
MICROCONTROLLER 
ARCHITECTURE
Shadi Daana

STUDENTS-HUB.com

https://students-hub.com


Microcontroller 
• A microcontroller can be considered as a computer in a single chip

• Typically used in embedded systems to interface with sensors and 
actuators

• The core elements of a microcontroller are:
• The processor (CPU)

• Memory

• I/O peripherals
• System bus

• The system bus is the connective wire that links all components of the 
microcontroller together.

• Embedded software is programmed on a separate computer and 
then compiled into a list of instructions.

• These instructions then copied into the microcontroller memory

• This is often known as firmware

• The microcontroller then executes these instructions

STUDENTS-HUB.com

https://students-hub.com


Microcontroller Components

STUDENTS-HUB.com

https://students-hub.com


The processor (CPU)

• A processor can be thought of as the brain of the device.

• It processes and responds to various instructions that direct the microcontroller's 
function.

• This involves performing basic arithmetic, logic and I/O operations.

• It also performs data transfer operations, which communicate commands to 
other components in the larger embedded system

STUDENTS-HUB.com

https://students-hub.com


I/O Peripherals

• The input and output devices are the interface for the processor to the outside 
world. 

• The input ports receive information and send it to the processor in the form of 
binary data. 

• The processor receives that data and sends the necessary instructions to output 
devices that execute tasks external to the microcontroller.

STUDENTS-HUB.com

https://students-hub.com


Memory

• A microcontroller's memory is used to store the data that the processor receives and uses 
to respond to instructions that it's been programmed to carry out.

• A microcontroller has two main memory types:

• Program memory :

• stores long-term information about the instructions that the CPU carries out.

• Program memory is non-volatile memory, meaning it holds information over time 
without needing a power source.

• Data memory:

• required for temporary data storage while the instructions are being executed.

• Data memory is volatile, meaning the data it holds is temporary and is only 
maintained if the device is connected to a power source

STUDENTS-HUB.com

https://students-hub.com


Microcontroller Components

STUDENTS-HUB.com

https://students-hub.com


Supporting Elements

• Other supporting elements of a microcontroller include:
• Analog to Digital Converter (ADC):

• An ADC is a circuit that converts analog signals to digital signals.

• It allows the processor at the center of the microcontroller to interface with external analog devices, 
such as sensors.

• Digital to Analog Converter (DAC) :
• A DAC performs the inverse function of an ADC and allows the processor at the center of the 

microcontroller to communicate its outgoing signals to external analog components.

• Serial port:
• The serial port is one example of an I/O port that allows the microcontroller to connect to external 

components.

• It has a similar function to a USB or a parallel port but differs in the way it exchanges bits.

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® 

• ARM® is a family of RISC-based microprocessors and microcontrollers 
designed by ARM Holdings.

• The company doesn’t make processors but instead designs microprocessor 
and multicore architectures and licenses them to manufacturers

• ARM® designs the core and bus system

• For example, STMicroelectronics purchases a license (IP) to use the design 
in their own microcontrollers (MCUs)

• STMicroelectronics then adds its own peripherals, memories, and power 
blocks to create a functional MCU

• Companies can also purchase designs for peripherals and memory, or they 
can design them by themself

STUDENTS-HUB.com

https://students-hub.com


ARM® Processor Vs Intel Processor

• There are many differences between Intel and ARM, but the 
main difference is the instruction set.
• Intel is a CISC (Complex Instruction Set Computing) processor that has a larger and more 

feature-rich instruction set and allows many complex instructions to access memory.

• It therefore has more operations, addressing modes, but fewer registers than ARM. CISC 
processors are mainly used in normal PCs, workstations, and servers.

• ARM is a RISC (Reduced instruction set Computing) processor and therefore has a simplified 
instruction set (100 instructions or less) and more general-purpose registers than CISC.

• Unlike Intel, ARM uses instructions that operate only on registers and uses a Load/Store 
memory model for memory access, which means that only Load/Store instructions can 
access memory.

STUDENTS-HUB.com

https://students-hub.com


ARM® Processor Vs Intel Processor

• More differences between ARM and x86 are:
• In ARM, most instructions can be used for conditional execution.

• The Intel x86 and x86-64 series of processors use the little-endian format

• The ARM architecture was a little-endian before version 3. Since then ARM processors have
become BI-endian and feature a setting that allows for switchable endianness.

• There are not only differences between Intel and ARM, but also between 
different ARM versions themselves. (Armv6, Armv7, and Armv8)

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® 

• ARM licenses a number of specialized microprocessors and related 
technologies, but the bulk of their product line is the Cortex family of 
microprocessor architectures.

