Password security

Kinds of passwords

- Password
 - A string of characters: A,B,C,...d,e,f,...1,2,3...!,",@,...
- PIN-code
 - A string of numbers
- Pass phrase
 - A sentence
- Associative and cognitive passwords
 - Answers to the questions
 - Associative, cue words
 - Black: white, strawberry: blueberry, dad: mum, day: night etc.
 - Cognitive
 - What is your second name? How many cats do you have? Which chocolate you like best?
- Pass face, pass image

Password space - S

- S is the total set of all passwords
 - Size of S is denoted by s
 - 4-digit PIN codes: $s = |S| = 10^4$
 - 6 character passwords:
 - $s = 26^6$
 - $s = 52^6$
 - $s = 62^6$
 - s = 946

The art of counting

- Number of possibilities with one dice: 6
- Number of possibilities with two dices:
 - Unordered: 21
 - Ordered: 36
- Number of 5 letter combinations: 26⁵
- Including capitals: 52⁵
- Including numbers: 62⁵
- All keyboard symbols: 94⁵

- We will count the number of 6 character passwords
 - All is possible: letters, capitals, numbers and special characters
 - If no restriction, then we have 946 possible passwords
- On the next slides we will introduce specific restrictions

- At least 1 number?
 - Total number of 6 character passwords: 946
 - Number of 6 character passwords <u>without</u> numbers: 84⁶
 - Answer: $94^6 84^6 = 338.571.749.440$
- Trick: All those that are wrong

- Have 6 different characters?
 - First character: 94 possibilities
 - Second character: (94-1) possibilities
 - Third character: (94-2) possibilities
 - Answer: 94*93...*89 = 586.236.072.240 =
- Trick: Count every time what is still possible

- At least 1 capital and 1 number?
 - No restrictions: 946
 - No capitals: 68⁶
 - No numbers: 846
 - No capitals and no numbers: 586
 - Answer: $94^6-68^6-84^6+58^6=277.772.959.360=2^{38,02}$
- Trick: All wrong ones + those subtracted twice!

- Exactly 1 number?
 - Choose position where the number will be:
 6 possibilities
 - Number on that position: 10 possibilities
 - All other 5 positions: (94-10) possibilities
 - Answer: (6*10) * 84⁵ = 250.927.165.440
 Trick: Place number first.

- Exactly 1 number and exactly 1 capital?
 - Choose position for the number: 6 possibilities
 - Number on that position: 10 possibilities
 - Choose position for the capital: (6-1) possibilities
 - Capital on that position: 26 possibilities
 - All other 4 positions: (94-10-26) possibilities
 - Answer: $(6*10) * (5*26) * 58^4 = 88.268.668.800$
- Trick: Place number and capital first

- Exactly 2 numbers?
 - Choose 2 positions for the numbers:
 6*5/2 = 15 possibilities
 - Numbers on those position: 10 possibilities
 - All other 4 positions: (94-10) possibilities
 - Answer: $15*10^2*84^4 = 74.680.704.000 =$

- Choose 2 positions for the numbers gives 15 possibilities. Why?
- "Choose m out of n":

```
n! / (m! * (n-m)!)
```

- k! = 1*2*...*(k-1)*k
- "Choose 2 out of 6": 6!/(2!*4!) = 15

Probabilities

- What is the probability that a random password of 6 characters has no number in it?
 - Answer: $84^6 / 94^6 = (84/94)^6 = 0,509$
 - So approximately have of the 6 character passwords does not have a number in it!
- In general is the probability equal to the size of set of correct answers divided by the total number of answers.

Good Properties

- Hard to guess: do not use names, dates, telephone numbers, etc.
- Easy to remember: no need to write it down or share with other persons
- Private: otherwise no authentication possible
- Secret: owner is the only one who knows it

Attacks

- Dictionary attack
- Not fooled by
 - Capitals
 - Change of letters into numbers
 - Permutations
- What can we do?

To not do list - 1

- PW based on user's account name
- PW which match a word (or reversed word) in a dictionary, regardless if some or all of the letters are capitalized
- PW which match a word in a dictionary with an arbitrary letter turned into a control character

To not do list - 2

- PW which are simple conjugations of a dictionary word (i.e. plurals, adding "ing" or "ed" to end of word, etc.)
- PW which do not use mixed upper and lower case, or mixed letters and numbers, or mixed letters and punctuation

To not do list - 3

- PW base on user's initials or given name
- PW which match a dictionary word with letters replaced by numbers (eg '3' for 'e')
- PW which are patterns from the keyboard (eg. "aaaaa" or "qwerty")
- PW which only consist of numbers

The PROBLEM!

- We have limited memory
 - Can only remember 7±2 totally random symbols
- Even more problems when
 - We have multiple passwords
 - We need to change passwords regularly

What can we do – part 1?

- Pass phrase
 - Yesterday I watched a nice program on television.
 - YIwanpot or Y1wanp0t
- Use events on news or personal events when forced to change regularly

What can we do – part 2?

- Encryption
- Shift every character fixed number of positions
- Shift every character by increasing number of positions

http://geodsoft.com/cgi-bin/pwcheck.pl

Pass faces and images

- It is easier to recognize then to remember.
- Setup:
 - Memorize a set of selected or given pictures
- Authentication:
 - Recognize memorized pictures

Pass faces

- Five faces are presented and need to be memorized
- Five 4x4 grids are presented each containing 1 memorized image