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Microcontroller 
• A microcontroller can be considered as a computer in a single chip

• Typically used in embedded systems to interface with sensors and 
actuators

• The core elements of a microcontroller are:
• The processor (CPU)

• Memory

• I/O peripherals
• System bus

• The system bus is the connective wire that links all components of the 
microcontroller together.

• Embedded software is programmed on a separate computer and 
then compiled into a list of instructions.

• These instructions then copied into the microcontroller memory

• This is often known as firmware

• The microcontroller then executes these instructions
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Microcontroller Components
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The processor (CPU)

• A processor can be thought of as the brain of the device.

• It processes and responds to various instructions that direct the microcontroller's 
function.

• This involves performing basic arithmetic, logic and I/O operations.

• It also performs data transfer operations, which communicate commands to 
other components in the larger embedded system
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I/O Peripherals

• The input and output devices are the interface for the processor to the outside 
world. 

• The input ports receive information and send it to the processor in the form of 
binary data. 

• The processor receives that data and sends the necessary instructions to output 
devices that execute tasks external to the microcontroller.
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Memory

• A microcontroller's memory is used to store the data that the processor receives and uses 
to respond to instructions that it's been programmed to carry out.

• A microcontroller has two main memory types:

• Program memory :

• stores long-term information about the instructions that the CPU carries out.

• Program memory is non-volatile memory, meaning it holds information over time 
without needing a power source.

• Data memory:

• required for temporary data storage while the instructions are being executed.

• Data memory is volatile, meaning the data it holds is temporary and is only 
maintained if the device is connected to a power source
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Microcontroller Components
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Supporting Elements

• Other supporting elements of a microcontroller include:
• Analog to Digital Converter (ADC):

• An ADC is a circuit that converts analog signals to digital signals.

• It allows the processor at the center of the microcontroller to interface with external analog devices, 
such as sensors.

• Digital to Analog Converter (DAC) :
• A DAC performs the inverse function of an ADC and allows the processor at the center of the 

microcontroller to communicate its outgoing signals to external analog components.

• Serial port:
• The serial port is one example of an I/O port that allows the microcontroller to connect to external 

components.

• It has a similar function to a USB or a parallel port but differs in the way it exchanges bits.
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ARM® Cortex® 

• ARM® is a family of RISC-based microprocessors and microcontrollers 
designed by ARM Holdings.

• The company doesn’t make processors but instead designs microprocessor 
and multicore architectures and licenses them to manufacturers

• ARM® designs the core and bus system

• For example, STMicroelectronics purchases a license (IP) to use the design 
in their own microcontrollers (MCUs)

• STMicroelectronics then adds its own peripherals, memories, and power 
blocks to create a functional MCU

• Companies can also purchase designs for peripherals and memory, or they 
can design them by themself
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ARM® Processor Vs Intel Processor

• There are many differences between Intel and ARM, but the 
main difference is the instruction set.
• Intel is a CISC (Complex Instruction Set Computing) processor that has a larger and more 

feature-rich instruction set and allows many complex instructions to access memory.

• It therefore has more operations, addressing modes, but fewer registers than ARM. CISC 
processors are mainly used in normal PCs, workstations, and servers.

• ARM is a RISC (Reduced instruction set Computing) processor and therefore has a simplified 
instruction set (100 instructions or less) and more general-purpose registers than CISC.

• Unlike Intel, ARM uses instructions that operate only on registers and uses a Load/Store 
memory model for memory access, which means that only Load/Store instructions can 
access memory.

STUDENTS-HUB.com

https://students-hub.com


ARM® Processor Vs Intel Processor

• More differences between ARM and x86 are:
• In ARM, most instructions can be used for conditional execution.

• The Intel x86 and x86-64 series of processors use the little-endian format

• The ARM architecture was a little-endian before version 3. Since then ARM processors have
become BI-endian and feature a setting that allows for switchable endianness.

