COMP 233 Discrete Mathematics

Chapter 5 Sequences and Mathematical Induction

STUDENTS-HUB.com Uploaded By: Sondos Hammad

Outline

Sequences:

- **Explicit Formulas;**
- **Summation Notation;**
- **Sequences in Computer Programming;**

Proof by Mathematical Induction (I and II)

- **Proving sum of integers and geometric** sequences
- **Proving a Divisibility Property and Inequality**
- **Proving a Property of a Sequence**

Sequences

Idea: Think of a sequence as a set of elements written in a row:

^a**1** , ^a**²** , ^a**³** , . . ., ^a**ⁿ** finite sequence ^a**1** , ^a**²** , ^a**³** , . . . , ^a**ⁿ** , . . . infinite sequence

Each individual element a_k is called a term. The k in a_k is called a subscript or index

Observe patterns

Determine the number of points in the 4th and 5th figure

Determine the next 2 terms of the sequence 4, 8, 16, 32, 64

Induce the formula that could be used to determine any term in the sequence

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Handmad

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1 , a_2 , a_3 , ... and b_2 , b_3 , b_4 , ... by the following explicit formulas: $a_k = \underline{k}$ for some integers $k \ge 1$

Compute the first five terms of both sequences. $k+1$ $b_i = i - 1$ for some integers $i \ge 2$ **i**

Compute the first six terms of the sequence c_0 , c_1 , c_2 , \dots defined as follows: $c_j = (-1)^j$ for all integers $j ≥ 0$.

Finding Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$
1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, -\frac{1}{36}, \dots
$$

$$
a_k = \frac{-1^{k+1}}{k^2} \quad \text{for all integers } k \ge 1.
$$

$$
a_k = \frac{-1^k}{(k+1)^2}
$$
 for all integers $k \ge 0$.

Exercises

Example: Find an explicit formula for a sequence that has the following initial terms:

Solutions: The sequence satisfies the formulas for all integers $n \geq 0$, $\boldsymbol{+}$ $=$ 1 $\mathrm{+}$ 1 (-1) 3 n n n a n , , , , , , , , , 1 2 3 4 5 6 $\overline{3}$, $\overline{-4}$, $\overline{5}$, $\overline{-6}$, $\overline{7}$, $\overline{-8}$

for all integers $n \geq 1$,

$$
a_n = \left(-1\right)^{n-1} \frac{n}{n+2}
$$

Summation Notation

Suppose a_1 , a_2 , a_3 , , a_n are real numbers. The "summation from *i* equals 1 to n of a -sub-i" is

$$
\sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \cdots + a_n.
$$

• Definition

we write

If *m* and *n* are integers and $m \le n$, the symbol $\sum_{k=m}^{n} a_k$, read the **summation from** k equals m to n of a-sub-k, is the sum of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We say that $a_m + a_{m+1} + a_{m+2} + \ldots + a_n$ is the **expanded form** of the sum, and

$$
\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \cdots + a_n.
$$

We call k the **index** of the summation, m the **lower limit** of the summation, and n the upper limit of the summation.

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Hammad

Ex: Use summation notation to write the following sum:

$$
\frac{1}{3}-\frac{2}{4}+\frac{3}{5}-\frac{4}{6}+\frac{5}{7}-\frac{6}{8}.
$$

Solution: By the example on the previous slide, we can write:

$$
\frac{1}{3}-\frac{2}{4}+\frac{3}{5}-\frac{4}{6}+\frac{5}{7}-\frac{6}{8}=\sum_{n=0}^{5}(-1)^n\bigg(\frac{n+1}{n+3}\bigg).
$$

or:

$$
\frac{1}{3}-\frac{2}{4}+\frac{3}{5}-\frac{4}{6}+\frac{5}{7}-\frac{6}{8}=\sum_{n=1}^{6}(-1)^{n+1}\bigg(\frac{n}{n+2}\bigg).
$$

Exercises

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a.
$$
\sum_{k=1}^{5} a_k
$$
 b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2,k}$

Example 5.1.4 Computing Summations

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following: a. $\sum_{k=1}^{5} a_k$ b. $\sum_{k=1}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

