Birzeit University Mathematics Department

Chapter 3

Math 234

2017/2018

Name	Number	Section

(Q1) Fill the blanks with true (T) or false (F).

[T] (1) If A is an $n \times n$ singular matrix, then $rank(A) \le n - 1$.

[F] (2) Any set of vectors containing the zero vector is linearly independent.

//[F] (3) Every nonzero subspace of P_3 contains an infinite number of polynomials.

[T] (4) If A is a 5 × 3 matrix, then the row space of A can equal $R^{1\times 3}$.

- [T] (5) Any subset of linearly dependent vectors is linearly dependent.
- [T] (6) Span(u,v) = Span(u) iff v is a scalar multiple of u.
- [F] (7) If A is a square matrix with linearly independent rows, then A is nonsingular.
- [F] (8) The rank of a matrix is the number of the nonzero rows of A.
- [F] (9) If the set $\{v_1, ..., v_k\}$ spans P_4 , then k = 4.
- [F] (10) If the set $\{v_1, \dots, v_k\}$ is linearly independent in P_4 , then k = 4.
- [T] (11) If A is a nonsingular matrix, then $rank(A) = rank(A^{-1})$.
- [F] (12) If *S* is a subspace of a vector space *V* and *S* is finite-dimensional, then *V* is finite-dimensional.
- [T] (13) If *S* is a subspace of \mathbb{R}^3 containing the vectors e_{1,e_2,e_3} , then $S = \mathbb{R}^3$.
- [F] (14) There exists a 5×4 matrix *A* with $CS(A) = \mathbb{R}^5$.
- [T] (15) If A is an $m \times n$ matrix and $b \in \mathbb{R}^m$, then CS(A) is the solution set of the system Ax = b.
- [T] (16) A minimal spanning set of $\mathbb{R}^{m \times n}$ is a basis of $\mathbb{R}^{m \times n}$.
- [T] (17) The vector space C[-1,1] has no spanning set.
- //[T] (18) If A is an 5 × 7 matrix, then $rank(A) = rank(A^T)$.
- //[T] (19) If A is an 5 × 7 matrix, then $nullity(A) = nullity(A^{T})$.
- [F] (20) If A and B are 6×6 singular matrices, then rank(A) = rank(B).
- //[T] (21) If A and B are 5×5 matrices with rank(AB) = 4, then rank(BA) < 5.
- [F] (22) If A and B are 3×3 matrices with rank(A) = rank(B) = 2, then rank(AB) = 2.
- [T] (23) If f,g are vectors in P_n , then $2g \in span(f,g)$.
- [F] (24) If u,v,w are nonzero vectors in \mathbb{R}^2 , then $w \in span(u,v)$.
- //[T] (25) If A is an $m \times n$ matrix with $N(A) = \{0\}$, then the system Ax = b cannot have a unique solution.

STUDENTS-HUB.com

Uploaded By: anonymous

- [F] (26) The column space of a matrix A is the set of the solutions of Ax = 0.
- [T] (27) The set of all solutions of an $m \times n$ homogeneous linear system is a subspace of \mathbb{R}^{m} .

//what?! 9*1[F] (28) If A is a 9 × 3 matrix with *nullity*(A) = 0,then $Ax = (1,2,3)^T$ has infinite number of solutions.

- [F] (29) If A is an $m \times n$ matrix, then $rank(A) \le n$.
- [T] (30) The set $\{1, \sin^2 x, \cos^2 x\}$ is linearly dependent in $C[0, \pi]$.
- [T] (31) If *S*,*T* are subspaces of P_5 , then $0 \in S \cap T$.
- [T] (32) If S is a subspace of a finite-dimensional vector space V with dim(S) = dim(V), then S = V.
- [T] (33) Any basis of $R^{2\times 4}$ must contain exactly eight vectors.
- [T] (34) The solutions of the equation $x_1 + x_2 x_3 + 2x_4 = 0$ form a subspace of R⁴.
- //[T] (35) If *A* is a 4 × 4 matrix with $a_2 = -a_4$, then $N(A) = 6\{0\}$.
- [T] (36) If the vectors v_1, v_2, v_3, v_4 span R^{2×2}, then they are linearly independent.
- [F] (37) *rank*(*A*) = number of columns of *A* number of rows of *A*.
- [F] (38) If *V* is a vector space with dimension *n* > 0, then any set of *n* or more vectors is linearly dependent.
- [F] (39) If three vectors span a vector space V, then any collection of six vectors in V spans V.
- [T] (40) If the vectors $v_{1,...,v_n}$ span a vector space V and v_1 is a linear combination of $v_{2,...,v_n}$, then $V = span(v_{2,...,v_n})$.
- [T] (41) The set $B = \{v_{1,...,}v_n\}$ is a spanning set for a vector space V if every vector in V is a linear combination of the vectors of B.
- [F] (42) The set $B = \{v_1, ..., v_n\}$ is a basis of a vector space V if every vector in V is a linear combination of the vectors of B.
- [T] (43) If S is a subset of a vector space V that does not contain 0, then S is not a subspace of V.
- [T] (44) Every set of vectors spanning R³ has at least three vectors.
- [F] (45) If A is an $n \times n$ symmetric matrix, then rank(A) = n.
- [T] (46) If *A* is a 4 × 7 matrix with *rank*(*A*) = 4, then the system *Ax* = 0 has a nontrivial solution.
- //[T] (47) If rank(A) = rank(A|b), then the system Ax = b is consistent.
- [F] (48) If $U = \{(x,y)^T; y = x + 1\}$, then U is a subspace of R².
- [F] (49) If A is a 3×7 matrix, then it is possible that the dimension of CS(A) is 6.

