\\“’ BIRZEIT UNIVERSITY

MICROCONTROLLER
ARCHITECTURE

Shadi Daana

https://students-hub.com

Microcontroller

Qm‘—cmmgr-wmvmrummqmw‘—cﬁieﬂ“!
S R PR A RPERRFRRRR s
* A microcontroller can be considered as a computer in a single chip g g;;;;;;;;;;;;;ggggg;ggg;gﬁ
[VDD
« Typically used in embedded systems to interface with sensors and peac 3 1 vore 2
actuators veard nE e
« The core elements of a microcontroller are: rosd b o
vDoog 1 65 0 PCB
* The processor (CPU) rrog 12 — ub o
* Memor e g o
Y =k e
* 1/O peripherals Voo % 57 potd
« System bus vReFsd 21 5 poe
_ _ _ _ "35:6:5 g 5‘535313
* The system bus is the connective wire that links all components of the Frod] 25 51 B roa

microcontroller together.

« Embedded software is Programmed_ on a separate computer and
then compiled into a list of instructions.

» These instructions then copied into the microcontroller memory
* This is often known as firmware
* The microcontroller then executes these instructions

STUDENTS-HUB.com

https://students-hub.com

Microcontroller Components

@

-

CPU

>

P

Sy

~

Peripherals

=

-

~\

Memory

https://students-hub.com

The processor (CPU)

A processor can be thought of as the brain of the device.

It processes and responds to various instructions that direct the microcontroller's
function.

This involves performing basic arithmetic, logic and 1/O operations.

It also performs data transfer operations, which communicate commands to
other components in the larger embedded system

STUDENTS-HUB.com

https://students-hub.com

/O Peripherals

« The input and output devices are the interface for the processor to the outside
world.

« The input ports receive information and send it to the processor in the form of
binary data.

« The processor receives that data and sends the necessary instructions to output
devices that execute tasks external to the microcontroller.

STUDENTS-HUB.com

https://students-hub.com

Memory

« A microcontroller's memory is used to store the data that the processor receives and uses
to respond to instructions that it's been programmed to carry out.
« A microcontroller has two main memory types:
* Program memory :
 stores long-term information about the instructions that the CPU carries out.

* Program memory is non-volatile memory, meaning it holds information over time
without needing a power source.

« Datamemory:
* required for temporary data storage while the instructions are being executed.

« Data memory is volatile, meaning the data it holds is temporary and is only
maintained if the device is connected to a power source

STUDENTS-HUB.com

https://students-hub.com

Microcontroller Components

@

. 8

ALU

®

P

W

~

Peripherals

=

.

\

Data }

Memory

nstructions

|
|

=

https://students-hub.com

Supporting Elements

« Other supporting elements of a microcontroller include:
« Analog to Digital Converter (ADC):

« An ADC is a circuit that converts analog signals to digital signals.

It allows the processor at the center of the microcontroller to interface with external analog devices,
such as sensors.

 Digital to Analog Converter (DAC) :

« ADAC performs the inverse function of an ADC and allows the processor at the center of the
microcontroller to communicate its outgoing signals to external analog components.

« Serial port:

» The serial port is one example of an I/O port that allows the microcontroller to connect to external
components.

» It has a similar function to a USB or a parallel port but differs in the way it exchanges bits.

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex®

 ARM® is a family of RISC-based microprocessors and microcontrollers
designed by ARM Holdings.

* The company doesn’t make processors but instead designs microprocessor
and multicore architectures and licenses them to manufacturers

 ARM® designs the core and bus system

* For example, STMicroelectronics purchases a license (IP) to use the design
in their own microcontrollers (MCUs)

* STMicroelectronics then adds its own peripherals, memories, and power
blocks to create a functional MCU

 Companies can also purchase designs for peripherals and memory, or they
can design them by themself

STUDENTS-HUB.com

https://students-hub.com

ARM® Processor Vs Intel Processor

* There are many differences between Intel and ARM, but the
main difference is the instruction set.

 Intelis a CISC (Complex Instruction Set Computing) processor that has a larger and more
feature-rich instruction set and allows many complex instructions to access memory.

* |t therefore has more operations, addressing modes, but fewer registers than ARM. CISC
processors are mainly used in normal PCs, workstations, and servers.

* ARM s a RISC (Reduced instruction set Computing) processor and therefore has a simplified
instruction set (100 instructions or less) and more general-purpose registers than CISC.

* Unlike Intel, ARM uses instructions that operate only on registers and uses a Load/Store
memory model for memory access, which means that only Load/Store instructions can

dCCeSS memaory.

STUDENTS-HUB.com

https://students-hub.com

ARM® Processor Vs Intel Processor

 More differences between ARM and x86 are:

* |In ARM, most instructions can be used for conditional execution.
* The Intel x86 and x86-64 series of processors use the little-endian format

 The ARM architecture was a little-endian before version 3. Since then ARM processors have
become Bl-endian and feature a setting that allows for switchable endianness.

* There are not only differences between Intel and ARM, but also between
different ARM versions themselves. (Armv6, Armv7, and Armv8)

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex®

 ARM licenses a number of specialized microprocessors and related
technologies, but the bulk of their product line is the Cortex family of

microprocessor architectures.

* There are three Cortex architectures, conveniently labeled with the initials
A, R, and M.
* Cortex-M: Processors in these profiles are used for the development of

microcontroller-based based embedded systems. The Cortex-M family consists of
Cortex-MO, Cortex-MO0+, Cortex-M1, Cortex-M3, Cortex-M4 and Cortex-M7.

* Cortex-A: Processors in this profile are used in high-performance application devices
like mobile/cellular phones.

* Cortex-R: The main market of processors of this profile is in the real-time application,
where less response time is the main target

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex®

* There are currently four popular versions of the Cortex-M series:

* Cortex-MO: Designed for 8- and 16-bit applications, this model emphasizes
low cost, ultra-low power, and simplicity. It is optimized for small silicon die
size (starting from 12k gates) and use in the lowest cost chips.

e Cortex-MO+: An enhanced version of the MO that is more energy efficient.

e Cortex-M3:Designed for 16- and 32-bit applications, this model
emphasizes performance and energy efficiency. It also has comprehensive
debug and trace features to enable software developers to develop their
applications quickly.

