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Root Locus:
The root locus is the geometric loci (plot) of all the closed loop system poles that can be obtained by a variable gain 
(proportional controller). That is the roots of the characteristic equation (Denominator) of the closed loop transfer 
function:
𝐷 𝑠 = 1 + 𝑘𝐺 𝑠 𝐻 𝑠 = 0 𝑘 ∈ 𝑅
Observation1: the solution of this equation is obtained by substituting values of k  and then computing and plotting these 
roots in the complex plane.
Observation2: The control engineering procedure opts to obtain an approximated root locus plot based on the geometric 
equation of the closed loop characteristic equation rewritten in the form that employs the open loop transfer function 
instead the closed loop form. That is the closed loop characteristic equation written in the form:

𝐺 𝑠 𝐻 𝑠 =
−1

𝑘
𝑘 ∈ 𝑅

Geometric interpretation of the closed loop characteristic equation based on the open loop transfer function:
To reach the objectives of the open l this interpretation, the open loop transfer function is expressed in the pole-zero form 

that is 𝐺 𝑠 𝐻 𝑠 =
 𝑖=1
𝑚 (𝑠+𝑧𝑖)

 𝑖=1
𝑛 (𝑠+𝑝𝑖)

=
−1

𝑘
. 

Magnitude characteristic:
Let |𝑠 + 𝑧𝑖| = 𝜌𝑧𝑖 and |𝑠 + 𝑝𝑖| = 𝜌𝑝𝑖, then the point of the complex plane 𝑠∗𝜖𝐿 (root locus) ↔ ∃𝑘 𝑠𝑜 𝑡ℎ𝑎𝑡

𝐺 𝑠∗ 𝐻 𝑠∗ =
 𝑖=1
𝑚 𝜌𝑧𝑖

 𝑖=1
𝑛 𝜌𝑝𝑖

=
1

|𝑘|
.

However, the existence is verified since 𝑘 ∈ 𝑅 and this condition is transformed to determine the value of |𝑘| at a point

𝑠∗𝜖𝐿, that is 𝑘 =
 𝑖=1
𝑚 𝜌𝑝𝑖

 𝑖=1
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Phase Characteristic:
The phase condition is  used to determine the points of the complex plane that belong to the locus. That is, a point

Of the plane 𝑠∗𝜖𝐿 ↔< 𝐺 𝑠∗ 𝐻 𝑠∗ =<
−1

𝑘
𝑡ℎ𝑎𝑡 𝑖𝑠  

2𝜈 + 1 𝜋 𝑓𝑜𝑟 𝑘 > 0
2𝜈𝜋 𝑓𝑜𝑟 𝑘 < 0

Observation: using two plots one to determine  the  locus for 𝑘 > 0 and  the other for 𝑘 < 0 hides the direct role of  the 
parameter 𝑘 in the search process.

Root Locus: approximation rules:
Observation: The conditions will be set for the case 𝑘 > 0 𝑎𝑛𝑑 𝑛 > 𝑚 , the changes for the case 𝑘 < 0 are obtained by 
substituting 2𝜈 + 1 𝜋 by 2𝜈𝜋. Some related changes will be included in parenthesis when necessary. 

Moreover, a simple example based on  𝐺 𝑠 𝐻 𝑠 =
1

(𝑠+1)(𝑠+3)
will be initially used to illustrate the rules.

• The root locus has a number of branches that equals to the system order. 
In our case 𝒏 = 𝟐, therefore the locus has two branches.

• The root locus is always symmetric with respect to the real axe.
• A point 𝑠∗ ∈ 𝐿 if it leaves an odd number of open loop poles and zeros to the right (its left for 𝑘 < 0).

In our case 𝒔∗ ∈ 𝑳 ↔ 𝒔∗ ∈] − 𝟑,−𝟏[.
• The root locus departs branches from poles at finite (for 𝑛 ≥ 𝑚) or finite and infinite (for 𝑛 < 𝑚) and terminate in zeros 

at finite and infinite (for 𝑛 > 𝑚) or at finite (for 𝑛 ≤ 𝑚).
In our case the branches depart from 𝒑 = −𝟏 and 𝒑 = −𝟑 and terminates at infinite zeros.

