
1/7/2023

1

Dr. Radi Jarrar, 2022

COMP2421—DATA STRUCTURES
& ALGORITHMS
Dynamic Programming

Dr. Radi Jarrar

Department of Computer Science

Birzeit University

Slides and material are adapted from George Bebis Analysis of
Algorithms at the University of Nevada, Reno

1

Dr. Radi Jarrar, 2022

Dynamic Programming

• Dynamic programming is strategy optimize certain classes of
algorithms

• Dynamic programming is a technique for efficiently
implementing a recursive algorithm by storing partial results

• The idea is to see whether the naive recursive algorithm
computes the same subproblems over and over again. If so,
storing the answer for each subproblems in a table to look up
instead of recompute can lead to an efficient algorithm

2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

2

Dr. Radi Jarrar, 2022

Dynamic Programming

• It is based on a caching mechanism that aims to reuse heavy
computations

• This caching mechanism is called memorization

• Dynamic programming provides good performance benefits

when the problem we are trying to solve can be divided into

subproblems

• The subproblems partly involve a calculation that is repeated

in those subproblems

3

Dr. Radi Jarrar, 2022

Dynamic Programming

• The idea is to perform that calculation once (which is the time-consuming

step) and then reuse it on the other subproblems

• This is achieved using memorization, which is especially useful in solving

recursive problems that may evaluate the same inputs multiple times

• Dynamic programming is a tradeoff of space for time

• Instead of re-computing a given quantity, it is better to store the results of

the initial computation and looking them up instead of recomputing them

again

4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

3

Dr. Radi Jarrar, 2022

Dynamic Programming

• Dynamic programming is an algorithm design technique (like divide and conquer)

• Divide and conquer

• Tend to be recursive solutions

• Partition the problem into independent subproblems

• Solve the subproblems recursively

• Combine the solutions to solve the original problem

• Dynamic programming solutions are non-recursive

5

Dr. Radi Jarrar, 2022

Dynamic Programming

• Examples

• Fibonacci sequence

• Using dynamic programming will enhance the calculation of the nth number of the
Fibonacci sequence

• Suppose we have a map of objects that maps each call to its value if it was calculated

• This technique of saving values that have been already calculated is called
memorization

• Binomial Coefficients

• Job/task scheduling

• Longest common subsequences

• Matrix-chain multiplication

• Applicable when subproblems are not independent

• Subproblems share subsubproblems

6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

4

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Recursion

• The base cases F0 = 0 and F1 = 1

• Thus, F2 = 1, F3 = 2, and the series continues as 3,5,8,13,21,34,55,89,144

• Recursive solution is

int fib_r(int n){

7

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Recursion

• The base cases F0 = 0 and F1 = 1

• Thus, F2 = 1, F3 = 2, and the series continues as 3,5,8,13,21,34,55,89,144

• Recursive solution is

int fib_r(int n){

if (n == 0)

return 0;

if (n == 1)

return 1;

return fib_r(n-1) + fib_r(n-2));

}

8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

5

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Recursion
9

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Recursion

• How much time does this algorithm take to compute F(n)?

• The time complexity of Fibonacci series using recursion is
O(2n)

• So this program takes exponential time to run

10

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

6

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Cashing

• Another method to compute the Fibonacci series is by using
a cashing technique

• Explicitly store (or cache) the results of each Fibonacci
computation F(k) in a table indexed by the parameter k

• The key to avoiding recomputation is to explicitly check for
the value before trying to compute it

11

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Cashing

#define MAXN 45 /* largest interesting n */

#define UNKNOWN -1 /* contents denote an empty cell */

long f[MAXN+1]; /* array for caching computed fib values */

12

int fib_c_driver(int n){

int i;

f[0] = 0;

f[1] = 1;

for(i=2; i<=n; i++)

f[i] = UNKOWN;

return fib_c(n);

}

int fib_c(int n){

if(f[n] == UNKNOWN)

f[n] = fib_c(n-1) + fib_c(n-2);

return f[n];

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

7

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Cashing

#define MAXN 45 /* largest interesting n */

#define UNKNOWN -1 /* contents denote an empty cell */

long f[MAXN+1]; /* array for caching computed fib values */

13

int fib_c_driver(int n){

int i;

f[0] = 0;

f[1] = 1;

for(i=2; i<=n; i++)

f[i] = UNKNOWN;

return fib_c(n);

}

int fib_c(int n){

if(f[n] == UNKNOWN)

f[n] = fib_c(n-1) + fib_c(n-2);

return f[n];

}

Dr. Radi Jarrar, 2022

Fibonacci Numbers by Cashing

• This provides a O(n) solution

14

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

8

Dr. Radi Jarrar, 2022

Fibonacci Numbers using Dynamic Programming

• In the previous solution we computed the Fibonacci recursively and stored the
results in an array

• In DP we need a non-recursive solution

int fib_dp(int n) {

int i;

int f[MAXN+1]; /* array to cache computed fib values */

f[0] = 0;

f[1] = 1;

for (i=2; i<=n; i++)

f[i] = f[i-1]+f[i-2];

return f[n];