• There are not only differences between Intel and ARM, but also between 
different ARM versions themselves. (Armv6, Armv7, and Armv8)
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ARM® Cortex® 

• ARM licenses a number of specialized microprocessors and related 
technologies, but the bulk of their product line is the Cortex family of 
microprocessor architectures.

• There are three Cortex architectures, conveniently labeled with the initials 
A, R, and M.
• Cortex-M: Processors in these profiles are used for the development of 

microcontroller-based based embedded systems. The Cortex-M family consists of 
Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4 and Cortex-M7.

• Cortex-A: Processors in this profile are used in high-performance application devices 
like mobile/cellular phones.

• Cortex-R: The main market of processors of this profile is in the real-time application, 
where less response time is the main target
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ARM® Cortex® 

• There are currently four popular versions of the Cortex-M series:
• Cortex-M0: Designed for 8- and 16-bit applications, this model emphasizes 

low cost, ultra-low power, and simplicity. It is optimized for small silicon die 
size (starting from 12k gates) and use in the lowest cost chips.

• Cortex-M0+: An enhanced version of the M0 that is more energy efficient.

• Cortex-M3:Designed for 16- and 32-bit applications, this model 
emphasizes performance and energy efficiency. It also has comprehensive 
debug and trace features to enable software developers to develop their 
applications quickly.

• Cortex-M4: This model provides all the features of the Cortex-M3, with 
additional instructions to support digital signal processing tasks.
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ARM® Cortex® 

• Under the M-Profile there are several versions of 
the ARM ISA

• ARMV6-M
• ARMV7-M
• ARMV8-M

• A processor definition includes a version of the 
instruction set architecture

• In this course, we will focus on the microcontrollers 
built around the Cortex M4 core.

• Cortex M4 uses ARMV7-M ISA

• All Cortex-M processors support an instruction set 
called Thumb

• Thumb-2 is an expansion of Thumb

• Cortex-M processors support different subset of 
the instructions available in the Thumb ISA
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ARM® Cortex®
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Microcontroller Architecture base ARM® 
Cortex®
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ARM® Cortex® M4 Harvard architecture

• Microcontrollers are typically Harvard machines

• In ARM Cortex M4 processor, instructions are stored in Flash memory

• This is connected to the core using I-Code and D-Code buses

• Data is stored in SRAM

• This is connected to the core using the System bus (S-bus)

• The system bus is also used to connect the core to peripheral
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ARM® Cortex® M4 Harvard architecture
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ARM® Cortex® M4 Harvard architecture
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ARM® Cortex® M4 Harvard architecture
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AHB-Lite Bus
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AHB-Lite Bus
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ARM® Cortex® M Bus interfaces

• The processor contains four external Advanced High-performance Bus (AHB)-Lite 
bus interfaces:

1. ICode memory interface
• Instruction fetches from Code memory space, 0x00000000 to 0x1FFFFFFF, are performed 

over this 32-bit AHB-Lite bus.
• The Debugger cannot access this interface. 
• All fetches are word-wide.
• The number of instructions fetched per word depends on the code running and the 

alignment of the code in memory.

2. DCode memory interface
• Data and debug accesses to Code memory space, 0x00000000 to 0x1FFFFFFF, are performed 

over this 32-bit AHB-Lite bus.
• Core data accesses have a higher priority than debug accesses on this bus. 
• This means that debug accesses are waited until core accesses have completed when there 

are simultaneous core and debug access to this bus.
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ARM® Cortex® M Bus interfaces

3. System interface
• Instruction fetches, and data and debug accesses, to address 

ranges 0x20000000 to 0xDFFFFFFF and 0xE0100000 to 0xFFFFFFFF are performed over this 
32-bit AHB-Lite bus.

• For simultaneous accesses to this bus, the arbitration order in decreasing priority is:

• data accesses

• instruction and vector fetches

• debug.

4. Private Peripheral Bus (PPB)
• Data and debug accesses to external PPB space, 0xE0040000 to 0xE00FFFFF, are performed 

over this 32-bit Advanced Peripheral Bus (APB) bus. 
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Memory Space

• The peripherals are separate circuits that enable the microcontroller 
to interface with sensors and actuators etc.

