0.0033 0.0003 0.0000
1 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000
2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001
3 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000
4 0.9830 0.7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003
5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000
6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002
7 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000
8 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001
9 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005

10 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033
11 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170
12 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684
13 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108
14 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853
15 1.0000 0.9997 0.9967 0.9719 0.8147
16 1.0000 1.0000 1.0000 1.0000
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Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

17 0 0.1668 0.0225 0.0075 0.0023 0.0002 0.0000
1 0.4818 0.1182 0.0501 0.0193 0.0021 0.0001 0.0000
2 0.7618 0.3096 0.1637 0.0774 0.0123 0.0012 0.0001
3 0.9174 0.5489 0.3530 0.2019 0.0464 0.0064 0.0005 0.0000
4 0.9779 0.7582 0.5739 0.3887 0.1260 0.0245 0.0025 0.0001
5 0.9953 0.8943 0.7653 0.5968 0.2639 0.0717 0.0106 0.0007 0.0000
6 0.9992 0.9623 0.8929 0.7752 0.4478 0.1662 0.0348 0.0032 0.0001
7 0.9999 0.9891 0.9598 0.8954 0.6405 0.3145 0.0919 0.0127 0.0005
8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403 0.0026 0.0000
9 0.9995 0.9969 0.9873 0.9081 0.6855 0.3595 0.1046 0.0109 0.0001

10 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248 0.0377 0.0008
11 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047
12 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221
13 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826
14 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382
15 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182
16 1.0000 0.9998 0.9977 0.9775 0.8332
17 1.0000 1.0000 1.0000 1.0000

18 0 0.1501 0.0180 0.0056 0.0016 0.0001 0.0000
1 0.4503 0.0991 0.0395 0.0142 0.0013 0.0001
2 0.7338 0.2713 0.1353 0.0600 0.0082 0.0007 0.0000
3 0.9018 0.5010 0.3057 0.1646 0.0328 0.0038 0.0002
4 0.9718 0.7164 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000
5 0.9936 0.8671 0.7175 0.5344 0.2088 0.0481 0.0058 0.0003
6 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000
7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002
8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009
9 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000

10 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002
11 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012
12 1.0000 0.9997 0.9942 0.9519 0.7912 0.4656 0.1329 0.0064
13 1.0000 0.9987 0.9846 0.9058 0.6673 0.2836 0.0282
14 0.9998 0.9962 0.9672 0.8354 0.4990 0.0982
15 1.0000 0.9993 0.9918 0.9400 0.7287 0.2662
16 0.9999 0.9987 0.9858 0.9009 0.5497
17 1.0000 0.9999 0.9984 0.9820 0.8499
18 1.0000 1.0000 1.0000 1.0000

Uploaded By: anonymousSTUDENTS-HUB.com



Table A.1 Binomial Probability Table 731

Table A.1 (continued) Binomial Probability Sums
r∑

x=0
b(x;n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

19 0 0.1351 0.0144 0.0042 0.0011 0.0001
1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000
2 0.7054 0.2369 0.1113 0.0462 0.0055 0.0004 0.0000
3 0.8850 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001
4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000
5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001
6 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006
7 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000
8 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003
9 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016

10 0.9997 0.9977 0.9895 0.9115 0.6762 0.3325 0.0839 0.0067 0.0000
11 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003
12 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017
13 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086
14 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352
15 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150
16 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946
17 1.0000 0.9992 0.9896 0.9171 0.5797
18 0.9999 0.9989 0.9856 0.8649
19 1.0000 1.0000 1.0000 1.0000

20 0 0.1216 0.0115 0.0032 0.0008 0.0000
1 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000
2 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002
3 0.8670 0.4114 0.2252 0.1071 0.0160 0.0013 0.0000
4 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003
5 0.9887 0.8042 0.6172 0.4164 0.1256 0.0207 0.0016 0.0000
6 0.9976 0.9133 0.7858 0.6080 0.2500 0.0577 0.0065 0.0003
7 0.9996 0.9679 0.8982 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000
8 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001
9 1.0000 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006

10 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000
11 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001
12 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004
13 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024
14 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113
15 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432
16 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330
17 0.9998 0.9964 0.9645 0.7939 0.3231
18 1.0000 0.9995 0.9924 0.9308 0.6083
19 1.0000 0.9992 0.9885 0.8784
20 1.0000 1.0000 1.0000
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Table A.2 Poisson Probability Sums
r∑

x=0
p(x;μ)

μ

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066
1 0.9953 0.9825 0.9631 0.9384 0.9098 0.8781 0.8442 0.8088 0.7725
2 0.9998 0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526 0.9371
3 1.0000 0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909 0.9865
4 1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9986 0.9977
5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9997
6 1.0000 1.0000 1.0000

μ

r 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 0.3679 0.2231 0.1353 0.0821 0.0498 0.0302 0.0183 0.0111 0.0067
1 0.7358 0.5578 0.4060 0.2873 0.1991 0.1359 0.0916 0.0611 0.0404
2 0.9197 0.8088 0.6767 0.5438 0.4232 0.3208 0.2381 0.1736 0.1247
3 0.9810 0.9344 0.8571 0.7576 0.6472 0.5366 0.4335 0.3423 0.2650
4 0.9963 0.9814 0.9473 0.8912 0.8153 0.7254 0.6288 0.5321 0.4405
5 0.9994 0.9955 0.9834 0.9580 0.9161 0.8576 0.7851 0.7029 0.6160

6 0.9999 0.9991 0.9955 0.9858 0.9665 0.9347 0.8893 0.8311 0.7622
7 1.0000 0.9998 0.9989 0.9958 0.9881 0.9733 0.9489 0.9134 0.8666
8 1.0000 0.9998 0.9989 0.9962 0.9901 0.9786 0.9597 0.9319
9 1.0000 0.9997 0.9989 0.9967 0.9919 0.9829 0.9682

10 0.9999 0.9997 0.9990 0.9972 0.9933 0.9863

11 1.0000 0.9999 0.9997 0.9991 0.9976 0.9945
12 1.0000 0.9999 0.9997 0.9992 0.9980
13 1.0000 0.9999 0.9997 0.9993
14 1.0000 0.9999 0.9998
15 1.0000 0.9999
16 1.0000
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Table A.2 (continued) Poisson Probability Sums
r∑

x=0
p(x;μ)

μ

r 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

0 0.0041 0.0025 0.0015 0.0009 0.0006 0.0003 0.0002 0.0001 0.0001
1 0.0266 0.0174 0.0113 0.0073 0.0047 0.0030 0.0019 0.0012 0.0008
2 0.0884 0.0620 0.0430 0.0296 0.0203 0.0138 0.0093 0.0062 0.0042
3 0.2017 0.1512 0.1118 0.0818 0.0591 0.0424 0.0301 0.0212 0.0149
4 0.3575 0.2851 0.2237 0.1730 0.1321 0.0996 0.0744 0.0550 0.0403
5 0.5289 0.4457 0.3690 0.3007 0.2414 0.1912 0.1496 0.1157 0.0885

6 0.6860 0.6063 0.5265 0.4497 0.3782 0.3134 0.2562 0.2068 0.1649
7 0.8095 0.7440 0.6728 0.5987 0.5246 0.4530 0.3856 0.3239 0.2687
8 0.8944 0.8472 0.7916 0.7291 0.6620 0.5925 0.5231 0.4557 0.3918
9 0.9462 0.9161 0.8774 0.8305 0.7764 0.7166 0.6530 0.5874 0.5218

10 0.9747 0.9574 0.9332 0.9015 0.8622 0.8159 0.7634 0.7060 0.6453

11 0.9890 0.9799 0.9661 0.9467 0.9208 0.8881 0.8487 0.8030 0.7520
12 0.9955 0.9912 0.9840 0.9730 0.9573 0.9362 0.9091 0.8758 0.8364
13 0.9983 0.9964 0.9929 0.9872 0.9784 0.9658 0.9486 0.9261 0.8981
14 0.9994 0.9986 0.9970 0.9943 0.9897 0.9827 0.9726 0.9585 0.9400
15 0.9998 0.9995 0.9988 0.9976 0.9954 0.9918 0.9862 0.9780 0.9665

16 0.9999 0.9998 0.9996 0.9990 0.9980 0.9963 0.9934 0.9889 0.9823
17 1.0000 0.9999 0.9998 0.9996 0.9992 0.9984 0.9970 0.9947 0.9911
18 1.0000 0.9999 0.9999 0.9997 0.9993 0.9987 0.9976 0.9957
19 1.0000 1.0000 0.9999 0.9997 0.9995 0.9989 0.9980
20 0.9999 0.9998 0.9996 0.9991

21 1.0000 0.9999 0.9998 0.9996
22 1.0000 0.9999 0.9999
23 1.0000 0.9999
24 1.0000
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Table A.2 (continued) Poisson Probability Sums
r∑

x=0
p(x;μ)

μ

r 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0

0 0.0000 0.0000 0.0000
1 0.0005 0.0002 0.0001 0.0000 0.0000
2 0.0028 0.0012 0.0005 0.0002 0.0001 0.0000 0.0000
3 0.0103 0.0049 0.0023 0.0011 0.0005 0.0002 0.0001 0.0000 0.0000
4 0.0293 0.0151 0.0076 0.0037 0.0018 0.0009 0.0004 0.0002 0.0001
5 0.0671 0.0375 0.0203 0.0107 0.0055 0.0028 0.0014 0.0007 0.0003

6 0.1301 0.0786 0.0458 0.0259 0.0142 0.0076 0.0040 0.0021 0.0010
7 0.2202 0.1432 0.0895 0.0540 0.0316 0.0180 0.0100 0.0054 0.0029
8 0.3328 0.2320 0.1550 0.0998 0.0621 0.0374 0.0220 0.0126 0.0071
9 0.4579 0.3405 0.2424 0.1658 0.1094 0.0699 0.0433 0.0261 0.0154

10 0.5830 0.4599 0.3472 0.2517 0.1757 0.1185 0.0774 0.0491 0.0304

11 0.6968 0.5793 0.4616 0.3532 0.2600 0.1848 0.1270 0.0847 0.0549
12 0.7916 0.6887 0.5760 0.4631 0.3585 0.2676 0.1931 0.1350 0.0917
13 0.8645 0.7813 0.6815 0.5730 0.4644 0.3632 0.2745 0.2009 0.1426
14 0.9165 0.8540 0.7720 0.6751 0.5704 0.4657 0.3675 0.2808 0.2081
15 0.9513 0.9074 0.8444 0.7636 0.6694 0.5681 0.4667 0.3715 0.2867

16 0.9730 0.9441 0.8987 0.8355 0.7559 0.6641 0.5660 0.4677 0.3751
17 0.9857 0.9678 0.9370 0.8905 0.8272 0.7489 0.6593 0.5640 0.4686
18 0.9928 0.9823 0.9626 0.9302 0.8826 0.8195 0.7423 0.6550 0.5622
19 0.9965 0.9907 0.9787 0.9573 0.9235 0.8752 0.8122 0.7363 0.6509
20 0.9984 0.9953 0.9884 0.9750 0.9521 0.9170 0.8682 0.8055 0.7307

21 0.9993 0.9977 0.9939 0.9859 0.9712 0.9469 0.9108 0.8615 0.7991
22 0.9997 0.9990 0.9970 0.9924 0.9833 0.9673 0.9418 0.9047 0.8551
23 0.9999 0.9995 0.9985 0.9960 0.9907 0.9805 0.9633 0.9367 0.8989
24 1.0000 0.9998 0.9993 0.9980 0.9950 0.9888 0.9777 0.9594 0.9317
25 0.9999 0.9997 0.9990 0.9974 0.9938 0.9869 0.9748 0.9554

26 1.0000 0.9999 0.9995 0.9987 0.9967 0.9925 0.9848 0.9718
27 0.9999 0.9998 0.9994 0.9983 0.9959 0.9912 0.9827
28 1.0000 0.9999 0.9997 0.9991 0.9978 0.9950 0.9897
29 1.0000 0.9999 0.9996 0.9989 0.9973 0.9941
30 0.9999 0.9998 0.9994 0.9986 0.9967

31 1.0000 0.9999 0.9997 0.9993 0.9982
32 1.0000 0.9999 0.9996 0.9990
33 0.9999 0.9998 0.9995
34 1.0000 0.9999 0.9998
35 1.0000 0.9999

36 0.9999
37 1.0000
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Table A.3 Normal Probability Table 735

0 z

Area

Table A.3 Areas under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Table A.3 (continued) Areas under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Table A.4 Student t-Distribution Probability Table 737

0 t
α

αTable A.4 Critical Values of the t-Distribution

α

v 0.40 0.30 0.20 0.15 0.10 0.05 0.025

1 0.325 0.727 1.376 1.963 3.078 6.314 12.706
2 0.289 0.617 1.061 1.386 1.886 2.920 4.303
3 0.277 0.584 0.978 1.250 1.638 2.353 3.182
4 0.271 0.569 0.941 1.190 1.533 2.132 2.776
5 0.267 0.559 0.920 1.156 1.476 2.015 2.571

6 0.265 0.553 0.906 1.134 1.440 1.943 2.447
7 0.263 0.549 0.896 1.119 1.415 1.895 2.365
8 0.262 0.546 0.889 1.108 1.397 1.860 2.306
9 0.261 0.543 0.883 1.100 1.383 1.833 2.262

10 0.260 0.542 0.879 1.093 1.372 1.812 2.228

11 0.260 0.540 0.876 1.088 1.363 1.796 2.201
12 0.259 0.539 0.873 1.083 1.356 1.782 2.179
13 0.259 0.538 0.870 1.079 1.350 1.771 2.160
14 0.258 0.537 0.868 1.076 1.345 1.761 2.145
15 0.258 0.536 0.866 1.074 1.341 1.753 2.131

16 0.258 0.535 0.865 1.071 1.337 1.746 2.120
17 0.257 0.534 0.863 1.069 1.333 1.740 2.110
18 0.257 0.534 0.862 1.067 1.330 1.734 2.101
19 0.257 0.533 0.861 1.066 1.328 1.729 2.093
20 0.257 0.533 0.860 1.064 1.325 1.725 2.086

21 0.257 0.532 0.859 1.063 1.323 1.721 2.080
22 0.256 0.532 0.858 1.061 1.321 1.717 2.074
23 0.256 0.532 0.858 1.060 1.319 1.714 2.069
24 0.256 0.531 0.857 1.059 1.318 1.711 2.064
25 0.256 0.531 0.856 1.058 1.316 1.708 2.060

26 0.256 0.531 0.856 1.058 1.315 1.706 2.056
27 0.256 0.531 0.855 1.057 1.314 1.703 2.052
28 0.256 0.530 0.855 1.056 1.313 1.701 2.048
29 0.256 0.530 0.854 1.055 1.311 1.699 2.045
30 0.256 0.530 0.854 1.055 1.310 1.697 2.042

40 0.255 0.529 0.851 1.050 1.303 1.684 2.021
60 0.254 0.527 0.848 1.045 1.296 1.671 2.000

120 0.254 0.526 0.845 1.041 1.289 1.658 1.980
∞ 0.253 0.524 0.842 1.036 1.282 1.645 1.960
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Table A.4 (continued) Critical Values of the t-Distribution

α

v 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005

1 15.894 21.205 31.821 42.433 63.656 127.321 636.578
2 4.849 5.643 6.965 8.073 9.925 14.089 31.600
3 3.482 3.896 4.541 5.047 5.841 7.453 12.924
4 2.999 3.298 3.747 4.088 4.604 5.598 8.610
5 2.757 3.003 3.365 3.634 4.032 4.773 6.869

6 2.612 2.829 3.143 3.372 3.707 4.317 5.959
7 2.517 2.715 2.998 3.203 3.499 4.029 5.408
8 2.449 2.634 2.896 3.085 3.355 3.833 5.041
9 2.398 2.574 2.821 2.998 3.250 3.690 4.781

10 2.359 2.527 2.764 2.932 3.169 3.581 4.587

11 2.328 2.491 2.718 2.879 3.106 3.497 4.437
12 2.303 2.461 2.681 2.836 3.055 3.428 4.318
13 2.282 2.436 2.650 2.801 3.012 3.372 4.221
14 2.264 2.415 2.624 2.771 2.977 3.326 4.140
15 2.249 2.397 2.602 2.746 2.947 3.286 4.073