* Cortex-M4: This model provides all the features of the Cortex-M3, with
additional instructions to support digital signal processing tasks.

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex®

Under the M-Profile there are several versions of
the ARM ISA

* ARMV6-M
* ARMV7-M

* ARMV8-M
e . Processor ISA
* A processor definition includes a version of the
instruction set architecture Cortex-M/MO ARMvE-M
* In this course, we will focus on the microcontrollers JCortex-M3 ARMVT7-M

built around the Cortex M4 core.

« Cortex M4 uses ARMV7-M ISA Cortex-M4 ARMV7E-M
* All Cortex-M processors support an instruction set Cortex-M7 ARMvV7E-M

called Thumb Cortex-M?23 ARMv8-M

* Thumb-2 is an expansion of Thumb

e Cortex-M processors sulpport different subset of
the instructions available in the Thumb ISA

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex®

Floating Point

DSP (SIMD, fast MAC)
ARMv7-M

Advanced data processing
bit field manipulations

ARMv6-M

General data processing
I/O control tasks

— Cortex-M0O/M0+ —p

Cortex-M3 ———p
Cortex-M4 >

Cortex-M7 =——

STUDENTS-HUB.com

https://students-hub.com

Microcontroller Architecture base ARM®
Cortex®

Design by
Test/ Debug Interface " STMicroelectronics
: Flash SRAM ock
A ARM® Cortex® - M4 Core JUSTUCIon) {bata) renRTsion
3 (with DSP extension) l
Designed by ARME J_

apor|
apoo-a

? = Clock Signal
X .

a
o
{/
Designed by STMicroelectronics
(Based on ARM® AMPA) __,, Multilayer Advance High Performance Bus (AHB) Matrix

’ |
AHB to APB |
Bridge

Aqvanced Peripheral Bus

DAC | |[PWM| Timer| | I2C | UART RTC | |ADC| |GPIO| | SPI

] E K, SR
o 2 T

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex® M4 Harvard architecture

* Microcontrollers are typically Harvard machines
* In ARM Cortex M4 processor, instructions are stored in Flash memory

* This is connected to the core using I-Code and D-Code buses
e Data is stored in SRAM

* This is connected to the core using the System bus (S-bus)

* The system bus is also used to connect the core to peripheral

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex® M4 Harvard architecture

Test/ Debug Interface
e Flash SRAM — Cloc:
- i eneration
ARM® Cortex® - M4 Core isactons) (Data)
(with DSP extension) l
Clock Signal
Multilayer Advance High Performance Bus (AHB) Matrix A"'BBn‘:g‘:PB

Advanced Peripheral Bus

DAC | [PWM| [Timer| | 12C | [UART RTC| [ADC| [GPIO SPI

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex® M4 Harvard architecture

Test/ Debug Interface
g Flash SRAM ¢ " Cloc:
- i eneration
ARM® Cortex® - M4 Core (Instructions) (Data)
(with DSP extension) l
Clock Signal
Muitilayer Advance High Performance Bus (AHB) Matrix A“:ﬁ‘gg‘;"B

Advanced Peripheral Bus

DAC | |PWM| |Timer 12C | UART RTC| [ADC| |GPIO SPI

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex® M4 Harvard architecture

Test/ Debug Interface
g Flash SRAM — °'°°:‘_
i i eneration
ARM® Cortex® - M4 Core nStuctions) (Data)
(with DSP extension) l

Clock Signal

Multilayer Advance High Performance Bus (AHB) Matrix

DAC | [PWM| [Timer| | 12C | [UART RTC| [ADC| |GPIO| | SPI

STUDENTS-HUB.com

https://students-hub.com

AHB-Lite Bus

HRDATA .
i | HCLK
HRESETN AHB-Lite
Processor | HWRITE Bus
Master | HADDR
] HWDATA
HSEL
. 4 [0] [1] [2] [3] —
N N N4 N
Address ROM RAM GPIO TIMER
Decoder Slave 0 Slave 1 Slave 2 Slave 3

HRDATAO

HRDATA3—
HRDATA1 HRDATAZ —;}

STUDENTS-HUB.com

https://students-hub.com

AHB-Lite Bus

!
HCLK _/

HWRITE

HADDRJ[31:0]

HWDATA[31:0]

HRDATA[31:0]

STUDENTS-HUB.com

X Write Address A

>< Read Address B

|
|
|
|
|
|
|
}
| X Write Data A
|
|
{
|
|
|
|

Read Address B

|

[

|

|

|

i X

|

|

[

| X Read Data B
| |
 Cycle 1: Cycle 2: Cycle 3: |
' Present Write Address A Present Write Data A & Receive Read Data B ‘

https://students-hub.com

ARM® Cortex® M Bus interfaces

* The processor contains four external Advanced High-performance Bus (AHB)-Lite
bus interfaces:

1. ICode memoryinterface

* Instruction fetches from Code memory space, 0x00000000to Ox1FFFFFFF, are performed
over this 32-bit AHB-Lite bus.

 The Debugger cannot access this interface.
* All fetches are word-wide.
* The number of instructions fetched per word depends on the code running and the
alignment of the code in memory.
2. DCode memoryinterface

* Dataand debug accesses to Code memory space, 0x00000000 to Ox1FFFFFFF, are performed
over this 32-bit AHB-Lite bus.

» Core data accesses have a higher priority than debug accesses on this bus.

* This means that debug accesses are waited until core accesses have completed when there
are simultaneous core and debug access to this bus.

STUDENTS-HUB.com

https://students-hub.com

ARM® Cortex® M Bus interfaces

3. System interface

* Instruction fetches, and data and debug accesses, to address
ranges 0x20000000 to OxDFFFFFFF and OxE0100000 to OxFFFFFFFF are performed over this
32-bit AHB-Lite bus.

* For simultaneous accesses to this bus, the arbitration order in decreasing priority is:
» data accesses
* instruction and vector fetches
* debug.

4. Private Peripheral Bus (PPB)

* Dataand debug accesses to external PPB space, OxE0040000 to OXEOOFFFFF, are performed
over this 32-bit Advanced Peripheral Bus (APB) bus.

STUDENTS-HUB.com

https://students-hub.com

Memory Space

* The peripherals are separate circuits that enable the microcontroller
to interface with sensors and actuators etc.