• Peripherals contain registers that are used to configure the 
peripherals

• They are memory-mapped, which means they are given an address 
and appear to be part of the same memory as instructions and data

• The Flash memory and RAM also appear to be in the same memory 
despite being physically separate

• This is known as a unified memory map
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Memory Map

• ARM defines a standardized memory address space common to all 
Cortex-M cores, which ensures code portability among different 
silicon manufacturers.

• The address space is 4 GB wide (due to the 32-bit address line)

• It is organized into several subregions with different logical 
functionalities.
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Memory Map
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Memory Map

• Memory map for code area
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Memory Map- STM32F40xx Example
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Cortex-M Core Registers

• The Cortex-M3 and Cortex-M4 processors have a number of registers 
inside the processor core to perform data processing and control

• Most of these registers are grouped in a unit called the register bank.

• Each data processing instruction specifies the operation required, the 
source register(s), and the destination register(s) if applicable.

• In the ARM architecture, if data in memory is to be processed, it has 
to be loaded from the memory to registers in the register bank, 
processed inside the processor, and then written back to the 
memory, if needed.

• This is commonly called a “load-store architecture".
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Cortex-M Core Registers

• The register bank in the Cortex-
M3 and Cortex-M4 processors 
has 16 registers.

• Thirteen of them are general-
purpose 32-bit registers, and the 
other three have special uses
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Cortex-M Core Registers

• R0- R12 are general-purpose registers, and can 
be used as operands for ARM instructions

• R13 is the Stack Pointer (SP) register, it is used 
for accessing the stack memory via PUSH and 
POP operations.

• R14 is the Link Register (LR) register, which is a 
special-purpose register which holds the address 
to return to when a function call completes.

• The linker register does not require the writes 
and reads of the memory containing the stack

• R15 is the Program Counter (PC) register, which 
has the address of the next instruction to be 
executed from memory.
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Cortex-M Core Registers

• Besides the registers in the register bank, 
there are a number of special registers

• These registers contain the processor status 
and define the operation states and 
interrupt/exception masking. 

• In the development of simple applications 
with high level programming languages such 
as C, there are not many scenarios that 
require access to these registers. 

• However, they are needed for development 
of an embedded OS, or when advanced 
interrupt masking features are needed.
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Instruction Set Architecture

• Where the processor stores or obtain information
▪ Registers

▪ Memory

▪ Input/ output devices (Memory/ special instructions)

• How the processor manipulate information
▪ Assembly language instructions

▪ Processor hardware actions
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Instruction Set Architecture

• A microcontroller is an example of a reduced 
instruction set computer (RISC) that has a fairly limited number 
of instructions

• Generally, a mnemonic is a symbolic name for a single 
executable machine language instruction

• mnemonics are used to specify an opcode

• An assembler is used to convert the assembly code to machine code 
(0's and 1's) that are stored in memory

• program often we use a high-level language (C, C++, etc.) and a 
compiler translates it into machine code
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Instruction Format

• Operation code or op-code is a part of the instruction that tells the 
processor what should be done.

• Operand is a part of the instruction that contains the data to be acted 
on, or the memory location of the data in a register.

• https://developer.arm.com/documentation/ddi0403/d
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Instruction Format
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Instruction Format

• The type of instruction can be:
• Data processing instructions and miscellaneous instructions

• Load/ Store instructions

• Branch instructions

• Media instructions

• Coprocessor instructions

• Floating point instructions
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Instruction Format

• ARM instructions process data held in registers and only 
access memory with load and store instructions

• ARM instructions commonly take two or three operands
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Instruction Format (Example)
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Addressing Modes (ARM)

• The phrase addressing modes in ARM relates to the manner an 
instruction operand is expressed. 

