
12/9/2020

1

Exception Handling
and

Text IO

By: Mamoun Nawahdah (Ph.D.)
2020

Liang, Introduction to Java programming, 11th Edition, © 2017 Pearson Education, Inc.
All rights reserved

2

Runtime Error?

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

2

3

Fix it Using an if Statement

4

Exception Handling
 Exception handling technique enables a
method to throw an exception to its caller.

Without this capability, a method must
handle the exception or terminate the
program.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

3

5

Exception Types

6

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

4

7

Exceptions

 Exception describes errors caused by your program and
external circumstances.

 These errors can be caught and handled by your program.

8

Runtime Exceptions

 RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

5

9

Checked Exceptions vs.
Unchecked Exceptions
 RuntimeException, Error and their
subclasses are known as unchecked
exceptions.

 All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

10

Unchecked Exceptions
 In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

 an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the
program.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

6

11

Declaring, Throwing, and
Catching Exceptions

12

Declaring Exceptions

 Every method must state the types of
checked exceptions it might throw.

 This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

7

13

Throwing Exceptions
When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.
 This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

14

Throwing Exceptions Example

public void setRadius(double newRadius)
throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(

"Radius cannot be negative");
}

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

8

15

Catching Exceptions
try {

statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2() throws IOException {
 if (a file does not exist) {
 throw new IOException("File does not exist");
 }

 ...
}

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

9

17

Catch or Declare Checked Exceptions
 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or
 declare to throw the exception in the calling method.

 For example, suppose that method p1 invokes method
p2, you have to write the code as follow:

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

10Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

11

21

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;
throw ex;

}

22

The finally Clause
try {

statements;
}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

12

23

Trace a Program Execution
try {

statements;
}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

Suppose no
exceptions in

the statements

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

24

Trace a Program Execution

The final block
is always
executed

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

13

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

25

Trace a Program Execution

Next statement
in the method

is executed

26

Trace a Program Execution
try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

Suppose an
exception of

type Exception1
is thrown in
statement2

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

14

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

27

Trace a Program Execution

The exception is
handled.

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

28

Trace a Program Execution

The final block
is always
executed.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

15

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

29

Trace a Program Execution

The next
statement in the
method is now

executed.

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

30

Trace a Program Execution
statement2
throws an

exception of
type Exception2.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

16

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

31

Trace a Program Execution

Handling
exception

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

32

Trace a Program Execution

Execute the
final block

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

17

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

33

Trace a Program Execution

Rethrow the
exception and

control is
transferred to the

caller

34

Cautions When Using Exceptions

 Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.

 Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
broadcasting the errors to the calling methods.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

18

35

When to Throw Exceptions
 An exception occurs in a method.
 If you want the exception to be processed by

its caller, you should create an exception object
and throw it.

 If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions
 You should use it to deal with unexpected
error conditions.

36

Caution!
 Do not use exception to deal with simple,
expected situations.
 For example, the following code:

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {

System.out.println("refVar is null");
}

 is better to be replaced by:
if (refVar != null)

System.out.println(refVar.toString());
else

System.out.println("refVar is null");

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

19

37

Custom Exception
Use the exception classes in the API

whenever possible.

Define custom exception classes if the
predefined classes are not sufficient.

Define custom exception classes by
extending Exception or a subclass of
Exception class.

38

Custom Exception Class Example

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

20

39

The File Class
 The File class is intended to provide

an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.
 The filename is a string.
 The File class is a wrapper class for

the file name and its directory path.

40

File class

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

21

41

File class

42

Text I/O
 A File object encapsulates the properties of a file or a

path, but does not contain the methods for
reading/writing data from/to a file.

 In order to perform I/O, you need to create objects
using appropriate Java I/O classes.

 The objects contain the methods for reading/writing
data from/to a file.

 This section introduces how to read/write strings and
numeric values from/to a text file using the Scanner
and PrintWriter classes.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

22

43

PrintWriter class

44

Scanner class

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

23

45

Problem: Replacing Text
Write a class named ReplaceText that

replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:
 java ReplaceText sourceFile

targetFile oldString newString

46

Reading Data from the Web
Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

24

47

Reading Data from the Web
URL url = new

URL("www.google.com/index.html");
 After a URL object is created, you can use

the openStream() method defined in the
URL class to open an input stream and use
this stream to create a Scanner object as
follows:

Scanner input = new
Scanner(url.openStream());

48

Case Study: Web Crawler
This case study develops a program that travels the
Web by following hyperlinks.

Uploaded By: anonymousSTUDENTS-HUB.com

12/9/2020

25

49

Case Study: Web Crawler
 The program follows the URLs to traverse the

Web.
 To avoid that each URL is traversed only once,

the program maintains two lists of URLs.
 One list stores the URLs pending for traversing and

the other stores the URLs that have already been
traversed.

 The algorithm for this program can be
described as follows:

50

Case Study: Web Crawler
Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty {

Remove a URL from listOfPendingURLs;
if this URL is not in listOfTraversedURLs {
Add it to listOfTraversedURLs;
Display this URL;
Exit the while loop when the size of S is equal to 100.
Read the page from this URL and for each URL contained in the page {

Add it to listOfPendingURLs if it is not is listOfTraversedURLs;
}

}
}

Uploaded By: anonymousSTUDENTS-HUB.com