[T] (50) If *A* is a nonzero matrix of the form
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
, then *rank*(*A*) = 2.

- [T] (51) If S is a subspace of \mathbb{R}^4 with dim(S) = 2, then S can have a spanning set of three vectors.
- [T] (52) The columns of a nonsingular 10×10 matrix form a basis for R¹⁰.

STUDENTS-HUB.com

Uploaded By: anonymous

- [T] (53) The set { $(x_1, x_2, x_3, x_4)^T | x_1 + x_3 = x_2 x_4 = 0$ } is a subspace of R⁴.
- [F] (54) If *E* is an elementary matrix, then it has linearly independent columns.
- [T] (55) If v_1, v_2 are nonzero vectors in R⁵ with $v_1 + v_2 = 2v_1 v_2$, then v_1, v_2 are linearly dependent.
- [T] (56) The set of all 8×8 elementary matrices forms a subspace of $R^{8\times 8}$.
- //[F] (57) The set $B = \{1, x^2 x\}$ is a basis for the subspace $S = \{f \in P_3 | f \text{ is even }\}$.
- [F] (58) The interval $[0,\infty)$ is a subspace of R.
- [T] (59) If v_1, v_2, v_3 are linearly independent in R³, then $span(v_1, v_2, v_3) = R^3$.
- [T] (60) The functions f(x) = 3x and g(x) = |-3x| are linearly independent in C[-4,4].
- [F] (61) The functions f(x) = 3x and g(x) = |-3x| are linearly independent in C[-4,0].
- [F] (62) dim(span(2, cos(2x), sin(2x))) = 2.
- $[T] (63) dim(span(2,\cos^2 x,\sin^2 x)) = 2.$
- //[F] (64) $S = \{f(x) \in P_5 | f(-2) = 0 \text{ or } f(2) = 0\}$ is a subspace of P_5 .
- [T] (65) $S = \{f(x) \in P_5 | f(-2) = 0 \text{ and } f(2) = 0\}$ is a subspace of P_5 .
- [F] (66) If nullity(A) = 0 and Ax = b has a solution, then Ax = b has infinitely many solutions.
- [T] (67) If the system Ax = b has infinite number of solutions, then N(A) 6= {0}.
- [T] (68) If $b \in CS(A)$, then the system Ax = b is consistent.
- [T] (69) Two row equivalent matrices have the same nullity.
- [T] (70) Two row equivalent matrices have the same rank.
- [T] (71) Two row equivalent matrices have the same null space.
- [F] (72) Two row equivalent matrices have the same column space.
- [T] (73) Two row equivalent matrices have the same row space.
- [F] (74) The coordinate vector of 12 + 6x with respect to the basis $\{x, 4\}$ is $(3, 6)^T$.
- [F] (75) If three vectors span a vector space V, then dim(V) = 3.
- // [T] (76) If $u, v \in V$ and *B* is a basis of *V*, then $[\alpha u + \beta v]_B = \alpha [u]_B + \beta [v]_B$ for any scalars α, β .
- $[T\]$ (77) The transition matrix of two bases is always nonsingular.
- [T] (78) If S is a subspace of a vector space V, then $0 \in S$.
- [T] (79) If dim(V) = n > 0, then any set of m > n vectors in V is linearly dependent.
- [T] (80) If dim(V) = n > 0, then any set of m < n vectors in V doesn't span V.
- [T] (81) rank(A) = number of columns of A nullity(A).
- [T] (82) If six vectors span V, then a collection of seven vectors in V is linearly dependent.
- [T] (83) If two vectors are linearly dependent, then each of them is a scalar multiple of the other.