• The branches terminate at infinite zeros or depart from infinite pole according to a uniform star of rays with:

Centroid 𝜎 =
 𝑖=1
𝑛 𝑅𝑒 𝑝𝑖 − 𝑖=1

𝑚 𝑅𝑒 𝑧𝑖

𝑛−𝑚
and phases 𝜗𝜈 =

2𝜈+1 𝜋

𝑛−𝑚
𝜈 = 0,1, …𝑛 − (𝑚 − 1).     (note: 𝜗𝜈 =

2𝜈𝜋

𝑛−𝑚
𝑓𝑜𝑟 𝑘 < 0)

In our case 𝝈 =
−𝟏−𝟑

𝟐−𝟎
= −𝟐 phases 𝝑𝟎 =

𝟐∙𝟎+𝟏 𝝅

𝟐−𝟎
=

𝝅

𝟐
and 𝝑𝟏 =

𝟐∙𝟏+𝟏 𝝅

𝟐−𝟎
=

𝟑𝝅

𝟐
or 

−𝝅

𝟐
by symmetry.
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Observation:
The centroid is not a point of the root locus since it is a virtual point that represents the intersection of the virtual asymptotes 
lines that set the direction of convergence to infinity.
• Angles of departure from finite poles:

The root locus departs from the pole 𝑃𝑗 with angle that satisfies:

−𝝑𝒑𝒋 −  𝒊=𝟏
𝒊≠𝒋

𝒏 𝝑𝒑𝒋,𝒊 +  𝒊=𝟏
𝒎 𝝑𝒛𝒋,𝒊 = 𝟐 ∙ 𝝂 + 𝟏 𝝅.    (𝑓𝑜𝑟 𝑘 < 0 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 2𝜈𝜋)

Note: the angle is measured as 𝝑𝒑𝒋,𝒊 = 𝑡𝑎𝑛−1(
𝑖𝑚 𝑃𝑗−𝑃𝑖

𝑅𝑒 𝑃𝑗−𝑃𝑖
) with the tail of the vector at  𝑃𝑖and the  head of the vector arrow at 𝑃𝑗.

In our case, the angle of departure from 𝒑 = −𝟏: −𝝑𝒑=−𝟏
− 𝟎 + 𝟎 𝒏𝒐𝒛𝒆𝒓𝒐𝒔 = 𝟐 ∙ 𝝂 + 𝟏 𝝅, for first cycle with 𝝂 = 𝟎 we get  

𝝑𝒑=−𝟏
= −𝝅 which is coherent with the root locus real axe region and the symmetry condition.

The angle of departure from 𝒑 = −𝟑: −𝝑𝒑=−𝟑
− 𝝅 + 𝟎 𝒏𝒐𝒛𝒆𝒓𝒐𝒔 = 𝟐 ∙ 𝝂 + 𝟏 𝝅, for first cycle with 𝝂 = 𝟎 we get  𝝑𝒑=−𝟑

= −𝟐𝝅 which is coherent with the root locus real axe region and the symmetry condition.

Angles of arrival finite zeros :
The root locus arrives to the zero 𝑍𝑗 with angle that satisfies:

𝝑𝒛𝒋 +  𝒊=𝟏
𝒊≠𝒋

𝒎 𝝑𝒛𝒋,𝒊 −  𝒊=𝟏
𝒏 𝝑𝒛𝒋,𝒊 = 𝟐 ∙ 𝝂 + 𝟏 𝝅.    (𝑓𝑜𝑟 𝑘 < 0 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 2𝜈𝜋)

In our case there is no finite zeros and the  branches terminate asymptotically in the infinite zeros as seen previously.
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Repeated roots:
• If r branches meet in r-points, this point is a system pole with multiplicity r (repeated r-times). The input and output 

tangent lines at this point form a uniform star with centroid at this point and angles that divide the plane into 2r 

sectors. Each sector ha angle 
𝜋

𝑟
.

