
Fundamentals of Web Development
Third Edition by Randy Connolly and Ricardo Hoar

Chapter 14

Working with Databases

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights ReservedUploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

In this chapter you will learn . . .

• The role that databases play in web development

• What are the most common commands in SQL

• How to access SQL databases in PHP

• How NoSQL database systems work

• How to work with NoSQL databases using Node

• What is GraphQL

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Databases and Web Development

In this book, the relational DBMS used will be either SQLite or MySQL (or

MariaDB) There are many other open-source and proprietary relational DBMS

alternates to MySQL, such as PostgreSQL, Oracle Database, IBM DB2, and

Microsoft SQL Server.

In addition to relational database systems, there are non-relational models for
database systems that will also be explored in this chapter. These systems

are usually categorized with the term NoSQL and includes systems such as

Cassandra and MongoDB

Databases provide data integrity (accuracy and consistency of data) and

can reduce the amount of data duplication

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

The Role of Databases in Web Development

Databases provide a way to

implement an important software

design principles: namely, that

one should separate that which

varies from that which stays the
same.

On the web the visual

appearance (i.e., the HTML and

CSS) is that which stays the

same, while the data content is
that which varies.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

How websites use databases

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Managing Databases

Running the SQLite lab exercises for PHP and Node, you don't actually have

to install anything, since it is a file-based, in-memory database.

To run the PHP exercises in this chapter's lab, you will need access to

MySQL. If you have installed XAMPP to run your PHP, MySQL is already

installed.

To run the Node exercises in this chapter, you will either need to install

MongoDB or make use of a cloud service such as MongoDB Atlas.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Managing Databases (Tools)

The tools available to you range from the original command-line approach,

through to the modern workbench, where an easy-to-use toolset supports the

most common operations.

• Command-Line Interface

• phpMyAdmin

• MySQL Workbench

• SQLite Tools

• MongoDB Tools

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

SQL

A table is the principal unit of storage in a database. It is a two-dimensional

container for data that consists of records (rows); each record has the same

number of columns. These columns are called fields, which contain the actual

data. Each table will have a primary key—a field (or sometimes combination

of fields) that is used to uniquely identify each record in a table.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Table Design

Data types that are akin to those in a statically typed programming language

and contribute to data integrity. (BIT,BLOB,CHAR(n),

DATE,FLOAT,INT,VARCHAR(n))

As we discuss database tables and their design, it will be helpful to have a

condensed way to visually represent a table. It is normally enough to see the
field names, and perhaps their data types.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Foreign Key

Foreign key relates a

field in one table to a

primary key in another

table

Tables that are linked via
foreign keys are said to

have a relationship.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Table relationships

Most often, two related

tables will be in a one-to-

many relationship.

There are two other

table relationships: the
one-to-one relationship

and the many-to-many

relationship.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Composite Key

• Note that in this example, the two foreign keys in the intermediate table are

combined to create a composite key. Alternatively, the intermediate table

could contain a separate primary key field.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

SELECT Statement

The SELECT statement is

used to retrieve data from

the database. The term

query is sometimes used

as a synonym for running
a SELECT statement

The result of a SELECT

statement is a block of

data typically called a

result set which can be
ordered

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

WHERE Clause

The WHERE keyword is used to supply a comparison expression that the data

must match in order for a record to be included in the result set.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Join

Retrieving data from

multiple tables is more

complex and requires the

use of a join.

When two tables are joined
via an inner join, records

are returned if there is

matching data (typically

from a primary key in one

table and a foreign key in
the other) in both tables

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Grouping

When you don’t want every

record in your table but

instead want to perform

some type of calculation on

multiple records and then
return the results you use

one or more aggregate

functions such as SUM()

or COUNT(); these are

often used in conjunction
with the GROUP BY

keywords.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

INSERT Statements

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

UPDATE and DELETE Statements

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Transactions

A transaction refers to a sequence of steps that are treated as a single unit,

and provide a way to gracefully handle errors and keep your data properly

consistent when errors do occur.

Local transaction support in the DBMS can handle the problem of an error

with START TRANSACTION, COMMIT, and ROLLBACK commands.

/* By starting the transaction, all database modifications within will only be permanently saved in the database if they all work */
START TRANSACTION
INSERT INTO orders . . .

