Birzeit University Mathematics Department

Chapter 2 $\,$

Math 234

2017/2018

Name	Number	Section
$(\mathbf{Q1})$ [100 points] Fill the blanks with true (T) or false (F).		
(1) If $A^2 = I$, then $det(A) = \pm 1$		
] (2) If A and B are $n \times n$ nonsingular matrices, then $det(A - B) = det(A) - det(B)$.		
] (3) If A is an 2×2 matrix, then $ \alpha A = \alpha^4 A $.		
] (4) If $det(A) = 1$, then $A^{-1} = adjA$.		
] (5) If A and B are $n \times n$ matrices such	h that AB is singular, then at	t least A or B is singular.
] (6) If $A = \begin{bmatrix} 2 & 5 & 7 \\ 1 & 3 & 4 \\ 2 & 1 & 6 \end{bmatrix}$, then the (2,3)) entry of A^{-1} is $-\frac{1}{3}$.	
] (7) If A and B are 2×2 matrices such	that $det(BA) = 0$, then $det(A) = 0$.	(A) = 0 and det(B) = 0.
] (8) If A and B are $n \times n$ matrices, the	en $det((AB)^T) = det(A)det(B$).
] (9) Row equivalent matrices have the same determinants.		
] (10) If A is singular, then $adjA$ is also	singular.	
] (11) Cramer's rule can be used to solve any square linear system.		
] (12) If A and B are $n \times n$ matrices and A is singular, then AB is singular.		
] (13) $det(AB) = det(A)det(B)$ only wh	en A and B are nonsingular.	
] (14) If A is an $n \times n$ matrix, then $ A^n = A ^n$.		
] (15) Every diagonal matrix is nonsingular.		
] (16) Every Elementary matrix is nonsingular.		
] (17) $det(-I) = -det(I).$		
] (18) If A is a 5×5 skew-symmetric m	atrix, then the system $Ax = 0$) has a nontrivial solution.
] (19) $ AB = BA $ for any $n \times n$ matrix	ces A and B .	
] (20) If A, B, S are $n \times n$ matrices suc	th that S is nonsingular and A	$A = SBS^{-1}$, then $ A = B $.
] (21) If A is a 7×7 nonsingular matrix, then the RREF of A has 7 nonzero rows.		
] (22) If $ A = 1$, then $A = I$.		
] (23) If $A = LU$ is the LU factorization	n of A and U is nonsingular, t	then A is nonsingular.
] (24) If A is a singular matrix and U is the REF of A, then $ U = 0$.		
] (25) If A is a square and nonsingular matrix with $ adjA = A $, then A is 2×2 .		
] (26) If A and B are square nonzero matrices with $AB = 0$, then both A and B are singular.		
] (27) If $det(A) = 0$, the A is a zero mat	trix.	

] (28) If the diagonal entries of a square matrix are all zero, then it is singular.

STUDENTS-HUB.com

[

- (29) If A is a 3×3 with $a_1 = a_3$, then det(A) = 0.
-] (30) If the system $A^3x = 0$ has a nontrivial solution, then A is singular.
-] (31) If E is a 4×4 elementary matrix, then the linear system Ex = b is consistent for any $b \in \mathbb{R}^4$.
-] (32) If A is a square matrix and one of the rows is a linear combination of the others, then |A| = 0.
-] (33) If A is an $n \times n$ matrix with n > 1, then $|adjA| = |A|^{n-1}$.
-] (34) If A is an $n \times n$ matrix, then $det(A^T A) \ge 0$.
-] (35) There is a matrix A such that $A^{-1} = \begin{bmatrix} 4 & 2 \\ 6 & 3 \end{bmatrix}$.
-] (36) If A^T is singular, then A^2 is also singular.
-] (37) There exists a nonsingular matrix with two identical columns.
-] (38) A matrix having a zero row cannot be row equivalent to I.
-] (39) If E and F are 2×2 elementary matrices of type I and III respectively, then $det(-2E^T F^{-1}) = 4$.
-] (40) If A is a nonsingular diagonal matrix, then A^{-1} is also diagonal.
-] (41) $det(AB^T) = det(A^TB)$ for any $n \times n$ matrices A and B.
-] (42) If det(A B) = 0, then A = B.
-] (43) If det(A B) = 0, then the matrix equation Ax = Bx has a nonzero solution.
-] (44) A triangular matrix is nonsingular if and only if its diagonal elements are all nonzero.
-] (45) If A is a nonzero matrix with $A^k = 0$ for some positive integer k, then A is singular.
-] (46) If x and y are two distinct vectors in \mathbb{R}^n such that Ax = Ay, then det(A) = 0.
-] (47) If A and B are 3×3 matrices with |A| = 2 and |B| = -6, then $|-3AB^{-1}| = 9$.
-] (48) If A is a nonsingular matrix, then $adjA^{-1} = (adjA)^{-1}$.
-] (49) If A is a symmetric matrix, then adjA is also symmetric.
-] (50) If E and F are 3×3 elementary matrices of type I and A is 3×3 , then |-AEF| = |A|.