• The repeated pole can be determined by solving the set of equations:

𝐷 𝑠𝑟𝑒𝑝 = 1 + 𝑘𝐺 𝑠𝑟𝑒𝑝 𝐻 𝑠𝑟𝑒𝑝 = 0

𝑑𝐷(𝑠𝑟𝑒𝑝)

𝑑𝑠
=

𝑑𝐺 𝑠𝑟𝑒𝑝 𝐻 𝑠𝑟𝑒𝑝
𝑑𝑠

= 0
…

𝑑𝑟−1(𝐺 𝑠𝑟𝑒𝑝 𝐻 𝑠𝑟𝑒𝑝 )

𝑑𝑠𝑟−1
= 0

Or  𝑖=1
𝑛 1

(𝑠+𝑝𝑖)
−  𝑖=1

𝑚 1

(𝑠+𝑧𝑖)
= 0

In our case using the second equation we get 
𝟏

(𝒔+𝟏)
+

𝟏

(𝒔+𝟑)
= 𝟎 ↔ 𝒔 + 𝟑 + 𝒔 + 𝟏 = 𝟐𝒔 + 𝟒 = 𝟎 → 𝒔 = −𝟐. 

Therefore, the two branches meet at 𝒔𝒓𝒆𝒑 = −𝟐 and divide the plane into 4 sectors with angles 
𝝅

𝟐
.

Intersection with the imaginary axe:
To find the intersection with the imaginary axe we apply the Routh-Hurwitz criteria to the characteristic equation of the 
closed loop system. That is to 𝐷 𝑠 = 1 + 𝑘𝐺 𝑠 𝐻 𝑠 = 0. The crossing point existence is obtained at the 𝑘 − 𝑣𝑎𝑙𝑢𝑒𝑠
that create the rows of zeros. 

In our case 𝑫 𝒔 = 𝟏 + 𝒌
𝟏

(𝒔+𝟏)(𝒔+𝟑)
= 𝟎 → 𝒔𝟐 + 𝟒𝒔 + 𝟑 + 𝒌 = 𝟎
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Row number

2 1 3 + 𝑘

1 4 0

0 3 + 𝑘

For rows of zero: 3 + 𝑘 = 0 which is obtained for 𝑘 = −3. This value is not acceptable because we 
are plotting the root locus for 𝑘 > 0. 𝑇ℎ𝑢𝑠 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑎𝑥𝑒.

The plot of the root locus : next slide
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Example 2:

𝐺 𝑠 𝐻 𝑠 =
(𝑠 + 5)

(𝑠 + 1)(𝑠 + 3)
• The root locus has 2 branches.
• The root locus is symmetric with respect to the real axe.
• The points of the real axe that belong to the locus are those who leave an odd number of open-loop poles and zeros to 

their right. 𝑠 ∈] − ∞,−5[ ∪ ] − 3, −1[
• There is one infinite zero because 𝑛 − 𝑚 = 1, therefore we have one asymptote with 

centroid 𝜎 =
−3−1−(−5)

2−1
= 1 and angle  𝜗0 =

2∙0+1 𝜋

2−1
= 𝜋

• Angles of departure to finite poles
Angle od departure for 𝑃 = −1: −𝝑𝒑=−𝟏

− 𝟎 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟑 + 𝟎 𝒇𝒓𝒐𝒎 𝒛𝒆𝒓𝒐 𝒂𝒕 𝒛=−𝟓 = 𝟐 ∙ 𝝂 + 𝟏 𝝅

for 𝝂 = 𝟎: 𝝑𝒑=−𝟏
= −𝝅.

Angle od departure for 𝑃 = −3: −𝝑𝒑=−𝟑
− 𝝅 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟑 + 𝟎 𝒇𝒓𝒐𝒎 𝒛𝒆𝒓𝒐 𝒂𝒕 𝒛=−𝟓 = 𝟐 ∙ 𝝂 + 𝟏 𝝅

for 𝝂 = 𝟎: 𝝑𝒑=−𝟑
= −𝟐𝝅

Angle of arrival to the finite zero  at 𝑍 = −5: 𝝑𝒛=−𝟓 − 𝝅 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟑 − 𝝅 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟏 = 𝟐 ∙ 𝝂 + 𝟏 𝝅

for 𝝂 = 𝟎: 𝝑𝒛=−𝟓
= 𝟑𝝅.

