
Fundamentals of Web Development
Third Edition by Randy Connolly and Ricardo Hoar

Chapter 14

Working with Databases
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In this chapter you will learn . . .

• The role that databases play in web development

• What are the most common commands in SQL

• How to access SQL databases in PHP

• How NoSQL database systems work

• How to work with NoSQL databases using Node

• What is GraphQL
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Databases and Web Development

In this book, the relational DBMS used will be either SQLite or MySQL ( or 

MariaDB) There are many other open-source and proprietary relational DBMS 

alternates to MySQL, such as PostgreSQL, Oracle Database, IBM DB2, and 

Microsoft SQL Server.

In addition to relational database systems, there are non-relational models for 
database systems that will also be explored in this chapter. These systems 

are usually categorized with the term NoSQL and includes systems such as 

Cassandra and MongoDB

Databases provide  data integrity (accuracy and consistency of data) and 

can reduce the amount of data duplication
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The Role of Databases in Web Development

Databases provide a way to 

implement an important software 

design principles: namely, that 

one should separate that which 

varies from that which stays the 
same.

On the web the visual 

appearance (i.e., the HTML and 

CSS) is that which stays the 

same, while the data content is 
that which varies.
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How websites use databases
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Managing Databases

Running the SQLite lab exercises for PHP and Node, you don't actually have

to install anything, since it is a file-based, in-memory database.

To run the PHP exercises in this chapter's lab, you will need access to 

MySQL. If you have installed XAMPP to run your PHP, MySQL is already 

installed.

To run the Node exercises in this chapter, you will either need to install 

MongoDB or make use of a cloud service such as MongoDB Atlas.
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Managing Databases (Tools)

The tools available to you range from the original command-line approach, 

through to the modern workbench, where an easy-to-use toolset supports the 

most common operations.

• Command-Line Interface

• phpMyAdmin

• MySQL Workbench

• SQLite Tools

• MongoDB Tools
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SQL

A table is the principal unit of storage in a database. It is a two-dimensional 

container for data that consists of records (rows); each record has the same 

number of columns. These columns are called fields, which contain the actual 

data.  Each table will have a primary key—a field (or sometimes combination 

of fields) that is used to uniquely identify each record in a table.
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Table Design

Data types that are akin to those in a statically typed programming language 

and contribute to data integrity. (BIT,BLOB,CHAR(n), 

DATE,FLOAT,INT,VARCHAR(n))

As we discuss database tables and their design, it will be helpful to have a 

condensed way to visually represent a table. It is normally enough to see the 
field names, and perhaps their data types. 
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Foreign Key

Foreign key relates a 

field in one table to a 

primary key in another 

table

Tables that are linked via 
foreign keys are said to 

have a relationship. 
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Table relationships

Most often, two related 

tables will be in a one-to-

many relationship.

There are two other 

table relationships: the 
one-to-one relationship 

and the many-to-many 

relationship.
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Composite Key

• Note that in this example, the two foreign keys in the intermediate table are 

combined to create a composite key. Alternatively, the intermediate table 

could contain a separate primary key field.
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SELECT Statement 

The SELECT statement is 

used to retrieve data from 

the database. The term 

query is sometimes used 

as a synonym for running 
a SELECT statement 

The result of a SELECT 

statement is a block of 

data typically called a 

result set which can be 
ordered

Uploaded By: anonymousSTUDENTS-HUB.com



Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

WHERE Clause

The WHERE keyword is used to supply a comparison expression that the data 

must match in order for a record to be included in the result set.
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Join

Retrieving data from 

multiple tables is more 

complex and requires the 

use of a join.