• There are three Cortex architectures, conveniently labeled with the initials 
A, R, and M.
• Cortex-M: Processors in these profiles are used for the development of 

microcontroller-based based embedded systems. The Cortex-M family consists of 
Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4 and Cortex-M7.

• Cortex-A: Processors in this profile are used in high-performance application devices 
like mobile/cellular phones.

• Cortex-R: The main market of processors of this profile is in the real-time application, 
where less response time is the main target

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® 

• There are currently four popular versions of the Cortex-M series:
• Cortex-M0: Designed for 8- and 16-bit applications, this model emphasizes 

low cost, ultra-low power, and simplicity. It is optimized for small silicon die 
size (starting from 12k gates) and use in the lowest cost chips.

• Cortex-M0+: An enhanced version of the M0 that is more energy efficient.

• Cortex-M3:Designed for 16- and 32-bit applications, this model 
emphasizes performance and energy efficiency. It also has comprehensive 
debug and trace features to enable software developers to develop their 
applications quickly.

• Cortex-M4: This model provides all the features of the Cortex-M3, with 
additional instructions to support digital signal processing tasks.

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® 

• Under the M-Profile there are several versions of 
the ARM ISA

• ARMV6-M
• ARMV7-M
• ARMV8-M

• A processor definition includes a version of the 
instruction set architecture

• In this course, we will focus on the microcontrollers 
built around the Cortex M4 core.

• Cortex M4 uses ARMV7-M ISA

• All Cortex-M processors support an instruction set 
called Thumb

• Thumb-2 is an expansion of Thumb

• Cortex-M processors support different subset of 
the instructions available in the Thumb ISA

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex®

STUDENTS-HUB.com

https://students-hub.com


Microcontroller Architecture base ARM® 
Cortex®

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® M4 Harvard architecture

• Microcontrollers are typically Harvard machines

• In ARM Cortex M4 processor, instructions are stored in Flash memory

• This is connected to the core using I-Code and D-Code buses

• Data is stored in SRAM

• This is connected to the core using the System bus (S-bus)

• The system bus is also used to connect the core to peripheral

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® M4 Harvard architecture

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® M4 Harvard architecture

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® M4 Harvard architecture

STUDENTS-HUB.com

https://students-hub.com


AHB-Lite Bus

STUDENTS-HUB.com

https://students-hub.com


AHB-Lite Bus

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® M Bus interfaces

• The processor contains four external Advanced High-performance Bus (AHB)-Lite 
bus interfaces:

1. ICode memory interface
• Instruction fetches from Code memory space, 0x00000000 to 0x1FFFFFFF, are performed 

over this 32-bit AHB-Lite bus.
• The Debugger cannot access this interface. 
• All fetches are word-wide.
• The number of instructions fetched per word depends on the code running and the 

alignment of the code in memory.

2. DCode memory interface
• Data and debug accesses to Code memory space, 0x00000000 to 0x1FFFFFFF, are performed 

over this 32-bit AHB-Lite bus.
• Core data accesses have a higher priority than debug accesses on this bus. 
• This means that debug accesses are waited until core accesses have completed when there 

are simultaneous core and debug access to this bus.

STUDENTS-HUB.com

https://students-hub.com


ARM® Cortex® M Bus interfaces

3. System interface
• Instruction fetches, and data and debug accesses, to address 

ranges 0x20000000 to 0xDFFFFFFF and 0xE0100000 to 0xFFFFFFFF are performed over this 
32-bit AHB-Lite bus.

• For simultaneous accesses to this bus, the arbitration order in decreasing priority is:

• data accesses

• instruction and vector fetches

• debug.

4. Private Peripheral Bus (PPB)
• Data and debug accesses to external PPB space, 0xE0040000 to 0xE00FFFFF, are performed 

over this 32-bit Advanced Peripheral Bus (APB) bus. 

STUDENTS-HUB.com

https://students-hub.com


Memory Space

• The peripherals are separate circuits that enable the microcontroller 
to interface with sensors and actuators etc.

• Peripherals contain registers that are used to configure the 
peripherals

• They are memory-mapped, which means they are given an address 
and appear to be part of the same memory as instructions and data

• The Flash memory and RAM also appear to be in the same memory 
despite being physically separate

• This is known as a unified memory map

STUDENTS-HUB.com

https://students-hub.com


Memory Map

• ARM defines a standardized memory address space common to all 
Cortex-M cores, which ensures code portability among different 
silicon manufacturers.

• The address space is 4 GB wide (due to the 32-bit address line)

• It is organized into several subregions with different logical 
functionalities.

STUDENTS-HUB.com

https://students-hub.com


Memory Map

STUDENTS-HUB.com

https://students-hub.com


Memory Map

• Memory map for code area

STUDENTS-HUB.com

https://students-hub.com


Memory Map- STM32F40xx Example

STUDENTS-HUB.com

https://students-hub.com


Cortex-M Core Registers

• The Cortex-M3 and Cortex-M4 processors have a number of registers 
inside the processor core to perform data processing and control

• Most of these registers are grouped in a unit called the register bank.