Repeated poles:
1

(𝑠+1)
+

1

(𝑠+3)
−

1

𝑠+5
= 0 → 𝑠 + 3 𝑠 + 5 + 𝑠 + 1 𝑠 + 5 − 𝑠 + 1 𝑠 + 3 = 0

𝑠2 + 8𝑠 + 15 + 𝑠2 + 6𝑠 + 5 − 𝑠2 + 4𝑠 + 3 = 0 → 𝑠2 + 10𝑠 + 17 = 0 𝑤𝑖𝑡ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑠1 = −2.17 𝑎𝑛𝑑 𝑠2 = −7.83
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Observation: Two repeated poles imply that the two branches departing from the open loop poles meet at a repeated pole 

the leave then leave the real axis with direction 
𝜋

2
𝑎𝑛𝑑

−𝜋

2
dividing the plane into four sectors of angles 

𝜋

2
. The branches 

then return to meet at the second repeated pole at 𝑠2= −7.83 to terminate at the finite and infinite zeros according to 
the computed directions.

Intersection with the imaginary axe:

𝑫 𝒔 = 𝟏 + 𝒌
(𝒔 + 𝟓)

(𝒔 + 𝟏)(𝒔 + 𝟑)
= 𝟎 → 𝒔𝟐 + (𝟒 + 𝒌)𝒔 + 𝟑 + 𝟓𝒌 = 𝟎

Row number

2 1 3 + 5𝑘

1 4 + 𝑘 0

0 3 + 5𝑘

For rows of zero: 4 + 𝑘 = 0 which is obtained for 𝑘 = −4 and 3 + 5𝑘 = 0 which is obtained for 𝑘 = −
3

5
. These values 

are not acceptable because we are plotting the root locus for 𝑘
> 0. 𝑇ℎ𝑢𝑠 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑎𝑥𝑒.
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Example 3:

𝐺 𝑠 𝐻 𝑠 =
1

(𝑠 + 1)(𝑠 + 3)(𝑠 + 5)
• The root locus has 3 branches.
• The root locus is symmetric with respect to the real axe.
• The points of the real axe that belong to the locus are those who leave an odd number of open-loop poles and zeros to 

their right. 𝑠 ∈] − ∞,−5[ ∪ ] − 3, −1[
• There are three infinite zeros because 𝑛 − 𝑚 = 3, therefore we have three asymptotes with 

centroid 𝜎 =
−3−1−5

3−0
= −3 and angle  𝜗0 =

2∙0+1 𝜋

3−0
=

𝜋

3
,  by symmetry 𝜗−1 =

2∙−1+1 𝜋

3−0
= −

𝜋

3
, 𝜗1 =

2∙1+1 𝜋

3−0
= 𝜋

of departure to finite poles
Angle of departure for 𝑃 = −1: −𝝑𝒑=−𝟏

− 𝟎 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟑 − 𝟎 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 𝒑=−𝟓 = 𝟐 ∙ 𝝂 + 𝟏 𝝅

for 𝝂 = 𝟎: 𝝑𝒑=−𝟏
= −𝝅.

Angle of departure for 𝑃 = −3: −𝝑𝒑=−𝟑
− 𝝅 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟏 − 𝟎 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 𝒑=−𝟓 = 𝟐 ∙ 𝝂 + 𝟏 𝝅

for 𝝂 = 𝟎: 𝝑𝒑=−𝟑
= −𝟐𝝅

Angle of departure for 𝑃 = −5: −𝝑𝒑=−𝟓
− 𝝅 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 −𝟏 − 𝝅 𝒇𝒓𝒐𝒎 𝒑𝒐𝒍𝒆 𝒂𝒕 𝒑=−𝟓 = 𝟐 ∙ 𝝂 + 𝟏 𝝅

