Fundamentals of Web Development
Third Edition by Randy Connolly and Ricardo Hoar

RANDY CONNOLLY
RICARDO HOAR

Chapter 14

Working with Databases

Fundamentals of

© WEB DEVELOPMENT

Third Eduion

ST@?E‘N‘FS—HUB.Com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁioﬂh@@@&? %‘T’ﬁ?ﬁyﬁ%us

In this chapter you will learn

« The role that databases play in web development
* What are the most common commands in SQL
How to access SQL databases in PHP

* How NoSQL database systems work

« How to work with NoSQL databases using Node

* What is GraphQL

ST@)’ENTS—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁld%!b@@@'ﬁ %?ﬁ?ﬁ\}?ﬁious

Databases and Web Development

In this book, the relational DBMS used will be either SQLite or MySQL (or
MariaDB) There are many other open-source and proprietary relational DBMS
alternates to MySQL, such as PostgreSQL, Oracle Database, IBM DB2, and
Microsoft SQL Server.

In addition to relational database systems, there are non-relational models for
database systems that will also be explored in this chapter. These systems
are usually categorized with the term NoSQL and includes systems such as
Cassandra and MongoDB

Databases provide data integrity (accuracy and consistency of data) and
can reduce the amount of data duplication

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I&l&dﬂhg@@f? %ﬁﬁ?ﬁ\ﬁﬁious

The Role of Databases in Web Development

Databases provide a way to
implement an important software
design principles: namely, that
one should separate that which
varies from that which stays the content date
same. . » [markup (design

stays the same.

On the web the visual
appearance (i.e., the HTML and
CSS) is that which stays the
same, while the data content is
that which varies. i

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

How websites use databases

Web Server
Requested PHP paEe is executed PHP
o GET request for resource with which constructs the SQL query.
query string parameters. SQL query passed
to DBMS via API.

DisplayPost.php?id=19

SELECT *
FROM post

o Output from PHP execution. WHERE id=19

AP returns array
with retrieved
data.

Database API

o DBMS

returns

result set API sends
DBMS to APL. query to
o DBMS.
DBMS retrieves gEIO.ECT ‘t
data from database. WHERE Sds19

STEDENTS-HUB.com

o JavaScript fetch from API.

Web Server

Node app processes this route and Node

constructs a MongoDB query.

/api/movie/234284

Query passed to
ED DB via AP,

b JSON data.

o POST request containing
form data

AP returns
pA) JSON data.

Database API

Cloud Service DBMS

DBMS retrieves
data from database.
Web Server
2 Node

®

Database API

0 Redirect to success page.

Data Server DBMS
o DBMS saves data.

Copyright © 2021, 2018, 2015 Pearson Education, {6 AllRigREs: Resshyedous

Managing Databases

Running the SQLite lab exercises for PHP and Node, you don't actually have
to install anything, since it is a file-based, in-memory database.

To run the PHP exercises in this chapter's lab, you will need access to
MySQL. If you have installed XAMPP to run your PHP, MySQL is already
installed.

To run the Node exercises in this chapter, you will either need to install
MongoDB or make use of a cloud service such as MongoDB Atlas.

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHBt?*BS? %ﬁﬁ?ﬁ\ﬁﬁious

Managing Databases (Tools)

The tools available to you range from the original command-line approach,
through to the modern workbench, where an easy-to-use toolset supports the
most common operations.

« Command-Line Interface
* phpMyAdmin

« MySQL Workbench

* SQLite Tools

MongoDB Tools

ST@)’ENTS—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁld%!b@@@'ﬁ %?ﬁ?ﬁ\}?ﬁious

SOL

A table is the principal unit of storage in a database. It is a two-dimensional
container for data that consists of records (rows); each record has the same
number of columns. These columns are called fields, which contain the actual
data. Each table will have a primary key—a field (or sometimes combination
of fields) that is used to uniquely identify each record in a table.

Primary key Fields
field |

Field names PaintingID YearOfWork
» 345 The Death of Marat David 1793
» 400 The School of Athens Raphael 1510
Records »| 408 Bacchus and Ariadne Titian 1520
P 425 Girl with a Pearl Earring | Vermeer 1665
»| 438 Starry Night Van Gogh 1889

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁld%!b@@@"ﬁ %?ﬁ?ﬁ\}?ﬁious

Table Design

Data types that are akin to those in a statically typed programming language
and contribute to data integrity. (BIT,BLOB,CHAR(n),
DATE,FLOAT,INT,VARCHAR(N))

As we discuss database tables and their design, it will be helpful to have a
condensed way to visually represent a table. It is normally enough to see the
field names, and perhaps their data types.

Paintings Paintings Paintings
PaintingID INT PK |PaintingID PaintingID
Title VARCHAR Title Title
Artist VARCHAR Artist Artist
YearOfWork INT YearOfWork YearOfWork

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHBt?*BS? %ﬁﬁ?ﬁ\ﬁﬁious

Foreign Key

. Foreign key
Foreign key relates a
fleld in one tab|e to a PaintingID ArtistID YearOfWork
. . 345 The Death of Marat 15 1793
prlmary key In anOther 400 The School of Athens 37 1510 Paintings
table 408 Bacchus and Ariadne 25 1520 table
425 Girl with a Pearl Earring 22 1665
Tables that are linked via *£ Starty Nignt B | |88 J
foreign keys are said to brimary key
have a relationship. -
ArtistID Artist
15 David
»| 22 Vermeer Artists
25 Titian table
37 Raphael
»| 43 Van Gogh Y.