• Each data processing instruction specifies the operation required, the 
source register(s), and the destination register(s) if applicable.

• In the ARM architecture, if data in memory is to be processed, it has 
to be loaded from the memory to registers in the register bank, 
processed inside the processor, and then written back to the 
memory, if needed.

• This is commonly called a “load-store architecture".

STUDENTS-HUB.com

https://students-hub.com


Cortex-M Core Registers

• The register bank in the Cortex-
M3 and Cortex-M4 processors 
has 16 registers.

• Thirteen of them are general-
purpose 32-bit registers, and the 
other three have special uses

STUDENTS-HUB.com

https://students-hub.com


Cortex-M Core Registers

• R0- R12 are general-purpose registers, and can 
be used as operands for ARM instructions

• R13 is the Stack Pointer (SP) register, it is used 
for accessing the stack memory via PUSH and 
POP operations.

• R14 is the Link Register (LR) register, which is a 
special-purpose register which holds the address 
to return to when a function call completes.

• The linker register does not require the writes 
and reads of the memory containing the stack

• R15 is the Program Counter (PC) register, which 
has the address of the next instruction to be 
executed from memory.

STUDENTS-HUB.com

https://students-hub.com


Cortex-M Core Registers

• Besides the registers in the register bank, 
there are a number of special registers

• These registers contain the processor status 
and define the operation states and 
interrupt/exception masking. 

• In the development of simple applications 
with high level programming languages such 
as C, there are not many scenarios that 
require access to these registers. 

• However, they are needed for development 
of an embedded OS, or when advanced 
interrupt masking features are needed.

STUDENTS-HUB.com

https://students-hub.com


Instruction Set Architecture

• Where the processor stores or obtain information
▪ Registers

▪ Memory

▪ Input/ output devices (Memory/ special instructions)

• How the processor manipulate information
▪ Assembly language instructions

▪ Processor hardware actions

STUDENTS-HUB.com

https://students-hub.com


Instruction Set Architecture

• A microcontroller is an example of a reduced 
instruction set computer (RISC) that has a fairly limited number 
of instructions

• Generally, a mnemonic is a symbolic name for a single 
executable machine language instruction

• mnemonics are used to specify an opcode

• An assembler is used to convert the assembly code to machine code 
(0's and 1's) that are stored in memory

• program often we use a high-level language (C, C++, etc.) and a 
compiler translates it into machine code

STUDENTS-HUB.com

https://students-hub.com


Instruction Format

• Operation code or op-code is a part of the instruction that tells the 
processor what should be done.

• Operand is a part of the instruction that contains the data to be acted 
on, or the memory location of the data in a register.

• https://developer.arm.com/documentation/ddi0403/d

STUDENTS-HUB.com

https://developer.arm.com/documentation/ddi0403/d
https://students-hub.com


Instruction Format

STUDENTS-HUB.com

https://students-hub.com


Instruction Format

• The type of instruction can be:
• Data processing instructions and miscellaneous instructions

• Load/ Store instructions

• Branch instructions

• Media instructions

• Coprocessor instructions

• Floating point instructions

STUDENTS-HUB.com

https://students-hub.com


Instruction Format

• ARM instructions process data held in registers and only 
access memory with load and store instructions

• ARM instructions commonly take two or three operands

STUDENTS-HUB.com

https://students-hub.com


Instruction Format (Example)

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

• The phrase addressing modes in ARM relates to the manner an 
instruction operand is expressed. 

• Before the operand is actually performed, the addressing mode 
provides a rule for interpreting or altering the address field of the 
instruction.

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

• The address for a load or store is formed from two parts: 
• A value from a base register 

LDR R0, [R1] (This instruction loads the 32-bit word at the memory location contained in register R1 
into register R0)

• An offset.

• The base register can be any one of the general-purpose registers. For 
loads, the base register can be the PC. This permits PC-relative 
addressing for position-independent code. Instructions marked 
(literal)

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

• The offset takes one of three formats:
1. Immediate addressing offset

2. Register addressing offset

3. Scaled register-indexed addressing offset

• The offset and base register can be used in three different ways to 
form the memory address. The addressing modes are:
• Pre-indexed

• Post-indexed

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

Immediate addressing offset

• The offset is an unsigned number that can be added to or subtracted 
from the base register value.

• Immediate offset addressing is useful for accessing data elements 
that are a fixed distance from the start of the data object, such as 
structure fields, stack offsets, and input/output registers.

