State Finished Completed on Thursday, 4 January 2024, 6:30 PM Time taken 29 mins 55 secs	Started on	Thursday, 4 January 2024, 6:00 PM
Completed onThursday, 4 January 2024, 6:30 PMTime taken29 mins 55 secs	State	Finished
Time taken 29 mins 55 secs	Completed on	Thursday, 4 January 2024, 6:30 PM
	Time taken	29 mins 55 secs
Grade 11.00 out of 12.00 (91.67%)	Grade	11.00 out of 12.00 (91.67%)

Question **1**

Correct Mark 1.00 out of 1.00

The following circuit is <u>equivalent</u> to:

- a. 3-input OR gate
- b. 3-input **NAND** gate
- c. 3-input **XNOR** gate
- O d. 3-input AND gate
- e. 3-input **NOR** gate

Question 2	
Correct	
Mark 1.00 out of 1.00	

Given the Boolean function F(W, X, Y, Z) = ∏(0, 1, 2, 5, 8, 9, 10), which of the following is <u>not</u> a Prime Implicant of F ? a. YZ
b. XY
c. XZ'
d. None ✓

○ e. WX

STUDENTS-HUB.com Uploaded By: Mohammed.sadeh.2004@gmail.com

Question **3** Correct Mark 1.00 out of 1.00

Which of the following expressions is **<u>not</u>** equivalent to X' ?

- a. X XOR 1
- O b. X NAND X
- c. X NOR 1 ✓
- Od. X NOR X
- O e. X NAND 1

Correct Mark 1.00 out of 1.00

The Boolean function $F(A, B, C, D) = A \oplus B \oplus C \oplus D = 1$ means:

- \odot a. Half of the inputs are zeros (for example: A = 0, B = 0, C = 1, D = 1)
- \bigcirc b. All inputs are zeros (A = 0, B = 0, C = 0, D = 0)
- ◎ c. One or three of the inputs are ones ✓
- \bigcirc d. All inputs are ones (A = 1, B = 1, C = 1, D = 1)
- \odot e. One or two or three of the inputs are ones

Question 5

Correct

Mark 1.00 out of 1.00

Given the following K-map of the Boolean function F(W, X, Y, Z):

WX	00	01	11	10
00	1	1	0	1
01	1	х	х	1
11	0	х	х	0
10	1	1	0	0

Which of the following is an *Essential Prime Implicant* of F? (Select all that apply)

- 🗆 a. W'X
- 🗹 b. W'Z' 🗸
- 🗹 c. X'Y' 🗸
- 🗆 d. Y'Z
- e. W'Y'

Question **6**

Correct Mark 1.00 out of 1.00

The <u>minimum</u> product-of-sums (**POS**) expression for the Boolean function **G(A, B, C, D)** subject to the **don't care conditions** given in the following *K-map* is:

CD AB	00	01	11	10
00	х	1		
01	1	1	х	1
11	1	х	х	
10		1		х

◎ a. $G(A, B, C, D) = (B + D) \cdot (A' + C') \cdot (C' + D') \checkmark$

O b. None

- c. $G(A, B, C, D) = (B' + C) \cdot (A + B') \cdot (C + D')$
- O d. $G(A, B, C, D) = (B' + D') \cdot (A + C) \cdot (B' + C)$
- e. $G(A, B, C, D) = (B + D) \cdot (A' + C') \cdot (B + C') \cdot (C' + D')$

STUDENTS-HUB.com Uploaded By: Mohammed.sadeh.2004@gmail.com

A communication system for binary-coded decimal (**BCD**) **codes** uses <u>even parity</u> for error detection. Assume the sender wants to **send** the <u>two numbers: 9 and 7</u>. Then, the sender **transmits**:

(Note: In this communication system, the parity bit is padded/added for every transmitted BCD digit)

- ◎ a. 0<u>1001</u> 1<u>0111</u> ✔
- b. 1<u>10010111</u>
- c. 1<u>1001</u> 0<u>0111</u>
- d. <u>1001 0111</u>
- e. 0<u>1001</u>0111

Question 8

Correct

Mark 1.00 out of 1.00

Consider the following K-map of the Boolean function F(W, X, Y, Z):

WX	00	01	11	10
00	0	1	0	0
01	1	1	0	1
11	1	1	0	1
10	0	1	0	0

The gate-level implementation for the **simplified** <u>complement</u> of **F** expressed as sum-ofproducts **(SOP)** is:

Question 9 Correct Mark 1.00 out of 1.00

Given the following circuit diagram with AND/OR/NOT gates:

The equivalent NAND gates only implementation of the above circuit is:

^

The implementation of Boolean function F(A, B, C, D) = (A + B) · (C' · D')' using NOR gates only is:

Question **11**

Incorrect Mark 0.00 out of 1.00

Consider the Boolean function $F(W, X, Y, Z) = \sum(0, 1, 2, 4, 6, 10, 12)$ which has the don't care conditions $D(W, X, Y, Z) = \sum(7, 13, 14, 15)$, the minimum sum-of-products (SOP) expression of F is:

• b.
$$F(W, X, Y, Z) = W'X'Y' + W'Z' + XZ'$$

- d. F(W, X, Y, Z) = W'X'Y' + XZ' + YZ'
- e. F(W, X, Y, Z) = W'X'Y' + WX + XZ' + YZ' ×

STUDENTS-HUB.com Uploaded By: Mohammed.sadeh.2004@gmail.com

Question 12 Correct Mark 1.00 out of 1.00

Consider the circuit with the following truth table. The circuit has three inputs; A, B, and C. The output Z =

Α	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- 🔾 a. None
- b. B'C' + BC'

○ c. B'

- d. BC + B'C
- . C' ✔