16 2.235 2.382 2.583 2.724 2.921 3.252 4.015
17 2.224 2.368 2.567 2.706 2.898 3.222 3.965
18 2.214 2.356 2.552 2.689 2.878 3.197 3.922
19 2.205 2.346 2.539 2.674 2.861 3.174 3.883
20 2.197 2.336 2.528 2.661 2.845 3.153 3.850

21 2.189 2.328 2.518 2.649 2.831 3.135 3.819
22 2.183 2.320 2.508 2.639 2.819 3.119 3.792
23 2.177 2.313 2.500 2.629 2.807 3.104 3.768
24 2.172 2.307 2.492 2.620 2.797 3.091 3.745
25 2.167 2.301 2.485 2.612 2.787 3.078 3.725

26 2.162 2.296 2.479 2.605 2.779 3.067 3.707
27 2.158 2.291 2.473 2.598 2.771 3.057 3.689
28 2.154 2.286 2.467 2.592 2.763 3.047 3.674
29 2.150 2.282 2.462 2.586 2.756 3.038 3.660
30 2.147 2.278 2.457 2.581 2.750 3.030 3.646

40 2.123 2.250 2.423 2.542 2.704 2.971 3.551
60 2.099 2.223 2.390 2.504 2.660 2.915 3.460

120 2.076 2.196 2.358 2.468 2.617 2.860 3.373
∞ 2.054 2.170 2.326 2.432 2.576 2.807 3.290
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Table A.5 Chi-Squared Distribution Probability Table 739

0 2
χ

α

αTable A.5 Critical Values of the Chi-Squared Distribution

α

v 0.995 0.99 0.98 0.975 0.95 0.90 0.80 0.75 0.70 0.50

1 0.04393 0.03157 0.03628 0.03982 0.00393 0.0158 0.0642 0.102 0.148 0.455
2 0.0100 0.0201 0.0404 0.0506 0.103 0.211 0.446 0.575 0.713 1.386
3 0.0717 0.115 0.185 0.216 0.352 0.584 1.005 1.213 1.424 2.366
4 0.207 0.297 0.429 0.484 0.711 1.064 1.649 1.923 2.195 3.357
5 0.412 0.554 0.752 0.831 1.145 1.610 2.343 2.675 3.000 4.351

6 0.676 0.872 1.134 1.237 1.635 2.204 3.070 3.455 3.828 5.348
7 0.989 1.239 1.564 1.690 2.167 2.833 3.822 4.255 4.671 6.346
8 1.344 1.647 2.032 2.180 2.733 3.490 4.594 5.071 5.527 7.344
9 1.735 2.088 2.532 2.700 3.325 4.168 5.380 5.899 6.393 8.343

10 2.156 2.558 3.059 3.247 3.940 4.865 6.179 6.737 7.267 9.342

11 2.603 3.053 3.609 3.816 4.575 5.578 6.989 7.584 8.148 10.341
12 3.074 3.571 4.178 4.404 5.226 6.304 7.807 8.438 9.034 11.340
13 3.565 4.107 4.765 5.009 5.892 7.041 8.634 9.299 9.926 12.340
14 4.075 4.660 5.368 5.629 6.571 7.790 9.467 10.165 10.821 13.339
15 4.601 5.229 5.985 6.262 7.261 8.547 10.307 11.037 11.721 14.339

16 5.142 5.812 6.614 6.908 7.962 9.312 11.152 11.912 12.624 15.338
17 5.697 6.408 7.255 7.564 8.672 10.085 12.002 12.792 13.531 16.338
18 6.265 7.015 7.906 8.231 9.390 10.865 12.857 13.675 14.440 17.338
19 6.844 7.633 8.567 8.907 10.117 11.651 13.716 14.562 15.352 18.338
20 7.434 8.260 9.237 9.591 10.851 12.443 14.578 15.452 16.266 19.337

21 8.034 8.897 9.915 10.283 11.591 13.240 15.445 16.344 17.182 20.337
22 8.643 9.542 10.600 10.982 12.338 14.041 16.314 17.240 18.101 21.337
23 9.260 10.196 11.293 11.689 13.091 14.848 17.187 18.137 19.021 22.337
24 9.886 10.856 11.992 12.401 13.848 15.659 18.062 19.037 19.943 23.337
25 10.520 11.524 12.697 13.120 14.611 16.473 18.940 19.939 20.867 24.337

26 11.160 12.198 13.409 13.844 15.379 17.292 19.820 20.843 21.792 25.336
27 11.808 12.878 14.125 14.573 16.151 18.114 20.703 21.749 22.719 26.336
28 12.461 13.565 14.847 15.308 16.928 18.939 21.588 22.657 23.647 27.336
29 13.121 14.256 15.574 16.047 17.708 19.768 22.475 23.567 24.577 28.336
30 13.787 14.953 16.306 16.791 18.493 20.599 23.364 24.478 25.508 29.336

40 20.707 22.164 23.838 24.433 26.509 29.051 32.345 33.66 34.872 39.335
50 27.991 29.707 31.664 32.357 34.764 37.689 41.449 42.942 44.313 49.335
60 35.534 37.485 39.699 40.482 43.188 46.459 50.641 52.294 53.809 59.335
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Table A.5 (continued) Critical Values of the Chi-Squared Distribution

α

v 0.30 0.25 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.001

1 1.074 1.323 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.827
2 2.408 2.773 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.815
3 3.665 4.108 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.266
4 4.878 5.385 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.466
5 6.064 6.626 7.289 9.236 11.070 12.832 13.388 15.086 16.750 20.515

6 7.231 7.841 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.457
7 8.383 9.037 9.803 12.017 14.067 16.013 16.622 18.475 20.278 24.321
8 9.524 10.219 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.124
9 10.656 11.389 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877

10 11.781 12.549 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588

11 12.899 13.701 14.631 17.275 19.675 21.920 22.618 24.725 26.757 31.264
12 14.011 14.845 15.812 18.549 21.026 23.337 24.054 26.217 28.300 32.909
13 15.119 15.984 16.985 19.812 22.362 24.736 25.471 27.688 29.819 34.527
14 16.222 17.117 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.124
15 17.322 18.245 19.311 22.307 24.996 27.488 28.259 30.578 32.801 37.698

16 18.418 19.369 20.465 23.542 26.296 28.845 29.633 32.000 34.267 39.252
17 19.511 20.489 21.615 24.769 27.587 30.191 30.995 33.409 35.718 40.791
18 20.601 21.605 22.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312
19 21.689 22.718 23.900 27.204 30.144 32.852 33.687 36.191 38.582 43.819
20 22.775 23.828 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.314

21 23.858 24.935 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.796
22 24.939 26.039 27.301 30.813 33.924 36.781 37.659 40.289 42.796 48.268
23 26.018 27.141 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.728
24 27.096 28.241 29.553 33.196 36.415 39.364 40.270 42.980 45.558 51.179
25 28.172 29.339 30.675 34.382 37.652 40.646 41.566 44.314 46.928 52.619

26 29.246 30.435 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.051
27 30.319 31.528 32.912 36.741 40.113 43.195 44.140 46.963 49.645 55.475
28 31.391 32.620 34.027 37.916 41.337 44.461 45.419 48.278 50.994 56.892
29 32.461 33.711 35.139 39.087 42.557 45.722 46.693 49.588 52.335 58.301
30 33.530 34.800 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.702

40 44.165 45.616 47.269 51.805 55.758 59.342 60.436 63.691 66.766 73.403
50 54.723 56.334 58.164 63.167 67.505 71.420 72.613 76.154 79.490 86.660
60 65.226 66.981 68.972 74.397 79.082 83.298 84.58 88.379 91.952 99.608
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0 f

α

α

Table A.6 Critical Values of the F-Distribution

f0.05(v1, v2)

v1

v2 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

Reproduced from Table 18 of Biometrika Tables for Statisticians, Vol. I, by permission of E.S.
Pearson and the Biometrika Trustees.

Uploaded By: anonymousSTUDENTS-HUB.com



742 Appendix A Statistical Tables and Proofs

Table A.6 (continued) Critical Values of the F-Distribution

f0.05(v1, v2)

v1

v2 10 12 15 20 24 30 40 60 120 ∞
1 241.88 243.91 245.95 248.01 249.05 250.10 251.14 252.20 253.25 254.31
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table A.6 (continued) Critical Values of the F-Distribution

f0.01(v1, v2)

v1

v2 1 2 3 4 5 6 7 8 9

1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Table A.6 (continued) Critical Values of the F-Distribution

f0.01(v1, v2)

v1

v2 10 12 15 20 24 30 40 60 120 ∞
1 6055.85 6106.32 6157.28 6208.73 6234.63 6260.65 6286.78 6313.03 6339.39 6365.86
2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13
4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Table A.8 Sample Size for the t-Test of the Mean

Level of t-Test

Single-Sided Test α = 0.005 α = 0.01 α = 0.025 α = 0.05
Double-Sided Test α = 0.01 α = 0.02 α = 0.05 α = 0.1

β = 0.1 .01 .05 .1 .2 .5 .01 .05 .1 .2 .5 .01 .05 .1 .2 .5 .01 .05 .1 .2 .5

0.05
0.10
0.15 122
0.20 139 99 70
0.25 110 90 128 64 139 101 45

0.30 134 78 115 63 119 90 45 122 97 71 32
0.35 125 99 58 109 85 47 109 88 67 34 90 72 52 24
0.40 115 97 77 45 101 85 66 37 117 84 68 51 26 101 70 55 40 19
0.45 92 77 62 37 110 81 68 53 30 93 67 54 41 21 80 55 44 33 15
0.50 100 75 63 51 30 90 66 55 43 25 76 54 44 34 18 65 45 36 27 13

0.55 83 63 53 42 26 75 55 46 36 21 63 45 37 28 15 54 38 30 22 11
0.60 71 53 45 36 22 63 47 39 31 18 53 38 32 24 13 46 32 26 19 9
0.65 61 46 39 31 20 55 41 34 27 16 46 33 27 21 12 39 28 22 17 8
0.70 53 40 34 28 17 47 35 30 24 14 40 29 24 19 10 34 24 19 15 8
0.75 47 36 30 25 16 42 31 27 21 13 35 26 21 16 9 30 21 17 13 7

0.80 41 32 27 22 14 37 28 24 19 12 31 22 19 15 9 27 19 15 12 6
0.85 37 29 24 20 13 33 25 21 17 11 28 21 17 13 8 24 17 14 11 6
0.90 34 26 22 18 12 29 23 19 16 10 25 19 16 12 7 21 15 13 10 5

Value of 0.95 31 24 20 17 11 27 21 18 14 9 23 17 14 11 7 19 14 11 9 5
Δ = |δ|/σ 1.00 28 22 19 16 10 25 19 16 13 9 21 16 13 10 6 18 13 11 8 5

1.1 24 19 16 14 9 21 16 14 12 8 18 13 11 9 6 15 11 9 7
1.2 21 16 14 12 8 18 14 12 10 7 15 12 10 8 5 13 10 8 6
1.3 18 15 13 11 8 16 13 11 9 6 14 10 9 7 11 8 7 6
1.4 16 13 12 10 7 14 11 10 9 6 12 9 8 7 10 8 7 5
1.5 15 12 11 9 7 13 10 9 8 6 11 8 7 6 9 7 6

1.6 13 11 10 8 6 12 10 9 7 5 10 8 7 6 8 6 6
1.7 12 10 9 8 6 11 9 8 7 9 7 6 5 8 6 5
1.8 12 10 9 8 6 10 8 7 7 8 7 6 7 6
1.9 11 9 8 7 6 10 8 7 6 8 6 6 7 5
2.0 10 8 8 7 5 9 7 7 6 7 6 5 6

2.1 10 8 7 7 8 7 6 6 7 6 6
2.2 9 8 7 6 8 7 6 5 7 6 6
2.3 9 7 7 6 8 6 6 6 5 5
2.4 8 7 7 6 7 6 6 6
2.5 8 7 6 6 7 6 6 6

3.0 7 6 6 5 6 5 5 5
3.5 6 5 5 5
4.0 6

Reproduced with permission from O. L. Davies, ed., Design and Analysis of Industrial Experi-
ments, Oliver & Boyd, Edinburgh, 1956.
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Table A.9 Table of Sample Sizes for the Test of the Difference between Two Means 747

Table A.9 Sample Size for the t-Test of the Difference between Two Means

Level of t-Test

Single-Sided Test α = 0.005 α = 0.01 α = 0.025 α = 0.05
Double-Sided Test α = 0.01 α = 0.02 α = 0.05 α = 0.1

β = 0.1 .01 .05 .1 .2 .5 .01 .05 .1 .2 .5 .01 .05 .1 .2 .5 .01 .05 .1 .2 .5

0.05
0.10
0.15
0.20 137
0.25 124 88

0.30 123 87 61
0.35 110 90 64 102 45
0.40 85 70 100 50 108 78 35
0.45 118 68 101 55 105 79 39 108 86 62 28
0.50 96 55 106 82 45 106 86 64 32 88 70 51 23

0.55 101 79 46 106 88 68 38 87 71 53 27 112 73 58 42 19
0.60 101 85 67 39 90 74 58 32 104 74 60 45 23 89 61 49 36 16
0.65 87 73 57 34 104 77 64 49 27 88 63 51 39 20 76 52 42 30 14
0.70 100 75 63 50 29 90 66 55 43 24 76 55 44 34 17 66 45 36 26 12
0.75 88 66 55 44 26 79 58 48 38 21 67 48 39 29 15 57 40 32 23 11

0.80 77 58 49 39 23 70 51 43 33 19 59 42 34 26 14 50 35 28 21 10
0.85 69 51 43 35 21 62 46 38 30 17 52 37 31 23 12 45 31 25 18 9
0.90 62 46 39 31 19 55 41 34 27 15 47 34 27 21 11 40 28 22 16 8

Value of 0.95 55 42 35 28 17 50 37 31 24 14 42 30 25 19 10 36 25 20 15 7
Δ = |δ|/σ 1.00 50 38 32 26 15 45 33 28 22 13 38 27 23 17 9 33 23 18 14 7

1.1 42 32 27 22 13 38 28 23 19 11 32 23 19 14 8 27 19 15 12 6
1.2 36 27 23 18 11 32 24 20 16 9 27 20 16 12 7 23 16 13 10 5
1.3 31 23 20 16 10 28 21 17 14 8 23 17 14 11 6 20 14 11 9 5
1.4 27 20 17 14 9 24 18 15 12 8 20 15 12 10 6 17 12 10 8 4
1.5 24 18 15 13 8 21 16 14 11 7 18 13 11 9 5 15 11 9 7 4

1.6 21 16 14 11 7 19 14 12 10 6 16 12 10 8 5 14 10 8 6 4
1.7 19 15 13 10 7 17 13 11 9 6 14 11 9 7 4 12 9 7 6 3
1.8 17 13 71 10 6 15 12 10 8 5 13 10 8 6 4 11 8 7 5
1.9 16 12 11 9 6 14 11 9 8 5 12 9 7 6 4 10 7 6 5
2.0 14 11 10 8 6 13 10 9 7 5 11 8 7 6 4 9 7 6 4

2.1 13 10 9 8 5 12 9 8 7 5 10 8 6 5 3 8 6 5 4
2.2 12 10 8 7 5 11 9 7 6 4 9 7 6 5 8 6 5 4
2.3 11 9 8 7 5 10 8 7 6 4 9 7 6 5 7 5 5 4
2.4 11 9 8 6 5 10 8 7 6 48 6 5 4 7 5 4 4
2.5 10 8 7 6 4 9 7 6 5 4 8 6 5 4 6 5 4 3

3.0 8 6 6 5 4 7 6 5 4 3 6 5 4 4 5 4 3
3.5 6 5 5 4 3 6 5 4 4 5 4 4 3 4 3
4.0 6 5 4 4 5 4 4 3 4 4 3 4

Reproduced with permission from O. L. Davies, ed., Design and Analysis of Industrial Experi-
ments, Oliver & Boyd, Edinburgh, 1956.
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748 Appendix A Statistical Tables and Proofs

Table A.10 Critical Values for Bartlett’s Test

bk(0.01;n)

