
Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES
AND ALGORITHMS
Hashing

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Hashing

•A method to save/retrieve data quickly.

• Idea: have an array of some fixed size. The array contains
the keys. Each key is associated with a value.

•The indexing/retrieval is done via Hash Function

•Hash function: should be simple enough to compute and
should ensure that any 2 distinct keys get different cells in
the array.

•E.g., data: 16, 1, 30, 19, 163, 677, 328
• Array size of 10

2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Hashing

•E.g., data: 16, 1, 30, 19, 163, 677, 328

• Array size of 10

• Hash function: h(x) = x % 10, where x is key;
and 10 is the table size

3

0

1

2

3

4

5

6

7

8

9
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Hashing

•There is a finite number of cells & infinite supply of keys.

•E.g., 10, 20, 30, 40, 50, 100, 1000, …

• If h(x) = x % 10 this would cause collision!

•Collision: the case in which a newly inserted
key maps to an already occupied slot in the
hash table.

• In this case, 10 is a bad choice. A good strategy
is to have the size of table as a Prime Number.

4

0

1

2

3

4

5

6

7

8

9
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Hashing

•Two things to take into consideration to solve collision:

1. The best function that gives the least number of
collisions.

2. Once a collision encountered, what is the best solution.

•Solving collision can be done through Separate chaining &
Open addressing.

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Separate Chaining

•Keep a list of all elements that hash to the same value

•Array of linked lists

•E.g., data: 11, 21, 35, 4, 6, 46,
56, 7, 147, 99 and h(x) = x%10

6

0

1

2

3

4

5

6

7

8

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Separate Chaining (2)

•Pros:

•Easy to reach for keys (find)

•Divides data into groups

•Cons:

•Slow (linked list, pointers, …)

•With larger number of collisions, it gets slower

•Avoid to use if the space is tight!

7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Open Addressing

•Separate chaining requires pointers which slows the
algorithm a bit because of the time required to allocate
new cells

•Open addressing is an alternative to resolving the collision
with linked lists

•Strategy: once a collision occurs, alternative cells are tried
until an empty cell is found

•Hi(x) = (Hash(x) + F(i)) mod TableSize

8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Open Addressing (2)

•Because all data goes inside the table, a bigger table is
needed for open addressing hashing than for separate
chaining

•Types:

• Linear hashing

• Quadratic hashing

• Double hashing

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

10

89

0

1

2

3

4

5

6

7

8

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

11

89

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

12

89 18

0

1

2

3

4

5

6

7

8

9 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

13

89 18

0

1

2

3

4

5

6

7

8 18

9 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

14

89 18 49

0

1

2

3

4

5

6

7

8 18 18

9 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

15

89 18 49

0 49

1

2

3

4

5

6

7

8 18 18

9 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

16

89 18 49 58

0 49 49

1

2

3

4

5

6

7

8 18 18 18

9 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

17

89 18 49 58

0 49 49

1 58

2

3

4

5

6

7

8 18 18 18

9 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

• Try all cells sequentially with
wraparounds in search of an
empty cell.

• h(x) = (function + i) % size
such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

18

89 18 49 58 69

0 49 49 49

1 58 58

2

3

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Linear Hashing (Linear probing)

•As long as the table is big enough, a free cell can always be
found, BUT the time to do so gets quite large.

•Another problem: Primary clustering

•Blocks of occupied cells start forming up.

•This means that any key that hashes into the cluster will
require several attempts to resolve the collision & then it
will add to the cluster

19

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

20

89

0

1

2

3

4

5

6

7

8

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

21

89

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

22

89 18

0

1

2

3

4

5

6

7

8

9 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

23

89 18

0

1

2

3

4

5

6

7

8 18

9 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

24

89 18 49

0

1

2

3

4

5

6

7

8 18 18

9 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

25

89 18 49

0 49

1

2

3

4

5

6

7

8 18 18

9 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

26

89 18 49 58

0 49 49

1

2

3

4

5

6

7

8 18 18 18

9 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

27

89 18 49 58

0 49 49

1

2 58

3

4

5

6

7

8 18 18 18

9 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

28

89 18 49 58 69

0 49 49 49

1

2 58 58

3

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• h(x) = (function + i2) % size

such that 0 ≤ i ≤ size

• E.g., 89, 18, 49, 58, 69

29

89 18 49 58 69

0 49 49 49

1

2 58 58

3 69

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• This method eliminates the primary clustering problem of linear
probing.

• F(i) = i2

• For linear probing, it is bad to get the table nearly full because the
performance will degrade.

• For quadratic, there is no guarantee of finding an empty cell once
the table gets more than half full or before getting half full if the
table size is not prime. This is because at most half of the table can
be used as alternative locations to resolve collisions.

30

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• If the table is half empty and the table size is prime, we are
always guaranteed to be able to insert a new element.

• It is crucial that the table size be prime.

• If the table size is not prime, the number of alternative
locations can be severely reduced.

31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quadratic Hashing

• E.g., If the table size = 16, so alternative locations will be distances
1, 4, or 9 away.

• h(x) = (x % 16) + i2 values: 0, 1, 4, 9, 16

• Hash size = first prime > size * 2

• Such that h(x) = x % hash size

32

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 4 9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

•h(x) = h1(x) + i * h2(x) 0 ≤ i ≤ size

• It means we apply a second hash function to x and probe
at a distance h2(x), 2h2(x), …, and so on.

•h2(x) should be chosen carefully. The function must never
evaluate to zero.

•A function such as h2(x) = R – (x % R) where R is a prime
smaller than TableSize will work properly.

33

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

34

89

0

1

2

3

4

5

6

7

8

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

35

89

0

1

2

3

4

5

6

7

8

9 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

36

89 18

0

1

2

3

4

5

6

7

8

9 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

37

89 18

0

1

2

3

4

5

6

7

8 18

9 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

38

89 18 49

0

1

2

3

4

5

6

7

8 18 18

9 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

39

89 18 49

0

1

2

3

4

5

6 49

7

8 18 18

9 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

40

89 18 49 58

0

1

2

3

4

5

6 49 49

7

8 18 18 18

9 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

41

89 18 49 58

0

1

2

3 58

4

5

6 49 49

7

8 18 18 18

9 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

42

89 18 49 58 69

0

1

2

3 58 58

4

5

6 49 49 49

7

8 18 18 18 18

9 89 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Double Hashing

• h(x) = h1(x) + i * h2(x) Hash size = 10, prime < 10 = 7

• h2(x) = 7 – (x % 7)

43

89 18 49 58 69

0 69

1

2

3 58 58

4

5

6 49 49 49

7

8 18 18 18 18

9 89 89 89 89 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Rehashing

• If the table gets too full, the running time of the operations
will start taking too long and insert might fail for open
addressing hashing with quadratic resolution.

•Solution: Build another table that is about twice the size
and scan down the entire original hash table, computing
new hash value for each element and insert it in the new
table.

•New size = the first prime > (old size * 2)

44

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Rehashing

•Hash function: if the input keys are integers, then
returning key mod TableSize is a reasonable strategy.

•The hash function has to be carefully considered

• if the table size is 10 and the keys end with zeros, then key %
10 is a bad choice.

• Good idea: is to ensure that the table size is prime

• It distribute keys evenly

45

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Searching for Elements

•When searching for an entry, the table is scanned the same
sequence as the collision was solved until either the target
record is found or an unused array slot is found, which
indicates that there is no such key in the table.

46

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