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Table relationships
[Paineings |

Most often, two related ArtistID PaintingID
tables will be in a one-to- Name ol RSSO
many relationship. YearOfWork

1 N IIIIIIIIIIIII
There are wo Other ArtistID PaintingID
table relationships: the Name o
one-to-one relationship ArtistID

YearOfWork

and the many-to-many

relationship. | <] Paintings |

ArtistID PaintingID

Name Title
ArtistID
YearOfWork

ST@'EN’T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {Jnﬁld%!!jg@@&? %‘?ﬁ?ﬁ\jﬁ%us

Composite Key

* Note that in this example, the two foreign keys in the intermediate table are
combined to create a composite key. Alternatively, the intermediate table
could contain a separate primary key field.

Books « 0 Authors
Books BookAuthors Authors
1 00 1
ID BookID L,_ ID
Title AuthorID Name
CopyrightYear

ST@)’ENTS—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘ﬁld%@@@'ﬁ %?ﬁ?ﬁ\}?ﬁious

SELECT Statement

SQL keyword that indicates
the type of query (in this case a SQL keyword for specifying

The SELECT Statement |S query to retrieve data) the tables

Used to retrieve data from SELECT ISBN10, Title FROM Books

the database. The term |

q ue ry |S Somet| mes USEd Fields to retrieve Table to retrieve from

as a Synonym for runnlng SELECT * FROM Books Note: While the wildcard is convenient, .
a S E LECT St atement T especially when testing, for production code it

)) is usually avoided; instead of selecting every
Wildcard to select all fields fje/d, you should select just the fields you need.

The result of a SELECT

statement is a block of select iSbN10, title Note:SQLdoesn't care ifa commandison
. FROM BOOKS SIgg/e; Itl;;;e or mu)l(tll(p/e //nes, no; cﬁ)les lt;afr.eld

. about the case of keywords or table and fie

data‘ typl Ca”y Ca”ed a‘ ORDER BY title names. Line breaks and keyword capitalization
: | I are often used to aid in readability.
result set which can be .. e
ordered to indicate sort on
sort order

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

WHERE Clause

The WHERE keyword is used to supply a comparison expression that the data
must match in order for a record to be included in the result set.

SELECT isbn10, title FROM books

WHERE copyrightYear > 2010
I I
SQL keyword that indicates Expressions take form:
to return only those records field operator value
whose data matches the
following criteria expression

SELECT 1isbn10, title FROM books
WHERE category = 'Math' AND copyrightYear = 2014
|

Comparisons with strings require string
literals (single or double quote)

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁd%mg@@? %ﬁﬁ?ﬁ\}?ﬁious

Join

Retrieving data from
multiple tables is more
complex and requires the
use of a join.

When two tables are joined
via aninner join, records
are returned if there is
matching data (typically
from a primary key in one
table and a foreign key in
the other) in both tables

STEDENTS-HUB.com

Artists Paintings
1
Because the field name :;;ZSHD ?il?:'in =
Art'istIDisaml_)igu_ous, ® ArtistID
need to preface it with Year0fWork Table 1

table name |

SELECT Artists.ArtistID, Title, YearOfWork, Name FROM Artists
INNER JOIN Paintings ON Artists.ArtistID = Paintings.ArtistID

| | l

SQL keywords Table 2 Primary key Foreign key
indicate the in Table 1 in Table 2
type of join
Books BookAuthors Authors
1] 1

BookID BookID "’_l_ AuthorID
Title AuthorID 1 Name
CopyrightYear

SELECT Books.BookID, Books.Title, Authors.Name, Books.CopyrightYear
FROM Books
INNER JOIN (Authors INNER JOIN BookAuthors ON Authors.AuthorID = BookAuthors.AuthorId)
ON Books.BookID = BookAuthors.BookId

|

Copyright © 2021, 2018, 2015 Pearson Education, wﬁld%@@@‘if %?ﬁ?ﬁ\jﬁ‘i’ous

STEDENTS-HUB.com

Grouping

When you don’t want every
record in your table but
instead want to perform
some type of calculation on
multiple records and then
return the results you use
one or more aggregate
functions such as SUM()
or COUNTY(); these are
often used in conjunction
with the GROUP BY
keywords.

This aggregate function returns a Defines an alias for
count of the number of records the calculated value

| |
SELECT Count(PaintingID) AS NumPaintings
FROM Paintings
WHERE YearOfWork > 1900

|

Count number of paintings
after year 1900

Note: This SQL statement
returns a single record
with a single value in it.

NumPaintings

745

SELECT Nationality, Count(ArtistID) AS NumArtists
FROM Artists
GROUP BY Nationality

Shoup B

SQL keywords to group
output by specified fields

Note: This SQL statement returns as
many records as there are unique
values in the group-by field.

Nationality NumArtists

Belgium 4

England 15
France 36
Germany 27
Italy 53

Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHB@*BR? %?ﬁ?ﬁ\jﬁ‘i’ous

INSERT Statements

SQL keywords for inserting Fields that will
(adding) a new record Table name receive the data values

INSERT INTO Paintings (Title, YearOfWork, ArtistID)

VALUES ('Night Watch', 1642, 105)
| Note: Primary key fields are

)) often set to AUTO_INCREMENT,
Values to be inserted. Note that string values which means the DBMS will set

must be within quotes (single or double).

it to a unique value when a new
record is inserted.

INSERT INTO Paintings
SET Title="'Night Watch', YearOfWork=1642, ArtistID=105

Nonstandard alternate MySQL syntax, which is useful when inserting
record with many fields (less likely to insert wrong data into a field).

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

UPDATE and DELETE Statements

UPDATE Paintings
SET Title='Night Watch', YearOfWork=1642, ArtistID=105
WHERE PaintinglID=54

It is essential to specify which Specify the values for each updated field.

record to update, otherwise it Note: Primary key fields that are

will update all the records! AUTO _INCREMENT cannot have their values
updated.

DELETE FROM Paintings
WHERE PaintingID=54

It is essential to specify which record to
delete, otherwise it will delete all the records!