Number of Populations, k

n 2 3 4 5 6 7 8 9 10

3 0.1411 0.1672
4 0.2843 0.3165 0.3475 0.3729 0.3937 0.4110
5 0.3984 0.4304 0.4607 0.4850 0.5046 0.5207 0.5343 0.5458 0.5558

6 0.4850 0.5149 0.5430 0.5653 0.5832 O.5978 0.6100 0.6204 0.6293
7 0.5512 0.5787 0.6045 0.6248 0.6410 0.6542 0.6652 0.6744 0.6824
8 0.6031 0.6282 0.6518 0.6704 0.6851 0.6970 0.7069 0.7153 0.7225
9 0.6445 0.6676 0.6892 0.7062 0.7197 0.7305 0.7395 0.7471 0.7536

10 0.6783 0.6996 0.7195 0.7352 0.7475 0.7575 0.7657 0.7726 0.7786

11 0.7063 0.7260 0.7445 0.7590 0.7703 0.7795 0.7871 0.7935 0.7990
12 0.7299 0.7483 0.7654 0.7789 0.7894 0.7980 0.8050 0.8109 0.8160
13 0.7501 0.7672 0.7832 0.7958 0.8056 0.8135 0.8201 0.8256 0.8303
14 0.7674 0.7835 0.7985 0.8103 0.8195 0.8269 0.8330 0.8382 0.8426
15 0.7825 0.7977 0.8118 0.8229 0.8315 0.8385 0.8443 0.8491 0.8532

16 0.7958 0.8101 0.8235 0.8339 0.8421 0.8486 0.8541 0.8586 0.8625
17 0.8076 0.8211 0.8338 0.8436 0.8514 0.8576 0.8627 0.8670 0.8707
18 0.8181 0.8309 0.8429 0.8523 0.8596 0.8655 0.8704 0.8745 0.8780
19 0.8275 0.8397 0.8512 0.8601 0.8670 0.8727 0.8773 0.8811 0.8845
20 0.8360 0.8476 0.8586 0.8671 0.8737 0.8791 0.8835 0.8871 0.8903

21 0.8437 0.8548 0.8653 0.8734 0.8797 0.8848 0.8890 0.8926 0.8956
22 0.8507 0.8614 0.8714 0.8791 0.8852 0.8901 0.8941 0.8975 0.9004
23 0.8571 0.8673 0.8769 0.8844 0.8902 0.8949 0.8988 0.9020 0.9047
24 0.8630 0.8728 0.8820 0.8892 0.8948 0.8993 0.9030 0.9061 0.9087
25 0.8684 0.8779 0.8867 0.8936 0.8990 0.9034 0.9069 0.9099 0.9124

26 0.8734 0.8825 0.8911 0.8977 0.9029 0.9071 0.9105 0.9134 0.9158
27 0.8781 0.8869 0.8951 0.9015 0.9065 0.9105 0.9138 0.9166 0.9190
28 0.8824 0.8909 0.8988 0.9050 0.9099 0.9138 0.9169 0.9196 0.9219
29 0.8864 0.8946 0.9023 0.9083 0.9130 0.9167 0.9198 0.9224 0.9246
30 0.8902 0.8981 0.9056 0.9114 0.9159 0.9195 0.9225 0.9250 0.9271

40 0.9175 0.9235 0.9291 0.9335 0.9370 0.9397 0.9420 0.9439 0.9455
50 0.9339 0.9387 0.9433 0.9468 0.9496 0.9518 0.9536 0.9551 0.9564
60 0.9449 0.9489 0.9527 0.9557 0.9580 0.9599 0.9614 0.9626 0.9637
80 0.9586 0.9617 0.9646 0.9668 0.9685 0.9699 0.9711 0.9720 0.9728

100 0.9669 0.9693 0.9716 0.9734 0.9748 0.9759 0.9769 0.9776 0.9783

Reproduced from D. D. Dyer and J. P. Keating, “On the Determination of Critical Values for
Bartlett’s Test,” J. Am. Stat. Assoc., 75, 1980, by permission of the Board of Directors.
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Table A.10 Table for Bartlett’s Test 749

Table A.10 (continued) Critical Values for Bartlett’s Test

bk(0.05;n)

Number of Populations, k

n 2 3 4 5 6 7 8 9 10

3 0.3123 0.3058 0.3173 0.3299
4 0.4780 0.4699 0.4803 0.4921 0.5028 0.5122 0.5204 0.5277 0.5341
5 0.5845 0.5762 0.5850 0.5952 0.6045 0.6126 0.6197 0.6260 0.6315

6 0.6563 0.6483 0.6559 0.6646 0.6727 0.6798 0.6860 0.6914 0.6961
7 0.7075 0.7000 0.7065 0.7142 0.7213 0.7275 0.7329 0.7376 0.7418
8 0.7456 0.7387 0.7444 0.7512 0.7574 0.7629 0.7677 0.7719 0.7757
9 0.7751 0.7686 0.7737 0.7798 0.7854 0.7903 0.7946 0.7984 0.8017

10 0.7984 0.7924 0.7970 0.8025 0.8076 0.8121 0.8160 0.8194 0.8224

11 0.8175 0.8118 0.8160 0.8210 0.8257 0.8298 0.8333 0.8365 0.8392
12 0.8332 0.8280 0.8317 0.8364 0.8407 0.8444 0.8477 0.8506 0.8531
13 0.8465 0.8415 0.8450 0.8493 0.8533 0.8568 0.8598 0.8625 0.8648
14 0.8578 0.8532 0.8564 0.8604 0.8641 0.8673 0.8701 0.8726 0.8748
15 0.8676 0.8632 0.8662 0.8699 0.8734 0.8764 0.8790 0.8814 0.8834

16 0.8761 0.8719 0.8747 0.8782 0.8815 0.8843 0.8868 0.8890 0.8909
17 0.8836 0.8796 0.8823 0.8856 0.8886 0.8913 0.8936 0.8957 0.8975
18 0.8902 0.8865 0.8890 0.8921 0.8949 0.8975 0.8997 0.9016 0.9033
19 0.8961 0.8926 0.8949 0.8979 0.9006 0.9030 0.9051 0.9069 0.9086
20 0.9015 0.8980 0.9003 0.9031 0.9057 0.9080 0.9100 0.9117 0.9132

21 0.9063 0.9030 0.9051 0.9078 0.9103 0.9124 0.9143 0.9160 0.9175
22 0.9106 0.9075 0.9095 0.9120 0.9144 0.9165 0.9183 0.9199 0.9213
23 0.9146 0.9116 0.9135 0.9159 0.9182 0.9202 0.9219 0.9235 0.9248
24 0.9182 0.9153 0.9172 0.9195 0.9217 0.9236 0.9253 0.9267 0.9280
25 0.9216 0.9187 0.9205 0.9228 0.9249 0.9267 0.9283 0.9297 0.9309

26 0.9246 0.9219 0.9236 0.9258 0.9278 0.9296 0.9311 0.9325 0.9336
27 0.9275 0.9249 0.9265 0.9286 0.9305 0.9322 0.9337 0.9350 0.9361
28 0.9301 0.9276 0.9292 0.9312 0.9330 0.9347 0.9361 0.9374 0.9385
29 0.9326 0.9301 0.9316 0.9336 0.9354 0.9370 0.9383 0.9396 0.9406
30 0.9348 0.9325 0.9340 0.9358 0.9376 0.9391 0.9404 0.9416 0.9426

40 0.9513 0.9495 0.9506 0.9520 0.9533 0.9545 0.9555 0.9564 0.9572
50 0.9612 0.9597 0.9606 0.9617 0.9628 0.9637 0.9645 0.9652 0.9658
60 0.9677 0.9665 0.9672 0.9681 0.9690 0.9698 0.9705 0.9710 0.9716
80 0.9758 0.9749 0.9754 0.9761 0.9768 0.9774 0.9779 0.9783 0.9787

100 0.9807 0.9799 0.9804 0.9809 0.9815 0.9819 0.9823 0.9827 0.9830
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Table A.11 Table for Cochran’s Test 751
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752 Appendix A Statistical Tables and Proofs

Table A.12 Upper Percentage Points of the Studentized Range Distribution: Values of
q(0.05; k, v)

Degrees of Number of Treatments k

Freedom, v 2 3 4 5 6 7 8 9 10

1 18.0 27.0 32.8 37.2 40.5 43.1 15.1 47.1 49.1
2 6.09 5.33 9.80 10.89 11.73 12.43 13.03 13.54 13.99
3 4.50 5.91 6.83 7.51 8.04 8.47 8.85 9.18 9.46
4 3.93 5.04 5.76 6.29 6.71 7.06 7.35 7.60 7.83
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99

6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49
7 3.34 4.16 4.68 5.06 5.35 5.59 5.80 5.99 6.15
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74
10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60

11 3.11 3.82 4.26 4.58 4.82 5.03 5.20 5.35 5.49
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40
13 3.06 3.73 4.15 4.46 4.69 4.88 5.05 5.19 5.32
14 3.03 3.70 4.11 4.41 4.65 4.83 4.99 5.13 5.25
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20

16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.05
17 2.98 3.62 4.02 4.31 4.52 4.70 4.86 4.99 5.11
18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07
19 2.96 3.59 3.98 4.26 4.47 4.64 4.79 4.92 5.04
20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92
30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65
120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56
∞ 2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47
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Table A.13 Table for Duncan’s Test 753

Table A.13 Least Significant Studentized Ranges rp(0.05; p, v)

α = 0.05

p

v 2 3 4 5 6 7 8 9 10

1 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97
2 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085 6.085
3 4.501 4.516 4.516 4.516 4.516 4.516 4.516 4.516 4.516
4 3.927 4.013 4.033 4.033 4.033 4.033 4.033 4.033 4.033
5 3.635 3.749 3.797 3.814 3.814 3.814 3.814 3.814 3.814

6 3.461 3.587 3.649 3.68 3.694 3.697 3.697 3.697 3.697
7 3.344 3.477 3.548 3.588 3.611 3.622 3.626 3.626 3.626
8 3.261 3.399 3.475 3.521 3.549 3.566 3.575 3.579 3.579
9 3.199 3.339 3.420 3.470 3.502 3.523 3.536 3.544 3.547

10 3.151 3.293 3.376 3.430 3.465 3.489 3.505 3.516 3.522

11 3.113 3.256 3.342 3.397 3.435 3.462 3.48 3.493 3.501
12 3.082 3.225 3.313 3.370 3.410 3.439 3.459 3.474 3.484
13 3.055 3.200 3.289 3.348 3.389 3.419 3.442 3.458 3.470
14 3.033 3.178 3.268 3.329 3.372 3.403 3.426 3.444 3.457
15 3.014 3.160 3.25 3.312 3.356 3.389 3.413 3.432 3.446

16 2.998 3.144 3.235 3.298 3.343 3.376 3.402 3.422 3.437
17 2.984 3.130 3.222 3.285 3.331 3.366 3.392 3.412 3.429
18 2.971 3.118 3.210 3.274 3.321 3.356 3.383 3.405 3.421
19 2.960 3.107 3.199 3.264 3.311 3.347 3.375 3.397 3.415
20 2.950 3.097 3.190 3.255 3.303 3.339 3.368 3.391 3.409

24 2.919 3.066 3.160 3.226 3.276 3.315 3.345 3.370 3.390
30 2.888 3.035 3.131 3.199 3.250 3.290 3.322 3.349 3.371
40 2.858 3.006 3.102 3.171 3.224 3.266 3.300 3.328 3.352
60 2.829 2.976 3.073 3.143 3.198 3.241 3.277 3.307 3.333

120 2.800 2.947 3.045 3.116 3.172 3.217 3.254 3.287 3.314
∞ 2.772 2.918 3.017 3.089 3.146 3.193 3.232 3.265 3.294

Abridged from H. L. Harter, “Critical Values for Duncan’s New Multiple Range Test,”
Biometrics, 16, No. 4, 1960, by permission of the author and the editor.
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754 Appendix A Statistical Tables and Proofs

Table A.13 (continued) Least Significant Studentized Ranges rp(0.01; p, v)

α = 0.01

p

v 2 3 4 5 6 7 8 9 10

1 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03 90.03
2 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04
3 8.261 8.321 8.321 8.321 8.321 8.321 8.321 8.321 8.321
4 6.512 6.677 6.740 6.756 6.756 6.756 6.756 6.756 6.756
5 5.702 5.893 5.989 6.040 6.065 6.074 6.074 6.074 6.074

6 5.243 5.439 5.549 5.614 5.655 5.680 5.694 5.701 5.703
7 4.949 5.145 5.260 5.334 5.383 5.416 5.439 5.454 5.464
8 4.746 4.939 5.057 5.135 5.189 5.227 5.256 5.276 5.291
9 4.596 4.787 4.906 4.986 5.043 5.086 5.118 5.142 5.160

10 4.482 4.671 4.790 4.871 4.931 4.975 5.010 5.037 5.058

11 4.392 4.579 4.697 4.780 4.841 4.887 4.924 4.952 4.975
12 4.320 4.504 4.622 4.706 4.767 4.815 4.852 4.883 4.907
13 4.260 4.442 4.560 4.644 4.706 4.755 4.793 4.824 4.850
14 4.210 4.391 4.508 4.591 4.654 4.704 4.743 4.775 4.802
15 4.168 4.347 4.463 4.547 4.610 4.660 4.700 4.733 4.760

16 4.131 4.309 4.425 4.509 4.572 4.622 4.663 4.696 4.724
17 4.099 4.275 4.391 4.475 4.539 4.589 4.630 4.664 4.693
18 4.071 4.246 4.362 4.445 4.509 4.560 4.601 4.635 4.664
19 4.046 4.220 4.335 4.419 4.483 4.534 4.575 4.610 4.639
20 4.024 4.197 4.312 4.395 4.459 4.510 4.552 4.587 4.617

24 3.956 4.126 4.239 4.322 4.386 4.437 4.480 4.516 4.546
30 3.889 4.056 4.168 4.250 4.314 4.366 4.409 4.445 4.477
40 3.825 3.988 4.098 4.180 4.244 4.296 4.339 4.376 4.408
60 3.762 3.922 4.031 4.111 4.174 4.226 4.270 4.307 4.340

120 3.702 3.858 3.965 4.044 4.107 4.158 4.202 4.239 4.272
∞ 3.643 3.796 3.900 3.978 4.040 4.091 4.135 4.172 4.205
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Table A.14 Values of dα/2(k, v) for Two-Sided Comparisons between k Treatments and
a Control

α = 0.05

k = Number of Treatment Means (excluding control)

v 1 2 3 4 5 6 7 8 9

5 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71
7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53
8 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32

10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24
11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19
12 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14
13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10
14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07

15 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04
16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02
17 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00
18 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98
19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96

20 2.09 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95
24 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90
30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86
40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81
60 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77

120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73
∞ 1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69

Reproduced from Charles W. Dunnett, “New Tables for Multiple Comparison with a Con-
trol,” Biometrics, 20, No. 3, 1964, by permission of the author and the editor.
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Table A.14 (continued) Values of dα/2(k, v) for Two-Sided Comparisons between k Treat-
ments and a Control

α = 0.01

k = Number of Treatment Means (excluding control)

v 1 2 3 4 5 6 7 8 9

5 4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89
6 3.71 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28
7 3.50 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89
8 3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62
9 3.25 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43

10 3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28
11 3.11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16
12 3.05 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07
13 3.01 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99
14 2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93

15 2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88
16 2.92 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83
17 2.90 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79
18 2.88 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75
19 2.86 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72

20 2.85 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69
24 2.80 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61
30 2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52
40 2.70 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44
60 2.66 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37

120 2.62 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29
∞ 2.58 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22
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Table A.15 Values of dα(k, v) for One-Sided Comparisons between k Treatments and
a Control

α = 0.05

k = Number of Treatment Means (excluding control)

v 1 2 3 4 5 6 7 8 9

5 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
9 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
12 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
17 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
19 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61

20 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
24 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57
30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
40 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
60 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48

120 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
∞ 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42

Reproduced from Charles W. Dunnett, “A Multiple Comparison Procedure for Compar-
ing Several Treatments with a Control,” J. Am. Stat. Assoc., 50, 1955, 1096–1121, by
permission of the author and the editor.
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Table A.15 (continued) Values of dα(k, v) for One-Sided Comparisons between k Treat-
ments and a Control