Solution

a.
$$
\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0
$$

\nb.
$$
\sum_{k=2}^{2} a_k = a_2 = -1
$$

\nc.
$$
\sum_{k=1}^{2} a_{2k} = a_{2+1} + a_{2+2} = a_2 + a_4 = -1 + 1 = 0
$$

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Har**h**mad

Write the following summation in expanded form:

$$
\sum_{i=0}^{n} \frac{(-1)^i}{i+1}
$$

$$
\sum_{i=0}^{n} \frac{(-1)^i}{i+1} = \frac{(-1)^0}{0+1} + \frac{(-1)^1}{1+1} + \frac{(-1)^2}{2+1} + \frac{(-1)^3}{3+1} + \dots + \frac{(-1)^n}{n+1}
$$

$$
= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^n}{n+1}
$$

$$
= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n+1}
$$

Expanded Form to Summation

Express the following using summation notation:

Separating Off a Final Term and Adding On a Final Term n $n+1$ ∑ 1 Rewrite $\sum \frac{1}{\sqrt{2}}$ by separating off the final term. \hat{I}^2 $i=1$ $\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2}$ n ∑ $2^k + 2^{n+1}$ Write $\sum_{k} 2^{k} + 2^{n+1}$ as a single summation. $k=0$ $\sum_{k=1}^{n} 2^{k} + 2^{n+1} = \sum_{k=1}^{n+1} 2^{k}$ $k=0$ $k=0$

Telescoping Sum

Product Notation

 $k = m$

• Definition

If *m* and *n* are integers and $m \le n$, the symbol $\prod_{k=1}^{n} a_k$, read the product from *k* equals *m* to *n* of *a*-sub-*k*, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We write \boldsymbol{n} $\prod_{m=1}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \cdot \cdot a_n.$

A recursive definition for the product notation is the following: If
$$
m
$$
 is any integer, then

$$
\prod_{k=m}^m a_k = a_m \quad \text{and} \quad \prod_{k=m}^n a_k = \left(\prod_{k=m}^{n-1} a_k \right) \cdot a_n \quad \text{for all integers } n > m.
$$

Computing Products

■ Compute the following products: 5 a. $\prod k$

$= 1*2*3*4*5=120$

 $= 1/2$

Properties of Summations

Theorem 5.1.1

If a_m , a_{m+1} , a_{m+2} , ... and b_m , b_{m+1} , b_{m+2} , ... are sequences of real numbers and c is any real number, then the following equations hold for any integer $n \ge m$.

1.
$$
\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)
$$

\n2.
$$
c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k
$$
 generalized distributive law
\n3.
$$
\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k).
$$

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expressions as a single summation or product:

a.
$$
\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k
$$
 b. $\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right)$

Solution

۳

a.
$$
\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)
$$
 by substitution
\n
$$
= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)
$$
 by Theorem 5.1.1 (2)
\n
$$
= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))
$$
 by Theorem 5.1.1 (1)
\n
$$
= \sum_{k=m}^{n} (3k-1)
$$
 by algebraic simplification
\nb.
$$
\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \left(\prod_{k=m}^{n} (k+1)\right) \cdot \left(\prod_{k=m}^{n} (k-1)\right)
$$
 by substitution
\n
$$
= \prod_{k=m}^{n} (k+1) \cdot (k-1)
$$
 by Theorem 5.1.1 (3)
\n
$$
= \prod_{k=m}^{n} (k^2 - 1)
$$
 by algebraic simplification

¹⁷ © Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved STUDENTS-HUB.com Uploaded By: Sondos Hammad

Change of Variable

Example: Transform \sum k'' by making the change of variable $j = k - 1$. $k=1$ $\int \nabla \cdot K^n$

When $k = 1$, then $j = 1 - 1 = 0$

When $k = n$, then $j = n - 1$

 $j = k-1 \Rightarrow k = j+1$ Thus $k^n = (j+1)^n$ So: $=$ 1 —1 = $\sum K'' = \sum (J+1)$ 1 1 0 $(j+1)^n$ j n k $k^n = \sum^{n-1}(j$

Exercises

Transform the following summation by making the specified change of variable.

$$
\sum_{k=0}^{6} \frac{1}{k+1}
$$
 Change variable $j = k+1$ For (k=0; k<=6; k++)
Sum = Sum + 1/(k+1)

$$
\sum_{j=1}^{7} \frac{1}{j} = \sum_{k=1}^{7} \frac{1}{k}.
$$

 $\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{k=1}^{7} \frac{1}{k}$

For $(k=1; k \leq 7; k++)$ $Sum = Sum + 1/(k)$

Exercises

Transform the following summation by making the specified change of variable.