When two tables are joined 
via an inner join, records 

are returned if there is 

matching data (typically 

from a primary key in one 

table and a foreign key in 
the other) in both tables
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Grouping

When you don’t want every 

record in your table but 

instead want to perform 

some type of calculation on 

multiple records and then 
return the results you use 

one or more aggregate 

functions such as SUM() 

or COUNT(); these are 

often used in conjunction 
with the GROUP BY 

keywords.
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INSERT Statements
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UPDATE and DELETE Statements
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Transactions

A transaction refers to a sequence of steps that are treated as a single unit, 

and provide a way to gracefully handle errors and keep your data properly 

consistent when errors do occur.

Local transaction support in the DBMS can handle the problem of an error 

with START TRANSACTION, COMMIT, and ROLLBACK commands.

/* By starting the transaction, all database modifications within will only be permanently saved in the database if they all work */
START TRANSACTION
INSERT INTO orders . . .

INSERT INTO orderDetails . . .
UPDATE inventory . . .
/* if we have made it here everything has worked so commit changes */
COMMIT

LISTING 14.2 SQL commands for transaction processing
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Distributed Transactions

Transactions involving multiple hosts, 

several of which we may have no control 
over; are typically called distributed 
transactions.

A distributed transaction not only requires 
local database writes, but also the 

involvement of an external credit card 
processor, an external legacy ordering 
system, and an external shipping system. 

Because there are multiple external 
resources involved, distributed 

transactions are much more complicated 
than local transactions.
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Data Definition Statements

All of the SQL examples that you will use in this book are examples of the 

data manipulation language features of SQL, that is, SELECT, UPDATE, 

INSERT, and DELETE. There is also a Data Definition Language (DDL) in 

SQL, which is used for creating tables, modifying the structure of a table, 

deleting tables, and creating and deleting databases.

Most tools such as the phpMyAdmin, offer interfaces that allow you to 

manipulate table indirectly through a GUI.
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Database Indexes and Efficiency

Consider the worst-case scenario for searching where we compare a query 

against every single record. If there are n elements, we say it takes O(n) time 

to do a search (we would say “Order of n”). 

In comparison, a balanced binary tree data structure can be searched in 

O(log2 n) time.

It is possible to achieve O(1) search speed—that is, one operation to find the 

result—with a hash table data structure.

No matter which data structure is used, the application of that structure to 

ensure results are quickly accessible is called an index.
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Database Index
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Working with SQL in PHP

With PDO, the basic database 

connection algorithm is:

1. Connect to the database.

2. Handle connection errors.

3. Execute the SQL query.

4. Process the results.

5. Free resources and close 

connection.
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Connecting to a Database

With MySQL databases, you supply:

• the host or URL of the database 

server, the

• database name, and 

• the database user name and 

password. 

With SQLite databases, you only need to 

supply the path to the file:

$pdo = new PDO('sqlite:./movies.db');

// modify these variables for your installation
$connectionString = 
"mysql:host=localhost;dbname=bookcrm";
// you may need to add this if db has UTF data
$connectionString .= ";charset=utf8mb4;";
$user = "testuser";
$pass = "mypassword";
$pdo = new PDO($connectionString, 

$user, $pass);

LISTING 14.4 Connecting to a database with PDO 

(object-oriented)
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Storing Connection Details

A common solution is to store connection details in defined constants within a file 

named config.inc.php. 

require_once('protected/config.inc.php’);

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

<?php
define('DBHOST', 'localhost');
define('DBNAME', 'bookcrm');
define('DBUSER', 'testuser');
define('DBPASS', 'mypassword');
define('DBCONNSTRING',"mysql:host=". DBHOST. ";dbname=". DBNAME);
?>

LISTING 14.2 Defining connection details via constants in a separate file (config.inc.php)
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Handling Connection Errors

Unfortunately not every database connection always works. The approach in PDO for 

handling connection errors uses try...catch exception- handling blocks.

It should be noted that PDO has three different error-handling approaches/modes.

try {
$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);
...
}
catch (PDOException $e) {
die( $e->getMessage() );
}

LISTING 14.7 Handling connection errors with PDO
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Executing the Query

If the connection to the database is successfully created, then you are ready 

to construct and execute the query.