INSERT INTO orderDetails . . .
UPDATE inventory . . .
/* if we have made it here everything has worked so commit changes */
COMMIT

LISTING 14.2 SQL commands for transaction processing

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Distributed Transactions

Transactions involving multiple hosts,

several of which we may have no control
over; are typically called distributed
transactions.

A distributed transaction not only requires
local database writes, but also the

involvement of an external credit card
processor, an external legacy ordering
system, and an external shipping system.

Because there are multiple external
resources involved, distributed

transactions are much more complicated
than local transactions.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Data Definition Statements

All of the SQL examples that you will use in this book are examples of the

data manipulation language features of SQL, that is, SELECT, UPDATE,

INSERT, and DELETE. There is also a Data Definition Language (DDL) in

SQL, which is used for creating tables, modifying the structure of a table,

deleting tables, and creating and deleting databases.

Most tools such as the phpMyAdmin, offer interfaces that allow you to

manipulate table indirectly through a GUI.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Database Indexes and Efficiency

Consider the worst-case scenario for searching where we compare a query

against every single record. If there are n elements, we say it takes O(n) time

to do a search (we would say “Order of n”).

In comparison, a balanced binary tree data structure can be searched in

O(log2 n) time.

It is possible to achieve O(1) search speed—that is, one operation to find the

result—with a hash table data structure.

No matter which data structure is used, the application of that structure to

ensure results are quickly accessible is called an index.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Database Index

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working with SQL in PHP

With PDO, the basic database

connection algorithm is:

1. Connect to the database.

2. Handle connection errors.

3. Execute the SQL query.

4. Process the results.

5. Free resources and close

connection.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Connecting to a Database

With MySQL databases, you supply:

• the host or URL of the database

server, the

• database name, and

• the database user name and

password.

With SQLite databases, you only need to

supply the path to the file:

$pdo = new PDO('sqlite:./movies.db');

// modify these variables for your installation
$connectionString =
"mysql:host=localhost;dbname=bookcrm";
// you may need to add this if db has UTF data
$connectionString .= ";charset=utf8mb4;";
$user = "testuser";
$pass = "mypassword";
$pdo = new PDO($connectionString,

$user, $pass);

LISTING 14.4 Connecting to a database with PDO

(object-oriented)

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Storing Connection Details

A common solution is to store connection details in defined constants within a file

named config.inc.php.

require_once('protected/config.inc.php’);

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

<?php
define('DBHOST', 'localhost');
define('DBNAME', 'bookcrm');
define('DBUSER', 'testuser');
define('DBPASS', 'mypassword');
define('DBCONNSTRING',"mysql:host=". DBHOST. ";dbname=". DBNAME);
?>

LISTING 14.2 Defining connection details via constants in a separate file (config.inc.php)

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Handling Connection Errors

Unfortunately not every database connection always works. The approach in PDO for

handling connection errors uses try...catch exception- handling blocks.

It should be noted that PDO has three different error-handling approaches/modes.

try {
$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);
...
}
catch (PDOException $e) {
die($e->getMessage());
}

LISTING 14.7 Handling connection errors with PDO

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Executing the Query

If the connection to the database is successfully created, then you are ready

to construct and execute the query.

$sql = "SELECT * FROM Categories ORDER BY CategoryName";
$result = $pdo->query($sql);

LISTING 14.9 Executing a SELECT query

$sql = "DELETE FROM artists WHERE LastName = 'Connolly'";
// returns number of rows that were deleted
$count = $pdo->exec($sql);

LISTING 14.10 Executing a DELETE query

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Processing the Query Results

If you are running a SELECT query, then you will want to do something with

the retrieved result set, such as displaying it, or performing calculations on it,

or searching for something in it.

