
Chapter 2: Software

Processes

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024
(update1)

1

Uploaded By: anonymousSTUDENTS-HUB.com

Objectives

When you have read this chapter, you will:

• understand the concepts of software processes and software process models;

• have been introduced to three general software process models and when
they might be used;

• know about the fundamental process activities of software requirements
engineering, software development, testing, and evolution;

• understand why processes should be organized to cope with changes in the
software requirements and design;

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 2

Uploaded By: anonymousSTUDENTS-HUB.com

Software Processes: Introduction

• A software process is a set of related activities that leads

to the production of a software product.

• There are many different software processes, but all must

include four activities that are fundamental to software

engineering are:

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

3

Software
Specification

Software Design
&

Implementation

Software
Evolution

Software
Validation

Uploaded By: anonymousSTUDENTS-HUB.com

Software Processes: Introduction Cont.

• When we talk about processes, it is not only about the

activities and their order. It is also about:

• Products: outcomes of each activity, example: Software

Architecture Document

• Roles: programmer, designer, analyst, tester, team leader, etc.

• Pre and Post Conditions: example before architectural design

begins:

➢Software requirements must be ready and approved before

building software architecture.

➢Postcondition: UML models must be designed and reviewed.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

4

Uploaded By: anonymousSTUDENTS-HUB.com

Software Processes: Introduction Cont.

• Software processes are complex and, like all intellectual and

creative processes, rely on people making decisions and

judgments.

• There is no ideal process and most organizations have

developed their own.

• Processes have evolved to take advantage of the specific

characteristics of the systems that are being developed.

➢Critical Systems: a very structured development process is

required

➢A Business System with rapidly changing requirements, a less

formal, flexible agile process is likely to be more effective

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

5

Uploaded By: anonymousSTUDENTS-HUB.com

Two Categories of Software Processes

Software
Processes

Plan-Driven

Agile

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

6

•All process activities are
planned in advance
•Progress is measured
against this plan

•Planning is incremental
•Flexible
•Cope with change

Uploaded By: anonymousSTUDENTS-HUB.com

2.1 Software process models

• A software process model is a simplified representation of a

software process.

• These models are not mutually exclusive and are often

used together, especially for large systems development.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 7

Waterfall Model

Incremental
Development

SW Processes
Models

Reuse-Oriented

Uploaded By: anonymousSTUDENTS-HUB.com

2.1.1 The waterfall model

• The waterfall model is an example of a plan-driven
process.

• You must plan and schedule all of the process activities

• In principle, the result of each phase is one or more
documents that are approved (“signed off”) before starting
work on them

• It is best used for critical systems, where requirements are
well understood and will not change (e.g. Aviation and
medical systems)

• It can also be used with small systems (mobile apps) with
the help of prototypes.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
8Uploaded By: anonymousSTUDENTS-HUB.com

2.1.1 The waterfall model Cont.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
9

• Because of the cascade from one phase to another, this model is known as

the waterfall model or software life cycle.

Figure 2.1 The waterfall model
Uploaded By: anonymousSTUDENTS-HUB.com

• The waterfall model is appropriate for some types of system:

• Embedded systems: where the software has to interface with

hardware systems.

• Critical systems: where there is a need for extensive safety and

security analysis of the software specification and design.

• Large software systems that are part of broader engineering

systems developed by several partner companies.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

10

2.1.1 The waterfall model Cont.

Uploaded By: anonymousSTUDENTS-HUB.com

Advantages of Waterfall Model

• Developers and customers agree on what will be delivered
early in the development lifecycle. This makes planning and
designing more straightforward.

• Progress is more easily monitored and measured, as the full
scope of the work is known in advance.

• Throughout the development effort, it’s possible for various
members of the team to be involved or to continue with other
work, depending on the active phase of the project

• Customer presence is not strictly required after the
requirements phase.

• The software can be designed completely and more carefully,
based upon a more complete understanding of all software
deliverables

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

11

References: http://www.seguetech.com/waterfall-vs-agile-methodology/
Uploaded By: anonymousSTUDENTS-HUB.com

Disadvantages of Waterfall Model

• One area which almost always falls short is the effectiveness
of requirements.

• Gathering and documenting requirements in a way that is meaningful to a
customer is often the most difficult part of software development.

• Inflexible partitioning of the project into distinct stages

• Difficult to respond to changing customer requirements

• Fixing identified problems during development are costly and involve
significant rework.