α = 0.01

k = Number of Treatment Means (excluding control)

v 1 2 3 4 5 6 7 8 9

5 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03
6 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59
7 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30
8 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09
9 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

10 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
11 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
12 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67
13 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
14 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56

15 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52
16 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48
17 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45
18 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
19 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40

20 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38
24 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
30 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24
40 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18
60 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

120 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06
∞ 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00
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Table A.16 Table for the Signed-Rank Test 759

Table A.16 Critical Values for the Signed-Rank Test

One-Sided α = 0.01 One-Sided α = 0.025 One-Sided α = 0.05
n Two-Sided α = 0.02 Two-Sided α = 0.05 Two-Sided α = 0.1

5 1
6 1 2
7 0 2 4
8 2 4 6
9 3 6 8

10 5 8 11

11 7 11 14
12 10 14 17
13 13 17 21
14 16 21 26
15 20 25 30

16 24 30 36
17 28 35 41
18 33 40 47
19 38 46 54
20 43 52 60

21 49 59 68
22 56 66 75
23 62 73 83
24 69 81 92
25 77 90 101

26 85 98 110
27 93 107 120
28 102 117 130
29 111 127 141
30 120 137 152

Reproduced from F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical
Procedures, American Cyanamid Company, Pearl River, N.Y., 1964, by permission of
the American Cyanamid Company.
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Table A.17 Critical Values for the Wilcoxon Rank-Sum Test

One-Tailed Test at α = 0.001 or Two-Tailed Test at α = 0.002
n2

n1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3 0 0 0 0
4 0 0 0 1 1 1 2 2 3 3 3
5 0 0 1 1 2 2 3 3 4 5 5 6 7 7
6 0 1 2 2 3 4 4 5 6 7 8 9 10 11 12
7 2 3 3 5 6 7 8 9 10 11 13 14 15 16
8 5 5 6 8 9 11 12 14 15 17 18 20 21
9 7 8 10 12 14 15 17 19 21 23 25 26

10 10 12 14 17 19 21 23 25 27 29 32
11 15 17 20 22 24 27 29 32 34 37
12 20 23 25 28 31 34 37 40 42
13 26 29 32 35 38 42 45 48
14 32 36 39 43 46 50 54
15 40 43 47 51 55 59
16 48 52 56 60 65
17 57 61 66 70
18 66 71 76
19 77 82
20 88

One-Tailed Test at α = 0.01 or Two-Tailed Test at α = 0.02

n2

n1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2 0 0 0 0 0 0 1 1
3 0 0 1 1 1 2 2 2 3 3 4 4 4 5
4 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22
7 6 8 9 11 12 14 16 17 19 21 23 24 26 28
8 10 11 13 15 17 20 22 24 26 28 30 32 34
9 14 16 18 21 23 26 28 31 33 36 38 40

10 19 22 24 27 30 33 36 38 41 44 47
11 25 28 31 34 37 41 44 47 50 53
12 31 35 38 42 46 49 53 56 60
13 39 43 47 51 55 59 63 67
14 47 51 56 60 65 69 73
15 56 61 66 70 75 80
16 66 71 76 82 87
17 77 82 88 93
18 88 94 100
19 101 107
20 114

Based in part on Tables 1, 3, 5, and 7 of D. Auble, “Extended Tables for the Mann-Whitney Statistic,”
Bulletin of the Institute of Educational Research at Indiana University, 1, No. 2, 1953, by permission of
the director.
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Table A.17 (continued) Critical Values for the Wilcoxon Rank-Sum Test

One-Tailed Test at α = 0.025 or Two-Tailed Test at α = 0.05

n2

n1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2 0 0 0 0 1 1 1 1 1 2 2 2 2
3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13
5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 13 15 17 19 22 24 26 29 31 34 36 38 41
9 17 20 23 26 28 31 34 37 39 42 45 48

10 23 26 29 33 36 39 42 45 48 52 55
11 30 33 37 40 44 47 51 55 58 62
12 37 41 45 49 53 57 61 65 69
13 45 50 54 59 63 67 72 76
14 55 59 64 67 74 78 83
15 64 70 75 80 85 90
16 75 81 86 92 98
17 87 93 99 105
18 99 106 112
19 113 119
20 127

One-Tailed Test at α = 0.05 or Two-Tailed Test at α = 0.1

n2

n1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0
2 0 0 0 1 1 1 1 2 2 3 3 3 3 4 4 4
3 0 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11
4 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
5 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
6 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
7 11 13 15 17 19 21 24 26 28 30 33 35 37 39
8 15 18 20 23 26 28 31 33 36 39 41 44 47
9 21 24 27 30 33 36 39 42 45 48 51 54

10 27 31 34 37 41 44 48 51 55 58 62
11 34 38 42 46 50 54 57 61 65 69
12 42 47 51 55 60 64 68 72 77
13 51 56 61 65 70 75 80 84
14 61 66 71 77 82 87 92
15 72 77 83 88 94 100
16 83 89 95 101 107
17 96 102 109 115
18 109 116 123
19 123 130
20 138
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Table A.18 P (V ≤ v∗ when H0 is true) in the Runs Test

v∗

(n1, n2) 2 3 4 5 6 7 8 9 10

(2, 3) 0.200 0.500 0.900 1.000
(2, 4) 0.133 0.400 0.800 1.000
(2, 5) 0.095 0.333 0.714 1.000
(2, 6) 0.071 0.286 0.643 1.000
(2, 7) 0.056 0.250 0.583 1.000
(2, 8) 0.044 0.222 0.533 1.000
(2, 9) 0.036 0.200 0.491 1.000
(2, 10) 0.030 0.182 0.455 1.000
(3, 3) 0.100 0.300 0.700 0.900 1.000
(3, 4) 0.057 0.200 0.543 0.800 0.971 1.000
(3, 5) 0.036 0.143 0.429 0.714 0.929 1.000
(3, 6) 0.024 0.107 0.345 0.643 0.881 1.000
(3, 7) 0.017 0.083 0.283 0.583 0.833 1.000
(3, 8) 0.012 0.067 0.236 0.533 0.788 1.000
(3, 9) 0.009 0.055 0.200 0.491 0.745 1.000
(3, 10) 0.007 0.045 0.171 0.455 0.706 1.000
(4, 4) 0.029 0.114 0.371 0.629 0.886 0.971 1.000
(4, 5) 0.016 0.071 0.262 0.500 0.786 0.929 0.992 1.000
(4, 6) 0.010 0.048 0.190 0.405 0.690 0.881 0.976 1.000
(4, 7) 0.006 0.033 0.142 0.333 0.606 0.833 0.954 1.000
(4, 8) 0.004 0.024 0.109 0.279 0.533 0.788 0.929 1.000
(4, 9) 0.003 0.018 0.085 0.236 0.471 0.745 0.902 1.000
(4, 10) 0.002 0.014 0.068 0.203 0.419 0.706 0.874 1.000
(5, 5) 0.008 0.040 0.167 0.357 0.643 0.833 0.960 0.992 1.000
(5, 6) 0.004 0.024 0.110 0.262 0.522 0.738 0.911 0.976 0.998
(5, 7) 0.003 0.015 0.076 0.197 0.424 0.652 0.854 0.955 0.992
(5, 8) 0.002 0.010 0.054 0.152 0.347 0.576 0.793 0.929 0.984
(5, 9) 0.001 0.007 0.039 0.119 0.287 0.510 0.734 0.902 0.972
(5, 10) 0.001 0.005 0.029 0.095 0.239 0.455 0.678 0.874 0.958
(6, 6) 0.002 0.013 0.067 0.175 0.392 0.608 0.825 0.933 0.987
(6, 7) 0.001 0.008 0.043 0.121 0.296 0.500 0.733 0.879 0.966
(6, 8) 0.001 0.005 0.028 0.086 0.226 0.413 0.646 0.821 0.937
(6, 9) 0.000 0.003 0.019 0.063 0.175 0.343 0.566 0.762 0.902
(6, 10) 0.000 0.002 0.013 0.047 0.137 0.288 0.497 0.706 0.864
(7, 7) 0.001 0.004 0.025 0.078 0.209 0.383 0.617 0.791 0.922
(7, 8) 0.000 0.002 0.015 0.051 0.149 0.296 0.514 0.704 0.867
(7, 9) 0.000 0.001 0.010 0.035 0.108 0.231 0.427 0.622 0.806
(7, 10) 0.000 0.001 0.006 0.024 0.080 0.182 0.355 0.549 0.743
(8, 8) 0.000 0.001 0.009 0.032 0.100 0.214 0.405 0.595 0.786
(8, 9) 0.000 0.001 0.005 0.020 0.069 0.157 0.319 0.500 0.702
(8, 10) 0.000 0.000 0.003 0.013 0.048 0.117 0.251 0.419 0.621
(9, 9) 0.000 0.000 0.003 0.012 0.044 0.109 0.238 0.399 0.601
(9, 10) 0.000 0.000 0.002 0.008 0.029 0.077 0.179 0.319 0.510
(10, 10) 0.000 0.000 0.001 0.004 0.019 0.051 0.128 0.242 0.414

Reproduced from C. Eisenhart and R. Swed, “Tables for Testing Randomness of Group-
ing in a Sequence of Alternatives,” Ann. Math. Stat., 14, 1943, by permission of the
editor.
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Table A.18 (continued) P (V ≤ v∗ when H0 is true) in the Runs Test

v∗

(n1, n2) 11 12 13 14 15 16 17 18 19 20

(2, 3)
(2, 4)
(2, 5)
(2, 6)
(2, 7)
(2, 8)
(2, 9)
(2, 10)

(3, 3)
(3, 4)
(3, 5)
(3, 6)
(3, 7)
(3, 8)
(3, 9)
(3, 10)

(4, 4)
(4, 5)
(4, 6)
(4, 7)
(4, 8)
(4, 9)
(4, 10)

(5, 5)
(5, 6) 1.000
(5, 7) 1.000
(5, 8) 1.000
(5, 9) 1.000
(5, 10) 1.000

(6, 6) 0.998 1.000
(6, 7) 0.992 0.999 1.000
(6, 8) 0.984 0.998 1.000
(6, 9) 0.972 0.994 1.000
(6, 10) 0.958 0.990 1.000

(7, 7) 0.975 0.996 0.999 1.000
(7, 8) 0.949 0.988 0.998 1.000 1.000
(7, 9) 0.916 0.975 0.994 0.999 1.000
(7, 10) 0.879 0.957 0.990 0.998 1.000

(8, 8) 0.900 0.968 0.991 0.999 1.000 1.000
(8, 9) 0.843 0.939 0.980 0.996 0.999 1.000 1.000
(8, 10) 0.782 0.903 0.964 0.990 0.998 1.000 1.000

(9, 9) 0.762 0.891 0.956 0.988 0.997 1.000 1.000 1.000
(9, 10) 0.681 0.834 0.923 0.974 0.992 0.999 1.000 1.000 1.000
(10, 10) 0.586 0.758 0.872 0.949 0.981 0.996 0.999 1.000 1.000 1.000
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Table A.19 Sample Size for Two-Sided Nonparametric Tolerance Limits

1 − γ

1 − α 0.50 0.70 0.90 0.95 0.99 0.995

0.995
0.99
0.95
0.90
0.85
0.80
0.75
0.70
0.60
0.50

336
168
34
17
11
9
7
6
4
3

488
244
49
24
16
12
10
8
6
5

777
388
77
38
25
18
15
12
9
7

947
473
93
46
30
22
18
14
10
8

1325
662
130
64
42
31
24
20
14
11

1483
740
146
72
47
34
27
22
16
12

Reproduced from Table A–25d of Wilfrid J. Dixon and Frank J. Massey, Jr.,
Introduction to Statistical Analysis, 3rd ed. McGraw-Hill, New York, 1969.
Used with permission of McGraw-Hill Book Company.

Table A.20 Sample Size for One-Sided Nonparametric Tolerance Limits

1 − γ

1 − α 0.50 0.70 0.95 0.99 0.995

0.995
0.99
0.95
0.90
0.85
0.80
0.75
0.70
0.60
0.50

139
69
14
7
5
4
3
2
2
1

241
120
24
12
8
6
5
4
3
2

598
299
59
29
19
14
11
9
6
5

919
459
90
44
29
21
7
13
10
7

1379
688
135
66
43
31
25
20
14
10

Reproduced from Table A–25e of Wilfrid J. Dixon and Frank J. Massey, Jr.,
Introduction to Statistical Analysis, 3rd ed. McGraw-Hill, New York, 1969.
Used with permission of McGraw-Hill Book Company.
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Table A.21 Table for Spearman’s Rank Correlation Coefficients 765

Table A.21 Critical Values for Spearman’s Rank Correlation Coefficients

n α = 0.05 α = 0.025 α = 0.01 α = 0.005

5 0.900
6 0.829 0.886 0.943
7 0.714 0.786 0.893
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.794

11 0.523 0.623 0.736 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Reproduced from E. G. Olds, “Distribution of Sums of Squares of Rank
Differences for Small Samples,” Ann. Math. Stat., 9, 1938, by permission of
the editor.
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Section A.24 Proof of Mean of the Hypergeometric Distribution 767

Table A.23 The Incomplete Gamma Function: F (x;α) =
∫ x

0
1

Γ(α)y
α−1e−y dy

α

x 1 2 3 4 5 6 7 8 9 10

1 0.6320 0.2640 0.0800 0.0190 0.0040 0.0010 0.0000 0.0000 0.0000 0.0000
2 0.8650 0.5940 0.3230 0.1430 0.0530 0.0170 0.0050 0.0010 0.0000 0.0000
3 0.9500 0.8010 0.5770 0.3530 0.1850 0.0840 0.0340 0.0120 0.0040 0.0010
4 0.9820 0.9080 0.7620 0.5670 0.3710 0.2150 0.1110 0.0510 0.0210 0.0080
5 0.9930 0.9600 0.8750 0.7350 0.5600 0.3840 0.2380 0.1330 0.0680 0.0320

6 0.9980 0.9830 0.9380 0.8490 0.7150 0.5540 0.3940 0.2560 0.1530 0.0840
7 0.9990 0.9930 0.9700 0.9180 0.8270 0.6990 0.5500 0.4010 0.2710 0.1700
8 1.0000 0.9970 0.9860 0.9580 0.9000 0.8090 0.6870 0.5470 0.4070 0.2830
9 0.9990 0.9940 0.9790 0.9450 0.8840 0.7930 0.6760 0.5440 0.4130

10 1.0000 0.9970 0.9900 0.9710 0.9330 0.8700 0.7800 0.6670 0.5420

11 0.9990 0.9950 0.9850 0.9620 0.9210 0.8570 0.7680 0.6590
12 1.0000 0.9980 0.9920 0.9800 0.9540 0.9110 0.8450 0.7580
13 0.9990 0.9960 0.9890 0.9740 0.9460 0.9000 0.8340
14 1.0000 0.9980 0.9940 0.9860 0.9680 0.9380 0.8910
15 0.9990 0.9970 0.9920 0.9820 0.9630 0.9300

A.24 Proof of Mean of the Hypergeometric Distribution
To find the mean of the hypergeometric distribution, we write

E(X) =
n∑

x=0

x

(
k
x

)(
N−k
n−x

)(
N
n

) = k
n∑

x=1

(k − 1)!

(x− 1)!(k − x)!
·
(
N−k
n−x

)(
N
n

)
= k

n∑
x=1

(
k−1
x−1

)(
N−k
n−x

)(
N
n

) .

Since (
N − k

n− 1− y

)
=

(
(N − 1)− (k − 1)

n− 1− y

)
and

(
N

n

)
=

N !

n!(N − n)!
=

N

n

(
N − 1

n− 1

)
,

letting y = x− 1, we obtain

E(X) = k

n−1∑
y=0

(
k−1
y

)(
N−k

n−1−y

)(
N
n

)
=

nk

N

n−1∑
y=0

(
k−1
y

)(
(N−1)−(k−1)

n−1−y

)(
N−1
n−1

) =
nk

N
,

since the summation represents the total of all probabilities in a hypergeometric experiment when N−1
items are selected at random from N − 1, of which k − 1 are labeled success.
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A.25 Proof of Mean and Variance of the Poisson Distribution
Let μ = λt.