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Transactions

A transaction refers to a sequence of steps that are treated as a single unit,

and provide a way to gracefully handle errors and keep your data properly
consistent when errors do occur.

Local transaction support in the DBMS can handle the problem of an error
with START TRANSACTION, COMMIT, and ROLLBACK commands.

/* By starting the transaction, all database modifications within will only be permanently saved in the database if they all work */
START TRANSACTION

INSERT INTO orders . ..
INSERT INTO orderDetails . ..
UPDATE inventory . ..

/* if we have made it here everything has worked so commit changes */
COMMIT

LISTING 14.2 SQL commands for transaction processing

ST@EN’T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁldﬂh%@@"ﬁ %ﬁﬁ?ﬁ\}?ﬁious

STEDENTS-HUB.com

Distributed Transactions

Transactions involving multiple hosts,
several of which we may have no control
over; are typically called distributed
transactions.

A distributed transaction not only requires
local database writes, but also the
involvement of an external credit card
processor, an external legacy ordering
system, and an external shipping system.
Because there are multiple external
resources involved, distributed
transactions are much more complicated
than local transactions.

Web Server

Local DBMS
transaction

7

G If each resource is prepared (attempted successfully)

then send commit message to each resource manager
(otherwise send rollback message to each).

Transaction Manager
o Tell each resource
manager to prepare
(attempt the
transaction).

Prepare

Prepare
done

DBMS Resource Manager

Commit
done 9_ |

Local DB&
transaction

—
o Commit ‘&

1
A Commit :
| i
1 1
I
I
I

1
Prepare
done

I
I

I

Prepare : :
I I

I I

[I

®o----——----»

Resource Manager -
+—
m Server
Local DBMS DEMS —_—
transaction —

S—’
. b
e Commit ===

Server

Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHB@*BR? %?ﬁ?ﬁ\jﬁ‘i’ous

Data Definition Statements

All of the SQL examples that you will use in this book are examples of the
data manipulation language features of SQL, that is, SELECT, UPDATE,
INSERT, and DELETE. There is also a Data Definition Language (DDL) in
SQL, which is used for creating tables, modifying the structure of a table,
deleting tables, and creating and deleting databases.

Most tools such as the phpMyAdmin, offer interfaces that allow you to
manipulate table indirectly through a GUI.

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %ﬁﬁ?ﬁ\}?ﬁious

Database Indexes and Efficiency

Consider the worst-case scenario for searching where we compare a query
against every single record. If there are n elements, we say it takes O(n) time
to do a search (we would say “Order of n”).

In comparison, a balanced binary tree data structure can be searched in
O(log2 n) time.

It is possible to achieve O(1) search speed—that is, one operation to find the
result—with a hash table data structure.

No matter which data structure is used, the application of that structure to
ensure results are quickly accessible is called an index.

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %ﬁﬁ?ﬁ\}?ﬁious

Database Index

ISBN Title Year

Computer Science: An

2012 ¥ ISBN Index
Overview, 11/E

w. Created automatically for primary key (ISBN)

0132569035

Fluency with Information
0132828936 | Technology: Skills, 2013
Concepts, and Capabilities

Title Index
CREATE INDEX title_index ON Books (Title)

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Working with SQL in PHP

With PDO, the basic database
connection algorithm is:

1.
2
3
4.
5

STEDENTS-HUB.com

Connect to the database.
Handle connection errors.
Execute the SQL query.
Process the results.

Free resources and close
connection.

2h

<?php

try {
$connString = "mysql:host=Tocalhost;dbname=bookcrm";
$user = "testuser"”;
$pass = "mypassword";

0
o

$pdo = new PDO($connString,$user,$pass);
$pdo->setAttribute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$sql = "SELECT * FROM Categories ORDER BY CategoryName";
$result = $pdo->query($sql);

while ($row = $result->fetch()) {
echo $row['ID'] . " - " . $row['CategoryName'] . "
";

$pd0 = null;

catch (PDOException $e) {

die($e->getMessage());

Copyright © 2021, 2018, 2015 Pearson Education, I@ﬂd%wg@@'ﬁ %?ﬁ?ﬁ\jﬁ%us

Connecting to a Database

With MySQL databases, you supply:

* the host or URL of the database

// modify these variables for your installation
server, the

SconnectionString =
"mysqgl:host=localhost;dbname=bookcrm";
// you may need to add this if db has UTF data
e the database user name and SconnectionString .= ";charset=utf8mb4;";

password. Suser = "testuser";

Spass = "mypassword";

With SQLite databases, you only need to Spdo = new PDO(SconnectionString,
supply the path to the file: Suser, Spass);

* database name, and

LISTING 14.4 Connecting to a database with PDO

Spdo = new PDO('sqlite:./movies.db'); (object-oriented)

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I&l&dﬂhg@@f? %ﬁﬁ?ﬁ\ﬁﬁious

Storing Connection Detalls

A common solution is to store connection details in defined constants within a file
named config.inc.php.

require once ('protected/config.inc.php’);
Spdo = new PDO (DBCONNSTRING, DBUSER, DBPASS) ;

<?php

define('DBHOST', 'localhost');

define('DBNAME', 'bookcrm');

define('DBUSER', 'testuser');

define('DBPASS', 'mypassword');

define('DBCONNSTRING',"mysql:host=". DBHOST. ";dbname=". DBNAME);
>

LISTING 14.2 Defining connection details via constants in a separate file (config.inc.php)

ST@EN‘T’S—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHB@*BS? %ﬁ’ﬁ?ﬁ\ﬁﬁious

Handling Connection Errors

Unfortunately not every database connection always works. The approach in PDO for
handling connection errors uses try...catch exception- handling blocks.