for 𝝂 = 𝟎: 𝝑𝒑=−𝟓
= −𝟑𝝅

Repeated poles:
1

(𝑠+1)
+

1

(𝑠+3)
+

1

𝑠+5
= 0 → 𝑠 + 3 𝑠 + 5 + 𝑠 + 1 𝑠 + 5 + 𝑠 + 1 𝑠 + 3 = 0

𝑠2 + 8𝑠 + 15 + 𝑠2 + 6𝑠 + 5 + 𝑠2 + 4𝑠 + 3 = 0 → 3𝑠2 + 18𝑠 + 23 = 0 𝑤𝑖𝑡ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑠1 = −1.85 𝑎𝑛𝑑 𝑠2 = −4.15Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Observation: We obtained two solutions but only 𝑠1 belongs to the real axe set of points of the locus. Thus, the two 
branches departing from the open loop poles at 𝑝 = −1 𝑎𝑛𝑑 𝑝 = −3 meet at 𝑠1 and then leave the real axis with 

direction 
𝜋

2
𝑎𝑛𝑑

−𝜋

2
dividing the plane into four sectors of angles 

𝜋

2
. The branches then go to cross the imaginary axe and  

terminate at the infinite zeros according to the computed asymptotic directions 
𝜋

3
,
−𝜋

3
, −π .

Intersection with the imaginary axe:

𝑫 𝒔 = 𝟏 + 𝒌
𝟏

(𝒔 + 𝟏)(𝒔 + 𝟑)(𝒔 + 𝟓)
= 𝟎 → 𝒔𝟑 + 𝟗𝒔𝟐 + 𝟐𝟑𝒔 + 𝟏𝟓 + 𝒌 = 𝟎

Row number

3 1 23

2 9 15 + 𝑘

1 192 − 𝑘 0

0 15 + 𝑘 0

For rows of zero: 192 − 𝑘 = 0 which is obtained for 𝑘 = −192 and 15 + 𝑘 = 0 which is obtained for 𝑘 = −15. The values 
are not acceptable because we are plotting the root locus for > 0. 𝑇ℎ𝑢𝑠 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑎𝑥𝑒 𝑓𝑜𝑟
𝑘 = 192.
The auxiliary characteristic equation is: for 9𝑠2 + 207 = 0 with imaginary axe crossings at ±𝑗4.8

Exercise: Determine the points of crossings of the asymptotes with the imaginary axe.
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Design using Root Locus
Dr. Jamal Siam
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Controller Design using Root Locus:
Controller design using root locus is based on introducing 
poles and/ or zeros to reshape the root locus and make it 
pass through the desired closed loop poles that achieve 
or almost a chieve the desired response within 
acceptable response tolerances.  

Example:
A plant+ actuator has the open-loop transfer function 

𝐺 𝑠 𝐻 𝑠 =
1

(𝑠+1)(𝑠+3)
and the following  closed-loop 

root locus with proportional positive gain control (Non-
inverting P-controller).

Reshaping the root-locus:
However, this system can not achieve certain 
underdamped response behavior. For example, it can 
not achieve an underdamped closed-loop response 
with settling time at 2%  smaller than 2 second.
The root locus can be reshaped to achieve this 
possibility by introducing an open loop  zero to the 
left of p=-3. Adding a zero at z=-6 we obtain the 
following root locus which obviously do the required 
condition.
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compensation topologies:
• Cascade compensation: the compensator is inserted 

in the direct path of the systems is intended to affect 
the global behavior of the system.

• Feedback compensation: The compensator is usually 
inserted in feedback with a subset of system elements 
to improve the behavior of the specific subset of 
elements. It can also operate on the major loop 
(feedback with the system elements). However, the 
most general configuration is to use a feedback 
compensation in the minor loops coupled with a 
cascade compensator to set the global behavior of the 
feedback compensated system. 

Compensators Types
Active-Compensators: can impose certain desired response conditions. Active compensators 
can be implemented using any type of active elements (amplifier based circuits). The most 
used employs operation amplifiers as for example the dynamic gain inverting operational-
amplifier.
Passive-Compensators:  can adjust the response to the nearest possible desired response 
conditions. Depends on the general passive circuit synthesis methods.
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Controllers:  
Proportional-Controller (P-controller) or gain controller:

• Operates on the original positive gain or negative gain locus of the system.
• The objective is to set the system closed loop poles on a selected set on the original system root-locus by moving on 

the root locus points through the change of the gain value.