* Peripherals contain registers that are used to configure the
peripherals

* They are memory-mapped, which means they are given an address
and appear to be part of the same memory as instructions and data

* The Flash memory and RAM also appear to be in the same memory
despite being physically separate

* This is known as a unified memory map

STUDENTS-HUB.com

https://students-hub.com

Memory Map

* ARM defines a standardized memory address space common to all
Cortex-M cores, which ensures code portability among different
silicon manufacturers.

* The address space is 4 GB wide (due to the 32-bit address line)

* It is organized into several subregions with different logical
functionalities.

STUDENTS-HUB.com

https://students-hub.com

Memory Map

STUDENTS-HUB.com

0xEQOFF000

0xE0042000

0xE0041000
0xE0040000

0xEQ00F000
0xEOQO0OE000

0xE0003000

0xE0002000
0xE0001000
0xE0000000

Ox43FFFFFF

0x42000000
Ox41FFFFFF

0x40100000
0x40000000

0x23FFFFFF

0x22000000
Ox21FFFFFF

0x20100000
0x20000000

ROM Table

External PPB

ETM

TPIU

Vendor Specific

Reserved

Private Peripheral Bus - External

NVIC

Private Peripheral Bus - Internal

Reserved

FPB

DWT

IT™

External Device

1GB

Bit-band alias

External RAM

Peripheral o0sGB

SRAM 0.5GB

Code Area oscB

Bit-band region
32MB Bit-band alias
31MB
1MB Bit-band region

OXEFFFFFFF

0xE0100000
0xE0040000

0xDFFFFFFF

0xA0000000
0x9FFFFFFF

0x60000000
O0xSFFFFFFF

0x40000000
Ox3FFFFFFF

0x20000000
0x1FFFFFFF

0x00000000

https://students-hub.com

Memory Map

* Memory map for code area

STUDENTS-HUB.com

Option bytes

System memory
(boot loaders)

0xA0000000
0X9FFFFFFF
External RAM
0x60000000 198
O0xXSFFFFFFF
Peripheral o.sGB
0x40000000
0x3FFFFFFF
SRAM 0.5GB
0%20000000
OxX1FFFFFFF
Code Area 0.5GB
0x00000000

Reserved

Flash

Reserved

Aliased to Flash, System
memory or SRAM depending
on BOOT configuration

O0x1FFFFFFF
0x1FFFX000

0x1FFFX000

0x080X0000

0x08000000

0x00000000

https://students-hub.com

Memory Map- STM32F40xx Example

Figure 18. STM32F40xxx memory map

Frasarvad OwEX0 000D - 0xFFFF FFFF
CORTER -k wwrad parpharsis DED00 D000 - DeEXOF FFFF
R wADO) 1000 - DxOFFF FEFF
DsAD00 OFFF
AHa3
DuE000 00DD
Fesanmd =005 OO0 - CxEFFF FFFF
0uS008 0EFF
AHB2
D4FFFF FFFF [~ 53z inye
block 7 0uS000 000D
Cortex-Md's
8 Ras anvad w005 000D - DwdFFF FRFF
internal z 07 FEFF
OXEQOD 0000 | perisherals
AxDFFF FFFF [t
512-Mbyle
tock &
Mot used
O¥CO00 (000
BFFF FFFF e
512-Mbyle
Hack 5
FEMC regi
B
512-Mbyie
tock 4 w002 000
FSMC bank 5 Fles anvad Qw4001 5800 - Qw001 FFFF
& bankd Qw001 ETFF
0oB0DD (000 e s
QxTFFF FFFF
512-Mbyle
bock 3
FSMC banki
& hiank2
TuE000 D00
QxSFFF FFFF
512-Mbyle
Hack 2 e
Parigheeals
00D D000
Qx3FFF FFFF
512-Mbyle
bock 1
SRAM
2000 Resarved 012002 D004 - EeIFEF FEFF 54001 0002
Elmﬂ FFDFDFFFF SRAM (16 KB aliased 201 - Q2001 FEFF R anviad 04000 TBOD - Dx4000 FFFF
512 Miyte by bit-banding} c DeADOG TFFF
Hock O SRAM EIZ KE aliased | g,2000 0000 - Qb0 BFFF
Codes By nding)
00000 0a0o Reseried o 1FFF GOOA - Ox1FFF FEFF
Oplion Byles e 1EEF €000 - 0x1FEF COOF
Reserved C1EEF TA1D - 0= 1FFF TEFF
Syslem memory + OTP FFF 0000 - Cwi FFF TAQF
Reservad
CCM data RAM AFEL
{54 KB dala SRAM)
Resarved
Flash
Resarved
Allased 1o Flash, sygEm
memony of SRAN depanding|
on the BOOT pins 54000 000D
allas1 M

STUDENTS-HUB.com

https://students-hub.com

Cortex-M Core Registers

* The Cortex-M3 and Cortex-M4 processors have a number of registers
inside the processor core to perform data processing and control

* Most of these registers are grouped in a unit called the register bank.

* Each data processing instruction specifies the operation required, the
source register(s), and the destination register(s) if applicable.

* In the ARM architecture, if data in memory is to be processed, it has
to be loaded from the memory to registers in the register bank,
processed inside the processor, and then written back to the
memory, if needed.

* This is commonly called a “load-store architecture”.

STUDENTS-HUB.com

https://students-hub.com

Cortex-M Core Registers

* The register bank in the Cortex-
M3 and Cortex-M4 processors
has 16 registers.

* Thirteen of them are general-
purpose 32-bit registers, and the
other three have special uses

STUDENTS-HUB.com

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (banked)

Rl14

R15

Register bank

General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
Stack Pointer (SP)
Link Register (LR)

)
[Program Counter (PC)

> Low Registers

> High Registers

MSP | Main Stack Pointer

PSP | Processs Stack Pointer

https://students-hub.com

Cortex-M Core Registers

* RO- R12 are general-purpose registers, and can
be used as operands for ARM instructions

* R13 is the Stack Pointer (SP) register, it is used
for accessing the stack memory via PUSH and
POP operations.

* R14 is the Link Register (LR) register, which is a
special-purpose register which holds the address
to return to when a function call completes.