$sql = "SELECT * FROM Paintings ORDER BY Title";
$result = $pdo->query($sql);

// fetch a record from result set into an associative array
while ($row = $result->fetch()) {

// the keys match the field names from the table
echo $row['ID']. " - ". $row['Title’];
echo "
";

}

LISTING 14.11 Looping through the result set

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Fetching from a result set

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Fetching into an Object

Given the following simple

class we can have PHP

populate an object of type

Book

class Book {

public $ID;

public $Title;

public $CopyrightYear;

public $Description;

}

$sql = "SELECT * FROM Books";
$result = $pdo->query($sql);
// fetch a record into an object of type Book
while ($b = $result->fetchObject('Book')) {
// the property names match the table field names

echo 'ID: '. $b->ID . '
’;
echo 'Title: '. $b->Title . '
’;
echo 'Year: '. $b->CopyrightYear . '
’;
echo 'Description: '. $b->Description . '
’;
echo '<hr>';

}
LISTING 14.13 Populating an object from a result set (PDO)

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Freeing Resources and Closing Connection

When you are finished retrieving and displaying your requested data, you

should release the memory used by any result sets and then close the

connection so that the database system can allocate it to another process.

try {
$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

...
// closes connection and frees the resources used by the PDO object
$pdo = null;

}

LISTING 14.15 Closing the connection

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working with Parameters

We can use the same

page design to display

different data records

How does a PHP page

“know” which data
record to display?

query string

parameters

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);
$sql = "SELECT * FROM Galleries WHERE GalleryID=". $_GET["id"];
$result = $pdo->query($sql);

LISTING 14.16 Integrating user input into a query (first attempt)

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Sanitizing User Data

The last example is vulnerable to SQL injection attack (Chapter 16)

Sanitization uses capabilities built into database systems to remove any

special characters from a desired piece of text.

In MySQL, user inputs can be partly sanitized using the quote() method.

However, it is recommended that you use prepared statements.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Prepared Statements

A prepared statement

is actually a way to

improve performance

for queries that need to

be executed multiple
times.

// retrieve parameter value from query string
$id = $_GET['id’];

/* method 1 – notice the ? parameter */
$sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = ?";
$statement = $pdo->prepare($sql);
$statement->bindValue(1, $id); // bind to the 1st ? parameter
$statement->execute();

/* method 2 */
$sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = :id";
$statement = $pdo->prepare($sql);
$statement->bindValue(':id', $id);
$statement->execute();

LISTING 14.17 Using a prepared statement

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Named Parameters

A named parameter

assigns labels in prepared

SQL statements which are

then explicitly bound to

variables in PHP, reducing

opportunities for error.

It is also possible to pass

in parameter values within

an array to the execute()

method and cut out the

calls to bindValue()

/* technique named parameters */
$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,
ProductionStatusId, TrimSize, Description) VALUES (:isbn,
:title,:year,:imprint,:status,:size,:desc) ";
$statement = $pdo->prepare($sql);
$statement->bindValue(':isbn', $_POST['isbn']);
$statement->bindValue(':title', $_POST['title']);
$statement->bindValue(':year', $_POST['year']);
$statement->bindValue(':imprint', $_POST['imprint']);
$statement->bindValue(':status', $_POST['status']);
$statement->bindValue(':size', $_POST['size']);
$statement->bindValue(':desc', $_POST['desc']);
$statement->execute();

LISTING 14.18 Using names parameters (part b)

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessing MySQL in PHP

$sql = "UPDATE Categories SET CategoryName='Web' WHERE CategoryName='Business'";

$count = $pdo->exec($sql);

echo "<p>Updated " . $count . " rows</p>";

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessing MySQL in PHP

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,

ProductionStatusId, TrimSize, Description) VALUES (?,?,?,?,?,?,?)";

$statement = $pdo->prepare($sql);

$statement->bindValue(1, $_POST['isbn']);

$statement->bindValue(2, $_POST['title']);

$statement->bindValue(3, $_POST['year']);

$statement->bindValue(4, $_POST['imprint']);

$statement->bindValue(5, $_POST['status']);

$statement->bindValue(6, $_POST['size']);

$statement->bindValue(7, $_POST['desc']);

$statement->execute();

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessing MySQL in PHP

/* can pass an array, to be used in order */

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,

ProductionStatusId, TrimSize, Description) VALUES (?,?,?,?,?,?,?)";

$statement = $pdo->prepare($sql);

$statement->execute (array($_POST['isbn'], $_POST['title'],$_POST['year'],

$_POST['imprint'], $_POST['status'], $_POST['size'],$_POST['desc']));