}

• This provides O(n) running time

15

Dr. Radi Jarrar, 2022

Fibonacci Numbers using Dynamic Programming

• In the previous solution we computed the Fibonacci recursively and stored the
results in an array

• In DP we need a non-recursive solution

int fib_dp(int n) {

int i;

int f[MAXN+1]; /* array to cache computed fib values */

f[0] = 0;

f[1] = 1;

for (i=2; i<=n; i++)

f[i] = f[i-1]+f[i-2];

return f[n];

}

• This provides O(n) running time

16

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

9

Dr. Radi Jarrar, 2022

Fibonacci Numbers using Dynamic Programming

• A better solution that does not store all the intermediate values for the entire period of execution

• This is because the recurrence depends on two arguments, so we need to retain the last two values
we have seen

int fib_dp_2(int n){

int i; /* counter */

int back2=0, back1=1; /* last two values of f[n] */

int next; /* placeholder for sum */

if (n == 0)

return 0;

for (i=2; i<n; i++) {

next = back1+back2;

back2 = back1;

back1 = next;

}

return back1+back2;

}

17

Dr. Radi Jarrar, 2022

BINOMIAL COEFFICIENTS

18

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

10

Dr. Radi Jarrar, 2022

Combinations
• Another example that utilizes Dynamic Programming is Binomial Coefficients

• Combinations: the binomial coefficients are the most important class of counting
numbers

counts the number of ways to choose k things out of n possibilities

• n choose k can be solved using factorials

• However, intermediate calculations can easily cause arithmetic overflow, even when
the final coefficient fits comfortably within an integer

19

Dr. Radi Jarrar, 2022

Combinations

• A more stable way to compute binomial coefficients is using the
recurrence relation implicit in the construction of Pascal’s triangle:

• Each number is the sum of the two numbers directly above it

20

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

11

Dr. Radi Jarrar, 2022

Combinations
• The recurrence relation implicit in this is that

• A divide and conquer approach would repeatedly solve the

common subproblems

• Dynamic programming solves every subproblem just once and

stores the answer in a table

21

n
k

n-1
k

n-1
k-1

= +

n
1

n
n

= n =1

Dr. Radi Jarrar, 2022

Combinations

+
=

=

=

=

=

=

+ +

+ + + +

++ + + + +

+

+

+

+

+ + +

+ + + + + + +

+ +

+

++++++++3

3

Comb (3, 1)

2

Comb (2, 1)

1

Comb (2, 2)

Comb (3, 2)

Comb (4,2)

2

Comb (2, 1)

1

Comb (2, 2)

Comb (3, 2)

1

1

Comb (3, 3)

Comb (4, 3)

Comb (5, 3)

2

Comb (2, 1)

1

Comb (2, 2)

Comb (3, 2)

1

1

Comb (3, 3)

Comb (4, 3)

1

1

1

Comb (4, 4)

Comb (5, 4)

Comb (6,4)

22

n

k

n-1

k

n-1

k-1
= +

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

12

Dr. Radi Jarrar, 2022

Combinations
23

int binomial_coefficient(int n, int m){

int i, j; //counters

int bc[MAXN][MAXN]; /*table of binomial

coefficients */

for (i=0; i<=n; i++)

bc[i][0] = 1;

for (j=0; j<=n; j++)

bc[j][j] = 1;

for (i=1; i<=n; i++)

for (j=1; j<i; j++)

bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

return bc[n][m] ;

}

Dr. Radi Jarrar, 2022

Dynamic Programming

• Used for optimization problems

• A set of choices must be made to get an optimal solution

• Find a solution with the optimal value (minimum or maximum)

• There may be many solutions that lead to an optimal value

• Our goal: find an optimal solution

24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

13

Dr. Radi Jarrar, 2022

Dynamic Programming Algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information (not

always necessary)

25

Dr. Radi Jarrar, 2022

ASSEMBLY LINE SCHEDULING

26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

14

Dr. Radi Jarrar, 2022

Assembly Line Scheduling

• Automobile factory with two assembly lines

• Each line has n stations: S1,1, . . . , S1,n and S2,1, . . . , S2,n

• Corresponding stations S1, j and S2, j perform the same function but can take
different amounts of time a1, j and a2, j

• Entry times are: e1 and e2; exit times are: x1 and x2

27

Dr. Radi Jarrar, 2022

Assembly Line Scheduling

• After going through a station, can either:

• stay on same line at no cost, or

• transfer to other line: cost after Si,j is ti,j , j = 1, . . . , n - 1

28

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

15

Dr. Radi Jarrar, 2022

Assembly Line Scheduling

• Problem:

What stations should be chosen from line 1 and which from
line 2 in order to minimize the total time through the factory
for one car?

29

Dr. Radi Jarrar, 2022

Assembly Line Scheduling

• Problem:

what stations should be chosen from line 1 and which from line 2 in order to
minimize the total time through the factory for one car?

30

36

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

16

Dr. Radi Jarrar, 2022

Assembly Line Scheduling
31

36

38

• Problem:

what stations should be chosen from line 1 and which from line 2 in order to
minimize the total time through the factory for one car?