* The linker register does not require the writes
and reads of the memory containing the stack

* R15 is the Program Counter (PC) register, which
has the address of the next instruction to be
executed from memory.

STUDENTS-HUB.com

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (banked)

Rl14

R15

Register bank

General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
General Purpose Register
Stack Pointer (SP)
Link Register (LR)

Program Counter (PC)

> Low Registers

> High Registers

MSP | Main Stack Pointer

PSP | Processs Stack Pointer

https://students-hub.com

Cortex-M Core Registers

* Besides the registers in the register bank,
there are a number of special registers

* These registers contain the processor status
and define the operation states and
interrupt/exception masking.

* In the development of simple applications
with high level programming languages such
as C, there are not many scenarios that
require access to these registers.

* However, they are needed for development
of an embedded OS, or when advanced
interrupt masking features are needed.

STUDENTS-HUB.com

Special Registers

xP5SR Program Status Registers
APSR EPSR IPSR
Application Execution Interrupt
PSR PSR PSR
PRIMASK "I Interrupt /
FAULTMASK = exception

BASEPRI | mask registers

Processor's

COMTROL
control

https://students-hub.com

Instruction Set Architecture

* Where the processor stores or obtain information

= Registers
= Memory
" |nput/ output devices (Memory/ special instructions)

* How the processor manipulate information
= Assembly language instructions
" Processor hardware actions

STUDENTS-HUB.com

https://students-hub.com

Instruction Set Architecture

* A microcontroller is an example of a reduced
instruction set computer (RISC) that has a fairly limited number
of instructions

* Generally, a mnemonic is a symbolic name for a single
executable machine language instruction

* mnemonics are used to specify an opcode

* An assembler is used to convert the assembly code to machine code
(O's and 1's) that are stored in memory

e program often we use a high-level language (C, C++, etc.) and a
compiler translates it into machine code

STUDENTS-HUB.com

https://students-hub.com

Instruction Format

Instruction Format

Type OPCODE OPERAND

* Operation code or op-code is a part of the instruction that tells the
processor what should be done.

* Operand is a part of the instruction that contains the data to be acted
on, or the memory location of the data in a register.

* https://developer.arm.com/documentation/ddi0403/d

STUDENTS-HUB.com

https://developer.arm.com/documentation/ddi0403/d
https://students-hub.com

Instruction Format

Mnemonic Opcode Action

AND 0000 Bitwise AND

EOR 0001 Bitwise Exclusive OR
LSL 0010 Logical Shift Left

LSR 0011 Logical Shift Right

ASR 0100 Arithmetic Shift Right
ADC 0101 Add with Carry

SBC 0110 Subtract with Carry

ROR 0111 Rotate Right

TST 1000 Test

RSB 1001 Reverse Subtract from 0
CMP 1010 Compare High Registers
CMN 1011 Compare Negative

ORR 1100 Bitwise OR

MUL 1101 Multiply Two Registers
BIC 1110 Bitwise Bit Clear

MVN 1111 Bitwise NOT

STUDENTS-HUB.com

https://students-hub.com

Instruction Format

* The type of instruction can be:
e Data processing instructions and miscellaneous instructions
Load/ Store instructions
Branch instructions
Media instructions
Coprocessor instructions
Floating point instructions

STUDENTS-HUB.com

https://students-hub.com

Instruction Format

 ARM instructions process data held in registers and only
access memory with load and store instructions

* ARM instructions commonly take two or three operands

Instruction
Syntax

Destination
register (Rd)

Source
register 1 (Rn)

Source
register 2 (Rm)

ADD r3, rl1, r2

r3

rl

2

.

STUDENTS-HUB.com

https://students-hub.com

Instruction Format (Example)

olo|(1|o|ofo|o|of1|1|o|l1|o|0|0]]

N N A A AL J
Y Y Y A Y
type op-code Ry R, Ry

Data operation R, = R, operation R, ADD R3, R2, Rl

https://students-hub.com

Addressing Modes (ARM)

* The phrase addressing modes in ARM relates to the manner an
instruction operand is expressed.

* Before the operand is actually performed, the addressing mode
provides a rule for interpreting or altering the address field of the
instruction.

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes (ARM)

* The address for a load or store is formed from two parts:

* A value from a base register

LDR RO, [R1] (Thisinstruction loadsthe 32-bit word at the memory location containedin register R1
into register RO)

* An offset.

* The base register can be any one of the general-purpose registers. For
loads, the base register can be the PC. This permits PC-relative
addressing for position-independent code. Instructions marked
(literal)

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes (ARM)

e The offset takes one of three formats:

1. Immediate addressing offset
2. Register addressing offset
3. Scaled register-indexed addressing offset

* The offset and base register can be used in three different ways to
form the memory address. The addressing modes are:

* Pre-indexed
* Post-indexed

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes (ARM)

Immediate addressing offset

* The offset is an unsigned number that can be added to or subtracted
from the base register value.

* Immediate offset addressing is useful for accessing data elements
that are a fixed distance from the start of the data object, such as
structure fields, stack offsets, and input/output registers.

*e.g.
LDR RO, [R1, #4]

(This instruction loads the register RO with the word at the memory regions computed by

adding the constant address included in the R1 register value 4 to the memory address stored
in the R1 register)

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes (ARM)

Register addressing offset
* The offset is a value from a general-purpose register.
* This register cannot be the PC.

* The value can be added to, or subtracted from, the base register
value.

* Register offsets are useful for accessing arrays or blocks of data.

* e.g.
LDR RO, [R1, R2]

(This instruction will load the word at the memory address determined by adding register R1
and register R2 into register RO.)

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes (ARM)

* Scaled register-indexed addressing offset

* The offset is a general-purpose register, other than the PC, shifted by
an immediate value, then added to or subtracted from the base
register.

* This means an array index can be scaled by the size of each array
element.

 LDRRS, [R9, R10, LSL #2] (loads the value from the memory location pointed to by R9 + (R10
*4) into R8)

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes (ARM)

» Offset: The offset is added to or subtracted from the base register to
form the memory address

* Pre-indexed:

* Post-indexed addressing updates the base register before memory access
 LDRR1, [RO, #8] (load the value from the memory location pointed to by RO + 8 into R1)

* Post-indexed:

* Post-indexed addressing updates the base register after memory access

 LDRR6, [R7], #8 loads the value from the memory location pointed to by R7 into R6 and then
increments the value in R7 by 8.