E(X) =

∞∑
x=0

x · e
−μμx

x!
=

∞∑
x=1

x · e
−μμx

x!
= μ

∞∑
x=1

e−μμx−1

(x− 1)!
.

Since the summation in the last term above is the total probability of a Poisson random variable with
mean μ, which can be easily seen by letting y = x− 1, it equals 1. Therefore, E(X) = μ. To calculate
the variance of X, note that

E[X(X − 1)] =
∞∑
x=0

x(x− 1)
e−μμx

x!
= μ2

∞∑
x=2

e−μμx−2

(x2)!
.

Again, letting y = x − 2, the summation in the last term above is the total probability of a Poisson
random variable with mean μ. Hence, we obtain

σ2 = E(X2)− [E(X)]2 = E[X(X − 1)] + E(X)− [E(X)]2 = μ2 + μ− μ2 = μ = λt.

A.26 Proof of Mean and Variance of the Gamma Distribution
To find the mean and variance of the gamma distribution, we first calculate

E(Xk) =
1

βαΓ(α)

∫ ∞

0

xα+k−1e−x/β dx =
βk+αΓ(α+ k)

βαΓ(α)

∫ ∞

0

xα+k−1e−x/β

βk+αΓ(α+ k)
dx,

for k = 0, 1, 2, . . . . Since the integrand in the last term above is a gamma density function with
parameters α+ k and β, it equals 1. Therefore,

E(Xk) = βkΓ(k + α)

Γ(α)
.

Using the recursion formula of the gamma function from page 194, we obtain

μ = β
Γ(α+ 1)

Γ(α)
= αβ and σ2 = E(X2)− μ2 = β2Γ(α+ 2)

Γ(α)
− μ2 = β2α(α+ 1)− (αβ)2 = αβ2.
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Appendix B
Answers to Odd-Numbered
Non-Review Exercises

Chapter 1

1.1 (a) Sample size = 15

(b) Sample mean = 3.787

(c) Sample median = 3.6

(e) x̄tr(20) = 3.678

(f) They are about the same.

1.3 (b) Yes, the aging process has reduced the ten-
sile strength.

(c) x̄Aging = 209.90, x̄No aging = 222.10

(d) x̃Aging = 210.00, x̃No aging = 221.50. The
means and medians are similar for each
group.

1.5 (b) Control: x̄ = 5.60, x̃ = 5.00, x̄tr(10) = 5.13.
Treatment: x̄ = 7.60, x̃ = 4.50, x̄tr(10) =
5.63.

(c) The extreme value of 37 in the treatment
group plays a strong leverage role for the
mean calculation.

1.7 Sample variance = 0.943
Sample standard deviation = 0.971

1.9 (a) No aging: sample variance = 23.66,
sample standard deviation = 4.86.
Aging: sample variance = 42.10,
sample standard deviation = 6.49.

(b) Based on the numbers in (a), the variation
in “Aging” is smaller than the variation in
“No aging,” although the difference is not
so apparent in the plot.

1.11 Control: sample variance = 69.38,
sample standard deviation = 8.33.
Treatment: sample variance = 128.04,
sample standard deviation = 11.32.

1.13 (a) Mean = 124.3, median = 120

(b) 175 is an extreme observation.

1.15 Yes, P -value = 0.03125, probability of obtaining
HHHHH with a fair coin.

1.17 (a) The sample means for nonsmokers and
smokers are 30.32 and 43.70, respectively.

(b) The sample standard deviations for non-
smokers and smokers are 7.13 and 16.93,
respectively.

(d) Smokers appear to take a longer time to fall
asleep. For smokers the time to fall asleep
is more variable.

1.19 (a) Stem Leaf Frequency
0 22233457 8
1 023558 6
2 035 3
3 03 2
4 057 3
5 0569 4
6 0005 4

(b) Class Class Rel.
Interval Midpoint Freq. Freq.
0.0−0.9 0.45 8 0.267
1.0−1.9 1.45 6 0.200
2.0−2.9 2.45 3 0.100
3.0−3.9 3.45 2 0.067
4.0−4.9 4.45 3 0.100
5.0−5.9 5.45 4 0.133
6.0−6.9 6.45 4 0.133

769
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(c) Sample mean = 2.7967
Sample range = 6.3
Sample standard deviation = 2.2273

1.21 (a) x̄ = 74.02 and x̃ = 78

(b) s = 39.26

1.23 (b) x̄1980 = 395.10, x̄1990 = 160.15

(c) The mean emissions dropped between 1980
and 1990; the variability also decreased be-
cause there were no longer extremely large
emissions.

1.25 (a) Sample mean = 33.31

(b) Sample median = 26.35

(d) x̄tr(10) = 30.97

Chapter 2

2.1 (a) S = {8, 16, 24, 32, 40, 48}
(b) S = {−5, 1}
(c) S = {T,HT,HHT,HHH}
(d) S ={Africa, Antarctica, Asia, Australia,

Europe, North America, South America}
(e) S = φ

2.3 A = C

2.5 Using the tree diagram, we obtain

S = {1HH, 1HT , 1TH, 1TT , 2H, 2T , 3HH,
3HT , 3TH, 3TT , 4H, 4T , 5HH, 5HT , 5TH,
5TT , 6H, 6T}

2.7 S1 = {MMMM,MMMF,MMFM,MFMM,
FMMM,MMFF,MFMF,MFFM,FMFM,
FFMM,FMMF,MFFF, FMFF,FFMF,
FFFM,FFFF};
S2 = {0, 1, 2, 3, 4}

2.9 (a) A = {1HH, 1HT, 1TH, 1TT, 2H, 2T}
(b) B = {1TT, 3TT, 5TT}
(c) A

′
= {3HH, 3HT, 3TH, 3TT, 4H, 4T, 5HH,

5HT, 5TH, 5TT, 6H, 6T}
(d) A

′ ∩B = {3TT, 5TT}
(e) A ∪B = {1HH, 1HT, 1TH, 1TT, 2H, 2T,

3TT, 5TT}
2.11 (a) S = {M1M2,M1F1,M1F2,M2M1,M2F1,

M2F2, F1M1, F1M2, F1F2, F2M1, F2M2,
F2F1}

(b) A = {M1M2,M1F1,M1F2,M2M1,M2F1,
M2F2}

(c) B = {M1F1,M1F2,M2F1,M2F2, F1M1,
F1M2, F2M1, F2M2}

(d) C = {F1F2, F2F1}
(e) A ∩B = {M1F1,M1F2,M2F1,M2F2}
(f) A ∪ C = {M1M2,M1F1,M1F2,M2M1,

M2F1,M2F2, F1F2, F2F1}
2.15 (a) {nitrogen, potassium, uranium, oxygen}

(b) {copper, sodium, zinc, oxygen}
(c) {copper, sodium, nitrogen, potassium, ura-

nium, zinc}
(d) {copper, uranium, zinc}
(e) φ

(f) {oxygen}
2.19 (a) The family will experience mechanical

problems but will receive no ticket for a
traffic violation and will not arrive at a
campsite that has no vacancies.

(b) The family will receive a traffic ticket and
arrive at a campsite that has no vacancies
but will not experience mechanical prob-
lems.

(c) The family will experience mechanical
problems and will arrive at a campsite that
has no vacancies.

(d) The family will receive a traffic ticket but
will not arrive at a campsite that has no
vacancies.

(e) The family will not experience mechanical
problems.

2.21 18

2.23 156

2.25 20

2.27 48

2.29 210

2.31 72

2.33 (a) 1024; (b) 243

2.35 362,880

2.37 2880

2.39 (a) 40,320; (b) 336

2.41 360
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Answers to Chapter 3 771

2.43 24

2.45 3360

2.47 56

2.49 (a) Sum of the probabilities exceeds 1.

(b) Sum of the probabilities is less than 1.

(c) A negative probability

(d) Probability of both a heart and a black card
is zero.

2.51 S = {$10, $25, $100}; P (10) = 11
20 , P (25) = 3

10 ,

P (100) = 15
100 ;

17
20

2.53 (a) 0.3; (b) 0.2

2.55 10/117

2.57 (a) 5/26; (b) 9/26; (c) 19/26

2.59 (a) 94/54,145; (b) 143/39,984

2.61 (a) 22/25; (b) 3/25; (c) 17/50

2.63 (a) 0.32; (b) 0.68; (c) office or den

2.65 (a) 0.8; (b) 0.45; (c) 0.55

2.67 (a) 0.31; (b) 0.93; (c) 0.31

2.69 (a) 0.009; (b) 0.999; (c) 0.01

2.71 (a) 0.048; (b) $50,000; (c) $12,500

2.73 (a) The probability that a convict who pushed
dope also committed armed robbery.

(b) The probability that a convict who com-
mitted armed robbery did not push dope.

(c) The probability that a convict who did not
push dope also did not commit armed rob-
bery.

2.75 (a) 14/39; (b) 95/112

2.77 (a) 5/34; (b) 3/8

2.79 (a) 0.018; (b) 0.614; (c) 0.166; (d) 0.479

2.81 (a) 0.35; (b) 0.875; (c) 0.55

2.83 (a) 9/28; (b) 3/4; (c) 0.91

2.85 0.27

2.87 5/8

2.89 (a) 0.0016; (b) 0.9984

2.91 (a) 91/323; (b) 91/323

2.93 (a) 0.75112; (b) 0.2045

2.95 0.0960

2.97 0.40625

2.99 0.1124

2.101 0.857

Chapter 3

3.1 Discrete; continuous; continuous; discrete; dis-
crete; continuous

3.3 Sample Space w

HHH 3
HHT 1
HTH 1
THH 1
HTT −1
THT −1
TTH −1
TTT −3

3.5 (a) 1/30; (b) 1/10

3.7 (a) 0.68; (b) 0.375

3.9 (b) 19/80

3.11 x 0 1 2

f(x) 2
7

4
7

1
7

3.13

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 0,

0.41, for 0 ≤ x < 1,

0.78, for 1 ≤ x < 2,

0.94, for 2 ≤ x < 3,

0.99, for 3 ≤ x < 4,

1, for x ≥ 4

3.15

F (x) =

⎧⎪⎪⎨⎪⎪⎩
0, for x < 0,
2
7 , for 0 ≤ x < 1,
6
7 , for 1 ≤ x < 2,

1, for x ≥ 2

(a) 4/7; (b) 5/7

3.17 (b) 1/4; (c) 0.3

3.19 F (x) =

⎧⎨⎩
0, x < 1
x−1
2 , 1 ≤ x < 3

1, x ≥ 3

; 1/4

Uploaded By: anonymousSTUDENTS-HUB.com



772 Appendix B Answers to Odd-Numbered Non-Review Exercises

3.21 (a) 3/2; (b) F (x) =

⎧⎨⎩
0, x < 0

x3/2, 0 ≤ x < 1

1, x ≥ 1

; 0.3004

3.23

F (w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for w < −3,
1
27 , for − 3 ≤ w < −1,
7
27 , for − 1 ≤ w < 1,
19
27 , for 1 ≤ w < 3,

1, for w ≥ 3

(a) 20/27; (b) 2/3

3.25 t 20 25 30

P (T = t) 1
5

3
5

1
5

3.27 (a)

F (x) =

{
0, x < 0,

1− exp(−x/2000), x ≥ 0

(b) 0.6065; (c) 0.6321

3.29 (b)

F (x) =

{
0, x < 1,

1− x−3, x ≥ 1

(c) 0.0156

3.31 (a) 0.2231; (b) 0.2212

3.33 (a) k = 280; (b) 0.3633; (c) 0.0563

3.35 (a) 0.1528; (b) 0.0446

3.37 (a) 1/36; (b) 1/15

3.39 (a) x
f(x, y) 0 1 2 3

0 0 3
70

9
70

3
70

y 1 2
70

18
70

18
70

2
70

2 3
70

9
70

3
70 0

(b) 1/2

3.41 (a) 1/16; (b) g(x) = 12x(1− x)2, for 0 ≤ x ≤ 1;
(c) 1/4

3.43 (a) 3/64; (b) 1/2

3.45 0.6534

3.47 (a) Dependent; (b) 1/3

3.49 (a) x 1 2 3
g(x) 0.10 0.35 0.55

(b) y 1 2 3
h(y) 0.20 0.50 0.30

(c) 0.2857

3.51 (a) x
f(x, y) 0 1 2 3

0 1
55

6
55

6
55

1
55

y 1 6
55

16
55

6
55 0

2 6
55

6
55 0 0

3 1
55 0 0 0

(b) 42/55

3.53 5/8

3.55 Independent

3.57 (a) 3; (b) 21/512

3.59 Dependent

Chapter 4

4.1 0.88

4.3 25¢
4.5 $1.23

4.7 $500

4.9 $6900

4.11 (ln 4)/π

4.13 100 hours

4.15 0

4.17 209

4.19 $1855

4.21 $833.33

4.23 (a) 35.2; (b) μX = 3.20, μY = 3.00

4.25 2

4.27 2000 hours

4.29 (b) 3/2

4.31 (a) 1/6; (b) (5/6)5

4.33 $5,250,000

4.35 0.74

4.37 1/18; in terms of actual profit, the variance is
1
18 (5000)

2

4.39 1/6

4.41 118.9

4.43 μY = 10; σ2
Y = 144

4.45 0.01
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4.47 −0.0062

4.49 σ2
X = 0.8456, σX = 0.9196

4.51 −1/
√
5

4.53 μg(X) = 10.33, σg(X) = 6.66

4.55 $0.80

4.57 209

4.59 μ = 7/2, σ2 = 15/4

4.61 3/14

4.63 52

4.65 (a) 7; (b) 0; (c) 12.25

4.67 46/63

4.69 (a) E(X) = E(Y ) = 1/3 and Var(X) =
Var(Y ) = 4/9; (b) E(Z) = 2/3 and Var(Z) =
8/9

4.71 (a) 4; (b) 32; 16

4.73 By direct calculation, E(eY ) = 1884.32. Us-

ing the second-order approximation, E(eY ) ≈
1883.38, which is very close to the true value.

4.75 0.03125

4.77 (a) At most 4/9; (b) at least 5/9;
(c) at least 21/25; (d) 10

Chapter 5

5.1 μ =
1

k

k∑
i=1

xi, σ
2 =

1

k

k∑
i=1

(xi − μ)2

5.3 f(x) = 1
10 , for x = 1, 2, . . . , 10, and f(x) = 0

elsewhere; 3/10

5.5 (a) 0.0480; (b) 0.2375; (c) P (X = 5 | p = 0.3) =
0.1789, P = 0.3 is reasonable.

