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COMP233 DiscreteMathematics

Chapter 6

Set Theory
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Outline

• A Glimpse into Set Theory 
– Set operations

 More later

 Partition, Power set, Cartesian product 

 Proving Set properties 

 Element argument method to prove

 Subset property

 Set Equality 

 Empty set properties

 “Algebraic” method to prove set properties

 Set Identities (Theorem 6.2.2)
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A Glimpse into Set Theory

“Set” is an undefined term. We say that sets contain elements and

are completely determined by the elements they contain.

So: Two sets are equal  they have exactly the same elements.

Ex: Let A = {1,3,5}
B = {5,1,3}

C = {3,1,5}

D = {x | x is an odd integer and 0 < x < 6}

How are A, B, C, and D related?

Answer: They are all equal.

Notation: x A is read “x is an element of A” (or “x is in A”)

x  A is read “x is not an element of A” (or “x is not in A”).

the set 
of all

such that

Uploaded By: Sondos HammadSTUDENTS-HUB.com



4© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

A Glimpse into Set Theory cont.

{Ali} ≠ Ali    different elements

{1, {1}}       has two elements

The order of elements is irrelevant

{Ali, Adam, Sara} = {Adam, Sara, Ali}

A set can be an element inside another set

Notation of elements 

Redundancy is not allowed

{Ali, Adam, Adam, Sara} 
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Defining Sets by a Property  

Examples: 

PropertyThe set of all
x is dummy 
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Subsets

Definition: Given sets A and B, A  B (read “A is a subset of B”)

every element in A is also in B.

 x, if x is in A then x is in B.

Note 1: A = B A  B and B  A.

Note 2: A B

Ex: Let A = {2,4,5} and B = {1,2,3,4,6,7}. Is A  B ?

Answer: No, because 5 is in A but 5 is not in B.

Ex: Let C = {2,4,7} and B = {1,2,3,4,6,7}. Is C  B ?

Answer: Yes, because every element in C is in B.

  x such that x  A and x  B.



Uploaded By: Sondos HammadSTUDENTS-HUB.com



7© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

✔

✗

✔

✔

✗

✗

Distinction between  ∈ and ⊆

{2} ∈ {{1}, {2}}

2 ∊ {1, 2, 3} 

{2} ∈ {1, 2, 3} 

2 ⊆{1, 2, 3}  

{2} ⊆{1, 2, 3} 

{2}⊆{{1}, {2}}

Which of the following are true statements?
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Warm-up: proving set properties

Determining whether one set is a subset of another

Let A = {x  | x = 5a + 1 for some integer a}

B = {y  | y = 10b – 9 for some integer b}.

1. Is A  B? Justify your answer.

2. Is B  A? Justify your answer.
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1. Is A  B ?  Answer: 

The reason is that 6  A because 6 = 5∙1 + 1.
But 6 B because 

if 6 = 10b – 9, then 15 = 10b, which implies that b = 1.5, and 1.5 is not an 
integer.

So there is at least one element of A that is not in B, and hence A
is not a subset of B.

A = {x  | x = 5a + 1 for some integer a}

B = {y  | y = 10b – 9 for some integer b}

2. Is B  A ? Answer: 

Scratch Work: Suppose y is any [pbac] element of B. Then 

y = 10b – 9 for some integer b. Must y be in A?? 

Idea: Suppose y is in A. Then y = 5a + 1 for some integer a.

Set the two values for y equal to each other. Deduce what a would 

have to be to make the two sides of the equation equal to each 

other. Then show that this value of a actually “works.”

No

Yes
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A = {x  | x = 5a + 1 for some integer a}

B = {y  | y = 10b – 9 for some integer b}

4 (continued). Is B  A ? Answer: 

Proof: Suppose y is any [pbac] element in B. 

Then y = 10b – 9 for some integer b.

5a +1 = 10b -9 ?          

Let a = 2b – 2.

Note that a is an integer bkoz products and differences of integers 

are integers. 

Moreover,     5a + 1 = 5(2b – 2) + 1 = 10b – 9  = y.