Dr. Radi Jarrar, 2022

Assembly Line Scheduling
32

36

38

34

• Problem:

what stations should be chosen from line 1 and which from line 2 in order to
minimize the total time through the factory for one car?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

17

Dr. Radi Jarrar, 2022

One Solution

• Brute force
• Enumerate all possibilities of selecting stations

• Compute how long it takes in each case and choose the best one

• Solution:

• There are 2n possible ways to choose stations

• Infeasible when n is large!!

33

1 0 0 1 1

1 if choosing line 1

at step j (= n)

1 2 3 4 n

0 if choosing line 2

at step j (= 3)

Dr. Radi Jarrar, 2022

1. Structure of the Optimal Solution

• How do we compute the minimum time of going through a
station?

34

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

18

Dr. Radi Jarrar, 2022

1. Structure of the Optimal Solution

• Let’s consider all possible ways to get from the starting point through
station S1,j

• We have two choices of how to get to S1, j:
• Through S1, j - 1, then directly to S1, j

• Through S2, j - 1, then transfer over to S1, j

35

a1,ja1,j-1

a2,j-1

t2,j-1

S1,jS1,j-1

S2,j-1

Line 1

Line 2

Dr. Radi Jarrar, 2022

1. Structure of the Optimal Solution

• Suppose that the fastest way through S1, j is through S1, j – 1

• We must have taken a fastest way from entry through S1, j – 1

• If there were a faster way through S1, j - 1, we would use it instead

• Similarly for S2, j – 1

36

a1,ja1,j-1

a2,j-1

t2,j-1

S1,jS1,j-1

S2,j-1

Optimal Substructure

Line 1

Line 2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

19

Dr. Radi Jarrar, 2022

2. A Recursive Solution

• Generalisation of the problem: an optimal solution to the problem (find the

shortest way to Si,j) contains optimal solutions to subproblems (find the shortest

way to S1,j-1 or S2,j-2

• This is the optimal substructure property

• This property is used to reconstruct the optimal solution to the problem

37

Dr. Radi Jarrar, 2022

2. A Recursive Solution (cont.)

• Define the value of the optimal solution in terms of the optimal solution to
subproblems

• Definitions:
• f* : the fastest time to get through the entire factory

• fi[j] : the fastest time to get from the starting point through station Si,j

• l*: the line number which is used to exit the factory from the nth station

• li[j]: the line number which is (1 or 2) whose Si, j-1 is used to reach Si,j

The objective function is:

f* = min (f1[n] + x1, f2[n] + x2)

38

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

20

Dr. Radi Jarrar, 2022

2. A Recursive Solution (cont.)

• Base case: j = 1, i=1,2 (getting through station 1)

f1[1] = e1 + a1,1

f2[1] = e2 + a2,1

39

Dr. Radi Jarrar, 2022

2. A Recursive Solution (cont.)
• General Case: j = 2, 3, …,n, and i = 1, 2

• Fastest way through S1, j is either:
• the way through S1, j - 1 then directly through S1, j, or

f1[j - 1] + a1,j

• the way through S2, j - 1, transfer from line 2 to line 1, then through S1, j

f2[j -1] + t2,j-1 + a1,j

f1[j] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j)

40

a1,ja1,j-1

a2,j-1

t2,j-1

S1,jS1,j-1

S2,j-1

Line 1

Line 2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

21

Dr. Radi Jarrar, 2022

2. A Recursive Solution (cont.)

e1 + a1,1 if j = 1

f1[j] =

min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j) if j ≥ 2

e2 + a2,1 if j = 1

f2[j] =

min(f2[j - 1] + a2,j ,f1[j -1] + t1,j-1 + a2,j) if j ≥ 2

41

Recursively define the value of the optimal solution:

Dr. Radi Jarrar, 2022

3. Computing the Optimal Solution

f* = min (f1[n] + x1, f2[n] + x2)
f1[j] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j)

f2[j] = min(f2[j - 1] + a2,j ,f1[j -1] + t1,j-1 + a2,j)

• Solving top-down would result in exponential
running time

42

f1[j]

f2[j]

1 2 3 4 5

f1(5)

f2(5)

f1(4)

f2(4)

f1(3)

f2(3)

2 times4 times

f1(2)

f2(2)

f1(1)

f2(1)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

22

Dr. Radi Jarrar, 2022

3. Computing the Optimal Solution

• For j ≥ 2, each value fi[j] depends only on the values of f1[j –
1] and f2[j - 1]

• Idea: compute the values of fi[j] as follows:

• Bottom-up approach
• First find optimal solutions to subproblems

• Find an optimal solution to the problem from the subproblems

43

f1[j]

f2[j]

1 2 3 4 5

in increasing order of j

Dr. Radi Jarrar, 2022

Example
44

e1 + a1,1, if j = 1

f1[j] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j) if j ≥ 2 f* = 35

l* = 1

f1[j]

f2[j]

1 2 3 4 5

9

12 16

18 20

22

24

25

32

30

f1[j]

f2[j]