STUDENTS-HUB.com

https://students-hub.com

ARM Cortex M Assembly Programming

* An assembly language is a type of low-level programming language that is
intended to communicatedirectly with a computer's hardware. Unlike machine
language, which consists of binary and hexadecimal characters, assembly
languages are designed to be readable by humans

 Why Learn Assembly Language?

* Learning and spending some time working at the assembly language level
provides a richer understanding of the underlying computer architecture. This
includes the basic instruction set, processor registers, memory addressing,
hardware interfacing, and Input/ Output

STUDENTS-HUB.com

https://students-hub.com

ARM Cortex M Assembly Programming

* The typical instruction format:
Opcode DestReg, Operand2
Opcode DestReg, SrcReg, Operand?2

* Instructions may have two or three operands

* First operand is (almost) always a destination register
* Operand?2 is a 'flexible' operand

STUDENTS-HUB.com

https://students-hub.com

ARM Cortex M Assembly Programming

Source
Operand 1

ALU) Destination
Operand

Source 31 parrel shifter

Operand 2
LSL, LSR, ASR,
ROR, RRX
ADD RO, R1 . R2 RO =R1+R2
ADD RO, R1 . #1 -RO=R1+1

ADD RO, R1,R2, LSL#2 'RO=R1+R2 << 2

STUDENTS-HUB.com

https://students-hub.com

The Move Instruction

0x00000100

R1
R2
R3
R4
R5
R&
R7
RE
RS
R10
R11
R12
R13
R14
R15

STUDENTS-HUB.com

https://students-hub.com

The Move Instruction

0x00000100 ¥
0x00000CB2 | R1 MOV RO
R2
R3
R4
RS
R6
R7
RS
R9
R10
R11
R12
R13
R14
R15

STUDENTS-HUB.com

https://students-hub.com

The Move Instruction

STUDENTS-HUB.com

0x00000100

0x00000CB2

OXFFFFFFFB

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOV RO, #0x100
MOV R1, #3250

MVN R2, #4

00....0100
11....1011

https://students-hub.com

The Move Instruction

STUDENTS-HUB.com

0x00000100

0x00000CB2

OXFFFFFFFB

0x0000B4A2

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOV RO, #0x100
MOV R1, #3250
MVN R2, #4

MOVW R3, #0xB4A2

https://students-hub.com

The Move Instruction

STUDENTS-HUB.com

0x00000100

0x00000CB2

OXFFFFFFFB

O0xF303B4A2

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOV RO, #0x100
MOV R1, #3250
MVN R2, #4

MOVW R3, #0xB4A2
MOVT R3, #0xF303

https://students-hub.com

The Move Instruction

0x00000100 RO MOV RO, #0x100
0x00000CB2 R1 MOV R1, #3250

0x B R2 MVN R2, #4
0XxF303B4A2 R3S MOVW R3, #0xB4A2
0x00000CB2 R4 MOVT R3, #0xF303

RS MOV R4, R1
R6

R7

R8

RS
R10
R11
R12
R13
R14
R15

STUDENTS-HUB.com

https://students-hub.com

Summary

* Most instructions specify the destination as the first operand

* Immediate values are small constants that are encoded as part of
instruction itself

* The (optional) # prefix marks an immediate operand

* Hexadecimal values have a prefix of Ox

STUDENTS-HUB.com

https://students-hub.com

Load/ Store Instructions

STUDENTS-HUB.com

0xF303B4A2

0x00000CB2

OXAFEES5000

R4

R7

R8

RO
R10
R11
R12
R13
R14
R15

Memory location
stored at R1

LDR RS, [R1]

Memory

https://students-hub.com

Load/ Store Instructions

STUDENTS-HUB.com

1

K

OXAFEES000

RO
R1
R2
R3
R4

R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

LDR RS, [R1]
STR R3, [R1]

0x40405050

O0xF303B4A2

OXAAAAAAAA

Memory

https://students-hub.com

Load/ Store Instructions

STUDENTS-HUB.com

0x00000100 RO

0x00000CB2 R1

OXFFFFFFFB R2

OxF303B4A2 R3

0x00000CB2 R4

0 00 R5
OXAAAAAAAA DeRE

P | ==

R8

RS

R10

R11

R12

R13

R14

R15

LDR R5, [R1]
STR R3, [R1]
LDR RS, [R1,4]

0x00000CA4

0x40405050

0x00000CB2

_J0x00000CB6

https://students-hub.com

Bitwise Instructions — OR

STUDENTS-HUB.com

0x00000110

0x00000011

0x0000ABCD

A B F
0 0 0
0 1 1
1 0 1
1 1 1

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110

https://students-hub.com

Bitwise Instructions — OR

STUDENTS-HUB.com

A B F
0 0
1 1
0 1

0x00000110

0x00000011

0x00000111

0x0000ABCD

RO
R1
R2
R3
R4
RS
R6
R7
R8
R3S
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110
ORR R2,R1, RO

https://students-hub.com

Bitwise Instructions — OR

STUDENTS-HUB.com

>

0x00000110

0x00000011

0x00000111

0x0000ABCD

0x0000ABDD

- - O O

O = T S

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110
ORR R2,R1,R0

ORR R4,R3,R0

https://students-hub.com

Bitwise Instructions — OR

STUDENTS-HUB.com

0x00000110

0x00000011

0x00000111

0x0000ABCD

0x0000ABDD

A B F
0 0 0
0 1 1
1 0 1
1 1 1

RO
R1
R2
R3
R4
R5
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110
ORR R2,R1,R0