$sql = "SELECT * FROM Categories ORDER BY CategoryName";
$result = $pdo->query($sql);

LISTING 14.9 Executing a SELECT query

$sql = "DELETE FROM artists WHERE LastName = 'Connolly'";
// returns number of rows that were deleted
$count = $pdo->exec($sql);

LISTING 14.10 Executing a DELETE query
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Processing the Query Results

If you are running a SELECT query, then you will want to do something with 

the retrieved result set, such as displaying it, or performing calculations on it, 

or searching for something in it.

$sql = "SELECT * FROM Paintings ORDER BY Title";
$result = $pdo->query($sql);

// fetch a record from result set into an associative array
while ($row = $result->fetch()) {

// the keys match the field names from the table
echo $row['ID']. " - ". $row['Title’];
echo "<br/>";

}

LISTING 14.11 Looping through the result set
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Fetching from a result set
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Fetching into an Object

Given the following simple 

class we can have PHP 

populate an object of type 

Book

class Book {

public $ID;

public $Title;

public $CopyrightYear;

public $Description;

}

$sql = "SELECT * FROM Books";
$result = $pdo->query($sql);
// fetch a record into an object of type Book
while ( $b = $result->fetchObject('Book') ) {
// the property names match the table field names

echo 'ID: '. $b->ID . '<br/>’;
echo 'Title: '. $b->Title . '<br/>’;
echo 'Year: '. $b->CopyrightYear . '<br/>’;
echo 'Description: '. $b->Description . '<br/>’;
echo '<hr>';

}
LISTING 14.13 Populating an object from a result set (PDO)
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Freeing Resources and Closing Connection

When you are finished retrieving and displaying your requested data, you 

should release the memory used by any result sets and then close the 

connection so that the database system can allocate it to another process.

try {
$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);

...
// closes connection and frees the resources used by the PDO object
$pdo = null;

}

LISTING 14.15 Closing the connection
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Working with Parameters

We can use the same 

page design to display 

different data records 

How does a PHP page 

“know” which data 
record to display? 

query string 

parameters

$pdo = new PDO(DBCONNSTRING,DBUSER,DBPASS);
$sql = "SELECT * FROM Galleries WHERE GalleryID=". $_GET["id"];
$result = $pdo->query($sql);

LISTING 14.16 Integrating user input into a query (first attempt)
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Sanitizing User Data

The last example is vulnerable to SQL injection attack (Chapter 16)

Sanitization uses capabilities built into database systems to remove any 

special characters from a desired piece of text.

In MySQL, user inputs can be partly sanitized using the quote() method.

However, it is recommended that you use prepared statements.
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Prepared Statements

A prepared statement 

is actually a way to 

improve performance 

for queries that need to 

be executed multiple 
times.

// retrieve parameter value from query string
$id = $_GET['id’];

/* method 1 – notice the ? parameter */
$sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = ?";
$statement = $pdo->prepare($sql);
$statement->bindValue(1, $id); // bind to the 1st ? parameter
$statement->execute();

/* method 2 */
$sql = "SELECT Title, CopyrightYear FROM Books WHERE ID = :id";
$statement = $pdo->prepare($sql);
$statement->bindValue(':id', $id);
$statement->execute();

LISTING 14.17 Using a prepared statement
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Named Parameters

A named parameter 

assigns labels in prepared 

SQL statements which are 

then explicitly bound to 

variables in PHP, reducing 

opportunities for error.