• Before the operand is actually performed, the addressing mode 
provides a rule for interpreting or altering the address field of the 
instruction.
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Addressing Modes (ARM)

• The address for a load or store is formed from two parts: 
• A value from a base register 

LDR R0, [R1] (This instruction loads the 32-bit word at the memory location contained in register R1 
into register R0)

• An offset.

• The base register can be any one of the general-purpose registers. For 
loads, the base register can be the PC. This permits PC-relative 
addressing for position-independent code. Instructions marked 
(literal)
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Addressing Modes (ARM)

• The offset takes one of three formats:
1. Immediate addressing offset

2. Register addressing offset

3. Scaled register-indexed addressing offset

• The offset and base register can be used in three different ways to 
form the memory address. The addressing modes are:
• Pre-indexed

• Post-indexed
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Addressing Modes (ARM)

Immediate addressing offset

• The offset is an unsigned number that can be added to or subtracted 
from the base register value.

• Immediate offset addressing is useful for accessing data elements 
that are a fixed distance from the start of the data object, such as 
structure fields, stack offsets, and input/output registers.

• e.g.
LDR R0, [R1, #4]
(This instruction loads the register R0 with the word at the memory regions computed by 
adding the constant address included in the R1 register value 4 to the memory address stored 
in the R1 register)
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Addressing Modes (ARM)

Register addressing offset

• The offset is a value from a general-purpose register.

• This register cannot be the PC.

• The value can be added to, or subtracted from, the base register 
value.

• Register offsets are useful for accessing arrays or blocks of data.

• e.g.
LDR R0, [R1, R2]
(This instruction will load the word at the memory address determined by adding register R1 
and register R2 into register R0.)
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Addressing Modes (ARM)

• Scaled register-indexed addressing offset

• The offset is a general-purpose register, other than the PC, shifted by 
an immediate value, then added to or subtracted from the base 
register.

• This means an array index can be scaled by the size of each array 
element.
• LDR R8, [R9, R10, LSL #2] (loads the value from the memory location pointed to by R9 + (R10 

* 4) into R8)
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Addressing Modes (ARM)

• Offset: The offset is added to or subtracted from the base register to 
form the memory address

• Pre-indexed:
• Post-indexed addressing updates the base register before memory access

• LDR R1, [R0, #8] (load the value from the memory location pointed to by R0 + 8 into R1)

• Post-indexed:
• Post-indexed addressing updates the base register after memory access

• LDR R6, [R7], #8 loads the value from the memory location pointed to by R7 into R6 and then 
increments the value in R7 by 8.
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ARM Cortex M Assembly Programming

• An assembly language is a type of low-level programming language that is 
intended to communicate directly with a computer's hardware. Unlike machine 
language, which consists of binary and hexadecimal characters, assembly 
languages are designed to be readable by humans

• Why Learn Assembly Language?

• Learning and spending some time working at the assembly language level 
provides a richer understanding of the underlying computer architecture. This 
includes the basic instruction set, processor registers, memory addressing, 
hardware interfacing, and Input/ Output
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ARM Cortex M Assembly Programming

• The typical instruction format:

Opcode DestReg, Operand2

Opcode DestReg, SrcReg, Operand2

• Instructions may have two or three operands

• First operand is (almost) always a destination register

• Operand2 is a 'flexible' operand
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ARM Cortex M Assembly Programming
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The Move Instruction
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The Move Instruction
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The Move Instruction
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The Move Instruction
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The Move Instruction
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The Move Instruction
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Summary

• Most instructions specify the destination as the first operand

• Immediate values are small constants that are encoded as part of 
instruction itself

• The (optional) # prefix marks an immediate operand

• Hexadecimal values have a prefix of 0x
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Load/ Store Instructions
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Load/ Store Instructions
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Load/ Store Instructions
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Bitwise Instructions – OR
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Bitwise Instructions – OR
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Bitwise Instructions – OR
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Bitwise Instructions – OR
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Bitwise Instructions – AND
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Bitwise Instructions – AND
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Bitwise Instructions – AND
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Bitwise Instructions – AND
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Bitwise Instructions – BIC
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Bitwise Instructions – BIC
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Bitwise Instructions – EOR
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Summary