• The transfer function is 𝐺𝑝 𝑠 = 𝑘𝑐𝑜𝑚𝑝 → 𝑘𝑐𝑜𝑚𝑝 =
𝑅2

𝑅1
.

• Block diagram
• The realization  assumes that the value of the static gain

achieves the gain at the desired pole gain |𝐾𝑡𝑜𝑡| = |𝑘𝑐𝑜𝑚𝑝| ∙ |
 𝑖=1
𝑚 𝑧𝑖

 𝑖=1
𝑛 𝑝𝑖

|

Integrative-Controller(I-controller)
• Based  on the insertion of a pole in the origin with a gain amplifier, reshapes the root locus in a single unique mode.
• The objective is setting the steady-state error to zero by increasing the system type.

• The transfer function is  𝐺𝐼 𝑠 =
𝐾𝐼

𝑠
→ 𝐾𝐼 = |

1

𝑅1𝐶𝑠
|

• Disadvantage: the transient performance is not preserved and can change in uncontrollable mode.

• Example: Uncompensated system: 𝐺 𝑠 =
1

(𝑠+1)(𝑠+3)

I-compensated system: 𝐺 𝑠 =
1

𝑠

1

(𝑠+1)(𝑠+3)

• Root locus: original and I-compensated(Next slide) 
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Derivative Controller (D-controller):

• Based  on the insertion of a zero in the origin with a gain amplifier, 
reshapes the root locus in a single unique mode.

• The objective is changing the transient performance using the 
differentiation action. 

• The transfer function is  𝐺𝐷 𝑠 = 𝑘𝐷𝑠 → |𝑘𝐷| = |𝑅2𝐶𝑠|

• Disadvantage: the steady state error is not preserved and can change 
in uncontrollable mode. It decreases the type of the system.

• Example: Uncompensated system: 𝐺𝑢𝑛𝑐𝑜𝑚𝑝 𝑠 =
1

𝑠3+2𝑠2+3𝑠+1

D-compensated system: 𝐺𝐷−𝑐𝑜𝑚𝑝 𝑠 = 𝑠 ∙
1

𝑠3+2𝑠2+3𝑠+1
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Proportional-Integrative Controller (PI-controller):

• Based  on the insertion of a pole in the origin to increase the system type and a zero very closed to the pole at the 
origin using a dynamic gain amplifier circuit. This aims to keep the original sum of phases that defines the new root 
locus points almost unchanged with respect to the uncompensated system. a gain amplifier, reshapes the root locus 
in a single unique mode.

• The objective is setting the steady-state error to zero and preserve the original transient almost unchanged. The 

transfer function is  𝐺𝑃𝐼 𝑠 = 𝑘𝑝 +
𝐾𝐼

𝑠
= 𝑘𝑝

𝑠+
𝑘𝐼
𝑘𝑝

𝑠
= 𝑘1

𝑠+
𝑘2
𝑘1

𝑠
= k

(𝑠+𝑧𝑐)

𝑠

• Disadvantage: nearest zeros that achieve better preservation of the transient leads to slower controller. 

• Root locus: original and PI-compensated + controller design (Next slide) 

𝐺𝑃𝐼𝑐𝑜𝑚𝑝
𝑠 = −

𝑅2

𝑅1

(𝑠 +
1

𝑅2𝐶
)

𝑠
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Controller Realization:
𝑅2

𝑅1
= 𝑘 = 158.2

1

𝑅2𝐶
= 𝑧𝑐 = 0.1

Assume 𝐶 = 10𝜇𝐹 → 𝑅2 = 1𝑀Ω

𝑅1 =
1 × 106

158.2
Ω

Note: you need another inverting stage with gain =-1 or you can divide 
the required gain between the two stages.
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Proportional-Derivative Controller (PI-controller):

• Based  on the insertion of a zero to reshape the original root locus and set a desired transient performance, 
preserving the steady sate error almost as is, using a dynamic gain amplifier circuit.

• The position of the zero is determined so that the reshaped root locus passes through the desired set of points. That 
is the desired poles should satisfy the phase condition with the controller zero included. 