$$
\sum_{k=1}^{n+1} \frac{k}{n+k}
$$

Change of variable: $j = k - 1$

$$
\sum_{j=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
$$

$$
\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
$$

For ($k=0$; $k\leq n$; $k++$) $Sum = Sum + (k+1)/(n+k+1)$

For $(k=1; k \leq n+1; k++)$

 $Sum = Sum + k/(n+k)$

Sequences in Computer Programming

What is the difference

1. for $i := 1$ to $n = 2$. for $j := 0$ to $n - 1 = 3$. for $k := 2$ to $n + 1$ **print** $a[j+1]$ **print** $a[k-1]$ $print a[i]$ next i $next k$ $next$ j

■ Computing the sum

$$
\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
$$

Sum=0 For ($k=0$; $k<=n$; $k++$) $Sum = Sum + (k+1)/(n+k+1)$

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Haramad

Factorial !

• Definition

For each positive integer n , the quantity n factorial denoted $n!$, is defined to be the product of all the integers from 1 to n :

$$
n! = n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1.
$$

Zero factorial, denoted 0!, is defined to be 1:

 $0! = 1.$

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

a.
$$
\frac{8!}{7!}
$$
 b. $\frac{5!}{2! \cdot 3!}$ c. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!}$ d. $\frac{(n+1)!}{n!}$ e. $\frac{n!}{(n-3)!}$

Solution

a.
$$
\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8
$$

\nb. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$
\nc. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4}$ by multiplying each numerator and denominator by just what is necessary to obtain a common denominator
\n
$$
= \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!}
$$
by rearranging factors by rearranging factors with a common denominator
\n
$$
= \frac{7}{3! \cdot 4!}
$$
by the rule for adding fractions with a common denominator
\n
$$
= \frac{7}{144}
$$

\nd. $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n + 1$
\ne. $\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$
\n
$$
= \frac{7}{144} \text{Update B. } \text{S. } \text
$$

 $\overline{}$

n choose r

Observe that the definition implies that $\binom{n}{r}$ will always be an integer because it is a number of subsets. In Section 9.5 we will explore many uses of *n* choose r for solving problems involving counting, and we will prove the following computational formula:

• Formula for Computing $\binom{n}{r}$ For all integers *n* and *r* with $0 \le r \le n$, $\binom{n}{r} = \frac{n!}{r!(n-r)!}.$

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Haft mad

Example 5.1.17 Computing $\binom{n}{r}$ by Hand

Use the formula for computing $\binom{n}{r}$ to evaluate the following expressions:

a.
$$
\binom{8}{5}
$$
 b. $\binom{4}{0}$ c. $\binom{n+1}{n}$

Solution

a.
$$
\binom{8}{5} = \frac{8!}{5!(8-5)!}
$$

\n
$$
= \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot (3 \cdot 2 \cdot 1)}
$$
\n
$$
= 56.
$$
\nb. $\binom{4}{4} = \frac{4!}{4!(4-4)!} = \frac{4!}{4!0!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(1)} = 1$

before multiplying

always cancel common factors

The fact that $0! = 1$ makes this formula computable. It gives the correct value because a set of size 4 has exactly one subset of size 4, namely itself.

c.
$$
\binom{n+1}{n} = \frac{(n+1)!}{n!(n+1)-n)!} = \frac{(n+1)!}{n!1!} = \frac{(n+1)\cdot n!}{n!} = n+1
$$

²⁶ © Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved STUDENTS-HUB.com Uploaded By: Sondos Hammad

Mathematical Induction

STUDENTS-HUB.com Uploaded By: Sondos Hammad

Mathematical Induction: A Way to Prove Such Formulas and Other Things

Given an integer variable n , we can consider a variety of properties $P(n)$ that might be true or false for various values of n . For instance, we could consider

$$
P(n): 1 + 3 + 5 + 7 + \cdots + (2n-1) = n^2
$$

- P(n): $4^n 1$ is divisible by 3
- $P(n)$: *n* cents can be obtained using 3¢ and 5¢ coins.

 A **proof by mathematical induction:** shows that a given property $P(n)$ is true for all integers greater than or equal to some initial integer.

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. $P(a)$ is true.

2. For all integers $k \ge a$, if $P(k)$ is true then $P(k + 1)$ is true.

Then the statement

```
for all integers n \ge a, P(n)
```
is true.