ORR R4,R3,R0

In C we would write

#define MASK 0x0110

DestA = SrcA | MASK;
DestB = SrcB | MASL;

https://students-hub.com

Bitwise Instructions — AND

STUDENTS-HUB.com

A_}

F
B —

A B F

0 0 0

0 1 0

1 0 0

1 1 1

0x00000110

0x00000011

0x0000ABCD

RO
R1
R2
R3
R4
RS
RE
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110

https://students-hub.com

Bitwise Instructions — AND

STUDENTS-HUB.com

A—
F

B —

A B F

0 0 0

0 1 0

1 0 0

1 1 1

0xFFFFFEEF

0x00000011

0x0000ABCD

RO
R1
R2
R3
R4
RS
R&
R7
RE
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110
MVN RO, RO

https://students-hub.com

Bitwise Instructions — AND

STUDENTS-HUB.com

A—}

F
B e

A B F

0 0 0

0 1 0

1 0 0

1 1 1

OXFFFFFEEF

0x00000011

0x00000001

0x0000ABCD

0x0000AACD

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110
MVN RO, RO

AND R2,R1, RO
AND R4, R3,R0

https://students-hub.com

Bitwise Instructions — AND

‘ °:x';';';';';§151': 2‘1’ MOVW RO, #0x0110
A £ 0x00000001 R2 MVN RO, RO
B — 0Xx0000ABCD R3 AND R2,R1,R0
0x0000AACD R4 AND R4, R3,R0
R5
A B = oy |
In C we would write
R7
0 0 0 A
#define MASK 0x0110
0 1 0 R9
R10 DestA = SrcA & ~ MASK;
. &9 e DestB = SrcB & ~MASL:
1 1 1 R12
R13
R14
R15

STUDENTS-HUB.com

https://students-hub.com

Bitwise Instructions — BIC

STUDENTS-HUB.com

A—
F

B —

A B F

0 0 0

0 1 0

1 0 0

1 1 1

0x00000110

0x00000011

Ox0000ABCD

RO
R1
R2
R3
R4
RS
R&
R7
RE
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110

https://students-hub.com

Bitwise Instructions — BIC

STUDENTS-HUB.com

A_?

F
B e

A B F

0 0 0

0 1 0

1 0 0

1 1 1

0x00000110

0x00000011

0x00000001

0x0000ABCD

0x0000AACD

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110

BIC R2,R1,R0
BIC R2,R3,R0

https://students-hub.com

Bitwise Instructions — EOR

STUDENTS-HUB.com

0x00000110

0x00000011

0x00000101

0x0000ABCD

Ox0000AADD

RO
R1
R2
R3
R4
R5
RE
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOVW RO, #0x0110
EOR R2,R1, RO

EOR R4, R3, RO

In C we would write

#define MASK 0x0110

DestA = SrcA * MASK;
DestB = SrcB * MASK;

https://students-hub.com

Summary

 Set bits to 1 in mask to modify corresponding bits
e Use OR instruction to force bits to 1

* Use MVN-AND instructions to force bits to O

e Use BIC instruction to force bits to 0

* Use EOR instruction to invert bits

STUDENTS-HUB.com

https://students-hub.com

Arithmetic Instructions- ADD

SSSSSSSSSSSSSSSS

0x00000002

0x00000004

0x40000000

0x60000000

RO
R1

R3
R4
RS
R6
R7
R8

R10
R11
R12
R13
R14
R15

ADD R1.RO, RO /

NN

H

https://students-hub.com

Arithmetic Instructions- ADD

STUDENTS-HUB.com

0x00000002

0x00000004

0x00000006

0x40000000

0x60000000

RO
R1
R2
R3
R4
RS
R6
R7
R8
RS
R10
R11
R12
R13
R14
R15

ADD R1,RO,RO

ADD R2,R1,#2 /

https://students-hub.com

Arithmetic Instructions- ADD

STUDENTS-HUB.com

0x00000002

0x00000004

0x0000000&

0x40000000

0x60000000

OxA0000000

RO
R1
R2
R3
R4
RS
RE
R7
RS
RS
R10
R11
R12
R13
R14
R15

ADD R1,R0, RO 1073741824
+ 1610612736

ADD R2,R1,#2
ADD RS5,R3, R4

-1610612736

1073741824
+1610612736

2684354560

https://students-hub.com

Arithmetic Instructions- Multiplication

STUDENTS-HUB.com

0x00000002

0x00000004

0x00000008

0xFFFFFF10

0x00000077

OxFFFF2070

0x0000BEAD

0x000157B5

0x00009B51

RO
R1
R2
R3
R4
R5
RE
R7
RE
RS
R10
R11
R12
R13
R14
R15

MUL R2, RO, R1 / .

MUL RS, R4, R3

MUL RS, Ré, R7

43813
X 87989

20761 0x¥D0009B51

48813
X 37939

4,295,007,057 0x100009B51

https://students-hub.com

Arithmetic Instructions- Division

STUDENTS-HUB.com

0x00000002

0x00000003

0x00000004

0x00000002

OxFFFFFF00

0x00000005

RO
R1

R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

UDIV R3, R2, RO

4/2=2

https://students-hub.com

Arithmetic Instructions- Division

STUDENTS-HUB.com

0x00000002

0x00000003

0x00000004

0x00000002

0x00000001

OxFFFFFFO00

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

UDIV R3, R2, RO

UDIV R4, R2, R1

4/3 =1

https://students-hub.com

Arithmetic Instructions- Division

STUDENTS-HUB.com

0x00000002

0x00000003

0x00000004

0x00000002

0x00000001

0x00000000

OxFFFFFF00

0x00000005

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

UDIV R3,R2, RO
UDIV R4, R2, Ri

UDIV RS, R1, R2

3/4=0

https://students-hub.com

Arithmetic Instructions- Division

STUDENTS-HUB.com

0x00000002

0x00000003

0x00000004

0x00000002

0x00000001

0x00000000

OxFFFFFF00

0x00000005

0x33333300

RO
R1

R3
R4
R5
R6
R7
R8

R10
R11
R12
R13
R14
R15

UDIV

UDIV

UDIV

UDIV

R3, R2, RO
R4, R2, R1
R5, R1, R2

R8, R6, R7

4294967040

5
= 858993408

https://students-hub.com

Arithmetic Instructions- Division

STUDENTS-HUB.com

0x00000002

0x00000003

0x00000004

0x00000002

0x00000001

0x00000000

OxFFFFFF00

0x00000005

0x33333300

0xFFFFFFCD

RO
R1

R3
R4
R5
R6
R7
R8

R10
R11
R12
R13
R14
R15

uDIV

uDIV

UDIV

UDIV
SDIV

R3, R2, RO
R4, R2, R1
R5, R1, R2

R8, R6, R7
R9, R6, R7

-256

=-51

https://students-hub.com

Logical shift and rotation — Left Shift

 Left Shifts effectively multiply the contents of a register by 25 where s
is the shift amount.

