STUDENTS-HUB.com

Role of oscillators:

*oscillators are used to generate signal

- *it converts power from the dc power supply into an ac power
- Harmonic oscillators \rightarrow sinusoidal wave form Relaxation oscillators \rightarrow produce non sinusoidal

They are used in :

1.Electronic Communication Devices.

SZIDERTS-HUB.com

For the circuit to operate as an oscillator it must satisfy the Barkhausen criterial for sustained oscillation.

#1-The feedback must be positive ,this means that the feedback signal must be phased so that it adds to the amplifiers input signal .

#2-The loop gain (AB) must be greater than unity to allow oscillation to build up and equal to unity to STUBLES the oscillation . Uploaded By: anonymous

1) Phase-shift Oscillator

180 phase shift at wo STUDENTS-HUB.com

STUDENTS-HUB.com

 $V_O(j\omega)$

Audio frequency Oscillators Phase-shift Oscillator

To find
$$\beta(j\omega) = \frac{V_0(j\omega)}{V_i(j\omega)}$$

 $\beta = \frac{V_0(j\omega)}{V_i(j\omega)}$
 $\beta(j\omega) = \frac{1}{(1 - \frac{5}{\omega^2 c^2 R^2}) + j(\frac{1}{\omega^3 c^3 R^3} - \frac{6}{\omega CR})}$
At ω_0 ; $\beta(j\omega)$ must be real and negative
 $\frac{1}{\omega^3 c^3 R^3} - \frac{6}{\omega CR} = 0$
 $\therefore \omega_0 = \frac{1}{\sqrt{6 RC}}$
Uploaded By: anonymous

To find
$$\beta(j\omega) = \frac{V_0(j\omega)}{V_i(j\omega)}$$

$$Vi \xrightarrow{P} R \xrightarrow{P} R \xrightarrow{P} R \xrightarrow{P} Vi$$

1/jwc

1/jwc

1/jwc

$$\beta(j\omega) = \frac{1}{(1 - \frac{5}{\omega^2 C^2 R^2}) + j(\frac{1}{\omega^3 C^3 R^3} - \frac{6}{\omega CR})}$$

At
$$\omega_0$$
 $\beta(j\omega) = -\frac{1}{29} = \frac{1}{29} \angle 180$
 $\therefore A_V \ge 29 \angle 180$
 $A_V \beta \ge 1 \angle 0$

STUDENTS-HUB.com

2- Wien Bridge Oscillator

2-Wien Bridge Oscillator

- The Wien bridge oscillator employs a lead -lag network.
- At one particular frequency, the phase shift across the network is 0, therefore the feedback network is connected to the Op.Amp's noninverting input terminal.

$$\beta(j\omega) = \frac{\omega R_1 C_2}{\omega(R_1 C_1 + R_2 C_2 + R_1 C_2) + j(\omega^2 R_1 R_2 C_1 C_2 - 1)}$$

At ω_o ; $\beta(j\omega)$ must be real and positive STUDENTS- $\omega^2 R_m R_2 C_1 C_2 - 1 = 0$

2-Wien Bridge Oscillator

2- Wien Bridge Oscillator

The feedback network

Z1, Z2, and Z3 are pure reactive impedances

ZL

General LC Oscillator

To determine A_v

$$A_{v}(j\omega) = \frac{V_{o}(j\omega)}{V_{i}(j\omega)} = \frac{Z_{l}}{Z_{l}+R_{o}} A_{vo} V_{i}$$
$$Z_{l} = Z_{1} // (Z_{2} + Z_{3})$$
$$\therefore A_{v}(j\omega) = \frac{Z_{1}(Z_{2}+Z_{3})A_{vo}}{Z_{1}(Z_{2}+Z_{3})+R_{o}(Z_{1}+Z_{2}+Z_{3})}$$

$$A_{\nu}\beta = \frac{Z_{1}Z_{2}A_{\nu o}}{Z_{1}(Z_{2}+Z_{3})+R_{o}(Z_{1}+Z_{2}+Z_{3})}$$

STZIENZ 200 ZB pure reactive impedances

Example of LC Oscillators

Oscillator type	Z1	Z2	Z3	Amplifier
Hartley	L	L	С	Inverting
	L	C	L	Follower
Colpitts	С	C	L	Inverting
	L	C	C	Non-Inverting
Clapp	С	C	LC	Inverting
Pierce crystal	С	С	XTAL	Inverting

STUDENTS-HUB.com

At high frequency

+VDD $\Gamma \rightarrow \infty$ Vo(t) Cgd Coupling Rg≸ Cgs || C2 Z2 C1 **Z1** Z3