It is also possible to pass 

in parameter values within 

an array to the execute() 

method and cut out the 

calls to bindValue()

/* technique named parameters */
$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,
ProductionStatusId, TrimSize, Description) VALUES (:isbn,
:title,:year,:imprint,:status,:size,:desc) ";
$statement = $pdo->prepare($sql);
$statement->bindValue(':isbn', $_POST['isbn']);
$statement->bindValue(':title', $_POST['title']);
$statement->bindValue(':year', $_POST['year']);
$statement->bindValue(':imprint', $_POST['imprint']);
$statement->bindValue(':status', $_POST['status']);
$statement->bindValue(':size', $_POST['size']);
$statement->bindValue(':desc', $_POST['desc']);
$statement->execute();

LISTING 14.18 Using names parameters (part b)
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Accessing MySQL in PHP 

$sql = "UPDATE Categories SET CategoryName='Web' WHERE CategoryName='Business'";

$count = $pdo->exec($sql);

echo "<p>Updated " . $count . " rows</p>";
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Accessing MySQL in PHP 

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,

ProductionStatusId, TrimSize, Description) VALUES (?,?,?,?,?,?,?)";

$statement = $pdo->prepare($sql);

$statement->bindValue(1, $_POST['isbn']);

$statement->bindValue(2, $_POST['title']);

$statement->bindValue(3, $_POST['year']);

$statement->bindValue(4, $_POST['imprint']);

$statement->bindValue(5, $_POST['status']);

$statement->bindValue(6, $_POST['size']);

$statement->bindValue(7, $_POST['desc']);

$statement->execute();
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Accessing MySQL in PHP 

/* can pass an array, to be used in order */

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId,

ProductionStatusId, TrimSize, Description) VALUES (?,?,?,?,?,?,?)";

$statement = $pdo->prepare($sql);

$statement->execute (array($_POST['isbn'], $_POST['title'],$_POST['year'], 

$_POST['imprint'], $_POST['status'], $_POST['size'],$_POST['desc']));
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Accessing MySQL in PHP 

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId, ProductionStatusId, TrimSize, Description) VALUES (:isbn, 
:title, :year, :imprint, :status, :size, :desc) ";

$statement = $pdo->prepare($sql);

$statement->bindValue(':isbn', $_POST['isbn']);

$statement->bindValue(':title', $_POST['title']);

$statement->bindValue(':year', $_POST['year']);

$statement->bindValue(':imprint', $_POST['imprint']);

$statement->bindValue(':status', $_POST['status']);

$statement->bindValue(':size', $_POST['size']);

$statement->bindValue(':desc', $_POST['desc']);

$statement->execute();
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Accessing MySQL in PHP 

$sql = "INSERT INTO books (ISBN10, Title, CopyrightYear, ImprintId, ProductionStatusId, 

TrimSize, Description) VALUES (:isbn, :title, :year, :imprint, :status, :size, :desc) ";

$statement = $pdo->prepare($sql);

$statement->execute(array(':isbn' => $_POST['isbn'],

':title'=> $_POST['title'],

':year'=> $_POST['year'],

':imprint'=>  $_POST['imprint'],

':status'=> $_POST['status'],

':size'=> $_POST['size']

':desc'=> $_POST['desc']));
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Using Transactions
$pdo = new PDO($connString,$user,$pass);
// turn on exceptions so that exception is thrown if error occurs
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
...
try {

// begin a transaction
$pdo->beginTransaction();

$pdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Philosophy')");
$pdo->exec("INSERT INTO Categories (CategoryName) VALUES ('Art')");
// if we arrive here, it means that no exception was thrown
// which means no query has failed, so we can commit the transaction
$pdo->commit();

} catch (Exception $e) {

// we must rollback the transaction since an error occurred
// with insert
$pdo->rollback();
}

LISTING 14.20 Using transactions (PDO)

Uploaded By: anonymousSTUDENTS-HUB.com



Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing Data Access

Database details such as connection strings and table and field names are 

examples of externalities. These details tend to change over the life of a web 

application.

Initially, the database for our website might be a SQLite database on our 

development machine; later it might change to a MySQL database on a data 
server, and even later, to a relational cloud service. Ideally, with each change 

in our database infrastructure, we would have to change very little in our code 

base.