It should be noted that PDO has three different error-handling approaches/modes.

try {
Spdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

}
catch (PDOException Se) {

die(Se->getMessage());
}

LISTING 14.7 Handling connection errors with PDO
STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁldﬂagl@@ﬁ %ﬁ’ﬁ?ﬁ\}?ﬁious

Executing the Query

If the connection to the database is successfully created, then you are ready
to construct and execute the query.

Ssql = "SELECT * FROM Categories ORDER BY CategoryName";
Sresult = Spdo->query(Ssql);
LISTING 14.9 Executing a SELECT query

Ssql = "DELETE FROM artists WHERE LastName = 'Connolly'";
// returns number of rows that were deleted
Scount = Spdo->exec($sql);

LISTING 14.10 Executing a DELETE query

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I&l&dﬂhg@@f? %ﬁﬁ?ﬁ\ﬁﬁious

Processing the Query Results

If you are running a SELECT query, then you will want to do something with
the retrieved result set, such as displaying it, or performing calculations on it,
or searching for something in it.

Ssql = "SELECT * FROM Paintings ORDER BY Title";
Sresult = Spdo->query(Ssql);

// fetch a record from result set into an associative array
while (Srow = Sresult->fetch()) {
// the keys match the field names from the table

echo Srow['ID']. " - ". Srow|['Title’];
echo "
";
}

LISTING 14.11 Looping through the result set

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %ﬁﬁ?ﬁ\}?ﬁious

Fetching from a result set

$sql = "select * from Paintings";
$result = $pdo->query($sql);

ID Title Artist Year
4 345 The Death of Marat David 1793
$result 400 The School of Athens Raphael 1510
Result set is a type 408 Bacchus and Ariadne Titian 1520
of cursor to the
retrieved data 425 Girl with a Pearl Earring Vermeer 1665
_ 438 Starry Night Van Gogh 1889
$row = $result->fetch() -
$row i | Title | Artist | Year |keys
Associative
array 345 | Death of Marat | David | 1793 |[values

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Fetching into an Object

Given the following simple Ssql = "SELECT * FROM Books";

class we can have PHP Sresult = Spdo->query($sql);
populate an object of type // fetch a record into an object of type Book
Book while (Sb = Sresult->fetchObject('Book')) {

// the property names match the table field names
echo 'ID:'. Sb->ID . '
’;

class Book {
blic $ID: echo 'Title: . Sb->Title . '
’;
P !C - echo 'Year: '. Sb->CopyrightYear . '
’;
public $Title; echo 'Description: '. Sb->Description . '
’;
public SCopyrightYear; echo '<hr>';
public SDescription; }
} LISTING 14.13 Populating an object from a result set (PDO)

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I&l&d%mg@@f? %ﬁﬁ?ﬁ\}?ﬁious

Freeing Resources and Closing Connection

When you are finished retrieving and displaying your requested data, you
should release the memory used by any result sets and then close the
connection so that the database system can allocate it to another process.

try {
Spdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

// closes connection and frees the resources used by the PDO object
Spdo = null;
}

LISTING 14.15 Closing the connection

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHBt?*BS? %ﬁﬁ?ﬁ\ﬁﬁious

Working with Parameters

Art Institute of Chicago

Brera Art Gallery
We can use the same ol Gotty Mseum »
page design to display Louure Museu l
. National Gallery
dlﬁerent da.ta reCOrdS Museum of Modern Art $ GET " 'du
Prado Museum — "1]
How does a PHP page 27

“know” which data
record to display?

guery string
parameters

STEDENTS-HUB.com

|

SELECT * FROM Galleries WHERE GalleryID=27

Spdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);
Ssql = "SELECT * FROM Galleries WHERE GalleryID=". S GET["id"];
Sresult = Spdo->query(Ssql);

LISTING 14.16 Integrating user input into a query (first attempt)

Copyright © 2021, 2018, 2015 Pearson Education, Uﬁld%!b@@@'ﬁ %ﬁﬁ?ﬁ\jﬁ‘i’ous

Sanitizing User Data

The last example is vulnerable to SQL injection attack (Chapter 16)

Sanitization uses capabilities built into database systems to remove any
special characters from a desired piece of text.

In MySQL, user inputs can be partly sanitized using the quote() method.

However, it is recommended that you use prepared statements.

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %ﬁﬁ?ﬁ\}?ﬁious

Prepared Statements

// retrieve parameter value from query string
A prepared statement °id=5_GET[id];

IS actually a way to /* method 1 — notice the ? parameter */

improve performance $sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = ?";
for queries that need to Sstatement = Spdo->prepare(Ssql);
be executed multiple Sstatement->bindValue(1, Sid); // bind to the 1st ? parameter

) Sstatement->execute();
times.

/* method 2 */

Ssql = "SELECT Title, CopyrightYear FROM Books WHERE ID = :id";
Sstatement = Spdo->prepare(Ssql);

Sstatement->bindValue(":id', Sid);

Sstatement->execute();

LISTING 14.17 Using a prepared statement

ST@’EN‘T’S—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁldﬂagl@@ﬁ %ﬁ’ﬁ?ﬁ\}?ﬁious

Named Parameters

/* technique named parameters */

Ssql = "INSERT INTO books (ISBN10, Title, CopyrightYear, Imprintld,
A n.ame(lj Ealra.m eter d ProductionStatusld, TrimSize, Description) VALUES (:isbn,
assigns 1abels In prgpare :title,:year,:imprint,:status,:size,:desc) ";

SQL statements which are ¢statement = $pdo->prepare ($sql);

then explicitly bound to Sstatement->bindValue(":isbn', S_POST['isbn']);
variables in PHP, reducing Sstatement->bindValue(':title', S_POST['title]);
opportunities for error. Sstatement->bindValue(':year', S_POST['year']);