Uploaded By: anonymous

High Frequency Harmonic Oscillators Clapp Oscillator +VDD At ω_o $\rightarrow \infty$ $Z_1 + Z_2 + Z_3 = 0$ Vo(t) $-j\frac{1}{\omega_0}\frac{1}{C_1}-j\frac{1}{\omega_0}\frac{1}{C_2}-j\frac{1}{\omega_0}\frac{1}{C_3}+j\omega_0L=0$ $\therefore \ \omega_{o} = \frac{1}{\sqrt{LC_{T}}} \\ \frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}$ Coupling Rg C1 = 680 pFC2 = 1500 pFC3 = 390 pF $C_T = 212.7 \text{PF}$ $L = 110 \mu H$ $\frac{\omega_o}{2\pi} = 1.04 \text{MHz}$ **C2 C1 Z2 Z1** $< -\frac{Z_1}{C_2} = -\frac{C_2}{C_2}$ **C3** 73 ENTS-HUB.com Uploaded By: anonymous

STUDENTS-HUB.com

Capacitive

Inductive Oploaded By: anonymous

Parallel resonance Uploaded By: anonymous

STUDENTS-HUB.com

-The Op. Amp relaxation oscillator shown is a square _wave generator .

-The circuit's frequency of oscillation is dependent on the charge and discharge of a capacitor C₁ through a resistor R₁.

- The "heart" of the oscillator is an inverting Op. Amp comparator . the comparator uses positive feedback . Uploaded By: anonymous

An OP Relaxation Oscillator

Oscillators

- The "heart" of the oscillator is an inverting Op. Amp comparator . the comparator uses positive feedback .

Vo

Vut

Vi

Inverting Schmitt trigger

STUDENTS-HUB.com

Vlt

 \leftarrow

•
$$V_{out} = \pm (V_z + 0.7)$$

•
$$V_{UT} = \frac{R_4}{R_4 + R_3} (V_z + 0.7) = \beta (V_z + 0.7)$$

• $V_{LT} = -\frac{R_4}{R_4 + R_3} (V_z + 0.7) = -\beta (V_z + 0.7)$ Uploaded By: anonymous

• $V_{out} = \pm (V_z + 0.7)$ • $V_{UT} = \frac{R_4}{R_4 + R_3} (V_z + 0.7) = \beta (V_z + 0.7)$

An OP Relaxation Oscillator

•
$$V_{LT} = -\frac{R_4}{R_4 + R_3} (V_z + 0.7) = -\beta (V_z + 0.7)$$

Oscillators

An OP Relaxation Oscillator

Oscillators

- When the output of the comparator is positive ,capacitor C₁ will charge through resistor R₁.
- The capacitor will attempt to charge to $V_{out}=V_z+0.7$.
- When the voltage a cross the capacitor reaches the upper threshold voltage V_{UT} ,the comparators output will immediately switch to

 V_{out} = - (V_z + 0.7).

- The capacitor will than start to discharge from the positive upper threshold voltage toward the negative output voltage .
- When the voltage across the capacitor reaches the lower threshold voltage V_{LT} , the comparators output will immediately switch to V_{out} = + (V_z + 0.7).

• dividing both side by V_{out}

•
$$\beta = -\beta + (1+\beta) (1-e^{-\frac{t_1}{\tau}})$$

• $2\beta = (1+\beta)(1-e^{-\frac{t_1}{\tau}})$ • $\frac{2\beta}{S(1+\beta)} = \sqrt{1-e^{-\frac{t_1}{\tau}}}$

•
$$e^{-\frac{t_1}{\tau}} = \frac{1-\beta}{1+\beta}$$

- $-\frac{t_1}{\tau} = ln \frac{1-\beta}{1+\beta}$
- $t_1 = \tau \ln \frac{1+\beta}{1-\beta} = R_1 C_1 \ln \frac{1+\beta}{1-\beta}$

• If $R_4 = 0.859R_3 \rightarrow \beta = 0.462$ • $f_o = \frac{1}{2R_1C_1}$ • $f_o = \frac{1}{2R_1C_1}$

 $V_{Z} = 9.1v$

*R*₁ = 100KΩ

*R*₂ = 820 KΩ STUDENTS-HUB.com

$$V_Z + V_D = 9.8v$$

 $\frac{R_1}{R_2} (V_Z + V_D) = 1.2v$

Inverting Integrator

STUDENTS-HUB.com

Inverting Integrator

Assuming that $V_i = -10 \text{mV}$, find $V_o(t)$ at 0.1s and 0.2s

 $V_{out} = -\frac{V_{in}}{R_3 C_1} t = -\frac{V_{in}}{(10k\Omega)(0.1\mu F)} t = -1000V_{in}$

If v_{in} is -10mV and t is 0.1s

$$V_{out} = -1000V_{in}t = -(1000)(-10mv)(0.1s)$$

= 1v

And in 0.2s

 $V_{out} = -1000V_{in}t = -(1000)(-10mv)(0.2s)$ =2v

Assuming that $+V_{sat}$ is 13 v we may solve the time to reach saturation

$$V_{out} = -\frac{V_{in}}{R_3 C_1} t = +V_{sat}$$

$$t = \frac{+V_{sat}}{-v_{in}} R_3 C_1 = \frac{13v}{-(-10mv)} (10k\Omega)(0.1\mu f)$$