Outline of Proof by Mathematical Induction

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers $n \ge a$, a property $P(n)$ is true." To prove such a statement, perform the following two steps: Step 1 (basis step): Show that $P(a)$ is true. Step 2 (inductive step): Show that for all integers $k \ge a$, if $P(k)$ is true then $P(k + 1)$ is true. To perform this step,

suppose that $P(k)$ is true, where k is any particular but arbitrarily chosen integer with $k \ge a$. [This supposition is called the **inductive hypothesis.**]

Then

show that $P(k + 1)$ is true.

Example: Prove that for all integers $n \geq 1$,

 $1 + 3 + 5 + 7 + \cdots + (2n - 1) = n^2$.

Proof: Let the property P(n) be the equation

 $1 + 3 + 5 + 7 + \cdots + (2n - 1) = n^2$ \leftarrow The property $P(n)$

Show that the property is true for $n = 1$ **:** Basis Step When $n = 1$, the property is the equation $1 = 1^{2}$ But the left-hand side (LHS) of this equation is 1, and the right-hand side (RHS) is 1 **²**, which equals 1 also. So the property is true for $n = 1$.

Inductive Step for the proof that for all integers $n \geq 1$ **,** $1 + 3 + 5 + 7 + \cdots + (2n - 1) = n^2$.

- Show that \forall integers $k \geq 1$, if $p(k)$ is true then it is true for $p(k)$ *k+***1)**:
- Let k be any integer with $k \geq 1$, and suppose that the property is true for n $=$ k . In other words, **suppose** that
- $1 + 3 + 5 + 7 + \cdots + (2k-1) = k^2$. | Inductive Hypothesis

- We must show that the property is true for $n = k + 1$. • $P(k+1) = (k+1)^2$,
- or, equivalently, we must **show** that
- $1 + 3 + 5 + 7 + \cdots + (2(k + 1) 1) = (k + 1)^2$.

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Haramad

Inductive hypothesis: $1 + 3 + 5 + 7 + \cdots + (2k - 1) = k^2$. **Show:** $1 + 3 + 5 + 7 + \cdots + (2k + 1) = (k + 1)^2$.

But the LHS of the equation to be shown is

 $1 + 3 + 5 + 7 + \cdots + (2(k + 1)-1)$

 $= 1 + 3 + 5 + 7 + \cdots + (2k - 1) + (2(k + 1)-1)$

by making the next-to-last-term explicit

- $=$ $k^2 + (2k + 1)$ by substitution from the inductive hypothesis
- $=$ $(k+1)^2$ by algebra,

which equals the RHS of the equation to be shown.

So, the property is true for $n = k+1$. Therefore the property P(n) is true.

Proving sum of integers and geometric sequence

Formula for the sum of the first *n* **integers**: For all integers $n \geq 1$,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}.
$$

Formula for the sum of the terms of a geometric sequence: For all real numbers $r \neq 1$ and all integers $n \geq 0$,

$$
1 + r + r2 + r3 + \cdots + rn = \frac{r^{n+1}-1}{r-1}.
$$

Example

Theorem 5.2.2 Sum of the First n Integers

For all integers $n \geq 1$,

$$
1 + 2 + \dots + n = \frac{n(n+1)}{2}.
$$

Proof (by mathematical induction):

Let the property $P(n)$ be the equation

$$
1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.
$$

Show that $P(1)$ is true:

To establish $P(1)$, we must show that

$$
1 = \frac{1(1+1)}{2} \qquad \qquad \leftarrow \quad P(1)
$$

But the left-hand side of this equation is 1 and the right-hand side is

$$
\frac{1(1+1)}{2} = \frac{2}{2} = 1
$$

also. Hence $P(1)$ is true.