One simple step might be to extract all PDO code into separate functions or 

classes and use those instead.
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Designing Data Access (ii)
class DatabaseHelper {
public static function createConnection($values=array()) {

$connString = $values[0];
$user = $values[1];
$password = $values[2];
$pdo = new PDO($connString,$user,$password);
$pdo->setAttribute(PDO::ATTR_ERRMODE, 

PDO::ERRMODE_EXCEPTION);
$pdo->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, 

PDO::FETCH_ASSOC);
return $pdo;

}
public static function runQuery($pdo, $sql, $parameters=array()) 

{
// Ensure parameters are in an array
if (!is_array($parameters)) {

$parameters = array($parameters);
}

$statement = null;
If (count($parameters) > 0) {

// Use a prepared statement if parameters
$statement = $pdo->prepare($sql);
$executedOk = $statement->execute($parameters);
if (! $executedOk) {
throw new PDOException;

}
} else {

// Execute a normal query
$statement = $pdo->query($sql);
if (!$statement) {

throw new PDOException;

}
}

return $statement;
}
} //end class

LISTING 14.21 Encapsulating database access via a helper class
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Designing Data Access (iii)

try {

$conn = DatabaseHelper::createConnectionInfo(array(DBCONNECTION, DBUSER, DBPASS));

$sql = "SELECT * FROM Paintings ";

$paintings = DatabaseHelper::runQuery($conn, $sql, null);

foreach ($paintings as $p) {

echo $p["Title"];

}

$sql = "SELECT * FROM Artists WHERE Nationality=?";

$artists = DatabaseHelper::runQuery($conn, $sql, Array("France"));

}

Illustrates two example uses of this class. While an improvement, we still have a 

database dependency in this code with the SQL statements and field names.
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A table gateway
class PaintingDB {
private static $baseSQL = "SELECT * FROM Paintings ";
public function __construct($connection) {

$this->pdo = $connection;
}
public function getAll() {

$sql = self::$baseSQL;
$statement = DatabaseHelper::runQuery($this->pdo, 

$sql, null);
return $statement->fetchAll();

}
public function findById($id) {

$sql = self::$baseSQL . " WHERE PaintingID=?";

$statement = DatabaseHelper::runQuery($this->pdo, $sql, 
Array($id));

return $statement->fetch();
}

public function getAllForArtist($artistID) {
$sql = self::$baseSQL . " WHERE Paintings.ArtistID=?";
$statement = DatabaseHelper::runQuery($this->pdo, $sql, 

Array($artistID));
return $statement->fetchAll();

}
public function getAllForGallery($galleryID) {

$sql = self::$baseSQL . " WHERE Paintings.GalleryID=?";
$statement = DatabaseHelper::runQuery($this->pdo, $sql,

Array($galleryID));
return $statement->fetchAll();

}
}

LISTING 14.22 Sample gateway class for painting table
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NoSQL Databases

NoSQL (which stands for Not-only-SQL) is category of database software that 

describes a style of database that doesn’t use the relational table model of 

normal SQL databases.

NoSQL databases rely on a different set of ideas for data modeling that put 

fast retrieval ahead of other considerations like consistency.

Systems like DynamoDB, Firebase, and MongoDB now power thousands of 

sites including household names like Netflix, eBay, Instagram, Forbes, 

Facebook, and others.
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Why (and Why Not) Choose NoSQL?

NoSQL systems handle huge datasets better than relational systems.

NoSQL databases aren’t the best answer for all scenarios. SQL databases 

use schemas for a very good reason: they ensure data consistency and data 

integrity.

The data in most NoSQL database systems is identified by a unique key. The 
key-value organization often results in faster retrieval of data in comparison to 

a relational database
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Key-Value Stores

Key-value stores alone are quite 

straightforward in that every value, 

whether an integer, string, or other data 

structure, has an associated key (i.e., 

they are analogous to PHP associative 

arrays)

Here every value has a key. This allows 

fast retrieval through means such as a 

hash function, and precludes the need 

for indexes on multiple fields as is the 

case with SQL
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Document Store

Document Stores (also called document-oriented databases) associate keys 

with values, but unlike key-value stores, they call that value a document. 