Sstatement->bindValue(":imprint', S_POST['imprint']);
Sstatement->bindValue(':status', S_POST['status']);
Sstatement->bindValue(':size', S_POST['size']);
Sstatement->bindValue(":desc', S_POST['desc']);
Sstatement->execute();

It is also possible to pass
in parameter values within
an array to the execute()

method and cut out the LISTING 14.18 Using names parameters (part b)
calls to bindValue()

ST@EN’T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁldﬂh%@@"ﬁ %ﬁﬁ?ﬁ\}?ﬁious

Accessing MySQL in PHP

$sql = "UPDATE Categories SET CategoryName="Web' WHERE CategoryName='Business";
$count = $pdo->exec($sql);

echo "<p>Updated " . $count. " rows</p>";

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Accessing MySQL in PHP

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, Imprintld,
ProductionStatusld, TrimSize, Description) VALUES (?,7,,2,7,7,?)";
$statement = $pdo->prepare($sql);

$statement->bindValue(1, $_POST['isbn']);
$statement->bindValue(2, $_POST['title']);
$statement->bindValue(3, $_POST['year']);
$statement->bindValue(4, $_POST['imprint']);
$statement->bindValue(5, $_POST['status']);
$statement->bindValue(6, $_POST['size']);
$statement->bindValue(7, $_POST['desc']);

$statement->execute();

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Accessing MySQL in PHP

[* can pass an array, to be used in order */

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, Imprintid,
ProductionStatusld, TrimSize, Description) VALUES (?,?7,?,7,?,?2,?7)";
$statement = $pdo->prepare($sql);

$statement->execute (array($_POST[isbn], $_POST['title],$_POST['year],
$ POST[imprint], $_POST['status’], $_POST['size'],$_POST['desc'));

ST@)’ENTS—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁld%!b@@@'ﬁ %?ﬁ?ﬁ\}?ﬁious

Accessing MySQL in PHP

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, Imprintld, ProductionStatusld, TrimSize, Description) VALUES (:isbn,
:title, :year, :imprint, :status, :size, :desc) ";

$statement = $pdo->prepare($sql);
$statement->bindValue(":isbn', $_POST['isbn']);
$statement->bindValue(:title', $_POST['title']);
$statement->bindValue(":year', $_POST['year']);
$statement->bindValue(:imprint', $_POST['imprint']);
$statement->bindValue(":status', $_POST['status']);
$statement->bindValue(":size', $_POST|['size']);
$statement->bindValue(":desc', $_POST['desc']);

$statement->execute();

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁd%mg@@? %ﬁﬁ?ﬁ\}?ﬁious

Accessing MySQL in PHP

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, Imprintld, ProductionStatusld,

TrimSize, Description) VALUES (:isbn, :title, :year, :imprint, :status, :size, :desc) ";
$statement = $pdo->prepare($sql);
$statement->execute(array(':isbn' => $_POST['isbn'],
":title'=> $_POST(['title'],
".year'=>$_POST['year'],
“imprint'=> $_POST['imprint'],
":status'=> $_POST[status'],
":size'=> $_POST|['size']
":desc'=>$_POST['desc']));

ST@)’ENTS—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘ﬁld%@@@'ﬁ %?ﬁ?ﬁ\}?ﬁious

Using Transactions

Spdo = new PDO(SconnString,Suser,Spass);
// turn on exceptions so that exception is thrown if error occurs
Spdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
try {
// begin a transaction
Spdo->beginTransaction();
Spdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Philosophy')");
Spdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Art')");
// if we arrive here, it means that no exception was thrown
// which means no query has failed, so we can commit the transaction
Spdo->commit();
} catch (Exception Se) {
// we must rollback the transaction since an error occurred
// with insert
Spdo->rollback();
}

LISTING 14.20 Using transactions (PDO)

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I&l&dﬂhg@@f? %ﬁﬁ?ﬁ\ﬁﬁious

Designing Data Access

Database details such as connection strings and table and field names are
examples of externalities. These details tend to change over the life of a web
application.

Initially, the database for our website might be a SQLite database on our
development machine; later it might change to a MySQL database on a data
server, and even later, to a relational cloud service. Ideally, with each change
in our database infrastructure, we would have to change very little in our code
base.

One simple step might be to extract all PDO code into separate functions or
classes and use those instead.

ST@EN’T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁldﬂh%@@"ﬁ %ﬁﬁ?ﬁ\}?ﬁious

Designing Data Access (Il

class DatabaseHelper {

public static function createConnection(Svalues=array()) {
SconnString = Svalues[0];
Suser = Svalues[1];
Spassword = Svalues[2];

Sstatement = null;

If (count(Sparameters) > 0) {
// Use a prepared statement if parameters
Sstatement = Spdo->prepare(Ssql);
SexecutedOk = Sstatement->execute(Sparameters);

Spdo = new PDO(SconnString,Suser,Spassword); if (! SexecutedOk) {

Spdo->setAttribute(PDO::ATTR_ERRMODE, throw new PDOException;
PDO::ERRMODE_EXCEPTION); }

Spdo->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, }else {

PDO::FETCH_ASSOC); // Execute a normal query

return Spdo; Sstatement = Spdo->query(Ssql);

} if (ISstatement) {
public static function runQuery(Spdo, $sql, Sparameters=array()) throw new PDOException;
{ }
// Ensure parameters are inan array }
if (lis_array(Sparameters)) { return Sstatement;
Sparameters = array(Sparameters); }
} } //end class

LISTING 14.21 Encapsulating database access via a helper class

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I&l&d%mg@@f? %ﬁﬁ?ﬁ\}?ﬁious

Designing Data Access (lil)

try {
Sconn = DatabaseHelper::createConnectionlnfo(array(DBCONNECTION, DBUSER, DBPASS));

Ssql = "SELECT * FROM Paintings ";
Spaintings = DatabaseHelper::runQuery(Sconn, Ssql, null);
foreach (Spaintings as Sp) {
echo Sp["Title"];
}
Ssql = "SELECT * FROM Artists WHERE Nationality=?";
Sartists = DatabaseHelper::runQuery(Sconn, Ssql, Array("France"));

}

lllustrates two example uses of this class. While an improvement, we still have a
database dependency in this code with the SQL statements and field names.