Show that for all integers $k \geq 1$, if $P(k)$ is true then $P(k + 1)$ is also true: [Suppose that $P(k)$ is true for a particular but arbitrarily chosen integer $k \geq 1$. *That is: J* Suppose that k is any integer with $k \ge 1$ such that

$$
1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2} \qquad \qquad \leftarrow P(k) \ninductive hypothesis
$$

[We must show that $P(k + 1)$ is true. That is:] We must show that

$$
1 + 2 + 3 + \dots + (k + 1) = \frac{(k + 1)[(k + 1) + 1]}{2},
$$

or, equivalently, that

$$
1 + 2 + 3 + \dots + (k + 1) = \frac{(k + 1)(k + 2)}{2} \cdot \quad \leftarrow P(k + 1)
$$

³⁶ © Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved STUDENTS-HUB.com Uploaded By: Sondos Hammad

 \blacksquare

Exercises

The left-hand side of $P(k + 1)$ is $1+2+3+\cdots+(k+1)$ by making the next-to-last $= 1 + 2 + 3 + \cdots + k + (k + 1)$ term explicit $=\frac{k(k+1)}{2}+(k+1)$ by substitution from the inductive hypothesis $=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$ $=\frac{k^2+k}{2}+\frac{2k+2}{2}$ $=\frac{k^2+3k+1}{2}$ by algebra. And the right-hand side of $P(k + 1)$ is

$$
\frac{(k+1)(k+2)}{2} = \frac{k^2 + 3k + 1}{2}.
$$

Thus the two sides of $P(k + 1)$ are equal to the same quantity and so they are equal to each other. Therefore the equation $P(k + 1)$ is true [as was to be shown]. [Since we have proved both the basis step and the inductive step, we conclude that the *theorem is true.]*

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Harmad

• Definition Closed Form

If a sum with a variable number of terms is shown to be equal to a formula that does not contain either an ellipsis or a summation symbol, we say that it is written in closed form.

- a. Evaluate $2 + 4 + 6 + \cdots + 500$.
- b. Evaluate $5 + 6 + 7 + 8 + \cdots + 50$.
- c. For an integer $h \ge 2$, write $1 + 2 + 3 + \cdots + (h 1)$ in closed form.

Solution

a.
$$
2 + 4 + 6 + \dots + 500 = 2 \cdot (1 + 2 + 3 + \dots + 250)
$$

\n
$$
= 2 \cdot \left(\frac{250 \cdot 251}{2}\right)
$$
\nby applying the formula for the sum
\nof the first *n* integers with *n* = 250
\n
$$
= 62,750.
$$
\nb. $5 + 6 + 7 + 8 + \dots + 50 = (1 + 2 + 3 + \dots + 50) - (1 + 2 + 3 + 4)$
\n
$$
= \frac{50 \cdot 51}{2} - 10
$$
\nby applying the formula for the sum
\nof the first *n* integers with *n* = 50
\n
$$
= 1,265
$$
\nc. $1 + 2 + 3 + \dots + (h - 1) = \frac{(h - 1) \cdot [(h - 1) + 1]}{2}$ \nby applying the formula for the sum
\nof the first *n* integers with *n* = 50
\n
$$
= \frac{(h - 1) \cdot h}{2}
$$
\nsince $(h - 1) + 1 = h$.

³⁸ © Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved STUDENTS-HUB.com Uploaded By: Sondos Hammad

Proving Sum of Geometric Sequences

$$
\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.
$$

$$
\sum_{i=0}^{0} r^{i} = \frac{r^{0+1} - 1}{r - 1} \leftarrow P(0) = \frac{r - 1}{r - 1} = 1
$$

$$
\sum_{i=0}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1} \leftarrow P(k)
$$
inductive hypothesis

$$
\sum_{i=0}^{k+1} r^{i} = \frac{r^{k+2} - 1}{r - 1}, \quad \leftarrow P(k+1)
$$

$$
= \sum_{i=0}^{k} r^{i} + r^{k+1}
$$

$$
= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}
$$

$$
= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}
$$

$$
= \frac{(r^{k+1} - 1) + r^{k+1}(r - 1)}{r - 1}
$$

$$
= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1}
$$

$$
= \frac{r^{k+2} - 1}{r - 1}
$$

STUDENTS-HUB.com.
S© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Ha79 mad

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1, and any integer $n \geq 0$,

$$
\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.
$$

Proof (by mathematical induction):

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1, and let the property $P(n)$ be the equation

$$
\sum_{i=0}^{n} r^{i} = \frac{r^{i+1} - 1}{r - 1} \quad \leftarrow P(n)
$$

We must show that $P(n)$ is true for all integers $n \ge 0$. We do this by mathematical induction on n .