5.7 (a) 0.0474; (b) 0.0171

5.9 (a) 0.7073; (b) 0.4613; (c) 0.1484

5.11 0.1240

5.13 0.8369

5.15 (a) 0.0778; (b) 0.3370; (c) 0.0870

5.17 μ = 3.5, σ2 = 1.05

5.19 f(x1, x2, x3) =

(
n

x1, x2, x3

)
0.35x10.05x20.60x3

5.21 0.0095

5.23 0.0077

5.25 0.8670

5.27 (a) 0.2852; (b) 0.9887; (c) 0.6083

5.29 5/14

5.31 h(x; 6, 3, 4) =

(
4

x

)(
2

3− x

)
(
6

3

) , for x = 1, 2, 3;

P (2 ≤ X ≤ 3) = 4/5

5.33 (a) 0.3246; (b) 0.4496

5.35 0.9517

5.37 (a) 0.6815; (b) 0.1153

5.39 0.9453

5.41 0.6077

5.43 (a) 4/33; (b) 8/165

5.45 0.2315

5.47 (a) 0.3991; (b) 0.1316

5.49 0.0515

5.51 63/64

5.53 (a) 0.3840; (b) 0.0067

5.55 (a) 0.0630; (b) 0.9730

5.57 (a) 0.1429; (b) 0.1353

5.59 (a) 0.1638; (b) 0.032

5.61 0.2657

5.63 μ = 6, σ2 = 6

5.65 (a) 0.2650; (b) 0.9596

5.67 (a) 0.8243; (b) 14

5.69 4

5.71 5.53× 10−4; μ = 7.5

5.73 (a) 0.0137; (b) 0.0830

5.75 0.4686
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Chapter 6

6.3 (a) 0.6; (b) 0.7; (c) 0.5

6.5 (a) 0.0823; (b) 0.0250; (c) 0.2424;
(d) 0.9236; (e) 0.8133; (f) 0.6435

6.7 (a) 0.54; (b) −1.72; (c) 1.28

6.9 (a) 0.1151; (b) 16.1; (c) 20.275; (d) 0.5403

6.11 (a) 0.0548; (b) 0.4514; (c) 23 cups;
(d) 189.95 milliliters

6.13 (a) 0.8980; (b) 0.0287; (c) 0.6080

6.15 (a) 0.0571; (b) 99.11%; (c) 0.3974;
(d) 27.952 minutes; (e) 0.0092

6.17 6.24 years

6.19 (a) 51%; (b) $18.37

6.21 (a) 0.0401; (b) 0.0244

6.23 26 students

6.25 (a) 0.3085; (b) 0.0197

6.27 (a) 0.9514; (b) 0.0668

6.29 (a) 0.1171; (b) 0.2049

6.31 0.1357

6.33 (a) 0.0778; (b) 0.0571; (c) 0.6811

6.35 (a) 0.8749; (b) 0.0059

6.37 (a) 0.0228; (b) 0.3974

6.41 2.8e−1.8 − 3.4e−2.4 = 0.1545

6.43 (a) μ = 6; σ2 = 18;
(b) between 0 and 14.485 million liters

6.45
6∑

x=4

(
6

x

)
(1− e−3/4)x(e−3/4)6−x = 0.3968

6.47 (a)
√

π/2 = 1.2533 years; (b) e−2

6.49 (a) Mean = 0.25, median = 0.206; (b)
variance = 0.0375; (c) 0.2963

6.51 e−4 = 0.0183

6.53 (a) μ = αβ = 50; (b) σ2 = αβ2 = 500;

σ =
√
500; (c) 0.815

6.55 (a) 0.1889; (b) 0.0357

6.57 Mean = e6, variance = e12(e4 − 1)

6.59 (a) e−5; (b) β = 0.2

Chapter 7

7.1 g(y) = 1/3, for y = 1, 3, 5

7.3
g(y1, y2) =

(
2

y1+y2
2 , y1−y2

2 , 2− y1

)

×
(
1

4

)(y1+y2)/2 (1
3

)(y1−y2)/2 ( 5

12

)2−y1

;

for y1 = 0, 1, 2; y2 = −2,−1, 0, 1, 2;
y2 ≤ y1; y1 + y2 = 0, 2, 4

7.7 Gamma distribution with α = 3/2 and β = m/2b

7.9 (a) g(y) = 32/y3, for y > 4; (b) 1/4

7.11 h(z) = 2(1− z), for 0 < z < 1

7.13 h(w) = 6 + 6w − 12w1/2, for 0 < w < 1

7.15 g(y) =

⎧⎪⎨⎪⎩
2

9
√
y , 0 < y < 1,

√
y+1
9
√
y , 1 < y < 4

7.19 Both equal μ.

7.23 (a) Gamma(2, 1); (b) Uniform(0, 1)

Chapter 8

8.1 (a) Responses of all people in Richmond who
have a telephone;

(b) Outcomes for a large or infinite number of
tosses of a coin;

(c) Length of life of such tennis shoes when
worn on the professional tour;

(d) All possible time intervals for this lawyer
to drive from her home to her office.

8.3 (a) x̄ = 3.2 seconds; (b) x̃ = 3.1 seconds

8.5 (a) x̄ = 2.4; (b) x̃ = 2; (c) m = 3

8.7 (a) 53.75; (b) 75 and 100

8.9 (a) Range is 10; (b) s = 3.307

8.11 (a) 2.971; (b) 2.971
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8.13 s = 0.585

8.15 (a) 45.9; (b) 5.1

8.17 0.3159

8.19 (a) Variance is reduced from 0.49 to 0.16.
(b) Variance is increased from 0.04 to 0.64.

8.21 Yes

8.23 (a) μ = 5.3; σ2 = 0.81;

(b) μX̄ = 5.3; σ2
X̄ = 0.0225;

(c) 0.9082

8.25 (a) 0.6898; (b) 7.35

8.29 0.5596

8.31 (a) The chance that the difference in mean dry-
ing time is larger than 1.0 is 0.0013; (b) 13

8.33 (a) 1/2; (b) 0.3085

8.35 P (X̄ ≤ 775 | μ = 760) = 0.9332

8.37 (a) 27.488; (b) 18.475; (c) 36.415

8.39 (a) 0.297; (b) 32.852; (c) 46.928

8.41 (a) 0.05; (b) 0.94

8.45 (a) 0.975; (b) 0.10; (c) 0.875; (d) 0.99

8.47 (a) 2.500; (b) 1.319; (c) 1.714

8.49 No; μ > 20

8.51 (a) 2.71; (b) 3.51; (c) 2.92;
(d) 0.47; (e) 0.34

8.53 The F -ratio is 1.44. The variances are not sig-
nificantly different.

Chapter 9

9.1 56

9.3 0.3097 < μ < 0.3103

9.5 (a) 22, 496 < μ < 24, 504; (b) error ≤ 1004

9.7 35

9.9 10.15 < μ < 12.45

9.11 0.978 < μ < 1.033

9.13 47.722 < μ < 49.278

9.15 (13, 075, 33, 925)

9.17 (6.05, 16.55)

9.19 323.946 to 326.154

9.21 Upper prediction limit: 9.42;
upper tolerance limit: 11.72

9.25 Yes, the value of 6.9 is outside of the prediction
interval.

9.27 (a) (0.9876, 1.0174);

(b) (0.9411, 1.0639);

(c) (0.9334, 1.0716)

9.35 2.9 < μ1 − μ2 < 7.1

9.37 2.80 < μ1 − μ2 < 3.40

9.39 1.5 < μ1 − μ2 < 12.5

9.41 0.70 < μ1 − μ2 < 3.30

9.43 −6536 < μ1 − μ2 < 2936

9.45 (−0.74, 6.30)

9.47 (−6.92, 36.70)

9.49 0.54652 < μB − μA < 1.69348

9.51 Method 1: 0.194 < p < 0.262; method 2:
0.1957 < p < 0.2639

9.53 (a) 0.498 < p < 0.642; (b) error ≤ 0.072

9.55 (a) 0.739 < p < 0.961; (b) no

9.57 (a) 0.644 < p < 0.690; (b) error ≤ 0.023

9.59 2576

9.61 160

9.63 9604

9.65 −0.0136 < pF − pM < 0.0636

9.67 0.0011 < p1 − p2 < 0.0869

9.69 (−0.0849, 0.0013); not significantly different

9.71 0.293 < σ2 < 6.736; valid claim

9.73 3.472 < σ2 < 12.804

9.75 9.27 < σ < 34.16

9.77 0.549 < σ1/σ2 < 2.690

9.79 0.016 < σ2
1/σ

2
2 < 0.454; no
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9.81 1
n

n∑
i=1

xi

9.83 β̂ = x̄/5

9.85 θ̂ = max{x1, . . . , xn}
9.87 x ln p+ (1− x) ln(1− p). Set the derivative with

respect to p = 0; p̂ = x = 1.0

Chapter 10

10.1 (a) Conclude that less than 30% of the public
is allergic to some cheese products when, in
fact, 30% or more is allergic.

(b) Conclude that at least 30% of the public is
allergic to some cheese products when, in
fact, less than 30% is allergic.

10.3 (a) The firm is not guilty;

(b) the firm is guilty.

10.5 (a) 0.0559;

(b) β = 0.0017; β = 0.00968; β = 0.5557

10.7 (a) 0.1286;

(b) β = 0.0901; β = 0.0708.

(c) The probability of a type I error is some-
what large.

10.9 (a) α = 0.0850; (b) β = 0.3410

10.11 (a) α = 0.1357; (b) β = 0.2578

10.13 α = 0.0094; β = 0.0122

10.15 (a) α = 0.0718; (b) β = 0.1151

10.17 (a) α = 0.0384; (b) β = 0.5; β = 0.2776

10.19 z = −2.76; yes, μ < 40 months;
P -value = 0.0029

10.21 z = −1.64; P -value = 0.10

10.23 t = 0.77; fail to reject H0.

10.25 z = 8.97; yes, μ > 20, 000 kilometers;
P -value < 0.001

10.27 t = 12.72; P -value < 0.0005; reject H0.

10.29 t = −1.98; P -value = 0.0312; reject H0

10.31 z = −2.60; conclude μA − μB ≤ 12 kilograms.

10.33 t = 1.50; there is not sufficient evidence to con-
clude that the increase in substrate concentra-
tion would cause an increase in the mean velocity
of more than 0.5 micromole per 30 minutes.

10.35 t = 0.70; there is not sufficient evidence to sup-
port the conclusion that the serum is effective.

10.37 t = 2.55; reject H0: μ1 − μ2 > 4 kilometers.

10.39 t
′
= 0.22; fail to reject H0.

10.41 t
′
= 2.76; reject H0.

10.43 t = −2.53; reject H0; the claim is valid.

10.45 t = 2.48; P -value < 0.02; reject H0.

10.47 n = 6

10.49 78.28 ≈ 79

10.51 5

10.53 (a) H0: Mhot −Mcold = 0,
H1: Mhot −Mcold �= 0;

(b) paired t, t = 0.99; P -value > 0.30; fail to
reject H0.

10.55 P -value = 0.4044 (with a one-tailed test); the
claim is not refuted.

10.57 z = 1.44; fail to reject H0.

10.59 z = −5.06 with P -value ≈ 0; conclude that fewer
than one-fifth of the homes are heated by oil.

10.61 z = 0.93 with P -value = P (Z > 0.93) = 0.1762;
there is not sufficient evidence to conclude that
the new medicine is effective.

10.63 z = 2.36 with P -value = 0.0182; yes, the differ-
ence is significant.

10.65 z = 1.10 with P -value = 0.1357; we do not have
sufficient evidence to conclude that breast cancer
is more prevalent in the urban community.

10.67 χ2 = 18.13 with P -value = 0.0676 (from com-

puter output); do not reject H0: σ
2 = 0.03.

10.69 χ2 = 63.75 with P -value = 0.8998 (from com-
puter output); do not reject H0.

10.71 χ2 = 42.37 with P -value = 0.0117 (from com-
puter output); machine is out of control.

10.73 f = 1.33 with P -value = 0.3095 (from computer
output); fail to reject H0: σ1 = σ2.

Uploaded By: anonymousSTUDENTS-HUB.com



Answers to Chapter 11 777

10.75 f = 0.086 with P -value = 0.0328 (from com-
puter output); rejectH0: σ1 = σ2 at level greater
than 0.0328.

10.77 f = 19.67 with P -value = 0.0008 (from com-
puter output); reject H0: σ1 = σ2.

10.79 χ2 = 10.14; reject H0, the ratio is not 5:2:2:1.

10.81 χ2 = 4.47; there is not sufficient evidence to
claim that the die is unbalanced.

10.83 χ2 = 3.125; do not reject H0 : geometric distri-
bution.

10.85 χ2 = 5.19; do not reject H0: normal distribution.

10.87 χ2 = 5.47; do not reject H0.

10.89 χ2 = 124.59; yes, occurrence of these types of
crime is dependent on the city district.

10.91 χ2 = 5.92 with P -value = 0.4332; do not reject
H0.

10.93 χ2 = 31.17 with P -value < 0.0001; attitudes are
not homogeneous.

10.95 χ2 = 1.84; do not reject H0.

Chapter 11

11.1 (a) b0 = 64.529, b1 = 0.561;

(b) ŷ = 81.4

11.3 (a) ŷ = 5.8254 + 0.5676x;

(c) ŷ = 34.205 at 50◦C

11.5 (a) ŷ = 6.4136 + 1.8091x;

(b) ŷ = 9.580 at temperature 1.75

11.7 (b) ŷ = 31.709 + 0.353x

11.9 (b) ŷ = 343.706 + 3.221x;

(c) ŷ = $456 at advertising costs = $35

11.11 (b) ŷ = −1847.633 + 3.653x

11.13 (a) ŷ = 153.175− 6.324x;

(b) ŷ = 123 at x = 4.8 units

11.15 (a) s2 = 176.4;

(b) t = 2.04; fail to reject H0: β1 = 0.

11.17 (a) s2 = 0.40;

(b) 4.324 < β0 < 8.503;

(c) 0.446 < β1 < 3.172

11.19 (a) s2 = 6.626;

(b) 2.684 < β0 < 8.968;

(c) 0.498 < β1 < 0.637

11.21 t = −2.24; reject H0 and conclude β < 6

11.23 (a) 24.438 < μY |24.5 < 27.106;

(b) 21.88 < y0 < 29.66

11.25 7.81 < μY |1.6 < 10.81

11.27 (a) 17.1812 mpg;

(b) no, the 95% confidence interval on mean
mpg is (27.95, 29.60);

(c) miles per gallon will likely exceed 18.

11.29 (b) ŷ = 3.4156x

11.31 The f -value for testing the lack of fit is 1.58, and
the conclusion is that H0 is not rejected. Hence,
the lack-of-fit test is insignificant.

11.33 (a) ŷ = 2.003x;

(b) t = 1.40, fail to reject H0.

11.35 f = 1.71 and P -value = 0.2517; the regression is
linear.

11.37 (a) b0 = 10.812, b1 = −0.3437;

(b) f = 0.43; the regression is linear.

11.39 (a) P̂ = −11.3251− 0.0449T ;

(b) yes;

(c) R2 = 0.9355;

(d) yes

11.41 (b) N̂ = −175.9025 + 0.0902Y ; R2 = 0.3322

11.43 r = 0.240

11.45 (a) r = −0.979;

(b) P -value = 0.0530; do not rejectH0 at 0.025
level;

(c) 95.8%

11.47 (a) r = 0.784;

(b) reject H0 and conclude that ρ > 0;

(c) 61.5%.
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Chapter 12

12.1 ŷ = 0.5800 + 2.7122x1 + 2.0497x2

12.3 (a) ŷ = 27.547 + 0.922x1 + 0.284x2;

(b) ŷ = 84 at x1 = 64 and x2 = 4

12.5 (a) ŷ = −102.7132 + 0.6054x1 + 8.9236x2 +
1.4374x3 + 0.0136x4;

(b) ŷ = 287.6

12.7 ŷ = 141.6118− 0.2819x+ 0.0003x2

12.9 (a) ŷ = 56.4633 + 0.1525x− 0.00008x2;

(b) ŷ = 86.7% when temperature is at 225◦C

12.11 ŷ = −6.5122+1.9994x1−3.6751x2+2.5245x3+
5.1581x4 + 14.4012x5

12.13 (a) ŷ = 350.9943− 1.2720x1 − 0.1539x2;

(b) ŷ = 140.9

12.15 ŷ = 3.3205 + 0.4210x1 − 0.2958x2 + 0.0164x3 +
0.1247x4

12.17 0.1651

12.19 242.72

12.21 (a) σ̂2
B2

= 28.0955; (b) σ̂B1B2
= −0.0096

12.23 t = 5.91 with P -value = 0.0002. Reject H0 and
claim that β1 �= 0.

12.25 0.4516 < μY |x1=900,x2=1 < 1.2083
and −0.1640 < y0 < 1.8239

12.27 263.7879 < μY |x1=75,x2=24,x3=90,x4=98 <
311.3357 and 243.7175 < y0 < 331.4062

12.29 (a) t = −1.09 with P -value = 0.3562;

(b) t = −1.72 with P -value = 0.1841;

(c) yes; not sufficient evidence to show that x1
and x2 are significant

12.31 R2 = 0.9997

12.33 f = 5.106 with P -value = 0.0303; the regression
is not significant at level 0.01.

12.35 f = 34.90 with P -value = 0.0002; reject H0 and
conclude β1 > 0.

12.37 f = 10.18 with P -value < 0.01; x1 and x2 are
significant in the presence of x3 and x4.

12.39 The two-variable model is better.

12.41 First model: R2
adj = 92.7%, C.V. = 9.0385.

Second model: R2
adj = 98.1%, C.V. = 4.6287.

The partial F -test shows P -value = 0.0002;
model 2 is better.

12.43 Using x2 alone is not much different from us-
ing x1 and x2 together since the R2

adj are 0.7696
versus 0.7591, respectively.