So, by definition of A, y is an element in A. 

[This argument shows that any element in B is also in A. 

Hence B is a subset of A.]

Yes
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Exercise
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Definitions of Set Operations
Given sets A and B that are subsets of a “universal set” U, we define

A  B = {x  U | x  A or x  B}       “or”means “and/or”

A  B = {x  U | x  A and x  B}

A – B = {x  U | x  A and x  B}

Ac = {x U | x  A}

Venn Diagrams

the set of all x in U
such that 
x is in A and x is in B

A  B

A  B

A – B

Ac
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Set Difference and Subset 

Definition: Given sets S and T, the difference of T minus S, 
denoted T – S, is the set consisting of all the elements that are in T
but are not in S : 

Definition: Given sets S and T, S is a subset of T if, and only if, 

every element in S is in T.

Example: Let T = {1,2,3,4,5} and S = {1,3,5}. Then S is a subset of 

T and T – S = 

Picture:
T – S is shaded yellow

T – S =  {x T | x is not in S }

{2,4}.

T – S

T

S

Read this: “The set 
of all x in T such 
that x is not in S.”
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Class Exercise

Let A = {1, 2, 3} and B = {3, 4, 5} and suppose that the  “universal 
set” U = {1, 2, 3, 4, 5, 6, 7, 8}. Find

A B

A B

A – B

Ac

= {1, 2, 3, 4, 5}

= {3}

= {1, 2}

= {4, 5, 6, 7, 8}
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Exercise
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The Empty Set

Let A be the set of all the people in the room who live in Ramallah and B
be the set of all people in the room who live outside Ramallah.

What is A B ?

Answer: This set contains no elements at all.

Notation: The symbol  denotes a set with no elements. (One can 
prove that there is only one such set. We call it the empty set or the 
null set.)
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The empty set is not the same thing as nothing; rather, it is a set 
with nothing inside it and a set is always something. This issue can be 
overcome by viewing a set as a bag—an empty bag undoubtedly 
still exists.

The Empty Set

Example: the set D = {x ∈ R | 3 < x < 2}. 

A ∩ ∅ ⊆∅

∅ ⊆A

A ∪ ∅ ⊆A

A × ∅ = ∅

A × ∅ ⇒ A = ∅

Axioms about the empty set: 
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Disjoint Sets
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Disjoint Sets
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Partition of Set

Man  Woman  =  
People = Man  Woman

Uploaded By: Sondos HammadSTUDENTS-HUB.com



23© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved
Uploaded By: Sondos HammadSTUDENTS-HUB.com



24© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

Find the power set of the set {x, y}. That is, find  ({x, y})

Power Sets 
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Cartesian Products

Example: Let A1 = {x, y}, A2 = {1,2,3}, and A3 = {a,b}.

A1× A2 = 

= {(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)} 
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Let   A = {Ali, Ahmad},    

B = {AI, DM, DB}, 

C = {P, F}

Example

Find A × B × C = 

Find A × B = 

Find (A×B) × C
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Set Relations
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Theorem 6.2.2 Set Identities 

Let all sets referred to below be subsets of a universal set U . 
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Theorem 6.2.2 Set Identities 

Let all sets referred to below be subsets of a universal set U . 

 We will prove some of these theories in the lecture, please 

prove others at home Uploaded By: Sondos HammadSTUDENTS-HUB.com
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How to prove?

• Element Argument Method

• Algebraic Proof Method
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The Element Argument Method
In details

Example: Prove that:     A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

That is:

Prove: A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)

Prove: (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C)

Thus (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C).

Suppose x ∈ A ∪ (B ∩ C). [Show x ∈ (A ∪ B) ∩ (A ∪ C).]

...

Thus x ∈ (A ∪ B) ∩ (A ∪ C).

Hence A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

Suppose x ∈ (A ∪ B) ∩ (A ∪ C). [Show x ∈ A ∪ (B ∩ C).]

...

Thus x ∈ A ∪ (B ∩ C).