Show that $P(0)$ is true:

To establish $P(0)$, we must show that

$$
\sum_{i=0}^{0} r^{i} = \frac{r^{0+1} - 1}{r - 1} \quad \leftarrow P(0)
$$

The left-hand side of this equation is $r^0 = 1$ and the right-hand side is

$$
\frac{r^{0+1}-1}{r-1} = \frac{r-1}{r-1} = 1
$$

 SUSms_max S. Equilibility S. Equilibrium $r^1 = r$ and $r \neq 1$. Hence $P(0)$ is true. Uploaded By: Sondos Hammad

Show that for all integers $k \geq 0$, if $P(k)$ is true then $P(k + 1)$ is also true: [Suppose that $P(k)$ is true for a particular but arbitrarily chosen integer $k \geq 0$. That is:] Let k be any integer with $k \ge 0$, and suppose that

$$
\sum_{i=0}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1} \quad \leftarrow P(k)
$$
inductive hypothesis

[We must show that $P(k + 1)$ is true. That is:] We must show that

$$
\sum_{i=0}^{k+1} r^i = \frac{r^{(k+1)+1}-1}{r-1},
$$

or, equivalently, that

$$
\sum_{i=0}^{k+1} r^i = \frac{r^{k+2} - 1}{r-1}.
$$
 \leftarrow P(k+1)

[We will show that the left-hand side of $P(k + 1)$ equals the right-hand side.] The left-hand side of $P(k + 1)$ is

$$
\sum_{i=0}^{k+1} r^{i} = \sum_{i=0}^{k} r^{i} + r^{k+1}
$$
\n
$$
= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}
$$
\nby s
\n
$$
= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}
$$
\nby m
\n
$$
= \frac{(r^{k+1} - 1) + r^{k+1}(r - 1)}{r - 1}
$$
\nby m
\n
$$
= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1}
$$
\nby m
\n
$$
= \frac{r^{k+2} - 1}{r - 1}
$$
\nby m
\nby c

writing the $(k + 1)$ st term rately from the first k terms

ubstitution from the ctive hypothesis

nultiplying the numerator and denominator ie second term by $(r - 1)$ to obtain a mon denominator

dding fractions

nultiplying out and using the fact $r^{k+1} \cdot r = r^{k+1} \cdot r^1 = r^{\bar{k}+2}$

anceling the r^{k+1} 's.

which is the right-hand side of $P(k + 1)$ [as was to be shown.] [Since we have proved the basis step and the inductive step, we conclude that the theorem STUDENTS^{IHUB:}com Uploaded By: Sondos Hammad

 $1 + 3 + 3^2 + \cdots + 3^{m-2} = 3^{(m-2)+1} - 1/3 - 1$ a. by applying the formula for the sum of a geometric sequence with $r = 3$ and

$$
n=m-2
$$

=
$$
\frac{3^{m-1}-1}{2}
$$

b.

 3^2 + 3^3 + 3^4 + \cdots + 3^m = $3^2 \cdot (1 + 3 + 3^2 + \cdots + 3^{m-2})$ by factoring out 3²

$$
= 9 \times \frac{3^{m-1} - 1}{2}
$$
 by part (a).

STUDENTS-HUB.com.
© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Hammad

Mathematics in Programming

Example : Finding the sum of a integers

Same Question: Prove that these programs prints the same results in case n ≥ *1* For $(i=1, i \leq n; i++)$ $S=S+i;$ Print ("%d", S); $S=(n(n+1))/2$ Print ("%d",S);

Mathematics in Programming

Example : Finding the sum of a geometric series

Prove that these codes will return the same output.

```
int n, r, sum=0;int i;
scanf("%d",&n);
scanf("%d",&r);
```

```
if(r != 1) {
  for(i=0 ; i<=n ; i++) {
      sum = sum + pow(r,i);}
  printf("%d\n", sum);
}
```
int n, r, sum=0; scanf("%d",&n); scanf("%d",&r);

```
if(r != 1) {
        sum=((pow(r,n+1))-1)/(r-1);printf("%d\n", sum); 
}
```
STUDENTS-HUB.com.
S© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Haftamad

Mathematical Induction II Proving Divisibility

STUDENTS-HUB.com Uploaded By: Sondos Hammad

Mathematics in Programming Proving Divisibility Property

What will the output of this program be for any input n?

```
int n;
scanf("%d",&n);
if(n >= 0) {
    if( (pow(2,(2*n)) - 1) %3 == 0) \\ does 2^2n -1 | 3?? \\
     printf("this property is true");
    else
     printf("this property isn't true");
}
```
Proving a Divisibility Property

For all integers $n \ge 0$, $2^{2n} - 1$ is divisible by 3.