• The transfer function is  𝐺𝑃𝐷 𝑠 = 𝑘𝑝 + 𝑘𝐷𝑠 = 𝑘𝐷 𝑠 +
𝑘𝑝

𝑘𝑑
= 𝑘2 𝑠 +

𝑘1

𝑘2
= 𝑘𝐷 𝑠 + 𝑧𝑐

• Root locus: original and PI-compensated + controller design (Next slide) 
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PD- Compensator Design 
Example: Given the system of figure, design an ideal derivative compensator to maintains the compensated system 
maximum overshoot less than or equal  to the uncompensated system ≤ 16% and yields a threefold reduction in 
settling time.
Solution:
Uncompensated and compensated systems roots

• Use Matlab to determine the poles of the uncompensated system with 16% overshoot.
• Determine the value of the settling time using the second order approximation (verify the validity of the dominant poles 

approximation).
• Select the real part of the compensated system to be 3 times that of the uncompensated system.
• Determine the value of 𝜁 corresponding to the selected real part at 16% overshoot using the second order approximation 

𝜎𝑐−𝑑𝑒𝑠 = 𝜁𝜔𝑛 → 𝜔𝑛 =
𝜎𝑐

𝜁
=

3∙1.2

0.503
= 7.16 → 𝜔𝑐−𝑑𝑒𝑠 = 𝜔𝑛 1 − 𝜁2 = 6.17. Thus the assumed compensated system 

desired poles are 𝑃𝑑𝑒𝑠 = −3.6 ± 𝑗6.17. 
• Apply the phase condition to determine the position of the compensator zero.

𝜗𝑧𝑐 − 𝑡𝑎𝑛−1
6.17

4 − 3.6
− 𝑡𝑎𝑛−1

6.17

6 − 3.6
− (1800−𝑡𝑎𝑛−1

6.17

3.6
= 180𝑜

𝜗𝑧𝑐 = 360𝑜 + 86.29𝑜 + 68.75𝑜 − 59.74𝑜 = 455.64 → 𝜗𝑧𝑐 = 95.64𝑜 .
To compute 𝑧𝑐 we compute  the distance from the compensator zero and then subtract this distance from the closed pole 
real part because the angle is larger than  90𝑜.(in case the angle is less than 90𝑜 we add the distance from the desired pole 
real part).

𝑑𝑧𝑐 =
𝜔𝑐−𝑑𝑒𝑠

tan(180𝑜−95.64𝑜).
=

6.17

tan(84.36𝑜)
= 0.61 → 𝑧𝑐 = − 3.6 − 0.6 = −3.
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`

• The transfer function of the compensated system becomes 𝐺𝑐−𝑜𝑝𝑒𝑛 =
(𝑠+3)

𝑠(𝑠+4)(𝑠+6)

• 𝑇𝑐𝑙𝑜𝑠𝑒𝑑−𝑢𝑛𝑐𝑜𝑚𝑝 =
43.4

𝑠3+10𝑠2+24𝑠+43.4

• 𝑇𝑐𝑙𝑜𝑠𝑒𝑑−𝑐𝑜𝑚𝑝 =
47.5 𝑠+3

𝑠3+10𝑠2+24𝑠+47.5(𝑠+3)
=

47.5 𝑠+3

𝑠3+10𝑠2+71.5𝑠+142.5)

• Check the validity of the closed loop   second order dominant poles approximation.(Not satisfied)
• Make system tuning:

• 𝑇𝑐𝑙−𝑐𝑜𝑚𝑝𝑇𝑢𝑛𝑒𝑑 =
38.2(𝑠+3.65)

𝑠3+10𝑠2+24𝑠+38.2.5(𝑠+3.65)
=

38.2 𝑠+3.65

𝑠3+10𝑠2+62.2𝑠+139.43)

• The tuned system satisfy the conditions

Uncompensated step-info compensated step-info Tuned step-info

PD-Realization
𝑅2

𝑅1
= 38.2 ,

1

𝑅1𝐶
= 3.65 →select 𝐶 = 50𝜇𝐹 → 𝑅1 = 5.48 ∙ 103 → 𝑅2 = 209.34 ∙ 103
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