- [T] (84) If the system Ax = b is inconsistent, then $b \in CS(A)$.
- [T] (85) The vectors $(4, 2, 3)^T, (2, 3, 1)^T, (2, 5, 3)^T, (2, 0, 3)^T$ are linearly dependent.
- [F] (86) Any subset of V that contains the zero vector is a subspace of V.
- [T] (87) If dim(V) = 4 and v_1, v_2, v_3, v_4 are distinct vectors in V, then $span(v_1, v_2, v_3, v_4) = V$. [F] (88) The vector space R has infinitely many subspaces.
- [F] (89) If the columns of *A* are linearly independent, then *Ax* = *b* is always consistent.
- /[T] (90) The set of all $n \times n$ nonsingular matrices is a subspace of $\mathbb{R}^{n \times n}$.
- [F] (91) If $\{v_1, \dots, v_n\}$ is a spanning set of *V*, then $dim(V) \ge n$.
- [F] (92) The dimension of $C^n[a,b]$ is n.
- [T] (93) All solutions of the $m \times n$ system Ax = b is a subspace of \mathbb{R}^n .
- /[T] (94) If x_1, x_2 are two distinct solutions of Ax = b, then x_1 and x_2 are linearly independent.
- [T] (95) The set $\{(1,2)^T, (2,0)^T, (0,0)^T\}$ is a spanning set of R².
- //(ا مش شرط بس الزيرو صح S_1, S_2 are two subspaces of R², then $S_1 \cap S_2 = \{0\}$.
- [F] (97) If A is a 4×3 matrix with rank(A) = 3, then Ax = 0 has a nontrivial solution.
- [T] (98) If U, W are subspace of V, then $U \cap W$ is a subspace of V.
- [F] (99) If U, W are subspace of V, then $U \cup W$ is a subspace of V.
- [] (100) If U, W are subspace of V, then U + W is a subspace of V.
- [F] (101) If A is a 5×4 matrix and Ax = 0 has only the trivial solution, then rank(A) = 4.
- [F] (102) If $\{v_1, ..., v_2\}$ is a spanning set of *V* and $v_{n+1} \in V$, then the set $\{v_1, ..., v_n, v_{n+1}\}$ doesn't span *V*.
- [T] (103) The vectors $(1, -1, 1)^T, (1, -3, 2)^T, (1, -2, 0)^T$ form a basis for R³.
- [T] (104) If A is a 5×7 matrix, then $nullity(A) \ge 2$.
- [T] (105) If A is a 4×4 matrix with rank(A) = 4, then A is row equivalent to I.
- [T] (106) If A is a 4×4 matrix with rank(A) = 3, then A^T is singular.
- [T] (107) If A is a 4×4 matrix with rank(A) = 0, then adjA = 0.
- [T] (108) It is possible to find a matrix A of size 3×5 such that nullity(A) = 1.
- [T] (109) If $f_{1,\dots,f_n} \in C^{n-1}[a,b]$ and $W[f_{1,\dots,f_n}](x) = 06 \forall x \in [a,b]$, then f_{1,\dots,f_n} are linearly independent in C[a,b].
- [T] (110) The set { $x 1, x^2 + 2x + 1, x^2 + x 2$ } forms a basis of P_3 .
- [T] (111) If A is an $n \times n$ matrix and $RS(A) = \mathbb{R}^{1 \times n}$, then $CS(A) = \mathbb{R}^n$.
- [F] (112) If $f,g,h \in C^2[a,b]$ and $W[f,g,h](x) = 0 \forall x \in [a,b]$, then f,g,h are linearly dependent in C[a,b].
- [T] (113) The vectors *x*,*e*^{*x*},*xe*^{*x*} are linearly independent in *C*[0,1].
- [T] (114) If v_1, v_2 are linearly independent in R³, then $\exists v_3 \in R^3$ such that $span(v_1, v_2, v_3) = R^3$.
- [F] (115) If the vectors $v_1, ..., v_n$ are linearly independent in V, then V is finite-dimensional.