 $3 | 2^{2n} - 1 \leftarrow P(n)$

Basis Step: Show that P(0) is true. $P(0)$: $2^{2.0} - 1 = 2^0 - 1 = 1 - 1 = 0$ as $3 \mid 0$, thus $P(0)$ is true.

Inductive Step: Show that for all integers $k \geq 0$, if $P(k)$ is true then $P(k + 1)$ is also true:

Suppose: 2^{2k} – 1 is divisible by 3. ← $P(k)$ inductive hypothesis $2^{2k} - 1 = 3r$ for some integer r. We want to prove $2^{2(k+1)}-1$ is divisible by 3. $\leftarrow P(k+1)$ $2^{2(k+1)} - 1 = 2^{2k+2} - 1$ by the laws of exponents

> $= 2^{2k} \cdot 2^2 - 1 = 2^{2k} \cdot 4 - 1$ $= 2^{2k}(3 + 1) - 1 = 2^{2k} \cdot 3 + (2^{2k} - 1) = 2^{2k} \cdot 3 + 3r$ $= 3(2^{2k} + r)$ **22k + Which is integer**

so, by definition of divisibility, $2^{2(k+1)} - 1$ is divisible by 3

STUDENTS-HUB.com.
S© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Hand

Outline a proof by math induction for the statement:

For all integers $n \ge 0$, $5^n - 1$ is divisible by 4.

Proof by mathematical induction: Let the property $P(n)$ be the sentence Show that the property is true for $n = 0$: We must show that $5^0 - 1$ is divisible by 4. Show that for all integers $k \ge 0$, if the property is true for $n = k$, then it is true for $n = k + 1$: Let k be an integer with $k \geq 0$, and **suppose** that [the property is true for $n = k$. 5 **^k** – 1 is divisible by 4. *inductive hypothesis* But $5^0 - 1 = 1 - 1 = 0$, and 0 is divisible by 4 because $0 = 4 \cdot 0$. $5'' - 1$ is divisible by 4. \leftarrow the property P(n)

We must **show** that $P(k + 1)$ is true.

 $5^{k+1} - 1$ is divisible by 4.

Scratch Work for proving that For all integers $n \ge 0$, $5^n - 1$ is divisible by 4.

$$
5^{k+1}-1 = 5^{k} \cdot 5 - 1
$$

= 5^k \cdot (4 + 1) - 1
= 5^k \cdot 4 + 5^k \cdot 1 - 1
= 5^k \cdot 4 + (5^k - 1)

Note: Each of these terms is divisible by 4.

So:
$$
5^{k+1} - 1 = 5^k \cdot 4 + 4 \cdot r
$$
 (where *r* is an integer)
= $4 \cdot (5^k + r)$

 $(5^k + r)$ is an integer because it is a sum of products of integers, and so, by definition of divisibility $5^{k+1} - 1$ is divisible by 4.

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Handmad

Proving Inequality

For all integers *n* ≥ 3, 2*n* + 1 < 2*ⁿ*

Let $P(n)$ be $2n+1 < 2ⁿ$

Basis Step: *Show that P(3) is true.* P(3): $2.3 + 1 < 2^3$ which is true.

Inductive Step: Show that for all integers $k \geq 3$, if $P(k)$ is true then $P(k + 1)$ is also true:

Suppose: $2k+1<2^k$ is true $\leftarrow P(k)$ inductive hypothesis

 $2(k+1) + 1 < 2^{k+1} \leftarrow P(k+1)$

 $2k+3 = (2k+1) +2$ by algebra

 $< 2^k + 2$ k as 2k + 1 < 2^k by the hypothesis and because $2 < 2^k$ ($k \ge 2$)

 \therefore 2 $k + 3$ < 2 · 2^{$k = 2^{k+1}$} [This is what we needed to show.]

STUDENTS-HUB.com.
S© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Han4 mad

For each positive integer n , let $P(n)$ be the property

 2^n < $(n + 1)!$.