1

2 1

1 2

2

1

1

1

2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

23

Dr. Radi Jarrar, 2022

FASTEST-WAY(a, t, e, x, n)
1. f1[1] ← e1 + a1,1

2. f2[1] ← e2 + a2,1

3. for j ← 2 to n

4. if f1[j - 1] + a1,j ≤ f2[j - 1] + t2, j-1 + a1, j

5. then f1[j] ← f1[j - 1] + a1, j

6. l1[j] ← 1

7. else f1[j] ← f2[j - 1] + t2, j-1 + a1, j

8. l1[j] ← 2

9. if f2[j - 1] + a2, j ≤ f1[j - 1] + t1, j-1 + a2, j

10. then f2[j] ← f2[j - 1] + a2, j

11. l2[j] ← 2

12. else f2[j] ← f1[j - 1] + t1, j-1 + a2, j

13. l2[j] ← 1

14. if f1[n] + x1 ≤ f2[n] + x2

15. then f* = f1[n] + x1

16. l* = 1

17. else f* = f2[n] + x2

18. l* = 2

45

Compute initial values of f1 and f2

Compute the values of

f1[j] and l1[j]

O(N)

Compute the values of

f2[j] and l2[j]

Compute the values of

the fastest time through the

entire factory

Dr. Radi Jarrar, 2022

4. Construct an Optimal Solution

Alg.: PRINT-STATIONS(l, n)

i ← l*

print “line ” i “, station ” n

for j ← n downto 2

do i ←li[j]

print “line ” i “, station ” j - 1

46

f1[j]/l1[j]

f2[j]/l2[j]

1 2 3 4 5

9

12 16[1]

18[1] 20[2]

22[2]

24[1]

25[1]

32[1]

30[2]
l* = 1

The last step is to construct the optimal solution once the optimal solution
is calculated

From the value of l* we will backtrack into the path

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

24

Dr. Radi Jarrar, 2022 47

MATRIX-CHAIN MULTIPLICATION

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
48

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

2 x 10 + 3 x 40 + 4 x 70 = 420

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

25

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
49

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

2 x 20 + 3 x 50 + 4 x 80 = 510

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
50

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

2 x 30 + 3 x 40 + 4 x 90 = 540

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

26

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
51

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

5 x 10 + 6 x 40 + 7 x 70 = 780

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510 540

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
52

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

5 x 20 + 6 x 50 + 7 x 80 = 960

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510 540

780

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

27

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
53

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

5 x 30 + 6 x 60 + 7 x 90 = 1140

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510 540

780 960

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
54

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

5 x 30 + 6 x 60 + 7 x 90 = 1140

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510 540

780 960 1140

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

28

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
55

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

• Overall, we have 12 additions and 18 multiplications!

• 3.32 = 27 multiplications

• 2.32 = 18 additions

• Computing summation in computers is quite faster than

multiplication

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510 540

780 960 1140

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication
56

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 3)

• So for n x n matrix we will have n.n2 multiplications and

(n-1).n2 additions

• So this will result in O(n3) time complexity

2 3 4

5 6 7

10 20 30

40 50 60

70 80 90

420 510 540

780 960 1140

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

29

Dr. Radi Jarrar, 2022

MATRIX-MULTIPLY(A, B)

if columns[A]  rows[B]

then error “incompatible dimensions”

else for i  1 to rows[A]

do for j  1 to columns[B]

do C[i, j] = 0

for k  1 to columns[A]

do C[i, j]  C[i, j] + A[i, k] B[k, j]

58

rows[A]

rows[A]

cols[B]
cols[B]

i

j
j

i

A B C

* =

k

k

rows[A]  cols[A]  cols[B]
multiplications

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication

• Assume we have the following matrices

A1 A2 A3 A4 A5

with sizes 4x10 10x3 3x12 12x20 20x7

• First we check if we can multiply them

• If the inner dimensions of the adjacent matrices match

• If we want to multiply them from the beginning to end

• This will take: 4x10x3 + 10x3x12 + 3x12x20 + 12x20x7 = 1784 multiplications

• Expensive computation!

59

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

30

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication

• Assume we have the following matrices

A1 A2 A3 A4 A5

with sizes 4x10 10x3 3x12 12x20 20x7

• First we check if we can multiply them

• If the inner dimensions of the adjacent matrices match

• If we want to multiply them from the beginning to end

• This will take: 4x10x3 + 10x3x12 + 3x12x20 + 12x20x7 = 1784 multiplications

• Expensive computation!

60

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication

• One strategy can be done to reduce the number of multiplications

is to parenthesize the product

• Parenthesize the product to get the order in which matrices are

multiplied

• E.g.: A1  A2  A3 = ((A1  A2)  A3)

= (A1  (A2  A3))

• Which one of these orderings should we choose?

• The order in which we multiply the matrices has a significant impact on

the cost of evaluating the product

61

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

31

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication

• Goal: find the optimal way to multiply these matrices to perform

the fewest multiplications

• Easy approach: Try them all and pick the most optimal

• Running time would be exponential!

