Started on	Tuesday, 2 January 2024, 3:00 PM
State	Finished
Completed on	Tuesday, 2 January 2024, 3:29 PM
Time taken	29 mins 38 secs
Grade	8 out of 10 (80%)
_	
Question 1	

Incorrect

Mark 0 out of 1

The value of lpha for which the solution of the initial value problem y''+y'-2y=0, y(0)=lpha, y'(0)=1 approaches 0 as $t o\infty$

Select one:

• $-\frac{3}{2} \times$ • 1 • $-\frac{1}{2}$ • -1

The correct answer is: $-\frac{1}{2}$

Question 2 Correct Mark 1 out of 1

The function $y(t)=e^{-2t}\cos(2t)+e^{-2t}\sin(2t)$ is a solution of the differential equation

Select one:

 $\begin{array}{l} \circ \ y'' + 4y' - 5y = 0 \\ \circ \ y'' - 4y' + 5y = 0 \\ \hline \ y'' + 4y' + 8y = 0 \checkmark \\ \circ \ y'' + 4y' + 5y = 0 \end{array}$

The correct answer is: y'' + 4y' + 8y = 0

STILL FILLE STATE STATE

Uploaded By: Mohammed Saada

Correct Mark 1 out of 1

The general solution of the differential equation $y^{\prime\prime}-2y^{\prime}+3y=0$ is

Select one:

y(t) = c_1 e^t cos(\sqrt{2}t) + c_2 e^t sin(\sqrt{2}t) \checkmark
y(t) = c_1 e^{-t} cos(\sqrt{2}t) + c_2 e^{-t} sin(\sqrt{2}t)
y(t) = c_1 e^{-t} cos(2t) + c_2 e^{-t} sin(2t)
y(t) = c_1 e^t cos(2t) + c_2 e^t sin(2t)

The correct answer is: $y(t) = c_1 e^t \cos(\sqrt{2}t) + c_2 e^t \sin(\sqrt{2}t)$

Question **4** Correct

Mark 1 out of 1

The longest interval in which a unique solution of the initial value problem $t(\ln t - 1)y'' + ty' + y = \csc t$, y(1) = 1, y'(1) = 1 is certain to exist is

Select one:

(0, e) ✓
 (1, π)
 (1, e)

 (e,π)

The correct answer is: (0, e)

^

STUP: Fitc. Bir Zeit. edu mod/guiz/eview.php?attempt=933030&cmid=352401

Question **5**

Correct Mark 1 out of 1

The general solution of the differential equation $y^{\prime\prime}-6y^{\prime}+9y=0$ is

Select one:

The correct answer is: $y(t)=c_1e^{3t}+c_2te^{3t}$

Question **6**

Correct

Mark 1 out of 1

The solution of the initial value problem $y^{\prime\prime}+4y=0$, y(0)=1, $y^{\prime}(0)=-2$ is

Select one:

$$\bigcirc y(t) = \cos(4t) + \sin(4t)$$

- $y(t) = \cos(2t) \sin(2t)$ 🗸
- $\bigcirc y(t) = \cos(2t) + \sin(2t)$
- $\bigcirc y(t) = 2\cos(2t) + \frac{1}{2}\sin(2t)$

The correct answer is: $y(t) = \cos(2t) - \sin(2t)$

^

Stupe://itc.birzett.edu/mod/guiz/leview.php?attempt=933030&cmid=352401

Question 7
Incorrect
Mark 0 out of 1

Given that $W(y_1,y_2)(t)=t^4e^t$, $y_1(t)=t^2$, then a possible function of $y_2(t)$ is

Select one:

 $egin{array}{lll} & \circ & t^2 e^t + t \ & \circ & t^4 e^t + t^2 lpha \ & \circ & t e^t + t^2 \end{array}$

 $\circ t^2 e^t + 2t^2$

The correct answer is: $t^2e^t+2t^2$

Question 8 Correct

Mark 1 out of 1

Given that $y_1(x) = x$ is a solution of the differential equation $(1 - x^2)y'' + 2xy' - 2y = 0$, $x \in (-1, 1)$. Using the method of reduction of order, a second solution has the form $y_2(x) = v(x)y_1(x)$ where v(x) =

Select one:

 $\begin{array}{c} \circ \quad x+\frac{1}{x}\checkmark\cr \circ \quad x^2-x\cr \circ \quad x+1\cr \circ \quad 1+x^2 \end{array}$

The correct answer is: $x + \frac{1}{x}$

Stupe.//itc.birzett.edu/mod/guiz/leview.php?attempt=933030&cmid=352401

Uploaded By: Mohammed Saada

Question **9** Correct

Mark 1 out of 1

The general solution of the differential equation $2y^{\prime\prime}+3y^\prime+y=0$ is

Select one:

The correct answer is: $y(t) = c_1 e^{-t} + c_2 e^{-t/2}$

Question 10

Correct

Mark 1 out of 1

The Wronskian of any solutions y_1 and y_2 of the differential equation ((x+1)y')'+y'+2y=0, x>-1 is

Select one:

$$\circ$$
 $C(x+1)^{-1}$

- ${\ }$ $C(x+1)^{-2}$ 🗸
- \circ C(x+1)
- $\bigcirc C \ln(x+1)$

The correct answer is: $C(x+1)^{-2}$

^

Stutter./Hitc.birzett.edu/mod/quiz/leview.php?attempt=933030&cmid=352401