* MOV RO,RO,LSL 7

RO before : | 0000 0000 0000 0000 0000 0000 0000 0111 | =7
{7

RO before : | 0000 0000 0000 0000 0000 0011 1000 0000 | =7 *27= 896

* Shifts can also be applied to the second operand of any data
processing instruction ADD R1,R1,RO,LSL 7

STUDENTS-HUB.com

https://students-hub.com

Logical shift and rotation — Right Shift

* Right Shifts behave like dividing the contents of a register by 25 where
s is the shift amount, if you assume the contents of the register are
unsigned

* MOV RO,RO,LSR 2

RO before : | 0000 0000 0000 0000 0000 0100 0000 0000 | = 1024

—
RO after : 0000 0000 0000 0000 0000 0001 0000 0000 | = 1024 / 2* = 256

STUDENTS-HUB.com

https://students-hub.com

Logical shift and rotation — Arithmetic Right Shifts

* Arithmetic Right Shifts behave like dividing the contents of a register
by 25 where s is the shift amount, if you assume the contents of the
register are signed

* MOV RO,R0,ASR 2

RO before : | 1111 1111 1111 1111 1111 1100 0000 0000 | =-1024

w—
RO after : 1111 1111 1111 1111 1111 1111 0000 0000 | =-1024 /2° = 256

STUDENTS-HUB.com

https://students-hub.com

Logical shift and rotation — Rotate Right Shift

* Rotating Right Shifts have no arithmetic analogy. However, they don’t
lose bits like both logical and arithmetic shifts

* MOV RO,RO,ROR 2

RO before : | 0000 0000 0000 0000 0000 0000 0000 01fi1] | =7

RO after : | 11000 0000 0000 0000 0000 0000 0000 0001 | =-1,073,741,823

STUDENTS-HUB.com

https://students-hub.com

Exercise 1- Setting a bit

 Set bit #5 in a register (assume RO) without affecting the other bits.
* a|=(1<<5);
* Use LSL to access the bit location

STUDENTS-HUB.com

https://students-hub.com

Exercise 2- Clearing a bit

 Clear bit #5 in a register (assume RO) without affecting the other bits.
e A &= ~(1<<5);
* Use LSL to access the bit location

STUDENTS-HUB.com

https://students-hub.com

Exercise 3-Toggling a bit

* Toggle bit #5 in a register (assume RO) without affecting the other
bits.

AN = (1<<5);
e Use LSL to access the bit location

STUDENTS-HUB.com

https://students-hub.com

Branches

* Branches (aka Jumps) allow us to jump to another code segment.
This is useful when we need to skip (or repeat) blocks of codes or
jump to a specific function.

* The best examples of such a use case are conditional statements (if
statements) and Loops (while and for)

STUDENTS-HUB.com

https://students-hub.com

Branches

main:
mowv rl, #2
mowv r2, #3
SR rl, r2
klt, rl_lower
mowv re, rl
b end

rl_lower:

mov r8, r2

b end

end:

bx 1r

I*
I*
I*
I*®
IE
IE

J"r*
J"r*

JI|I"=I€

setting up initial variable a #*/

setting up initial variable b #*/

comparing variables to determine which is bigger */

jump to rl_lower in case r2 is bigger (N=z1) */

if branching/jumping did not occur, rl is bigger (or the same) so store rl into r@ */

proceed to the end */

We ended up here because rl was smaller than r2, so move r2 into ré #*/

proceed to the end #*/

THE END #*/

STUDENTS-HUB.com

https://students-hub.com

Branches

STUDENTS-HUB.com

int main() {
int max =
int a = 2;
int b = 3;

max = b;

else {
max = a;

}

return max;

https://students-hub.com

Conditions in Assembly

STUDENTS-HUB.com

Condition Field
Mnemonic Description Description (VFP)
EQ Equal Equal
NE Not equal Not equal, or unordered
cs / HS Carry Set / Unsigned higher or same | Greater than or equal, or unordered
cc / Lo Carry Clear / Unsigned lower Less than
MT Negative Less than
PL Positive or zero Greater than or equal, or unordered
Vs Overflow Unordered (at least one NaN operand)
vC Mo overflow Not unordered
HI Unsigned higher Greater than, or unordered
LS Unsigned lower or same Less than or equal
GE Signed greater than or equal Greater than or equal
LT Signed less than Less than, or unordered
GT Signed greater than Greater than
LE Signed less than or equal Less than or equal, or unordered
AL Always (normally omitted) Always (normally omitted)

All ARM instructions {except those with Note C or Note U) can have any one of these condition codes after the
instruction mnemonic (that is, before the first space in the instruction as shown on this card). This condition is
encoded in the instruction.

All Thumb-2 instructions (except those with Note) can have any one of these condition codes after the
instruction mnemonic. This condition is encoded in a preceding IT instruction (except in the case of
conditional Branch instructions). Condition codes in instructions must match those in the preceding IT
instruction.

On processors without Thumb-2, the only Thumb instruction that can have a condition code is B <label=,

https://students-hub.com

Branches

main:

mov
loop:

LOR

keq

add

b loop
end:

bx lr

re, #06 =
re, #4 /¥
end /¥
re, re, #1 /*
‘I,f'*
J,f*

setting up initial variable a */

checking if a==4 */
proceeding to the end if a==4 */
increasing a by 1 if the jump to the end did not occur */

repeating the loop */

THE END */

STUDENTS-HUB.com

https://students-hub.com

Branches

int main() {

int a = 9;

while(a < 4) {

a= a+l;

}

return a;

SSSSSSSSSSSSSSSS

https://students-hub.com

Stack Instructions- PUSH/ POP

e Stack Memory is part of the main memory
reserved for the temporary storage of data

(transient data), mainly used in function call, PUShw/%P“P

interrupt/exception handling.

top

e Stack Memory is accessed in Last In First Out
LIFO manner.

e Addition and removal takes place only at one end,
called the top.

* The stack can be accessed using PUSH, POP or
memory instructions such as LDR, STR.