• Another potential drawback of pure Waterfall development is the
possibility that the customer will be dissatisfied with their delivered
software product

• And Testing of whole system that only happens at end of project

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 12Uploaded By: anonymousSTUDENTS-HUB.com

Formal System Development

• An important variant of the waterfall model is formal system
development, where a mathematical model of a system
specification is created.

• This model is then refined, using mathematical transformations
that preserve its consistency, into executable code

• Is particularly suited to the development of systems that have
stringent safety, reliability, or security requirements.

• The formal approach simplifies the production of a safety or
security case.

• Cleanroom software engineering is an example of a formal
development process.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 13

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

Uploaded By: anonymousSTUDENTS-HUB.com

2.1.2 Incremental development
• Incremental development is based on the idea of:

• A) developing an initial implementation,

• B) exposing this to user comment and others

• C) evolving it through several versions until an adequate system has been
developed

• fundamental part of agile approaches

• Better than waterfall approach for systems whose requirements are likely
to change during the development process such as most e-business, e-
commerce, and personal systems.

• Can be plan-driven, agile, or a mix of both!

• Applicability:

• For small or medium-size interactive systems

• For parts of large systems (e.g. the user interface)

• For short-lifetime systems

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)

14

Uploaded By: anonymousSTUDENTS-HUB.com

Incremental Development Model

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 15

• Specification, development, and validation activities are interleaved rather than

separate, with rapid feedback across activities.

Uploaded By: anonymousSTUDENTS-HUB.com

Incremental Development Cont.

• Benefits of incremental development

• The cost of accommodating changing customer requirements is reduced.

• It is easier to get customer feedback on the development work that has been done.

• More rapid delivery and deployment of useful software to the customer is
possible

• Better fit for short time-to-market

• Problems with incremental development

• The process is not visible. Managers need regular deliverables to measure
progress.

• System structure tends to degrade as new increments are added.

• Additional unplanned iterations may be needed.

• Customer may not have the required free time to be involved.

• Team may not be located in same place (distributed teams)

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 16Uploaded By: anonymousSTUDENTS-HUB.com

2.1.3 Reuse-oriented software

engineering

• In the majority of software projects, there is some software
reuse.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 17Uploaded By: anonymousSTUDENTS-HUB.com

2.1.3 Reuse-oriented software

engineering

• There are three types of software component that may be used in a reuse-

oriented process:

• Web services that are developed according to service standards

and that are available for remote invocation over the Internet.

• Collections of objects that are developed as a package to be

integrated with a component framework such as .NET or J2EE.

• Stand-alone application systems that are configured for use in a

particular environment.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 18Uploaded By: anonymousSTUDENTS-HUB.com

2.1.3 Reuse-oriented software

engineering

• Advantages:

• reducing the amount of software to be developed and so reducing cost
and risks.

• It usually also leads to faster delivery of the software.

• Disadvantages:

• requirements compromises are inevitable, and this may lead to a
system that does not meet the real needs of users.

• some control over the system evolution is lost as new versions of the
reusable components are not under the control of the organization
using them.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 19Uploaded By: anonymousSTUDENTS-HUB.com

2.2 Process activities

Software Specifications

• Software specification or requirements engineering is the
process of understanding and defining:

• what services are required from the system

• and identifying the constraints on the system’s operation and
development

• Requirements are usually presented at two levels of detail.

• User requirements: end-users and customers need a high-level
statement of the requirements;

• System requirements: system developers need a more detailed
system specification.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 20Uploaded By: anonymousSTUDENTS-HUB.com

Process Activities: Software

Specifications Cont.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
21Uploaded By: anonymousSTUDENTS-HUB.com

Process Activities: Software Design &

Implementation

• A software design is a description of:

• the structure of the software to be implemented,

• the data models and structures used by the system,

• the interfaces between system components

• and, sometimes, the algorithms used.

• The implementation stage of software development is the process of
converting a system specification into an executable system for
delivery to the customer.

• For critical systems, the outputs of the design process are detailed
design documents.

• Generating code from designs and diagrams (software development
tools may be used to generate a skeleton program from a design)

• Programming is an individual activity, and there is no general process
that is usually followed.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
22Uploaded By: anonymousSTUDENTS-HUB.com

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
23

Process Activities: Software Design &

Implementation Cont.

Uploaded By: anonymousSTUDENTS-HUB.com

Process Activities: Software Validation

• Intended to show that a system both conforms to its specification
and that it meets the expectations of the system customer.

• Program testing, where the system is executed using simulated test
data, is the principal validation technique.