ST@’EN‘T’S—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁldﬂagl@@ﬁ %ﬁ’ﬁ?ﬁ\}?ﬁious

A table gateway

class PaintingDB {
private static SbaseSQL = "SELECT * FROM Paintings ";

public function __construct(Sconnection) { public function getAllForArtist(SartistID) {
Sthis->pdo = Sconnection; Ssql = self::SbaseSQL . " WHERE Paintings.ArtistID=?";
} Sstatement = DatabaseHelper::runQuery(Sthis->pdo, $sql,
public function getAll() { Array(SartistID));
Ssql = self::SbaseSQL; return Sstatement->fetchAll();
Sstatement = DatabaseHelper::runQuery(Sthis->pdo, }
Ssql, null); public function getAllForGallery(SgalleryID) {
return Sstatement->fetchAll(); Ssql = self::SbaseSQL . " WHERE Paintings.GallerylD=?";
} Sstatement = DatabaseHelper::runQuery(Sthis->pdo, $sql,
public function findByld(Sid) { Array(SgallerylD));
Ssql = self::SbaseSQL . " WHERE PaintingID=?"; return Sstatement->fetchAll();
Sstatement = DatabaseHelper::runQuery(Sthis->pdo, Ssql, }
Array($id)); }

return Sstatement->fetch();

}

LISTING 14.22 Sample gateway class for painting table

ST@EN’T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, Uﬁldﬂh%@@"ﬁ %ﬁﬁ?ﬁ\}?ﬁious

NoSQL Databases

NoSQL (which stands for Not-only-SQL) is category of database software that
describes a style of database that doesn’t use the relational table model of
normal SQL databases.

NoSQL databases rely on a different set of ideas for data modeling that put
fast retrieval ahead of other considerations like consistency.

Systems like DynamoDB, Firebase, and MongoDB now power thousands of
sites including household names like Netflix, eBay, Instagram, Forbes,
Facebook, and others.

ST@EN’T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘ﬁld%JHB@*BS? %ﬁﬁ?ﬁ\}?ﬁious

Why (and Why Not) Choose NoSQL?

NoSQL systems handle huge datasets better than relational systems.

NoSQL databases aren’t the best answer for all scenarios. SQL databases
use schemas for a very good reason: they ensure data consistency and data

integrity.

The data in most NoSQL database systems is identified by a unique key. The
key-value organization often results in faster retrieval of data in comparison to

a relational database

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %ﬁﬁ?ﬁ\}?ﬁious

Key-Value Stores

Key-value stores alone are quite
straightforward in that every value,
whether an integer, string, or other data

. . Key Value
structure, has an associated key (i.e., customerName TS
.. 0 y
they are analogous to PHP associative
arrays) Price 200.00

Here every value has a key. This allows shippingAddress ~ "4825 Mount Royal Gate SW*
fast retrieval through means such as a
hash function, and precludes the need
for indexes on multiple fields as is the
case with SQL

Countries "Canada","France","Germany","United States"

ST@EN‘T’S—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHB@*BS? %ﬁ’ﬁ?ﬁ\ﬁﬁious

Document Store

Document Stores (also called document-oriented databases) associate keys
with values, but unlike key-value stores, they call that value a document.

« A document can be a binary file like a .doc or .pdf or a semi-structured
XML or JSON document.

* Most NoSQL systems are of this type. MongoDB, AWS DynamoDB,
Google FireBase, and Cloud Datastore are popular examples.

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHBt?*BS? %ﬁﬁ?ﬁ\ﬁﬁious

Relational data versus document store data

Relational Design

- User Table Address Table S
ID FirstName LastName AddressID ID Addressi CityID PostalCode
142 | Pablo Picasso 998 998 | 15-23 Carrer Montcada| 320 08003

I

Country Table
ID Name

City Table

ID CityName CountryID Population

320 |Barcelona | 44 46,042,812

STEDENTS-HUB.com

Document Store Design

A
/,,—
ID Document
142 | {
"User": {
"FirstName": "Pablo",
"LastName": "Picasso",
"Address": {
"Address1": "15-23 Carrer Montcada",
"City": "Barcelona",
"Country": ({
"Name": "Spain",
"Population": 46042812
b
"PostalCode": "08003"
}
}
}

Copyright © 2021, 2018, 2015 Pearson Education, {6 AllRigREs: Resshyedous

Column Stores

Row-wise storage

_A

In traditional relational database —— ,
f . itle Artist Year
systems, the data in tables is Row# 1 | 345 | The Death of Marat bavid | 1793
stored in a row-wise manner. This 2 | 400 [The School of Athens Raphael | 1510
means that the fundamental UI’]I'[Of 3 408 | Bacchus and Ariadne Titian 1521
. . 4 425 |Girl with a Pearl Earring | Vermeer 1665
data retrleved IS a row. 5 | 438 | Starry Night Van Gogh [1889

Column-wise storage
A_A‘
—

Column Store systems store data ﬁ

by column instead of by row, 1 [345 1 | The Death of Marat 1 |Dpavid 11793
meanlng that fetCheS retl’leve a 2 | 400 2 | The School of Athens 2 |Raphael 211510