62

Dr. Radi Jarrar, 2022

Example
A1  A2  A3

• A1: 10 x 100

• A2: 100 x 5

• A3: 5 x 50

1. ((A1  A2)  A3): A1  A2 = 10 x 100 x 5 = 5,000 (10 x 5)

((A1  A2)  A3) = 10 x 5 x 50 = 2,500

Total: 7,500 scalar multiplications

2. (A1  (A2  A3)): A2  A3 = 100 x 5 x 50 = 25,000 (100 x 50)

(A1  (A2  A3)) = 10 x 100 x 50 = 50,000

Total: 75,000 scalar multiplications

63

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

32

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication

• Goal: find the optimal way to multiply these matrices to perform

the fewest multiplications

• Easy approach: Try them all and pick the most optimal

• Running time would be exponential!

64

Dr. Radi Jarrar, 2022

Matrix-Chain Multiplication: Problem statement

• Given a chain of matrices A1, A2, …, An, where Ai has

dimensions pi-1x pi, fully parenthesize the product A1  A2 

An in a way that minimizes the number of scalar

multiplications.

A1  A2  Ai  Ai+1  An

p0 x p1 p1 x p2 pi-1 x pi pi x pi+1 pn-1 x pn

65

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

33

Dr. Radi Jarrar, 2022

What is the number of possible parenthesizations?

• Exhaustively checking all possible parenthesizations is not efficient!

66

Dr. Radi Jarrar, 2022

1. The Structure of an Optimal Parenthesization
• Notation:

Ai…j = Ai Ai+1  Aj, i  j

• Suppose that an optimal parenthesization of Ai…j splits the
product between Ak and Ak+1, where i  k < j

Ai…j = Ai Ai+1  Aj

= Ai Ai+1  Ak Ak+1  Aj

= Ai…k Ak+1…j

67

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

34

Dr. Radi Jarrar, 2022

Optimal Substructure

Ai…j = Ai…k Ak+1…j

• The parenthesization of the “prefix” Ai…k must be an optimal parentesization

• An optimal solution to an instance of the matrix-chain multiplication
contains within it optimal solutions to subproblems

69

Dr. Radi Jarrar, 2022

2. A Recursive Solution

• Subproblem:

determine the minimum cost of parenthesizing

Ai…j = Ai Ai+1  Aj for 1  i  j  n

• Let m[i, j] = the minimum number of multiplications needed to compute Ai…j

• full problem (A1..n): m[1, n]

• i = j: Ai…i = Ai  m[i, i] =

70

0, for i = 1, 2, …, n

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

35

Dr. Radi Jarrar, 2022

2. A Recursive Solution

• Consider the subproblem of parenthesizing

• Ai…j = Ai Ai+1  Aj for 1  i  j  n

= Ai…k Ak+1…j for i  k < j

• Assume that the optimal parenthesization splits the product Ai Ai+1  Aj at k (i

 k < j)

m[i, j] =

71

min # of multiplications

to compute Ai…k

of multiplications

to compute Ai…kAk…j

min # of multiplications

to compute Ak+1…j

m[i, k] m[k+1,j]

pi-1pkpj

m[i, k] + m[k+1, j] + pi-1pkpj

Dr. Radi Jarrar, 2022

2. A Recursive Solution (cont.)
m[i, j] = m[i, k] + m[k+1, j] + pi-1pkpj

• We do not know the value of k

• There are j – i possible values for k: k = i, i+1, …, j-1

• Minimizing the cost of parenthesizing the product Ai Ai+1  Aj

becomes:

0 if i = j

m[i, j] = min {m[i, k] + m[k+1, j] + pi-1pkpj} if i < j
ik<j

72

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

36

Dr. Radi Jarrar, 2022

3. Computing the Optimal Costs
0 if i = j

m[i, j] = min {m[i, k] + m[k+1, j] + pi-1pkpj} if i < j
ik<j

• Computing the optimal solution recursively takes exponential
time!

• How many subproblems?

• Parenthesize Ai…j

for 1  i  j  n

• One problem for each

choice of i and j

73

 O(n2)
1

1

2 3 n

2

3

n

j

i

Dr. Radi Jarrar, 2022

3. Computing the Optimal Costs (cont.)

0 if i = j

m[i, j] = min {m[i, k] + m[k+1, j] + pi-1pkpj} if i < j
ik<j

• How do we fill in the tables m[1..n, 1..n]?

• Determine which entries of the table are used in computing m[i, j]

Ai…j = Ai…k Ak+1…j

• Subproblems’ size is one less than the original size

• Idea: fill in m such that it corresponds to solving problems of increasing

length

74

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

37

Dr. Radi Jarrar, 2022

3. Computing the Optimal Costs (cont.)

0 if i = j

m[i, j] = min {m[i, k] + m[k+1, j] + pi-1pkpj} if i < j
ik<j

• Length = 1: i = j, i = 1, 2, …, n

• Length = 2: j = i + 1, i = 1, 2, …, n-1

75

1

1

2 3 n

2

3

n

Compute rows from bottom to top

and from left to right

m[1, n] gives the optimal

solution to the problem

i

j

Dr. Radi Jarrar, 2022

Example: min {m[i, k] + m[k+1, j] + pi-1pkpj}
m[2, 2] + m[3, 5] + p1p2p5

m[2, 3] + m[4, 5] + p1p3p5

m[2, 4] + m[5, 5] + p1p4p5

76

1

1

2 3 6

2

3

6

i

j

4 5

4

5

m[2, 5] = min

• Values m[i, j] depend only

on values that have been

previously computed

k = 2

k = 3

k = 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

38

Dr. Radi Jarrar, 2022

Example min {m[i, k] + m[k+1, j] + pi-1pkpj}

Compute A1  A2  A3

• A1: 10 x 100 (p0 x p1)