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessing MySQL in PHP

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId, ProductionStatusId, TrimSize, Description) VALUES (:isbn,
:title, :year, :imprint, :status, :size, :desc) ";

$statement = $pdo->prepare($sql);

$statement->bindValue(':isbn', $_POST['isbn']);

$statement->bindValue(':title', $_POST['title']);

$statement->bindValue(':year', $_POST['year']);

$statement->bindValue(':imprint', $_POST['imprint']);

$statement->bindValue(':status', $_POST['status']);

$statement->bindValue(':size', $_POST['size']);

$statement->bindValue(':desc', $_POST['desc']);

$statement->execute();

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessing MySQL in PHP

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId, ProductionStatusId,

TrimSize, Description) VALUES (:isbn, :title, :year, :imprint, :status, :size, :desc) ";

$statement = $pdo->prepare($sql);

$statement->execute(array(':isbn' => $_POST['isbn'],

':title'=> $_POST['title'],

':year'=> $_POST['year'],

':imprint'=> $_POST['imprint'],

':status'=> $_POST['status'],

':size'=> $_POST['size']

':desc'=> $_POST['desc']));

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Using Transactions
$pdo = new PDO($connString,$user,$pass);
// turn on exceptions so that exception is thrown if error occurs
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
...
try {

// begin a transaction
$pdo->beginTransaction();

$pdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Philosophy')");
$pdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Art')");
// if we arrive here, it means that no exception was thrown
// which means no query has failed, so we can commit the transaction
$pdo->commit();

} catch (Exception $e) {

// we must rollback the transaction since an error occurred
// with insert
$pdo->rollback();
}

LISTING 14.20 Using transactions (PDO)

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing Data Access

Database details such as connection strings and table and field names are

examples of externalities. These details tend to change over the life of a web

application.

Initially, the database for our website might be a SQLite database on our

development machine; later it might change to a MySQL database on a data
server, and even later, to a relational cloud service. Ideally, with each change

in our database infrastructure, we would have to change very little in our code

base.

One simple step might be to extract all PDO code into separate functions or

classes and use those instead.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing Data Access (ii)
class DatabaseHelper {
public static function createConnection($values=array()) {

$connString = $values[0];
$user = $values[1];
$password = $values[2];
$pdo = new PDO($connString,$user,$password);
$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
$pdo->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE,

PDO::FETCH_ASSOC);
return $pdo;

}
public static function runQuery($pdo, $sql, $parameters=array())

{
// Ensure parameters are in an array
if (!is_array($parameters)) {

$parameters = array($parameters);
}

$statement = null;
If (count($parameters) > 0) {

// Use a prepared statement if parameters
$statement = $pdo->prepare($sql);
$executedOk = $statement->execute($parameters);
if (! $executedOk) {
throw new PDOException;

}
} else {

// Execute a normal query
$statement = $pdo->query($sql);
if (!$statement) {

throw new PDOException;

}
}

return $statement;
}
} //end class

LISTING 14.21 Encapsulating database access via a helper class

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing Data Access (iii)

try {

$conn = DatabaseHelper::createConnectionInfo(array(DBCONNECTION, DBUSER, DBPASS));

$sql = "SELECT * FROM Paintings ";

$paintings = DatabaseHelper::runQuery($conn, $sql, null);

foreach ($paintings as $p) {

echo $p["Title"];

}

$sql = "SELECT * FROM Artists WHERE Nationality=?";

$artists = DatabaseHelper::runQuery($conn, $sql, Array("France"));

}

Illustrates two example uses of this class. While an improvement, we still have a

database dependency in this code with the SQL statements and field names.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

A table gateway
class PaintingDB {
private static $baseSQL = "SELECT * FROM Paintings ";
public function __construct($connection) {

$this->pdo = $connection;
}
public function getAll() {

$sql = self::$baseSQL;
$statement = DatabaseHelper::runQuery($this->pdo,

$sql, null);
return $statement->fetchAll();

}
public function findById($id) {

$sql = self::$baseSQL . " WHERE PaintingID=?";

$statement = DatabaseHelper::runQuery($this->pdo, $sql,
Array($id));

return $statement->fetch();
}

public function getAllForArtist($artistID) {
$sql = self::$baseSQL . " WHERE Paintings.ArtistID=?";
$statement = DatabaseHelper::runQuery($this->pdo, $sql,