• A document can be a binary file like a .doc or .pdf or a semi-structured 

XML or JSON document.

• Most NoSQL systems are of this type. MongoDB, AWS DynamoDB, 
Google FireBase, and Cloud Datastore are popular examples.
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Relational data versus document store data
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Column Stores

In traditional relational database 

systems, the data in tables is 

stored in a row-wise manner. This 

means that the fundamental unit of 

data retrieved is a row. 

Column Store systems store data 

by column instead of by row, 

meaning that fetches retrieve a 

column of data and retrieving an 

entire row requires multiple 

operations.
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Graph Stores

In a Graph Store system (often 
simply called graph databases), 
data is represented as a network 
or graph of entities and their 
relationships.

Some examples of graph 
databases include Neo4j, 
OrientDB, and RedisGraph.
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Working with MongoDB in Node

MongoDB MongoDB is an open-source, NoSQL, document-oriented 

database. It can be used with PHP, it is much more commonly used with Node

You simply package your data as a JSON object, give it to MongoDB, and it 

stores this object or document as a binary JavaScript object (BSON).

MongoDB does not support transactions

The ability to run on multiple servers means MongoDB can handle large 

datasets
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Comparing relational databases to the 

MongoDB data model
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Comparing a MongoDB query to an SQL query
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Working with the MongoDB Shell
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Accessing MongoDB Data in Node.js

require('dotenv').config();
console.log(process.env.MONGO_URL);
const mongoose = require('mongoose');
mongoose.connect(process.env.MONGO_URL, 
{useNewUrlParser: true, useUnifiedTopology: true});
const db = mongoose.connection;
db.on('error', console.error.bind(console, 

'connection error:'));
db.once('open', () => {
console.log('connected to mongo');

});

LISTING 14.23 Connecting to MongoDB using Mongoose

const mongoose = require('mongoose');
// define a schema that maps to the structure in MongoDB
const bookSchema = new mongoose.Schema({

id: Number,
isbn10: String,
isbn13: String,
title: String,
…
},
category: {

main: String,
secondary: String

}

});
// now create model using this schema that maps to books 
collection in database
module.exports = mongoose.model('Book', 
bookSchema,'books');

LISTING 14.24 Creating a Mongoose model

Uploaded By: anonymousSTUDENTS-HUB.com



Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Web service using MongoDB
// get our data model
const Book = require('./models/Book.js’);

app.get('/api/books', (req,resp) => {
// use mongoose to retrieve all books

Book.find({}, function(err, data) {
if (err) {

resp.json({ message: 
'Unable to connect to books' });

} else {
// return JSON retrieved by Mongo as response
resp.json(data);

}
});

});

app.get('/api/books/:isbn', (req,resp) => {
// use mongoose to retrieve all books from Mongo
Book.find({isbn10: req.params.isbn}, 

function(err, data) {
if (err) {

resp.json({ message: 'Book not found' });
} else {

resp.json(data);
}

});
});

LISTING 14.25 Web service using MongoDB data and Mongoose ORM
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Key Terms

aggregate functions

binary tree

clickstream

column store

commodity servers

composite key

connection

connection string

database

data integrity

Data Definition 

Language

(DDL)

data duplication

database 

normalization

distributed 

transactions

document stores

failover clustering

fields

foreign key

GraphQL

graph store

hash table

index

inner join

join

key-value stores

local transactions

many-to-many

relationship

multiple-master

replication

MySQL

named parameter

NoSQL

one-to-many 

relationship

one-to-one 

relationship

ORM (Object-

Relational

Mapping)

phpMyAdmin

prepared statement

primary key

query

record

result set

sanitization

sharding

single-master 

replication

SQL

SQL script

table

table gateway

transaction

two-phase commit
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Copyright

This work is protected by United States copyright laws and is 
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