• Alpha Testing VS Beta Testing

• In case of software product, Beta testing involves delivering a system to a
number of potential customers/users who agree to use that system.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
24Uploaded By: anonymousSTUDENTS-HUB.com

Software Validation: Stages in the

testing process
• Development or Component testing:

• Each component making up the system is tested independently.
(Components may be simple entities such as functions or object
classes or may be coherent groupings of these entities)

• Test automation tools, such as JUnit for Java are commonly used.

• System testing:

• System components are integrated to create a complete system.

• Focus on finding errors in the interactions between components,
and system meets its functional and non-functional requirements

• Acceptance or Customer testing:

• The system is tested by the system customer using real data.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 25Uploaded By: anonymousSTUDENTS-HUB.com

Software Validation: Testing phases
in a plan-driven software process

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 26

Figure 2.7: Testing phases in a plan-driven software process

Uploaded By: anonymousSTUDENTS-HUB.com

2.2.4 Process Activities: Software

Evolution
• During software evolution (software maintenance) process the

software is continually changed over its lifetime in response to
changing requirements, customer and market needs.

• The flexibility of software is one of the main reasons why more and
more software is being incorporated into large, complex systems.

• Changes can be made to software at any time during or after the
system development, because they are much cheaper than changes to
system hardware.

• For most types of systems, the majority of costs are the costs of
changing the software after it has gone into use.

• Normally, this is the longest life-cycle phase. The system is installed
and put into practical use. Maintenance involves correcting errors that
were not discovered in earlier stages of the life cycle, improving the
implementation of system units, and enhancing the system’s services
as new requirements are discovered.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 27Uploaded By: anonymousSTUDENTS-HUB.com

2.3 Coping with change

• Two ways of coping with change and changing system
requirements:

• System prototyping: a version of the system or part of the system is
developed quickly to check the customer’s requirements and the
feasibility of design decisions. This is a method of change
anticipation as it allows users to experiment with the system before
delivery and so refine their requirements.

• Incremental delivery: where system increments are delivered to the
customer for comment and experimentation. This supports both
change avoidance/anticipation and change tolerance.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 28Uploaded By: anonymousSTUDENTS-HUB.com

2.3.1 Prototyping

• A prototype is an initial version of a software system that is used
to demonstrate:

• concepts, try out design options, and find out more about the
problem and its possible solutions

• A software prototype can be used in a software development
process to help anticipate changes that may be required:

• Requirements engineering: elicitation and validation of system
requirements.

• System design, UI design: help to explore software solutions

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 29Uploaded By: anonymousSTUDENTS-HUB.com

2.3.1 Prototyping Cont.

• System prototypes allow users to see how well the system

supports their work.

• They may get new ideas for requirements, find strength and

weakness in the software.

• They may then propose new system requirements.

• It may also reveal errors and omissions in the requirements.

• A function described in a specification may seem useful and

well defined. But, when that function is combined with other

functions, users often find that their initial view was

incorrect or incomplete.

• The system specification may then be modified to reflect their

changed understanding of the requirements.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 30Uploaded By: anonymousSTUDENTS-HUB.com

2.3.1 Prototyping Cont.

• Define prototype functionality stage: it is important to decide

what to put and what to leave out of the prototype system. To

reduce prototyping costs and accelerate the delivery schedule,

you may leave some functionality and non-functional

requirements such as response time and memory utilization.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 31Uploaded By: anonymousSTUDENTS-HUB.com

2.3.1 Prototyping Cont.

• A system prototype may be used while the system is being

designed to carry out design experiments to check the

feasibility of a proposed design.

• For example, a database design may be prototyped and tested

to check that it supports efficient data access for the most

common user queries.

• A general problem with prototyping is that users may not use

the prototype in the same way as they use the final system.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 32Uploaded By: anonymousSTUDENTS-HUB.com

2.3.2 Incremental Delivery

• Is an approach to software development where some of the

developed increments are delivered to the customer and

deployed for use in an operational environment.

• In an incremental delivery process, customers identify, in

outline, the services to be provided by the system.

• They identify which of the services are most important and

which are least important to them.

• A number of delivery increments are then defined, with each

increment providing a sub-set of the system functionality.

• With the highest-priority services implemented and delivered

first.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
33

Uploaded By: anonymousSTUDENTS-HUB.com

Advantages of Incremental Delivery

• Customers can use the early increments as prototypes and gain

experience that informs their requirements for later system increments.

Unlike prototypes, these are part of the real system so there is no re-

learning when the complete system is available.

• Customers do not have to wait until the entire system is delivered

before they can gain value from it. The first increment satisfies their

most critical requirements so they can use the software immediately.

• The process maintains the benefits of incremental development in that

it should be relatively easy to incorporate changes into the system.