Array($artistID));
return $statement->fetchAll();

}
public function getAllForGallery($galleryID) {

$sql = self::$baseSQL . " WHERE Paintings.GalleryID=?";
$statement = DatabaseHelper::runQuery($this->pdo, $sql,

Array($galleryID));
return $statement->fetchAll();

}
}

LISTING 14.22 Sample gateway class for painting table

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

NoSQL Databases

NoSQL (which stands for Not-only-SQL) is category of database software that

describes a style of database that doesn’t use the relational table model of

normal SQL databases.

NoSQL databases rely on a different set of ideas for data modeling that put

fast retrieval ahead of other considerations like consistency.

Systems like DynamoDB, Firebase, and MongoDB now power thousands of

sites including household names like Netflix, eBay, Instagram, Forbes,

Facebook, and others.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Why (and Why Not) Choose NoSQL?

NoSQL systems handle huge datasets better than relational systems.

NoSQL databases aren’t the best answer for all scenarios. SQL databases

use schemas for a very good reason: they ensure data consistency and data

integrity.

The data in most NoSQL database systems is identified by a unique key. The
key-value organization often results in faster retrieval of data in comparison to

a relational database

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Key-Value Stores

Key-value stores alone are quite

straightforward in that every value,

whether an integer, string, or other data

structure, has an associated key (i.e.,

they are analogous to PHP associative

arrays)

Here every value has a key. This allows

fast retrieval through means such as a

hash function, and precludes the need

for indexes on multiple fields as is the

case with SQL

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Document Store

Document Stores (also called document-oriented databases) associate keys

with values, but unlike key-value stores, they call that value a document.

• A document can be a binary file like a .doc or .pdf or a semi-structured

XML or JSON document.

• Most NoSQL systems are of this type. MongoDB, AWS DynamoDB,
Google FireBase, and Cloud Datastore are popular examples.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Relational data versus document store data

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Column Stores

In traditional relational database

systems, the data in tables is

stored in a row-wise manner. This

means that the fundamental unit of

data retrieved is a row.

Column Store systems store data

by column instead of by row,

meaning that fetches retrieve a

column of data and retrieving an

entire row requires multiple

operations.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Graph Stores

In a Graph Store system (often
simply called graph databases),
data is represented as a network
or graph of entities and their
relationships.

Some examples of graph
databases include Neo4j,
OrientDB, and RedisGraph.

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working with MongoDB in Node

MongoDB MongoDB is an open-source, NoSQL, document-oriented

database. It can be used with PHP, it is much more commonly used with Node

You simply package your data as a JSON object, give it to MongoDB, and it

stores this object or document as a binary JavaScript object (BSON).

MongoDB does not support transactions

The ability to run on multiple servers means MongoDB can handle large

datasets

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Comparing relational databases to the

MongoDB data model

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Comparing a MongoDB query to an SQL query

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working with the MongoDB Shell

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessing MongoDB Data in Node.js

require('dotenv').config();
console.log(process.env.MONGO_URL);
const mongoose = require('mongoose');
mongoose.connect(process.env.MONGO_URL,
{useNewUrlParser: true, useUnifiedTopology: true});
const db = mongoose.connection;
db.on('error', console.error.bind(console,

'connection error:'));
db.once('open', () => {
console.log('connected to mongo');

});

LISTING 14.23 Connecting to MongoDB using Mongoose

const mongoose = require('mongoose');
// define a schema that maps to the structure in MongoDB
const bookSchema = new mongoose.Schema({

id: Number,
isbn10: String,
isbn13: String,
title: String,
…
},
category: {

main: String,
secondary: String

}

});
// now create model using this schema that maps to books
collection in database
module.exports = mongoose.model('Book',
bookSchema,'books');

LISTING 14.24 Creating a Mongoose model

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Web service using MongoDB
// get our data model
const Book = require('./models/Book.js’);

app.get('/api/books', (req,resp) => {
// use mongoose to retrieve all books

Book.find({}, function(err, data) {
if (err) {

resp.json({ message:
'Unable to connect to books' });