• Set bits to 1 in mask to modify corresponding bits

• Use OR instruction to force bits to 1

• Use MVN-AND instructions to force bits to 0

• Use BIC instruction to force bits to 0

• Use EOR instruction to invert bits
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Arithmetic Instructions- ADD
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Arithmetic Instructions- ADD
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Arithmetic Instructions- ADD
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Arithmetic Instructions- Multiplication
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Arithmetic Instructions- Division
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Arithmetic Instructions- Division
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Arithmetic Instructions- Division
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Arithmetic Instructions- Division
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Arithmetic Instructions- Division
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Logical shift and rotation – Left Shift

• Left Shifts effectively multiply the contents of a register by 2s where s
is the shift amount.

• MOV R0,R0,LSL 7

• Shifts can also be applied to the second operand of any data 
processing instruction ADD R1,R1,R0,LSL 7

STUDENTS-HUB.com

https://students-hub.com


Logical shift and rotation – Right Shift

• Right Shifts behave like dividing the contents of a register by 2s where 
s is the shift amount, if you assume the contents of the register are 
unsigned

• MOV R0,R0,LSR 2
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Logical shift and rotation – Arithmetic Right Shifts

• Arithmetic Right Shifts behave like dividing the contents of a register 
by 2s where s is the shift amount, if you assume the contents of the 
register are signed

• MOV R0,R0,ASR 2
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Logical shift and rotation – Rotate Right Shift

• Rotating Right Shifts have no arithmetic analogy. However, they don’t 
lose bits like both logical and arithmetic shifts

• MOV R0,R0,ROR 2
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Exercise 1- Setting a bit

• Set bit #5 in a register (assume R0) without affecting the other bits.

• a|= (1<<5);

• Use LSL to access the bit location
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Exercise 2- Clearing a bit

• Clear bit #5 in a register (assume R0) without affecting the other bits.

• A &= ~(1<<5);

• Use LSL to access the bit location
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Exercise 3- Toggling a bit

• Toggle bit #5 in a register (assume R0) without affecting the other 
bits.

• A^ = (1<<5);

• Use LSL to access the bit location
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Branches

• Branches (aka Jumps) allow us to jump to another code segment. 
This is useful when we need to skip (or repeat) blocks of codes or 
jump to a specific function. 

• The best examples of such a use case are conditional statements (if 
statements) and Loops (while and for)
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Branches

STUDENTS-HUB.com

https://students-hub.com


Branches
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Conditions in Assembly
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Branches
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Branches
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Stack Instructions- PUSH/ POP

• Stack Memory is part of the main memory
reserved for the temporary storage of data
(transient data), mainly used in function call,
interrupt/exception handling.

• Stack Memory is accessed in Last In First Out
LIFO manner.

• Addition and removal takes place only at one end,
called the top.

• The stack can be accessed using PUSH, POP or
memory instructions such as LDR, STR.
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Stack Instructions- PUSH/ POP

• The stack is traced by the Stack Pointer (SP), and is used to save
below information:
▪ Temporary storage for processor register values

▪ Temporary storage for local variables of functions

▪ Save the context of the current executing code before moving to exception/ 
interrupt handing routine

• The ARM Cortex-M processor uses a full descending stack. This means the stack 
pointer indicates the last stacked item on the stack memory. When the processor 
pushes a new item onto the stack, it decrements the stack pointer and then 
writes the item to the new memory location
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Stack Instructions- PUSH/ POP

Source: https://www.codeinsideout.com/blog/stm32/stack-memory/#stack
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Stack Instructions- PUSH/ POP

• The ARM Cortex-M processor uses a full descending stack.

• This means the stack pointer indicates the last stacked item on the stack 
memory.

• When the processor pushes a new item onto the stack, it decrements the stack 
pointer and then writes the item to the new memory location
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Stack Instructions- PUSH/ POP
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Questions?
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