I f d t d t . . 3 | 408 3 | Bacchus and Ariadne 3 |Titian 3 11521
co umn 0 a aan re rIeVIng an 4 | 425 4 |Girl with a Pearl Earring 4 |Vermeer 4 1665
entire row requires multiple s [438| 5 [starry Night 5 [Van Gogh | 5 [1889

operations.
STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Graph Stores

In a Graph Store system (often
simply called graph databases), Person ives in C—
D

name: "Randy name: "Canada”

data is represented as a network
or graph of entities and their has
works at watched Videos

r6|ati0n5hip5. has subjects:

"teaching”,

LT uant Sffsrchased :?;32:02?;:?“85“)
Some examples of graph S E—
1 H name: "MRU"
databases include Neo4j, Courses Bosks
i 1 titles: "War and Peace",
OrientDB, and RedisGraph. e oot e Pl

"Computer Ethics"

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁd%mg@@? %ﬁﬁ?ﬁ\}?ﬁious

Working with MongoDB In Node

MongoDB MongoDB is an open-source, NoSQL, document-oriented
database. It can be used with PHP, it is much more commonly used with Node

You simply package your data as a JSON object, give it to MongoDB, and it
stores this object or document as a binary JavaScript object (BSON).

MongoDB does not support transactions

The ability to run on multiple servers means MongoDB can handle large
datasets

ST@EN‘T’S-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %ﬁﬁ?ﬁ\}?ﬁious

Comparing relational databases to the
MongoDB data model

Field

ArtistID

Year

The Death of Marat
D Artist
400 The School of Athens 37 1510
Table
15 | David
408 Bacchus and Ariadne 25 1520
22 | Vermeer
425 Girl with a Pearl Earring | 22 1665
25 | Titian
438 Starry Night 43 _ 1889
37 | Raphael
Join
—— | 43 | Van Gogh

STEDENTS-HUB.com

<4— Record

Document

Collection

"id" : 438,
"title" : "Starry Night",
"artist" : {

"first": "Vincent",

"last": "Van Gogh",
"birth": 1853,
"died": 1890,

"notable-works" :

h
"year" : 1889,
"location" : { "name": "Museum of Modern Art",
"city": "New York City",
"address": "11 West 53rd Street" }

"id" : 400,
"title" : "The School of Athens",
fartisti i
"known-as": "Raphael",
"first": "Raffaello",

"last": "Sanzio da Urbino",
"birth": 1483,
"died": 1520
h
"year" : 1511,
"medium" : "fresco",
"location" : { "name": "Apostolic Palace",

"Vatican City"}

ZCTEY S
-

Field

Copyright © 2021, 2018, 2015 Pearson Education, U‘;Sw%!b%@'ﬂiﬁ

[{"1d": 452, "title":
{"1d": 265, "title":

Nested Document

"Sunflowers"},
"Bedroom in Arles"}]

ResshYAYous

Comparing a MongoDB query to an SQL query

MongoDB Query SQL Equivalent
db.art.find(SELECT
{ title, year, artist.last,
Criteria title: /AThe/, location.name
"artist.died": { $1t: 1800 } FROM
s art
WHERE
title: 1, title LIKE "The%"
o year: 1, AND
Projection "artist.last": 1, artist.died < 1800
"location.name": 1 ORDER BY
} year, title
).sort({year: 1,title : 1}).1imit(5) LIMIT 5

Cursor Modifiers

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Working with the MongoDB Shell

The MongoDB shell is like the JavaScript console: you can write any valid JavaScript code

d o MongoDB daemon process needs to be started in a separate terminal window

~/workspace $ mongo
mongod --help for help and startup options
2016-08-03T20:14:00.020+0000 [initandlisten] MongoDB starting : ...
2016-08-03T20:14:00.020+0000 [initandlisten] db version v2.6.11
2016-08-03T20:14:00.020+0000 [initandlisten] git version: ...

for (var i=1; i<=10; i++) db.users.insert({Name : "User" + i, Id: i})

db.art.find() <€——— returns all data in specified collection
"_id" : ObjectId("57a3780476..."), "id" : 438, "title" : "Starry Night" }

2016-08-04T17:00:49.737+0000 [initandlisten] waiting for connections on port 27017 ~id" : ObjectId("57a378..."), "id" : 400, "title" : "The School of Athens” }

V V MV Vv

db.art.find().sort({title: 1}) <«——— Sorts on title field (1=ascending)

work $ e The MongoDB shell in another window lets you work with the data
~/workspace $ mongo

MongoDB shell version: 2.6.11
connecting to: test

> use funwebdev ~<«——— Specifies the database to use (if it doesn't exist it gets created) > db.art.find({ id: {$gte: 400} }) <—— Searches for objects with id >= 400

db.art.find({id:400}) «——— Searches for object with id = 400

v

switched to db funwebdev 0e

> Specifies the collection to use (if it doesnt exist it gets created) > db.art.find({title: /Night/}) <——— Regular expression search

> ¢ Adds new document ces

> db.art.insert({"1d":438, "title" : "Starry Night"}) > quit()

WriteResult({ "nInserted” : 1]p Quotes around property names are optional ~/workspace $ o Imports JSON data file into funwebdev database in the collection books

> db.art.insert({id:400, title : "The School of Athens"})
WriteResult({ "nInserted" : 1 })
>

~/workspace $ mongoimport --db funwebdev --collection books --file books.json --jsonArray
connected to: 127.0.0.1

2016-08-04T19:12:28.053+0000 check 9 215

2016-08-04T19:12:28.053+0000 imported 215 objects

~/workspace $

STEDENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, InG ALR{gRs: RessHYAdous