STUDENTS-HUB.com

Uploaded By: anonymous

- [T] (116) If dim(V) = n > 0, then any n + 1 vectors in V are linearly dependent.
- [F] (117) Every linearly independent set of vectors in *P*_n must contain *n* polynomials.
- [F] (118) If *V* is an infinite-dimensional vector space, then any subspace of *V* is infinite-dimensional.
- [T] (119) If dim(V) = n and S is a nonzero subspace of V, then $0 < dim(S) \le n$.
- [T] (120) If A is an $m \times n$ matrix such that the system Ax = b is consistent for every $b \in \mathbb{R}^{m}$, then the reduced row echelon form of A has m nonzero rows.
- [F] (121) The set of all polynomials of degree 3 under the usual addition and scalar multiplication is a vector space.
- [T] (122) Any set of vectors which contains the zero vector is linearly dependent.
- /[T] (123) If the set $\{v_1, v_2, v_3\}$ is linearly independent, then $\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ is linearly independent.
- [T] (124) Any subspace of a vector space is also a vector space.
- [] (125) The dimension of the subspace $\{A \in \mathbb{R}^{2 \times 2} | A \text{ is symmetric} \}$ is 2.
- [] (126) If A is an $m \times n$ matrix and B a nonsingular $m \times m$ matrix, then N(BA) = N(A).
- [T] (127) If A is a 4×3 matrix and Ax = 0 has only the zero solution, then dim(RS(A)) = 3.
- [T] (128) If A is a 3×3 matrix, then A is nonsingular iff $N(A) = \{0\}$.
- [F] (129) If A is a 3 × 5 matrix, then A can have four linearly independent columns.
- [F] (130) If V is a vector space such that $span(v_1, v_2, v_3) = V$, then dim(V) = 3.
- //[F] (131) If U,W are subspaces of a finite-dimensional vector space with U = W, then dim(U) = dim(W).
- [T] (132) If A is an $n \times n$ matrix and Ax = b has more than one solution for some $b \in \mathbb{R}^n$, then rank(A) = n.
- [T] (133) The dimension of the subspace $\{A \in \mathbb{R}^{2\times 2} \mid A \text{ is diagonal}\}$ is 2.
- /[T] (134) If A is an $m \times n$ matrix and Ax = b is consistent $\forall b \in \mathbb{R}^m$, then $n \ge m$.
- [F] (135) If the set $\{v_1, v_2, v_3\}$ is a basis of V, then any four vectors span V.
- [T] (136) If A is an $n \times n$ matrix and Ax = b is consistent $\forall b \in \mathbb{R}^n$, then A is nonsingular.
- [] (137) If *S* is a set of linearly independent vectors, then any nonempty subset of *S* is linearly independent.
- [F] (138) If S is set of linearly independent vectors in a vector space V, then any subset of V containing S is linearly independent.
- // [T] (139) If *B* is a basis for a vector space *V*, then *B* spans any subspace of *V*.
- [T] (140) *span*(*x* + 1,*x* 1) is a subspace of *P*₂.
- [T] (141) If *U* = *RREF*(*A*), then *U* and *A* have the same null space.
- [T] (142) If $v_1, v_2, v_3 \in V$ and $span(v_1, v_2, v_3) = span(v_1, v_3)$, then v_1, v_2, v_3 are linearly dependent.
- [T] (143) If the columns of a square matrix *A* are linearly independent, then *det*(*A*) 6= 0.
- [F] (144) If A is a singular matrix, then nullity(A) = 0.

5

STUDENTS-HUB.com

[F] (145) If dim(V) = 4 and $\{v_1, v_2, v_3, v_4\} \subseteq V$, then $V = span(v_1, v_2, v_3, v_4)$.

[T] (146) In any vector space, $\alpha 0 = 0$.

[T?!] (147) If $u \in V$ and α a nonzero scalar with $\alpha u = 0$, then u = 0.

[T] (148) Every spanning set of $R^{2\times 3}$ contains at least six vectors.

[T] (149) The set $\{p(x) \in P_5 | p(x) \text{ is even}\}$ is a subspace of P_5 .

[] (150) The vector $(3, -1, 0)^T \in span((2, -1, 3)^T, (-1, 1, 1)^T, (1, 1, 9)^T).$

[T] (151) If A is a nonzero 3×2 matrix and Ax = 0 has a nonzero solution, then rank(A) = 1.

[F] (152) In R^3 , every set with more than three vectors can be reduced to a basis of R^3 .

/ [T] (153) If A is a nonsingular matrix, then $RS(A) = RS(A^T)$.

[F] (154) R^2 is a subspace of R^4 .

[T] (155) P_2 is a subspace of P_4 .

// [] (156) It is possible to find a pair of two-dimensional subspaces *S* and *T* of \mathbb{R}^3 such that $S \cap T = \{0\}$.

//[T] (157) If A and B are $n \times n$ nonsingular matrices, then rank(AB) = rank(BA).

[T] (158) If \hat{x} is a solution of the system Ax = b and $\hat{y} \in N(A)$, then $\hat{x} - 5y$ is a solution of Ax = b.

[T] (159) We cannot find a 7×7 matrix with rank(A) = nullity(A).

/[T] (160) If A is a 5 × 4 matrix with linearly independent columns, then $nullity(A^T) = 1$.