STUDENTS-HUB.com

https://students-hub.com

Stack Instructions- PUSH/ POP

 The stack is traced by the Stack Pointer (SP), and is used to save
below information:
» Temporary storage for processor register values
" Temporary storage for local variables of functions
= Save the context of the current executing code before moving to exception/
interrupt handing routine

* The ARM Cortex-M processor uses a full descending stack. This means the stack
pointer indicates the last stacked item on the stack memory. When the processor
pushes a new item onto the stack, it decrementsthe stack pointer and then
writes the item to the new memory location

STUDENTS-HUB.com

https://students-hub.com

Stack Instructions- PUSH/ POP

High Memaory

& PUSH 01
FUSH 02
FUSH 03

sSP

SP

Low Memory

Full &scending Stack Full Descending Stack Empty Ascending Stack Empty Descending Stack
Source: https.//www.codeinsideout.com/blog/stm32/stack-memory/#stack

STUDENTS-HUB.com

https://students-hub.com

Stack Instructions- PUSH/ POP

* The ARM Cortex-M processor uses a full descending stack.

* This means the stack pointer indicates the last stacked item on the stack
memory.

* When the processor pushes a new item onto the stack, it decrementsthe stack
pointer and then writes the item to the new memory location

STUDENTS-HUB.com

https://students-hub.com

Stack Instructions- PUSH/ POP

STUDENTS-HUB.com

0x00000000

RO
R1
R2
R3
R4
RS
R&
R7
R8
RS
R10
R11
R12
R13
R14
R15

MOV RO, #2
PUSH {R0}

MOV RO, #3
POP {R0}

5x00000007 «JE3

L

J

T
Full descending

https://students-hub.com

Questions?

https://students-hub.com

	Slide 1: Microcontroller Architecture
	Slide 2: Microcontroller
	Slide 3: Microcontroller Components
	Slide 4: The processor (CPU)
	Slide 5: I/O Peripherals
	Slide 6: Memory
	Slide 7: Microcontroller Components
	Slide 8: Supporting Elements
	Slide 9: ARM® Cortex®
	Slide 10: ARM® Processor Vs Intel Processor
	Slide 11: ARM® Processor Vs Intel Processor
	Slide 12: ARM® Cortex®
	Slide 13: ARM® Cortex®
	Slide 14: ARM® Cortex®
	Slide 15: ARM® Cortex®
	Slide 16: Microcontroller Architecture base ARM® Cortex®
	Slide 17: ARM® Cortex® M4 Harvard architecture
	Slide 18: ARM® Cortex® M4 Harvard architecture
	Slide 19: ARM® Cortex® M4 Harvard architecture
	Slide 20: ARM® Cortex® M4 Harvard architecture
	Slide 21: AHB-Lite Bus
	Slide 22: AHB-Lite Bus
	Slide 23: ARM® Cortex® M Bus interfaces
	Slide 24: ARM® Cortex® M Bus interfaces
	Slide 25: Memory Space
	Slide 26: Memory Map
	Slide 27: Memory Map
	Slide 28: Memory Map
	Slide 29: Memory Map- STM32F40xx Example
	Slide 30: Cortex-M Core Registers
	Slide 31: Cortex-M Core Registers
	Slide 32: Cortex-M Core Registers
	Slide 33: Cortex-M Core Registers
	Slide 34: Instruction Set Architecture
	Slide 35: Instruction Set Architecture
	Slide 36: Instruction Format
	Slide 37: Instruction Format
	Slide 38: Instruction Format
	Slide 39: Instruction Format
	Slide 40: Instruction Format (Example)
	Slide 41: Addressing Modes (ARM)
	Slide 42: Addressing Modes (ARM)
	Slide 43: Addressing Modes (ARM)
	Slide 44: Addressing Modes (ARM)
	Slide 45: Addressing Modes (ARM)
	Slide 46: Addressing Modes (ARM)
	Slide 47: Addressing Modes (ARM)
	Slide 48: ARM Cortex M Assembly Programming
	Slide 49: ARM Cortex M Assembly Programming
	Slide 50: ARM Cortex M Assembly Programming
	Slide 51: The Move Instruction
	Slide 52: The Move Instruction
	Slide 53: The Move Instruction
	Slide 54: The Move Instruction
	Slide 55: The Move Instruction
	Slide 56: The Move Instruction
	Slide 57: Summary
	Slide 58: Load/ Store Instructions
	Slide 59: Load/ Store Instructions
	Slide 60: Load/ Store Instructions
	Slide 61: Bitwise Instructions – OR
	Slide 62: Bitwise Instructions – OR
	Slide 63: Bitwise Instructions – OR
	Slide 64: Bitwise Instructions – OR
	Slide 65: Bitwise Instructions – AND
	Slide 66: Bitwise Instructions – AND
	Slide 67: Bitwise Instructions – AND
	Slide 68: Bitwise Instructions – AND
	Slide 69: Bitwise Instructions – BIC
	Slide 70: Bitwise Instructions – BIC
	Slide 71: Bitwise Instructions – EOR
	Slide 72: Summary
	Slide 73: Arithmetic Instructions- ADD
	Slide 74: Arithmetic Instructions- ADD
	Slide 75: Arithmetic Instructions- ADD
	Slide 76: Arithmetic Instructions- Multiplication
	Slide 77: Arithmetic Instructions- Division
	Slide 78: Arithmetic Instructions- Division
	Slide 79: Arithmetic Instructions- Division
	Slide 80: Arithmetic Instructions- Division
	Slide 81: Arithmetic Instructions- Division
	Slide 82: Logical shift and rotation – Left Shift
	Slide 83: Logical shift and rotation – Right Shift
	Slide 84: Logical shift and rotation – Arithmetic Right Shifts
	Slide 85: Logical shift and rotation – Rotate Right Shift
	Slide 86: Exercise 1- Setting a bit
	Slide 87: Exercise 2- Clearing a bit
	Slide 88: Exercise 3- Toggling a bit
	Slide 89: Branches
	Slide 90: Branches
	Slide 91: Branches
	Slide 92: Conditions in Assembly
	Slide 93: Branches
	Slide 94: Branches
	Slide 95: Stack Instructions- PUSH/ POP
	Slide 96: Stack Instructions- PUSH/ POP
	Slide 97: Stack Instructions- PUSH/ POP
	Slide 98: Stack Instructions- PUSH/ POP
	Slide 99: Stack Instructions- PUSH/ POP
	Slide 100: Questions?