• As the highest-priority services are delivered first and increments then

integrated, the most important system services receive the most testing.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 34Uploaded By: anonymousSTUDENTS-HUB.com

Problems with incremental delivery
• Iterative development can also be difficult when the new system is

intended to replace an existing system. Users want all of the

functionality of the old system and are often unwilling to experiment

with an incomplete new system. Therefore, getting useful customer

feedback is difficult.

• Most systems require a set of basic facilities that are used by different

parts of the system. As requirements are not defined in detail until an

increment is to be implemented, it can be hard to identify common

facilities that are needed by all increments.

• The essence of iterative processes is that the specification is developed

in conjunction with the software. However, this conflicts with the

procurement model of many organizations, where the complete system

specification is part of the system development contract. In the

incremental approach, there is no complete system specification until

the final increment is specified. This requires a new form of contract,

which large customers such as government agencies may find difficult

to accommodate.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 35Uploaded By: anonymousSTUDENTS-HUB.com

Boehm’s spiral model

• A risk-driven software process framework

• Risk simply means something that can go wrong.

• Each loop in the spiral represents a phase of the software process.

• Thus, the innermost loop might be concerned with system feasibility,
the next loop with requirements definition, the next loop with system
design, and so on.

• The spiral model combines change avoidance with change tolerance. It
assumes that changes are a result of project risks and includes explicit
risk management activities to reduce these risks.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1) 36Uploaded By: anonymousSTUDENTS-HUB.com

Spiral Model of Boehm

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024
(update1)

37Uploaded By: anonymousSTUDENTS-HUB.com

Key points

• Software processes are the activities involved in producing a software system.
Software process models are abstract representations of these processes.

• General process models describe the organization of software processes.
Examples of these general models include the waterfall model, incremental
development, and reusable component configuration and integration.

• Requirements engineering is the process of developing a software
specification. Specifications are intended to communicate the system needs
of the customer to the system developers.

• Design and implementation processes are concerned with transforming a
requirements specification into an executable software system.

• Software validation is the process of checking that the system conforms to its
specification and that it meets the real needs of the users of the system.

• Software evolution takes place when you change existing software systems to
meet new requirements. Changes are continuous, and the software must
evolve to remain useful.

• Processes should include activities to cope with change. This may involve a
prototyping phase that helps avoid poor decisions on requirements and
design. Processes may be structured for iterative development and delivery
so that changes may be made without disrupting the system as a whole.

Birzeit University, CS Dept, Samer Zein (Ph.D). Updated by Saad Mansour, 2024 (update1)
38

Uploaded By: anonymousSTUDENTS-HUB.com

	Slide 1: Chapter 2: Software Processes
	Slide 2: Objectives
	Slide 3: Software Processes: Introduction
	Slide 4: Software Processes: Introduction Cont.
	Slide 5: Software Processes: Introduction Cont.
	Slide 6: Two Categories of Software Processes
	Slide 7: 2.1 Software process models
	Slide 8: 2.1.1 The waterfall model
	Slide 9: 2.1.1 The waterfall model Cont.
	Slide 10
	Slide 11: Advantages of Waterfall Model
	Slide 12: Disadvantages of Waterfall Model
	Slide 13: Formal System Development
	Slide 14: 2.1.2 Incremental development
	Slide 15: Incremental Development Model
	Slide 16: Incremental Development Cont.
	Slide 17: 2.1.3 Reuse-oriented software engineering
	Slide 18: 2.1.3 Reuse-oriented software engineering
	Slide 19: 2.1.3 Reuse-oriented software engineering
	Slide 20: 2.2 Process activities Software Specifications
	Slide 21: Process Activities: Software Specifications Cont.
	Slide 22: Process Activities: Software Design & Implementation
	Slide 23: Process Activities: Software Design & Implementation Cont.
	Slide 24: Process Activities: Software Validation
	Slide 25: Software Validation: Stages in the testing process
	Slide 26: Software Validation: Testing phases in a plan-driven software process
	Slide 27: 2.2.4 Process Activities: Software Evolution
	Slide 28: 2.3 Coping with change
	Slide 29: 2.3.1 Prototyping
	Slide 30: 2.3.1 Prototyping Cont.
	Slide 31: 2.3.1 Prototyping Cont.
	Slide 32: 2.3.1 Prototyping Cont.
	Slide 33: 2.3.2 Incremental Delivery
	Slide 34: Advantages of Incremental Delivery
	Slide 35: Problems with incremental delivery
	Slide 36: Boehm’s spiral model
	Slide 37: Spiral Model of Boehm
	Slide 38: Key points