12.45 (a) m̂pg = 5.9593 − 0.00003773 odometer +
0.3374 octane− 12.6266z1 − 12.9846z2;

(b) sedan;

(c) they are not significantly different.

12.47 (b) ŷ = 4.690 seconds;

(c) 4.450 < μY |{180,260} < 4.930

12.49 ŷ = 2.1833 + 0.9576x2 + 3.3253x3

12.51 (a) ŷ = −587.211 + 428.433x;

(b) ŷ = 1180− 191.691x+ 35.20945x2;

(c) quadratic model

12.53 σ̂2
B1

= 20,588; σ̂2
B11

= 62.6502;
σ̂B1,B11

= −1103.5

12.55 (a) Intercept model is the best.

12.57 (a) ŷ = 3.1368 + 0.6444x1 − 0.0104x2 +
0.5046x3−0.1197x4−2.4618x5+1.5044x6;

(b) ŷ = 4.6563 + 0.5133x3 − 0.1242x4;

(c) Cp criterion: variables x1 and x2 with

s2 = 0.7317 and R2 = 0.6476; s2 criterion:
variables x1, x3 and x4 with s2 = 0.7251
and R2 = 0.6726;

(d) ŷ = 4.6563+0.5133x3−0.1242x4; This one

does not lose much in s2 and R2;

(e) two observations have large R-Student val-
ues and should be checked.

12.59 (a) ŷ = 125.8655 + 7.7586x1 + 0.0943x2 −
0.0092x1x2;

(b) the model with x2 alone is the best.

12.61 (a) p̂ = (1 + e2.9949−0.0308x)−1;

(b) 1.8515

Chapter 13

13.1 f = 0.31; not sufficient evidence to support the
hypothesis that there are differences among the
6 machines.

13.3 f = 14.52; yes, the difference is significant.
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13.5 f = 8.38; the average specific activities differ
significantly.

13.7 f = 2.25; not sufficient evidence to support
the hypothesis that the different concentrations
of MgNH4PO4 significantly affect the attained
height of chrysanthemums.

13.9 b = 0.79 > b4(0.01, 4, 4, 4, 9) = 0.4939. Do not
reject H0. There is not sufficent evidence to
claim that variances are different.

13.11 b = 0.7822 < b4(0.05, 9, 8, 15) = 0.8055. The
variances are significantly different.

13.13 (a) P -value < 0.0001, significant,

(b) for contrast 1 vs. 2, P -value < 0.0001Z,
significantly different; for contrast 3 vs. 4,
P -value = 0.0648, not significantly differ-
ent

13.15 Results of Tukey’s tests are given below.

ȳ4. ȳ3. ȳ1. ȳ5. ȳ2.
2.98 4.30 5.44 6.96 7.90

13.17 (a) P -value = 0.0121; yes, there is a significant
difference.

(b) Substrate
Modified Removal

Depletion Hess Kicknet Surber Kicknet

13.19 f = 70.27 with P -value < 0.0001; reject H0.

x̄0 x̄25 x̄100 x̄75 x̄50
55.167 60.167 64.167 70.500 72.833

Temperature is important; both 75◦ and 50◦(C)
yielded batteries with significantly longer acti-
vated life.

13.21 The mean absorption is significantly lower for
aggregate 4 than for the other aggregates.

13.23 Comparing the control to 1 and 2: significant;
comparing the control to 3 and 4: insignificant

13.25 f(fertilizer) = 6.11; there is significant difference
among the fertilizers.

13.27 f = 5.99; percent of foreign additives is not the
same for all three brands of jam; brand A

13.29 P -value < 0.0001; significant

13.31 P -value = 0.0023; significant

13.33 P -value = 0.1250; not significant

13.35 P -value < 0.0001;
f = 122.37; the amount of dye has an effect on
the color of the fabric.

13.37 (a) yij = μ + Ai + εij , Ai ∼ n(x; 0, σα),
εij ∼ n(x; 0, σ);

(b) σ̂2
α = 0 (the estimated variance component

is −0.00027); σ̂2 = 0.0206.

13.39 (a) f = 14.9; operators differ significantly;

(b) σ̂2
α = 28.91; s2 = 8.32.

13.41 (a) yij = μ+Ai + εij , Ai ∼ n(x; 0, σα);

(b) yes; f = 5.63 with P -value = 0.0121;

(c) there is a significant loom variance compo-
nent.

Chapter 14

14.1 (a) f = 8.13; significant;

(b) f = 5.18; significant;

(c) f = 1.63; insignificant

14.3 (a) f = 14.81; significant;

(b) f = 9.04; significant;

(c) f = 0.61; insignificant

14.5 (a) f = 34.40; significant;

(b) f = 26.95; significant;

(c) f = 20.30; significant

14.7 Test for effect of temperature: f1 = 10.85 with
P -value = 0.0002;
Test for effect of amount of catalyst: f2 = 46.63
with P -value < 0.0001;
Test for effect of interaction: f = 2.06 with P -
value = 0.074.

14.9 (a)
Source of Sum of Mean
Variation df Squares Squares f P
Cutting speed
Tool geometry
Interaction
Error
Total

1
1
1
8

11

12.000
675.000
192.000
72.667

951.667

12.000
675.000
192.000

9.083

1.32
74.31
21.14

0.2836
< 0.0001

0.0018

(b) The interaction effect masks the effect of
cutting speed;

(c) ftool geometry=1 = 16.51 and P -value =
0.0036;
ftool geometry=2 = 5.94 and P -value =
0.0407.
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14.11 (a)

Source of Sum of Mean
Variation df Squares Squares f P

Method
Laboratory
Interaction
Error
Total

1
6
6

14
27

0.000104
0.008058
0.000198
0.000222
0.008582

0.000104
0.001343
0.000033
0.000016

6.57
84.70
2.08

0.0226
< 0.0001

0.1215

(b) The interaction is not significant;

(c) Both main effects are significant;

(e) flaboratory=1 = 0.01576 and P -value =
0.9019; no significant difference between
the methods in laboratory 1;
ftool geometry=2 = 9.081 and P -value =
0.0093.

14.13 (b)

Source of Sum of Mean
Variation df Squares Squares f P

Time
Treatment
Interaction
Error
Total

1
1
1
8

11

0.060208
0.060208
0.000008
0.003067
0.123492

0.060208
0.060208
0.000008
0.000383

157.07
157.07

.02

< 0.0001
< 0.0001

0.8864

(c) Both time and treatment influence the
magnesium uptake significantly, although
there is no significant interaction between
them.

(d) Y = μ+βTTime+βZZ +βTZTime Z + ε,
where Z = 1 when treatment = 1 and
Z = 0 when treatment = 2;

(e) f = 0.02 with P -value = 0.8864; the inter-
action in the model is insignificant.

14.15 (a) Interaction is significant at a level of 0.05,
with P -value of 0.0166.

(b) Both main effects are significant.

14.17 (a) AB: f = 3.83; significant;
AC: f = 3.79; significant;
BC: f = 1.31; not significant;
ABC: f = 1.63; not significant;

(b) A: f = 0.54; not significant;
B: f = 6.85; significant;
C: f = 2.15; not significant;

(c) The presence of AC interaction masks the
main effect C.

14.19 (a) Stress: f = 45.96 with P -value < 0.0001;
coating: f = 0.05 with P -value = 0.8299;
humidity: f = 2.13 with P -value = 0.1257;

coating × humidity: f = 3.41 with
P -value = 0.0385;
coating × stress: f = 0.08 with P -value =
0.9277;
humidity × stress: f = 3.15 with
P -value = 0.0192;
coating × humidity × stress: f = 1.93 with
P -value = 0.1138.

(b) The best combination appears to be un-
coated, medium humidity, and a stress level
of 20.

14.21 Effect f P

Temperature
Surface
HRC
T× S
T×HRC
S×HRC
T× S×HRC

14.22
6.70
1.67
5.50
2.69
5.41
3.02

< 0.0001
0.0020
0.1954
0.0006
0.0369
0.0007
0.0051

14.23 (a) Yes; brand × type; brand× temperature;

(b) yes;

(c) brand Y , powdered detergent, hot temper-
ature.

14.25 (a)

Effect f P

Time 543.53 < 0.0001
Temp 209.79 < 0.0001
Solvent 4.97 0.0457
Time× Temp 2.66 0.1103
Time× Solvent 2.04 0.1723
Temp× Solvent 0.03 0.8558
Time× Temp× Solvent 6.22 0.0140

Although three two-way interactions are
shown to be insignificant, they may be
masked by the significant three-way inter-
action.

14.27 (a) f = 1.49; no significant interaction;

(b) f(operators) = 12.45; significant;
f(filters) = 8.39; significant;

(c) σ̂2
α = 0.1777 (filters);

σ̂2
β = 0.3516 (operators);

s2 = 0.185

14.29 (a) σ̂2
β , σ̂

2
γ , σ̂

2
αγ are significant;

(b) σ̂2
γ and σ̂2

αγ are significant.

14.31 (a) Mixed model;
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(b) Material: f = 47.42 with P -value <
0.0001;
brand: f = 1.73 with P -value = 0.2875;
material × brand: f = 16.06 with
P -value = 0.0004;

(c) no

Chapter 15

15.1 B and C are significant at level 0.05.

15.3 Factors A, B, and C have negative effects on the
phosphorus compound, and factor D has a pos-
itive effect. However, the interpretation of the
effect of individual factors should involve the use
of interaction plots.

15.5 Significant effects:
A: f = 9.98; BC: f = 19.03.
Insignificant effects:
B: f = 0.20; C: f = 6.54; D: f = 0.02; AB:
f = 1.83;
AC: f = 0.20; AD: f = 0.57; BD: f = 1.83;
CD: f = 0.02. Since the BC interaction is sig-
nificant, both B and C would be investigated
further.

15.9 (a) bA = 5.5, bB = −3.25, and bAB = 2.5;

(b) the values of the coefficients are one-half
those of the effects;

(c) tA = 5.99 with P -value = 0.0039;
tB = −3.54 with P -value = 0.0241;
tAB = 2.72 with P -value = 0.0529;
t2 = F .

15.11 (a) A = −0.8750, B = 5.8750, C = 9.6250,
AB = −3.3750, AC = −9.6250, BC =
0.1250, and ABC = −1.1250;
B, C, AB, and AC appear important based
on their magnitude.

(b) Effects P-Value
A 0.7528
B 0.0600
C 0.0071
AB 0.2440
AC 0.0071
BC 0.9640
ABC 0.6861

(c) Yes;

(d) At a high level of A, C essentially has no
effect. At a low level of A, C has a positive
effect.

15.13 (a) Machine
1 2 3 4

(1)
ab
cd
ce
de

abcd
abce
abde

c
d
e

abc
abd
abe
cde

abcde

a
b

acd
ace
ade
bcd
bce
bde

ac
ad
ae
bc
bd
be

acde
bcde

(b) ABD, CDE, ABCDE (one possible de-
sign)

15.15 (a) x2, x3, x1x2, and x1x3;

(b) Curvature: P -value = 0.0038;

(c) One additional design point different from
the original ones

15.17 (0,−1), (0, 1), (−1, 0), (1, 0) might be used.

15.19 (a) With BCD as the defining contrast, the
principal block contains (1), a, bc, abc, bd,
abd, cd, acd;

(b) Block 1 Block 2

(1)
bc

abd
acd

a
abc
bd
cd

confounded by ABC;

(c) Defining contrast BCD produces the fol-
lowing aliases: A ≡ ABCD, B ≡ CD, C ≡
BD, D ≡ BC, AB ≡ ACD, AC ≡ ABD,
and AD ≡ ABC. Since AD and ABC are
confounded with blocks, there are only 2
degrees of freedom for error from the inter-
actions not confounded.

Source of Degrees of
Variation Freedom

A 1
B 1
C 1
D 1
Blocks 1
Error 2

Total 7

15.21 (a) With the defining contrasts ABCE and
ABDF , the principal block contains (1),
ab, acd, bcd, ce, abce, ade, bde, acf , bcf ,
df , abdf , aef , bef , cdef , abcdef ;
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(b) A ≡ BCE ≡ BDF ≡ ACDEF ,
AD ≡ BCDE ≡ BF ≡ ACEF ,
B ≡ ACE ≡ ADF ≡ BCDEF ,
AE ≡ BC ≡ BDEF ≡ ACDF ,
C ≡ ABE ≡ ABCDF ≡ DEF ,
AF ≡ BCEF ≡ BD ≡ ACDE,
D ≡ ABCDE ≡ ABF ≡ CEF ,
CE ≡ AB ≡ ABCDEF ≡ DF ,
E ≡ ABC ≡ ABDEF ≡ CDF ,
DE ≡ ABCD ≡ ABEF ≡ CF ,
F ≡ ABCEF ≡ ABD ≡ CDE,
BCD ≡ ADE ≡ ACF ≡ BEF ,
AB ≡ CE ≡ DF ≡ ABCDEF ,
BCF ≡ AEF ≡ ACD ≡ BDE,
AC ≡ BE ≡ BCDF ≡ ADEF ;

Source of Degrees of
Variation Freedom

A 1
B 1
C 1
D 1
E 1
F 1
AB 1
AC 1
AD 1
BC 1
BD 1
CD 1
CF 1
Error 2

Total 15

15.23 Source df SS MS f P

A
B
C
D
Error

1
1
1
1
3

6.1250
0.6050
4.8050
0.2450
3.1600

6.1250
0.6050
4.8050
0.2450
1.0533

5.81
0.57
4.56
0.23

0.0949
0.5036
0.1223
0.6626

Total 7 14.9400

15.25 Source df SS MS f P

A
B
C
D
E
AD
AE
BD
BE
Error

1
1
1
1
1
1
1
1
1
6

388,129.00
277,202.25

4692.25
9702.25
1806.25
1406.25
462.25

1156.00
961.00
649.50

388,129.00
277,202.25

4692.25
9702.25
1806.25
1406.25
462.25

1156.00
961.00
108.25

3585.49
2560.76

43.35
89.63
16.69
12.99
4.27

10.68
8.88

0.0001
0.0001
0.0006
0.0001
0.0065
0.0113
0.0843
0.0171
0.0247

Total 15 686,167.00

All main effects are significant at the 0.05 level;

AD, BD, and BE are also significant at the 0.05
level.

15.27 The principal block contains af , be, cd, abd, ace,
bcf , def , abcdef .

15.29 A ≡ BD ≡ CE ≡ CDF ≡ BEF ≡ ABCF ≡
ADEF ≡ ABCDE;
B ≡ AD ≡ CF ≡ CDE ≡ AEF ≡ ABCE ≡
BDEF ≡ ABCDF ;
C ≡ AE ≡ BF ≡ BDE ≡ ADF ≡ CDEF ≡
ABCD ≡ ABCEF ;
D ≡ AB ≡ EF ≡ BCE ≡ ACF ≡ BCDF ≡
ACDE ≡ ABDEF ;
E ≡ AC ≡ DF ≡ ABF ≡ BCD ≡ ABDE ≡
BCEF ≡ ACDEF ;
F ≡ BC ≡ DE ≡ ACD ≡ ABE ≡ ACEF ≡
ABDF ≡ BCDEF .

15.31 x1 = 1 and x2 = 1

15.33 (a) Yes;

(b) (i) E(ŷ) = 79.00 + 5.281A;

(ii) Var(ŷ) = 6.222σ2
Z + 5.702A2σ2

Z +

2(6.22)(5.70)Aσ2
Z ;

(c) velocity at low level;

(d) velocity at low level;

(e) yes

15.35 ŷ = 12.7519 + 4.7194x1 + 0.8656x2 − 1.4156x3;
units are centered and scaled; test for lack of fit,
F = 81.58, with P -value < 0.0001.

15.37 AFG, BEG, CDG, DEF , CEFG, BDFG,
BCDE, ADEG, ACDF , ABEF , and
ABCDEFG

Chapter 16

16.1 x = 7 with P -value = 0.1719; fail to reject H0.

16.3 x = 3 with P -value = 0.0244; reject H0.

16.5 x = 4 with P -value = 0.3770; fail to reject H0.

16.7 x = 4 with P -value = 0.1335; fail to reject H0.

16.9 w = 43; fail to reject H0.

16.11 w+ = 17.5; fail to reject H0.