Accessing MongoDB Data in Node.|s

const mongoose = require(‘mongoose');
// define a schema that maps to the structure in MongoDB
const bookSchema = new mongoose.Schema({

id: Number,

isbn10: String,

isbn13: String,

]] title: String,
require('dotenv').config();

console.log(process.env.MONGO_URL); }
const mongoose = require('mongoose'); ’

category: {
mongoose.connect(process.env.MONGO_URL, main: String
{useNewUrlParser: true, useUrnfledTopoIogy: true}); secondary: String
const db = mongoose.connection; }
db.on('error', console.error.bind(console, 1):

Sollnetiilo) Bl) // now create model using this schema that maps to books

collection in database
_ module.exports = mongoose.model('Book’,
D; bookSchema,'books');

db.once('open’, () => {
console.log('connected to mongo');

LISTING 14.23 Connecting to MongoDB using Mongoose LISTING 14.24 Creating a Mongoose model

ST@’EN‘T’S—HUB.com Copyright © 2021, 2018, 2015 Pearson Education, wﬁldﬂagl@@ﬁ %ﬁ’ﬁ?ﬁ\}?ﬁious

Web service using MongoDB

// get our data model app.get('/api/books/:isbn', (req,resp) => {
const Book = require('./models/Book.js’); // use mongoose to retrieve all books from Mongo
Book.find({isbn10: req.params.isbn},
app.get('/api/books', (req,resp) => { function(err, data) {
// use mongoose to retrieve all books if (err) {
Book.find({}, function(err, data) { resp.json({ message: 'Book not found'});
if (err) { } else {
resp.json({ message: resp.json(data);
'Unable to connect to books'}); }
}else { };
// return JSON retrieved by Mongo as response });
resp.json(data);
}
3,
1,

LISTING 14.25 Web service using MongoDB data and Mongoose ORM

ST@]ENTS-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {D‘;Sld%JHBt?*BS? %ﬁﬁ?ﬁ\ﬁﬁious

Key Terms

aggregate functions
binary tree
clickstream

column store
commodity servers
composite key
connection
connection string
database

data integrity

Data Definition
Language

(DDL)

STEDENTS-HUB.com

data duplication

database
normalization

distributed
transactions

document stores
failover clustering
fields

foreign key
GraphQL

graph store

hash table

index

Copyright © 2021, 2018, 2015 Pearson Education, I@}SIO%JHB@'B? %?ﬁ?ﬁ\jﬁ‘i’ous

inner join

join

key-value stores
local transactions
many-to-many
relationship
multiple-master
replication
MySQL

named parameter
NoSQL

one-to-many
relationship

one-to-one
relationship

ORM (Object-
Relational

Mapping)
phpMyAdmin
prepared statement
primary key

query

record

result set
sanitization

sharding

single-master
replication

SQL

SQL script
table

table gateway
transaction

two-phase commit

Copyright

This work is protected by United States copyright laws and is
provided solely for the use of instructors in teaching their
courses and assessing student learning. Dissemination or sale of
any part of this work (including on the World Wide Web) will
destroy the integrity of the work and is not permitted. The work
and materials from it should never be made available to students
except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these
restrictions and to honor the intended pedagogical purposes and
the needs of other instructors who rely on these materials.

ST@ENTE‘:-HUB.com Copyright © 2021, 2018, 2015 Pearson Education, {ﬁ‘ﬁld%JHB@*BS? %?ﬁ?ﬁ\ﬁﬁious

	Slide 1: Fundamentals of Web Development
	Slide 2: In this chapter you will learn . . .
	Slide 3: Databases and Web Development
	Slide 4: The Role of Databases in Web Development
	Slide 5: How websites use databases
	Slide 6: Managing Databases
	Slide 7: Managing Databases (Tools)
	Slide 8: SQL
	Slide 9: Table Design
	Slide 10: Foreign Key
	Slide 11: Table relationships
	Slide 12: Composite Key
	Slide 13: SELECT Statement
	Slide 14: WHERE Clause
	Slide 15: Join
	Slide 16: Grouping
	Slide 17: INSERT Statements
	Slide 18: UPDATE and DELETE Statements
	Slide 19: Transactions
	Slide 20: Distributed Transactions
	Slide 21: Data Definition Statements
	Slide 22: Database Indexes and Efficiency
	Slide 23: Database Index
	Slide 24: Working with SQL in PHP
	Slide 25: Connecting to a Database
	Slide 26: Storing Connection Details
	Slide 27: Handling Connection Errors
	Slide 28: Executing the Query
	Slide 29: Processing the Query Results
	Slide 30: Fetching from a result set
	Slide 31: Fetching into an Object
	Slide 32: Freeing Resources and Closing Connection
	Slide 33: Working with Parameters
	Slide 34: Sanitizing User Data
	Slide 35: Prepared Statements
	Slide 36: Named Parameters
	Slide 37: Accessing MySQL in PHP
	Slide 38: Accessing MySQL in PHP
	Slide 39: Accessing MySQL in PHP
	Slide 40: Accessing MySQL in PHP
	Slide 41: Accessing MySQL in PHP
	Slide 42: Using Transactions
	Slide 43: Designing Data Access
	Slide 44: Designing Data Access (ii)
	Slide 45: Designing Data Access (iii)
	Slide 46: A table gateway
	Slide 47: NoSQL Databases
	Slide 48: Why (and Why Not) Choose NoSQL?
	Slide 49: Key-Value Stores
	Slide 50: Document Store
	Slide 51: Relational data versus document store data
	Slide 52: Column Stores
	Slide 53: Graph Stores
	Slide 54: Working with MongoDB in Node
	Slide 55: Comparing relational databases to the MongoDB data model
	Slide 56: Comparing a MongoDB query to an SQL query
	Slide 57: Working with the MongoDB Shell
	Slide 58: Accessing MongoDB Data in Node.js
	Slide 59: Web service using MongoDB
	Slide 60: Key Terms
	Slide 61: Copyright