• A2: 100 x 5 (p1 x p2)

• A3: 5 x 50 (p2 x p3)

m[i, i] = 0 for i = 1, 2, 3

m[1, 2] = m[1, 1] + m[2, 2] + p0p1p2 (A1A2)

= 0 + 0 + 10 *100* 5 = 5,000

m[2, 3] = m[2, 2] + m[3, 3] + p1p2p3 (A2A3)

= 0 + 0 + 100 * 5 * 50 = 25,000

m[1, 3] = min m[1, 1] + m[2, 3] + p0p1p3 = 75,000 (A1(A2A3))

m[1, 2] + m[3, 3] + p0p2p3 = 7,500 ((A1A2)A3)

77

0

0

0

1

1

2

2

3

3

5000
1

25000
2

7500
2

Dr. Radi Jarrar, 2022

Matrix-Chain-Order(p)

78

O(N3)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

39

Dr. Radi Jarrar, 2022

4. Construct the Optimal Solution
• In a similar matrix s we keep

the optimal values of k

• s[i, j] = a value of k such
that an optimal
parenthesization of Ai..j

splits the product between
Ak and Ak+1

79

k

1

1

2 3 n

2

3

n

j

Dr. Radi Jarrar, 2022

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 4)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

40

Dr. Radi Jarrar, 2022

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 4)

Dr. Radi Jarrar, 2022

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 4)

• # of multiplications to get one element in resultant matrix =3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

41

Dr. Radi Jarrar, 2022

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 4)

• # of multiplications to get one element in resultant matrix =3

• # of multiplications to get one row in resultant matrix = 3 * 4 = 12

Dr. Radi Jarrar, 2022

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 4)

• # of multiplications to get one element in resultant matrix =3

• # of multiplications to get one row in resultant matrix = 3 * 4 = 12

• # of multiplications to get all elements in resultant matrix = cost(A1, A2) = 3 * 4 *
2 = 24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

42

Dr. Radi Jarrar, 2022

• Consider 2 matrices A1 and A2 of sizes (2, 3) and (3, 4)

• # of multiplications to get one element in resultant matrix =3

• # of multiplications to get one row in resultant matrix = 3 * 4 = 12

• # of multiplications to get all elements in resultant matrix = cost(A1, A2) = 3 * 4 *
2 = 24  cost of multiplying A1 and A2

Dr. Radi Jarrar, 2022

Problem

• In matrix chain multiplication problem, we need to find the minimum cost of
when multiplying more than one matrix

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

43

Dr. Radi Jarrar, 2022

Problem

• In matrix chain multiplication problem, we need to find the minimum cost of
when multiplying more than one matrix

• Consider the following 4 matrices A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 =
(2 x 7)

Dr. Radi Jarrar, 2022

Problem

• In matrix chain multiplication problem, we need to find the minimum cost of
when multiplying more than one matrix

• Consider the following 4 matrices A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 =
(2 x 7)

• The number of possible combinations to perform A1*A2*A3*A4 is

• (A1*A2)*(A3*A4) or (A1)*(A2*A3*A4) or (((A1*A2)*A3)*A4) …

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

44

Dr. Radi Jarrar, 2022

Problem

• In matrix chain multiplication problem, we need to find the minimum cost of
when multiplying more than one matrix

• Consider the following 4 matrices A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 =
(2 x 7)

• The number of possible combinations to perform A1*A2*A3*A4 is

• (A1*A2)*(A3*A4) or (A1)*(A2*A3*A4) or (((A1*A2)*A3)*A4) …

• Time complexity of this method is 2nCn/(n+1) = 2(4)C(3)/5 = 336

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• Consider the following table M of size n x n (n is the number of matrices)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

45

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• Consider the following table M of size n x n (n is the number of matrices)

• n = 4

• Initialise M[i, j] = 0, where i == j

• M[i, j] = MIN{ M[i, k] + M[k+1, j] +
d(i-1)*d(k)*d(j)}

• where d(k) is the dimension of matrix k

1 2 3 4

1

2

3

4

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• Consider the following table M of size n x n (n is the number of matrices)

• n = 4

• Initialise M[i, j] = 0, where i == j

• M[i, j] = MIN{ M[i, k] + M[k+1, j] +
d(i-1)*d(k)*d(j)}

• where d(k) is the dimension of matrix k
and ik<j

1 2 3 4

1 0

2 0

3 0

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

46

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 2] = A1 x A2 = 5 x 4 x 6 = 120

1 2 3 4

1 0

2 0

3 0

4 0

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 2] = A1 x A2 = 5 x 4 x 6 = 120

1 2 3 4

1 0 120

2 0

3 0

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

47

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 2] = A1 x A2 = 5 x 4 x 6 = 120