16.13 w+ = 15 with n = 13; reject H0 in favor of
μ̃1 − μ̃2 < 8.
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16.15 u1 = 4; claim is not valid.

16.17 u2 = 5; A operates longer.

16.19 u = 15; fail to reject H0.

16.21 h = 10.58; operating times are different.

16.23 v = 7 with P -value = 0.910; random sample.

16.25 v = 6 with P -value = 0.044; fail to reject H0.

16.27 v = 4; random sample.

16.29 0.70

16.31 0.995

16.33 (a) rs = 0.39; (b) fail to reject H0.

16.35 (a) rs = 0.72; (b) reject H0, so ρ > 0.

16.37 (a) rs = 0.71; (b) reject H0, so ρ > 0.

Chapter 18

18.1 p∗ = 0.173

18.3 (a) π(p | x = 1) = 40p(1− p)3/0.2844;
0.05 < p < 0.15;

(b) p∗ = 0.106

18.5 (a) beta(95, 45); (b) 1

18.7 8.077 < μ < 8.692

18.9 (a) 0.2509; (b) 68.71 < μ < 71.69;
(c) 0.0174

18.13 p∗ = 6
x+2

18.15 2.21
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Acceptable quality level, 705
Acceptance sampling, 153
Additive rule, 56
Adjusted R2, 464
Analysis of variance (ANOVA), 254, 507

one-factor, 509
table, 415
three-factor, 579
two-factor, 565

Approximation
binomial to hypergeometric, 155
normal to binomial, 187, 188
Poisson to binomial, 163

Average, 111

Backward elimination, 479
Bartlett’s test, 516
Bayes estimates, 717

under absolute-error loss, 718
under square-error loss, 717

Bayes’ rule, 72, 75
Bayesian

inference, 710
interval, 715
methodology, 265, 709
perspective, 710
posterior interval, 317

Bernoulli
process, 144
random variable, 83
trial, 144

Beta distribution, 201
Bias, 227
Binomial distribution, 104, 145, 153, 155

mean of, 147
variance of, 147

Blocks, 509
Box plot, 3, 24, 25

Categorical variable, 472
Central composite design, 640
Central limit theorem, 233, 234, 238
Chebyshev’s theorem, 135–137, 148, 155, 180, 186
Chi-squared distribution, 200
Cochran’s test, 518
Coefficient of determination, 407, 433, 462

adjusted, 464
Coefficient of variation, 471
Combination, 50
Complement of an event, 39
Completely randomized design, 8, 509
Conditional distribution, 99

joint, 103
Conditional perspective, 710
Conditional probability, 62–66, 68, 75, 76
Confidence

coefficient, 269
degree of, 269
limits, 269, 271

Confidence interval, 269, 270, 281, 317
for difference of two means, 285–288, 290
for difference of two proportions, 300, 301
interpretation of, 289
of large sample, 276
for paired observations, 293
for ratio of standard deviations, 306
for ratio of variances, 306
for single mean, 269–272, 275
one-sided, 273

for single proportion, 297
for single variance, 304
for standard deviation, 304

Contingency table, 373
marginal frequency, 374

Continuity correction, 190
Continuous distribution

beta, 201

785
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chi-squared, 200
exponential, 195
gamma, 195
lognormal, 201
normal, 172
uniform, 171
Weibull, 203, 204

Control chart
for attributes, 697
Cusum chart, 705
p-chart, 697
R-chart, 688
S-chart, 695
U-chart, 704
for variable, 684
X̄-chart, 686

Correlation coefficient, 125, 431
Pearson product-moment, 432
population, 432
sample, 432

Covariance, 119, 123
Cp statistic, 491
Cross validation, 487
Cumulative distribution function, 85, 90

Degrees of freedom, 15, 16, 200, 244, 246
Satterthwaite approximation of, 289

Descriptive statistics, 3, 9
Design of experiment

blocking, 532
central composite, 640
completely randomized, 532
contrast, 599
control factors, 644
defining relation, 627
fractional factorial, 598, 612, 626, 627
noise factor, 644
orthogonal, 617
randomized block, 533
resolution, 637

Deviation, 120
Discrete distribution

binomial, 143, 144
geometric, 158, 160
hypergeometric, 152, 153
multinomial, 143, 149
negative binomial, 158, 159
Poisson, 161, 162

Distribution, 23
beta, 201
binomial, 104, 143–145, 175, 188
bivariate normal, 431
chi-squared, 200
continuous uniform, 171
empirical, 254
Erlang, 207
exponential, 104, 194, 195
gamma, 194, 195
Gaussian, 19, 172
geometric, 143, 158, 160
hypergeometric, 152–154, 175
lognormal, 201
multinomial, 143, 149
multivariate hypergeometric, 156
negative binomial, 143, 158–160
normal, 19, 172, 173, 188
Poisson, 143, 161, 162
posterior, 711
prior, 710
skewed, 23
standard normal, 177
symmetric, 23
t-, 246, 247
variance ratio, 253
Weibull, 203

Distribution-free method, 655
Distributional parameter, 104
Dot plot, 3, 8, 32
Dummy variable, 472
Duncan’s multiple-range test, 527
Dunnett’s test, 528

Erlang distribution, 207
Error

in estimating the mean, 272
experimental, 509
sum of squares, 402
type I, 322
type II, 323

Estimate, 12
of single mean, 269

Estimation, 12, 142, 266
difference of two sample means, 285
maximum likelihood, 307, 308, 312
paired observations, 291
proportion, 296
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of the ratio of variances, 305
of single variance, 303
two proportions, 300

Estimator, 266
efficient, 267
maximum likelihood, 308–310
method of moments, 314, 315
point, 266, 268
unbiased, 266, 267

Event, 38
Expectation

mathematical, 111, 112, 115
Expected mean squares

ANOVA model, 548
Expected value, 112–115
Experiment-wise error rate, 525
Experimental error, 509
Experimental unit, 9, 286, 292, 562
Exponential distribution, 104, 194, 195

mean of, 196
memoryless property of, 197
relationship to Poisson process, 196
variance of, 196

F -distribution, 251–254
Factor, 28, 507
Factorial, 47
Factorial experiment, 561

in blocks, 583
factor, 507
interaction, 562
level, 507
main effects, 562
masking effects, 563
mixed model, 591
pooling mean squares, 583
random effects, 589
three-factor ANOVA, 579
treatment, 507
two-factor ANOVA, 565

Failure rate, 204, 205
Fixed effects experiment, 547
Forward selection, 479

Gamma distribution, 194, 195
mean of, 196
relationship to Poisson process, 196
variance of, 196

Gamma function, 194
incomplete, 199

Gaussian distribution, 19, 172
Geometric distribution, 158, 160

mean of, 160
variance of, 160

Goodness-of-fit test, 210, 255, 317, 370, 371

Histogram, 22
probability, 86

Historical data, 30
Hypergeometric distribution, 152–154

mean of, 154
variance of, 154

Hypothesis, 320
alternative, 320
null, 320
statistical, 319
testing, 320, 321

Independence, 62, 65, 67, 68
statistical, 101–103

Indicator variable, 472
Inferential statistics, 1
Interaction, 28, 562
Interquartile range, 24, 25
Intersection of events, 39
Interval estimate, 268

Bayesian, 715

Jacobian, 213
matrix, 214

Kruskall-Wallis test, 668

Lack of fit, 418
Least squares method, 394, 396
Level of significance, 323
Likelihood function, 308
Linear model, 133
Linear predictor, 498
Linear regression

ANOVA, 414
categorical variable, 472
coefficient of determination, 407
correlation, 430
data transformation, 424
dependent variable, 389
empirical model, 391
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error sum of squares, 415
fitted line, 392
fitted value, 416
independent variable, 389
lack of fit, 418
least squares, 394
mean response, 394, 409
model selection, 476, 487
multiple, 390, 443
normal equation, 396
through the origin, 413
overfitting, 408
prediction, 408
prediction interval, 410, 411
pure experimental error, 419
random error, 391
regression coefficient, 392
regression sum of squares, 461
regressor, 389
residual, 395
simple, 389, 390
statistical model, 391
test of linearity, 416
total sum of squares, 414

Logistic regression, 497
effective dose, 500
odds ratio, 500

Lognormal distribution, 201
mean of, 202
variance of, 202

Loss function
absolute-error, 718
squared-error, 717

Marginal distribution, 97, 101, 102
joint, 103

Markov chain Monte Carlo, 710
Masking effect, 563
Maximum likelihood estimation, 307, 308, 710

residual, 550
restricted, 550

Mean, 19, 111, 112, 114, 115
population, 12, 16
trimmed, 12

Mean squared error, 284
Mean squares, 415
Mode, 713

normal distribution, 174

Model selection, 476
backward elimination, 480
Cp statistic, 491
forward selection, 479
PRESS, 487, 488
sequential methods, 476
stepwise regression, 480

Moment, 218
Moment-generating function, 218
Multicollinearity, 476
Multinomial distribution, 149
Multiple comparison test, 523

Duncan’s, 527
Dunnett’s, 528
experiment-wise error rate, 525
Tukey’s, 526

Multiple linear regression, 443
adjusted R2, 464
ANOVA, 455
error sum of squares, 460
HAT matrix, 483
inference, 455
multicollinearity, 476
normal equations, 444
orthogonal variables, 467
outlier, 484
polynomial, 446
R-student residuals, 483
regression sum of squares, 460
studentized residuals, 483
variable screening, 456
variance-covariance matrix, 453

Multiplication rule, 44
Multiplicative rule, 65
Multivariate hypergeometric distribution, 156
Mutually exclusive

events, 40

Negative binomial distribution, 158, 159
Negative binomial experiment, 158
Negative exponential distribution, 196
Nonlinear regression, 496

binary response, 497
count data, 497
logistic, 497

Nonparametric methods, 655
Kruskall-Wallis test, 668
runs test, 671
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sign test, 656
signed-rank test, 660
tolerance limits, 674
Wilcoxon rank-sum test, 665

Normal distribution, 172, 173
mean of, 175
normal curve, 172–175
standard, 177
standard deviation of, 175
variance of, 175

Normal equations for linear regression, 444
Normal probability plot, 254
Normal quantile-quantile plot, 256, 257

Observational study, 3, 29
OC curve, 335
One-sided confidence bound, 273
One-way ANOVA, 509

contrast, 520
contrast sum of squares, 521
grand mean, 510
single-degree-of-freedom contrast, 520
treatment, 509
treatment effect, 510

Orthogonal contrasts, 522
Orthogonal variables, 467
Outlier, 24, 279, 484

p-chart, 697
P-value, 4, 109, 331–333
Paired observations, 291
Parameter, 12, 142
Partial F -test, 466
Permutation, 47

circular, 49
Plot

box, 24
normal quantile-quantile, 256, 257
probability, 254
quantile, 254, 255
stem-and-leaf, 21

Point estimate, 266, 268
standard error, 276

Points of inflection, normal distribution, 174
Poisson distribution, 143, 161, 162

mean of, 162
variance of, 162

Poisson experiment, 161

Poisson process, 161, 196
relationship to gamma distribution, 196

Polynomial regression, 443, 446
Pooled estimate of variance, 287
Pooled sample variance, 287
Population, 2, 4, 225, 226

mean of, 226
parameter, 16, 104
size of, 226
variance of, 226

Posterior distribution, 711
Power of a test, 329
Prediction interval, 277, 278, 281

for future observation, 278, 279
one-sided, 279

Prediction sum of squares, 487, 488
Prior distribution, 710
Probability, 35, 52, 53

additive rule, 56
coverage, 715
of an event, 52
indifference, 55, 709
mass function, 84
relative frequency, 55, 709
subjective, 55
subjective approach, 709

Probability density function, 88, 89
joint, 96

Probability distribution, 84
conditional, 99
continuous, 87
discrete, 84
joint, 94, 95, 102
marginal, 97
mean of, 111
variance of, 119

Probability function, 84
Probability mass function, 84

joint, 95
Product rule, 65

Quality control, 681
chart, 681, 682
in control, 682
out of control, 682
limits, 683

Quantile, 255
Quantile plot, 254, 255

Uploaded By: anonymousSTUDENTS-HUB.com



790 INDEX

R-chart, 688
R2, 407, 462

Adjusted, 464
Random effects experiment

variance components, 549
Random effects model, 547, 548
Random sample, 227

simple, 7
Random sampling, 225
Random variable, 81

Bernoulli, 83, 147
binomial, 144, 147
chi-squared, 244
continuous, 84
continuous uniform, 171
discrete, 83, 84
discrete uniform, 150
hypergeometric, 143, 153
mean of, 111, 114
multinomial, 149
negative binomial, 158
nonlinear function of, 133
normal, 173
Poisson, 161, 162
transformation, 211
variance of, 119, 122

Randomized complete block design, 533
Rank correlation coefficient, 675

Spearman, 674
Rectangular distribution, 171
Regression, 20
Rejectable quality level, 705
Relative frequency, 22, 31, 111
Residual, 395, 427
Response surface, 642, 648

robust parameter design, 644
Response surface methodology, 447, 639, 640

control factor, 644
control factors, 644
noise factor, 644
second order model, 640

Retrospective study, 30
Rule method, 37
Rule of elimination, 73–75
Runs test, 671

S-chart, 695
Sample, 1, 2, 225, 226

biased, 7
mean, 3, 11, 12, 19, 30–32, 225, 228
median, 3, 11, 12, 30, 31, 228
mode, 228
random, 227
range, 15, 30, 31, 229
standard deviation, 3, 15, 16, 30, 31, 229, 230
variance, 15, 16, 30, 225, 229

Sample mean, 111
Sample size, 7

in estimating a mean, 272
in estimating a proportion, 298
in hypothesis testing, 351

Sample space, 35
continuous, 83
discrete, 83
partition, 57

Sampling distribution, 232
of mean, 233

Satterthwaite approximation of degrees of freedom,
289

Scatter plot, 3
Sign test, 656
Signed-rank test, 660
Significance level, 332
Single proportion test, 360
Standard deviation, 120, 122, 135

sample, 15, 16
Standard error of mean, 277
Standard normal distribution, 177
Statistic, 228
Statistical independence, 101–103
Statistical inference, 3, 225, 265
Stem-and-leaf plot, 3, 21, 22, 31
Stepwise regression, 479
Subjective probability, 709, 710
Sum of squares

error, 402, 415
identity, 510, 536, 567
lack-of-fit, 419
regression, 415
total, 407
treatment, 511, 522, 536

t-distribution, 246–250
Test statistic, 322
Tests for equality of variances, 516

Bartlett’s, 516
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Cochran’s, 518
Tests of hypotheses, 19, 266, 319

choice of sample size, 349, 352
critical region, 322
critical value, 322
goodness-of-fit, 210, 255, 370, 371
important properties, 329
one-tailed, 330
P -value, 331, 333
paired observations, 345
partial F , 466
single proportion, 360
single sample, 336
single sample, variance known, 336
single sample, variance unknown, 340
single variance, 366
size of test, 323
test for homogeneity, 376
test for independence, 373
test for several proportions, 377
test statistics, 326
on two means, 342
two means with unknown and unequal vari-

ances, 345
two means with unknown but equal variances,

343
two-tailed, 330
two variances, 366

Tolerance interval, 280, 281
Tolerance limits, 280

of nonparametric method, 674
one-sided, 281

Total probability, 72, 73
Treatment

negative effect, 563
positive effect, 563

Tree diagram, 36
Trimmed mean, 12
Tukey’s test, 526
2k factorial experiment, 597

aliases, 628
center runs, 620
defining relation, 627
design generator, 627
diagnostic plotting, 604
factor screening, 598
fractional factorial, 626

orthogonal design, 617
Plackett-Burman designs, 638
regression setting, 612
resolution, 637

U-chart, 704
Unbiased estimator, 267
Uniform distribution, 171
Union of events, 40

Variability, 8, 9, 14–16, 119, 135, 228, 251, 253
between/within samples, 253, 254

Variable transformation
continuous, 213, 214
discrete, 212

Variance, 119, 120, 122
population, 16
sample, 16

Variance ratio distribution, 253
Venn diagram, 40

Weibull distribution, 203
cumulative distribution function for, 204
failure rate of, 204, 205
mean of, 203
variance of, 203

Wilcoxon rank-sum test, 665

X̄-chart, 686
operating characteristic function, 691
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