} else {
// return JSON retrieved by Mongo as response
resp.json(data);

}
});

});

app.get('/api/books/:isbn', (req,resp) => {
// use mongoose to retrieve all books from Mongo
Book.find({isbn10: req.params.isbn},

function(err, data) {
if (err) {

resp.json({ message: 'Book not found' });
} else {

resp.json(data);
}

});
});

LISTING 14.25 Web service using MongoDB data and Mongoose ORM

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Key Terms

aggregate functions

binary tree

clickstream

column store

commodity servers

composite key

connection

connection string

database

data integrity

Data Definition

Language

(DDL)

data duplication

database

normalization

distributed

transactions

document stores

failover clustering

fields

foreign key

GraphQL

graph store

hash table

index

inner join

join

key-value stores

local transactions

many-to-many

relationship

multiple-master

replication

MySQL

named parameter

NoSQL

one-to-many

relationship

one-to-one

relationship

ORM (Object-

Relational

Mapping)

phpMyAdmin

prepared statement

primary key

query

record

result set

sanitization

sharding

single-master

replication

SQL

SQL script

table

table gateway

transaction

two-phase commit

Uploaded By: anonymousSTUDENTS-HUB.com

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is

provided solely for the use of instructors in teaching their

courses and assessing student learning. Dissemination or sale of

any part of this work (including on the World Wide Web) will

destroy the integrity of the work and is not permitted. The work

and materials from it should never be made available to students

except by instructors using the accompanying text in their

classes. All recipients of this work are expected to abide by these

restrictions and to honor the intended pedagogical purposes and

the needs of other instructors who rely on these materials.

Uploaded By: anonymousSTUDENTS-HUB.com

	Slide 1: Fundamentals of Web Development
	Slide 2: In this chapter you will learn . . .
	Slide 3: Databases and Web Development
	Slide 4: The Role of Databases in Web Development
	Slide 5: How websites use databases
	Slide 6: Managing Databases
	Slide 7: Managing Databases (Tools)
	Slide 8: SQL
	Slide 9: Table Design
	Slide 10: Foreign Key
	Slide 11: Table relationships
	Slide 12: Composite Key
	Slide 13: SELECT Statement
	Slide 14: WHERE Clause
	Slide 15: Join
	Slide 16: Grouping
	Slide 17: INSERT Statements
	Slide 18: UPDATE and DELETE Statements
	Slide 19: Transactions
	Slide 20: Distributed Transactions
	Slide 21: Data Definition Statements
	Slide 22: Database Indexes and Efficiency
	Slide 23: Database Index
	Slide 24: Working with SQL in PHP
	Slide 25: Connecting to a Database
	Slide 26: Storing Connection Details
	Slide 27: Handling Connection Errors
	Slide 28: Executing the Query
	Slide 29: Processing the Query Results
	Slide 30: Fetching from a result set
	Slide 31: Fetching into an Object
	Slide 32: Freeing Resources and Closing Connection
	Slide 33: Working with Parameters
	Slide 34: Sanitizing User Data
	Slide 35: Prepared Statements
	Slide 36: Named Parameters
	Slide 37: Accessing MySQL in PHP
	Slide 38: Accessing MySQL in PHP
	Slide 39: Accessing MySQL in PHP
	Slide 40: Accessing MySQL in PHP
	Slide 41: Accessing MySQL in PHP
	Slide 42: Using Transactions
	Slide 43: Designing Data Access
	Slide 44: Designing Data Access (ii)
	Slide 45: Designing Data Access (iii)
	Slide 46: A table gateway
	Slide 47: NoSQL Databases
	Slide 48: Why (and Why Not) Choose NoSQL?
	Slide 49: Key-Value Stores
	Slide 50: Document Store
	Slide 51: Relational data versus document store data
	Slide 52: Column Stores
	Slide 53: Graph Stores
	Slide 54: Working with MongoDB in Node
	Slide 55: Comparing relational databases to the MongoDB data model
	Slide 56: Comparing a MongoDB query to an SQL query
	Slide 57: Working with the MongoDB Shell
	Slide 58: Accessing MongoDB Data in Node.js
	Slide 59: Web service using MongoDB
	Slide 60: Key Terms
	Slide 61: Copyright