• M[2, 3] = A2 x A3 = 4 x 6 x 2 = 48

1 2 3 4

1 0 120

2 0

3 0

4 0

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 2] = A1 x A2 = 5 x 4 x 6 = 120

• M[2, 3] = A2 x A3 = 4 x 6 x 2 = 48

1 2 3 4

1 0 120

2 0 48

3 0

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

48

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 2] = A1 x A2 = 5 x 4 x 6 = 120

• M[2, 3] = A2 x A3 = 4 x 6 x 2 = 48

• M[3, 4] = A3 x A4 = 6 x 2 x 7 = 84
1 2 3 4

1 0 120

2 0 48

3 0

4 0

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 2] = A1 x A2 = 5 x 4 x 6 = 120

• M[2, 3] = A2 x A3 = 4 x 6 x 2 = 48

• M[3, 4] = A3 x A4 = 6 x 2 x 7 = 84
1 2 3 4

1 0 120

2 0 48

3 0 84

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

49

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 3] = M[1, 1] + M[2, 3] + 5 X 4 X 2
= 0 + 48 + 40 = 88

• M[1, 3] = M[1, 2] + M[3, 3] + 5 X 6 X 2
= 120 + 0 + 60 = 180

• M[1, 3] = MIN{88, 180} = 88

1 2 3 4

1 0 120

2 0 48

3 0 84

4 0

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 3] = M[1, 1] + M[2, 3] + 5 X 4 X 2
= 0 + 48 + 40 = 88

• M[1, 3] = M[1, 2] + M[3, 3] + 5 X 6 X 2
= 120 + 0 + 60 = 180

• M[1, 3] = MIN{88, 180} = 88

1 2 3 4

1 0 120 88

2 0 48

3 0 84

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

50

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[2, 4] = M[2, 2] + M[3, 4] + 4 X 6 X 7
= 0 + 84 + 168 = 252

• M[2, 4] = M[2, 3] + M[4, 4] + 4 X 2 X 7
= 48 + 0 + 56 = 104

• M[2, 4] = MIN{252, 104} = 104

1 2 3 4

1 0 120 88

2 0 48

3 0 84

4 0

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[2, 4] = M[2, 2] + M[3, 4] + 4 X 6 X 7
= 0 + 84 + 168 = 252

• M[2, 4] = M[2, 3] + M[4, 4] + 4 X 2 X 7
= 48 + 0 + 56 = 104

• M[2, 4] = MIN{252, 104} = 104

1 2 3 4

1 0 120 88

2 0 48 104

3 0 84

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

51

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 4] = M[1, 1] + M[2, 4] + 5 X 4 X 7
= 0 + 104 + 140 = 244

• M[1, 4] = M[1, 2] + M[3, 4] + 5 X 6 X 7
= 120 + 84 + 210 = 414

• M[1, 4] = M[1, 3] + M[4, 4] + 5 X 2 X 7
= 88 + 0 + 70 = 158

• M[1, 4] = MIN{244, 414, 158} = 158

1 2 3 4

1 0 120 88

2 0 48 104

3 0 84

4 0

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• A1 = (5 x 4), A2 = (4 x 6), A3 = (6 x 2), and A4 = (2 x 7)

• M[1, 4] = M[1, 1] + M[2, 4] + 5 X 4 X 7
= 0 + 104 + 140 = 244

• M[1, 4] = M[1, 2] + M[3, 4] + 5 X 6 X 7
= 120 + 84 + 210 = 414

• M[1, 4] = M[1, 3] + M[4, 4] + 5 X 2 X 7
= 88 + 0 + 70 = 158

• M[1, 4] = MIN{244, 414, 158} = 158

1 2 3 4

1 0 120 88 158

2 0 48 104

3 0 84

4 0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

52

Dr. Radi Jarrar, 2022

Problem – Using Dynamic Programming

• So the minimum number of multiplications required for these matrices is 158

1 2 3 4

1 0 120 88 158

2 0 48 104

3 0 84

4 0

Dr. Radi Jarrar, 2022

Memoization

• Top-down approach with the efficiency of typical dynamic

programming approach

• Maintaining an entry in a table for the solution to each

subproblem

• memoize the inefficient recursive algorithm

• When a subproblem is first encountered its solution is

computed and stored in that table

• Subsequent “calls” to the subproblem simply look up that

value

110

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

53

Dr. Radi Jarrar, 2022

Memoized Matrix-Chain

Alg.:MEMOIZED-MATRIX-CHAIN(p)

1. n  length[p] – 1

2. for i  1 to n

3. do for j  i to n

4. do m[i, j]  

5. return LOOKUP-CHAIN(p, 1, n)

111

Initialize the m table with

large values that indicate

whether the values of m[i, j]
have been computed

Top-down approach

Dr. Radi Jarrar, 2022

Memoized Matrix-Chain
Alg.: LOOKUP-CHAIN(p, i, j)

1. if m[i, j] < 

2. then return m[i, j]

3. if i = j

4. then m[i, j]  0

5. else for k  i to j – 1

6. do q  LOOKUP-CHAIN(p, i, k) +

LOOKUP-CHAIN(p, k+1, j) + pi-1pkpj

7. if q < m[i, j]