Define a sequence a_1 , a_2 , a_3 ... as follows:

 $a_1 = 2$ $a_k = 5a_{k-1}$ for all integers $k \geq 2$.

$$
a_1 = 2
$$

\n $a_2 = 5a_{2-1} = 5a_1 = 5 \cdot 2 = 10$
\n $a_3 = 5a_{3-1} = 5a_2 = 5 \cdot 10 = 50$
\n $a_4 = 5a_{4-1} = 5a_3 = 5 \cdot 50 = 250$

Property \rightarrow The terms of the sequence satisfy the equation $a_n = 2 \cdot 5^{n-1}$

STUDENTS-HUB.com.
STUDENTS-HUB.com. Nosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Hammad

Proving a Property of a Sequence

Prove this property: *aⁿ* = 2 ·5*ⁿ*-1 for all integers *n* ≥ 1

Basis Step: *Show that P(1) is true.* $a_1 = 2 \cdot 5^{1-1} = 2 \cdot 5^0 = 2$

Inductive Step: Show that for all integers $k \geq 1$, if $P(k)$ is true then $P(k + 1)$ is also true: Suppose: a_k = 2.5^{k-1} $k \leftarrow P(k)$ inductive hypothesis $a_{k+1} = 2.5^k$ \leftarrow P(k+1) $= 5a_{(k+1)-1}$ by definition of $a_1, a_2, a_3 \ldots$ $=$ 5a_k $= 5$. (2.5^{$k-1$}) by the hypothesis $= 2 \cdot (5 \cdot 5^{k-1})$ $= 2.5^{k}$

[This is what we needed to show.]

STUDENTS-HUB.com.
S© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved ploaded By: Sondos Hannad

Important Formulas

Formula for the sum of the first *n* integers: For all integers $n \geq 1$,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}.
$$

Formula for the sum of the terms of a geometric sequence: For all real numbers $r \neq 1$ and all integers $n \geq 0$,

$$
1 + r + r2 + r3 + \cdots + rn = \frac{r^{n+1}-1}{r-1}.
$$

Exercises

a. $1 + 2 + 3 + \cdots + 100 = \frac{100(100 + 1)}{2} = 50$ **b.** $1 + 2 + 3 + \cdots + k =$ **c**. $1 + 2 + 3 + \cdots + (k-1) =$ **d**. $4 + 5 + 6 + \cdots + (k-1) = (1 + 2 + 3 + \cdots + (k-1)) - (1 + 2 + 3)$ $=\frac{k(k-1)}{2}-(1+2+3)=\frac{k(k-1)}{2}$ **e.** $3 + 3^2 + 3^3 + \cdots + 3^k = (1 + 3 + 3^2 + 3^3)$ **f.** $3 + 3^2 + 3^3 + \cdots + 3^k = 3(1 + 3 + 3^2 + \cdots + 3^{k-1})$ 1 $\frac{00(100+1)}{2}$ = 50(101) = 5050 2 $\frac{+1)}{+1}$ = 50(101) = 50! $(k+1)$ 2 $k(k +$ $(k-1)((k-1)+1)$ $(k-1)$. 2 $) + 1)$ 2 $\frac{-1}{K-1} = \frac{(K-1)(K-1)}{K-1}$ $k-1$)((k -1) + 1) (k -1)k 2)) 2 $\frac{(-1)}{2} - (1 + 2 + 3) = \frac{(\lambda + 1)}{2} - 6$ $k(k-1)$ $k(k-1)$ $\frac{3^{k+1}-1}{2}-1=\frac{3^{k+1}-1}{2}-\frac{2}{2}=\frac{3^{k+1}-3}{2}$ $(1+3+3^2+3^3+\cdots+3^k) - 1 = \frac{3^{k+1}-1}{2} - 1$ 3 2 2 2 2 3. 1 $3^2 + 3^3 + \cdots + 3^7$ $^{+1}$ -1 $\,$ 3^{K+1} -1 2 3^{K+1} - $\mathrm{+}.$ $+3+3^2+3^3+\cdots+3^k) -1 = \frac{3^{k+1}-1}{k+1}$ π. $+5$ $+ \cdots +$ k $k+1$ 1 $2k+1$ 1 $2k$ k $3\left(\frac{3^{(k-1)+1}-1}{2} \right) = \frac{3(3^k-1)}{2}$ $3-1$ 2 = $3\left(\frac{3^{(k-1)+1}-1}{3-1}\right) = \frac{3(3^k-1)}{2}$ $\left(\begin{array}{cc}3-1\\-1\end{array}\right)$ $k-1$ +1 1 γ k

STUDENTS-HUB.com.
STO Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and **Ahmad Abusnaina** 2005-2018, All rights reserved DIOS Har**6** mad