Hence (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).
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Theorem 6.2.2(3)(a) A Distributive Law for Sets

For all sets A, B, and C,  

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Proving: A Distributive Law for Sets 

A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C): (A ∪ B) ∩ (A ∪ C) ⊆A ∪ (B ∩ C):

Conclusion: Since both subset relations have been proved, it follows by definition of set 

equality that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
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Same As: proving whether: the people who are not students or employees is 

the same as the people who are neither students nor employees.

Theorem 6.2.2(9)(a) A De Morgan’s Law for Sets

For all sets A and B,      (A ∪ B)c = Ac ∩ Bc

Proving: A De Morgan’s Law for Sets

(A ∪ B)c ⊆ Ac ∩ Bc
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Ac ∩ Bc  ⊆ (A ∪ B)c
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If every person is a student, then the set of persons 
and students are students
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Proof: 

Suppose E1 and  E2  are both sets with no elements. 

By Theorem 6.2.4,   E1 ⊆ E2 since E1 has no elements. 

Also    E2⊆ E1 since E2 has no elements. 

Thus E1 = E2 by definition of set equality.

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proving: Uniqueness of the Empty Set
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Proving: a Conditional Statement
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Algebraic Proofs
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Problem-Solving Strategy

• How can you discover whether a given universal statement about sets is 

true or false?

• There are two basic approaches: the optimistic and the pessimistic. 

• In the optimistic approach, 

“What do I need to show?” and “How do I show it?” 

• In the pessimistic approach, you start by searching your mind for a set of 

conditions that must be fulfilled to construct a counterexample. 

• The trick is to be ready to switch to the other approach if the one you are 

trying does not look promising.
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Algebraic Proofs
Deriving a Set Difference Property

Construct an algebraic proof that for all sets A, B, and C,

(A ∪ B) − C = (A − C) ∪ (B − C). 

Cite a property from Theorem 6.2.2 for every step of the proof.
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Algebraic Proofs
Deriving a Set Identity Using Properties of ∅

Construct an algebraic proof that for all sets A and B,

A − (A ∩ B) = A − B.
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A structure abstracting the computation with the 

truth values false and true.

Used extensively in the simplification of logic Circuits

Boolean Algebra 

George Boole

1815-1864, 

England 

Introduced by George Boole in his first book The 

Mathematical Analysis of Logic (1847),

Instead of elementary algebra where the values of the variables are

numbers, and the main operations are addition and multiplication, the

main operations of Boolean algebra are the conjunction (∧)

the disjunction (∨) and the negation not (¬).
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Compare

Both are special cases of the same general 

structure, known as a Boolean Algebra.
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Boolean Algebra 
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Properties of a Boolean Algebra
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6.4 Boolean Algebra

In this lecture:

Part 1: History of Algebra 

Part 2: What is Boolean Algebra

Part 3: Proving Boolean Algebra 
Properties 

Set Theory

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015
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Proving of Boolean Algebra Properties 

Proof:

Suppose a and x are particular, but arbitrarily chosen, elements of B that satisfy 

the following hypothesis: a + x = 1 and a·x = 0. Then 
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Exercises
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Class Exercise - 3

53

Given sets A and B, what would you suppose and what would you 
show to prove that (A  B)  B c = ? 

In general: How do you show that a set equals the empty 

set?

Answer: Show that the set has no elements. Go by 
contradiction. Suppose the set has an element. Show that 
this supposition leads to a contradiction. 
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Class Exercises

54

1. Given sets A, B, and C, what would you suppose and what would you 

show to prove that (A  B)  C   A  (B  C)?

2. True or false? Justify your answer.

For all sets A, B, and C,  (A  B)  C  =  A  (B  C).

3. Given sets A and B, what would you suppose and what would you 

show to prove that (A  B)  B c = ? 
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Example

55

Prove: For all sets A, B, and C, (A  B)  C  =  (A  C)  (B  C).

Proof: Let A, B, and C be any sets. Then

(A  B)  C  =  C  (A  B)             by _________

=  (C  A)  (C  B)    by _________

=  (A  C)  (B  C)    by _________.

?

?

?

Cite a property from Theorem 6.2.2 for every step of the proof.
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