= (1300)(1ms)=1.3s

Uploaded By: anonymous

Inverting Integrator

Inverting Integrator

To determine f_o

For
$$t_1 \ge t \ge 0$$

 $V_o(t) = V_{UT} - \frac{V_{in}}{R_3C_1}t$
 $V_{UT} = \frac{R_1}{R_2}(V_Z + V_D)$
 $V_{in} = V_Z + V_D$
 $V_o(t) = \frac{R_1}{R_2}(V_Z + V_D) - \frac{V_Z + V_D}{R_3C_1}t$
At $t = t_1$; $V_o(t_1) = -\frac{R_1}{R_2}(V_Z + V_D) = V_{LT}$

:
$$t_1 = \frac{2R_1R_3C_1}{R_2}$$

 $f_0 = \frac{1}{T} = \frac{1}{2t_1} = \frac{R_2}{4R_1R_3C_2}$

The 555 Timer As an Oscillator.

STUDENTS-HUB.com

The 555 Timer As an Oscillator.

The 555 Timer As an Oscillator.

Functional block diagram of the 555 integrated circuit timer

STUDENTS-HUB.com

The 555 Timer As an Oscillator.

Internal Component of 555

- Two comparators
- Three R (5K) that set the trigger Levels
- Transistor that act as a switch
- S R Latch

S

0

0

The 555 Timer As an Oscillator.

555 timer as an a stable circuit

STUDENTS-HUB.com

The 555 Timer As an Oscillator.

Operation of the 555 timer oscillator.

- At the beginning
- $V_{C}(0^{+}) = V_{C}(0^{-}) = 0$
- $\therefore R=0 \text{ , } S=1$
- $\therefore \mathbf{Q} = \mathbf{1}$, $\overline{\mathbf{Q}} = \mathbf{0}$
- ∴Transistor is off
- \therefore The capacitor starts charging

$$\tau_c = (R_A + R_B)C$$

STUDENTS-HUB.com

• When $V_{C}(t) > \frac{1}{3}V_{CC}$

 $\therefore R = 0$, and S = 0

 $\therefore Q = 1$, and $\overline{Q} = 0$

No change

- \therefore The transistor is still off
- ∴The capacitor is still charging

- When $V_{C}(t) > \frac{2}{3}V_{CC}$
- $\therefore R = 1$, and S = 0
- $\therefore Q = 0$,and $\overline{Q} = 1$
- \therefore The transistor turns on
- ∴The capacitor starts discharging

 $\tau_d = R_B C$

When $V_c(t) < \frac{1}{3} V_{cc}$ $\therefore S = 1$, and R = 0

 $\therefore \mathbf{Q} = 1$, and $\overline{\mathbf{Q}} = 0$

∴ The transistor turn Off∴The capacitor starts charging

The 555 Timer As an Oscillator.

Operation of the 555 timer oscillator.

The 555 Timer As an Oscillator.

Operation of the 555 timer oscillator.

1. To find T_C

 $V_{c}(t) = V_{I} + (V_{f} - V_{I})(1 - e^{-\frac{t}{\tau}})$ $V_{c}(T_{c}) = \frac{2}{3}V_{cc} ; \quad V_{I} = \frac{1}{3}V_{cc} ; \quad V_{f} = V_{cc}$ $\tau_{c} = (R_{A} + R_{B})C$ $V_{c}(T_{c}) = \frac{2}{3}V_{cc} = \frac{1}{3}V_{cc} + (V_{cc} - \frac{1}{3}V_{cc})(1 - e^{-\frac{t}{\tau}})$

 $T_C = \tau_c \ln 2 = (R_A + R_B)C \ln 2$

Uploaded By: anonymous

The 555 Timer As an Oscillator.

Operation of the 555 timer oscillator.

2-To find T_d $V_c(t) = V_I + (V_f - V_I)(1 - e^{-\frac{t}{\tau}})$ $V_c(T_d) = \frac{1}{3}V_{CC}$; $V_I = \frac{2}{3}V_{CC}$; $V_f = 0$ $\tau_d = R_BC$

$$V_{c}(T_{d}) = \frac{1}{3}V_{cc} = \frac{2}{3}V_{cc} \left(0 - \frac{2}{3}V_{cc}\right) \left(1 - e^{-\frac{1}{\tau}}\right)$$

 $\therefore T_d = \tau_d \ln 2 = R_B C \ln 2$

STUDENTS-HUB.com

The 555 Timer As an Oscillator.

Operation of the 555 timer oscillator.

3- To find T $T = T_C + T_d = (R_A + 2R_B)C \ln 2$ $T = 0.693 (R_A + 2R_B)C$ 4- To find F $F = \frac{1}{T} = \frac{1}{0.693 (R_A + 2R_B)C}$

5- To find Duty cycle

Duty cycle = D = $\frac{T_C}{T} = \frac{R_A + R_B}{R_A + 2R_B}$ STUDENTS-HUB.com

Fig. 16.3 Schematic of the function generator