8. then m[i, j]  q

9. return m[i, j]

112

Running time is O(n3)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

54

Dr. Radi Jarrar, 2022

Dynamic Progamming vs. Memoization

• Advantages of dynamic programming vs. memoized algorithms

• No overhead for recursion, less overhead for maintaining the table

• The regular pattern of table accesses may be used to reduce time or space requirements

• Advantages of memoized algorithms vs. dynamic programming

• Some subproblems do not need to be solved

113

Dr. Radi Jarrar, 2022

LONGEST INCREASING
SUBSEQUENCE

118

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

55

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• The Longest Increasing Subsequence (LIS) is the length of the

longest subsequence of a given sequence such that all

elements of the subsequence are sorted in increasing order

• For example given S = {2,4,3,5,1,7,6,9,8}

• What is the Longest Increasing Subsequence?

119

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• The Longest Increasing Subsequence (LIS) is the length of the

longest subsequence of a given sequence such that all

elements of the subsequence are sorted in increasing order

• For example given S = {2,4,3,5,1,7,6,9,8}

• What is the Longest Increasing Subsequence?

•The length of 5 with {2, 4, 5, 6, 8}

120

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

56

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• The Longest Increasing Subsequence (LIS) is the length of the

longest subsequence of a given sequence such that all elements of

the subsequence are sorted in increasing order

• For example given S = {2,4,3,5,1,7,6,9,8}

• What is the Longest Increasing Subsequence?

• The length of 5 with {2, 4, 5, 6, 8}

• There are 8 more with this length!

121

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Given the following list {10, 22, 9, 33, 21, 50, 41, 60, 80}, what is

the length of the Longest Increasing Subsequence?

122

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

57

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Given the following list {10, 22, 9, 33, 21, 50, 41, 60, 80}, what is

the length of the Longest Increasing Subsequence?

• The length is 6 and LIS is {10, 22, 33, 50, 60, 80}

123

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Finding the longest increasing run in a numerical sequence is

straightforward

• Indeed, you should be able to devise a linear-time algorithm easily

• To apply dynamic programming, we need to construct a recurrence
that computes the length of the longest sequence

• To find the right recurrence, ask what information about the first n − 1
elements of S would help you to find the answer for the entire
sequence?

124

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

58

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Recursion:

1.Find the possible subsequences for the current number

2.If the current item is greater than the previous element in the
subsequence, include the current item in the subsequence and recur
for the remaining items

3.Exclude the current item from the sequence and recur for the
remaining items

4.Return the maximum value reached by including or excluding the
current item.

125

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

126

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

59

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

127

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3}

128

Exclude (less than 3)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

60

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

129

Include (6 is greater than 3)

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

130

Exclude

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

61

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

131

Exclude

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

132

Exclude

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

62

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2}

133

Start

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

134

Include

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

63

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

135

Exclude

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

136

Exclude

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

64

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

137

Exclude

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

138

Exclude

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

65

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

• {2, 4, 5}

• {5}

• {1}

• …etc

139

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• Example:

• S={3, 2, 6, 4, 5, 1}

• Increasing subsequences:

• {3, 6}

• {2, 6}

• {2, 4, 5} longest with length 3

• {5}

• {1}

• …etc

140

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

66

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
int LIS(int arr[], int i, int n, int prev)

{

// Base case – empty list

if (i == n) return 0;

//case 1-exclude the current element and process the remaining
elements

int exclude = LIS(arr, i + 1, n, prev);

// case 2-include the current element if it is greater than previous
element in LIS

int include = 0;

if (arr[i] > prev)

include = 1 + LIS(arr, i + 1, n, arr[i]);

// return maximum of above two choices

return max(include, exclude);

}

141

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence
• One approach to find the LIS is to create a Directed Acyclic Graph

(DAG) with each element acting as a node

• An edge between every pair of ordered nodes. Being able to visualize
the DAG will make solving problems easier

• The problems will generally ask to form a sequence or chain of
elements. The solution to the problem is found by choosing the path
that has the most number of edges in the DAG.

142

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

67

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence

143

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence

• As for the DAG above, note the following:

1.We should order elements as (p, q) if q > p.
In the above diagram for the node 2, the
ordered pairs are (2, 5), (2, 3), (2, 7), (2, 101). Each of these ordered
ordered pair has an edge.

2.We are asked to form the longest chain/subsequence of increasing
elements. The solution to the problem is the path that has the most
number of edges (2, 5) -> (5, 7) -> (7, 101). This path gives the longest
increasing subsequence as [2, 5, 7, 101]

144

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1/7/2023

68

Dr. Radi Jarrar, 2022

Longest Increasing Subsequence

• As for the DAG above, note the following:

1.We should order elements as (p, q) if q > p.
In the above diagram for the node 2, the
ordered pairs are (2, 5), (2, 3), (2, 7), (2, 101). Each of these ordered
ordered pair has an edge.

2.We are asked to form the longest chain/subsequence of increasing
elements. The solution to the problem is the path that has the most
number of edges (2, 5) -> (5, 7) -> (7, 101). This path gives the longest
increasing subsequence as [2, 5, 7, 101]

145

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