• e.g.
LDR R0, [R1, #4]
(This instruction loads the register R0 with the word at the memory regions computed by 
adding the constant address included in the R1 register value 4 to the memory address stored 
in the R1 register)

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

Register addressing offset

• The offset is a value from a general-purpose register.

• This register cannot be the PC.

• The value can be added to, or subtracted from, the base register 
value.

• Register offsets are useful for accessing arrays or blocks of data.

• e.g.
LDR R0, [R1, R2]
(This instruction will load the word at the memory address determined by adding register R1 
and register R2 into register R0.)

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

• Scaled register-indexed addressing offset

• The offset is a general-purpose register, other than the PC, shifted by 
an immediate value, then added to or subtracted from the base 
register.

• This means an array index can be scaled by the size of each array 
element.
• LDR R8, [R9, R10, LSL #2] (loads the value from the memory location pointed to by R9 + (R10 

* 4) into R8)

STUDENTS-HUB.com

https://students-hub.com


Addressing Modes (ARM)

• Offset: The offset is added to or subtracted from the base register to 
form the memory address

• Pre-indexed:
• Post-indexed addressing updates the base register before memory access

• LDR R1, [R0, #8] (load the value from the memory location pointed to by R0 + 8 into R1)

• Post-indexed:
• Post-indexed addressing updates the base register after memory access

• LDR R6, [R7], #8 loads the value from the memory location pointed to by R7 into R6 and then 
increments the value in R7 by 8.

STUDENTS-HUB.com

https://students-hub.com


ARM Cortex M Assembly Programming

• An assembly language is a type of low-level programming language that is 
intended to communicate directly with a computer's hardware. Unlike machine 
language, which consists of binary and hexadecimal characters, assembly 
languages are designed to be readable by humans

• Why Learn Assembly Language?

• Learning and spending some time working at the assembly language level 
provides a richer understanding of the underlying computer architecture. This 
includes the basic instruction set, processor registers, memory addressing, 
hardware interfacing, and Input/ Output

STUDENTS-HUB.com

https://students-hub.com


ARM Cortex M Assembly Programming

• The typical instruction format:

Opcode DestReg, Operand2

Opcode DestReg, SrcReg, Operand2

• Instructions may have two or three operands

• First operand is (almost) always a destination register

• Operand2 is a 'flexible' operand

STUDENTS-HUB.com

https://students-hub.com


ARM Cortex M Assembly Programming

STUDENTS-HUB.com

https://students-hub.com


The Move Instruction

STUDENTS-HUB.com

https://students-hub.com


The Move Instruction

STUDENTS-HUB.com

https://students-hub.com


The Move Instruction

STUDENTS-HUB.com

https://students-hub.com


The Move Instruction

STUDENTS-HUB.com

https://students-hub.com


The Move Instruction

STUDENTS-HUB.com

https://students-hub.com


The Move Instruction

STUDENTS-HUB.com

https://students-hub.com


Summary

• Most instructions specify the destination as the first operand

• Immediate values are small constants that are encoded as part of 
instruction itself

• The (optional) # prefix marks an immediate operand

• Hexadecimal values have a prefix of 0x

STUDENTS-HUB.com

https://students-hub.com


Load/ Store Instructions

STUDENTS-HUB.com

https://students-hub.com


Load/ Store Instructions

STUDENTS-HUB.com

https://students-hub.com


Load/ Store Instructions

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – OR

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – OR

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – OR

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – OR

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – AND

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – AND

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – AND

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – AND

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – BIC

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – BIC

STUDENTS-HUB.com

https://students-hub.com


Bitwise Instructions – EOR

STUDENTS-HUB.com

https://students-hub.com


Summary

• Set bits to 1 in mask to modify corresponding bits

• Use OR instruction to force bits to 1

• Use MVN-AND instructions to force bits to 0

• Use BIC instruction to force bits to 0

• Use EOR instruction to invert bits

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- ADD

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- ADD

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- ADD

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- Multiplication

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- Division

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- Division

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- Division

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- Division

STUDENTS-HUB.com

https://students-hub.com


Arithmetic Instructions- Division

STUDENTS-HUB.com

https://students-hub.com


Logical shift and rotation – Left Shift

• Left Shifts effectively multiply the contents of a register by 2s where s
is the shift amount.

• MOV R0,R0,LSL 7

• Shifts can also be applied to the second operand of any data 
processing instruction ADD R1,R1,R0,LSL 7

STUDENTS-HUB.com

https://students-hub.com


Logical shift and rotation – Right Shift

• Right Shifts behave like dividing the contents of a register by 2s where 
s is the shift amount, if you assume the contents of the register are 
unsigned

• MOV R0,R0,LSR 2

STUDENTS-HUB.com

https://students-hub.com


Logical shift and rotation – Arithmetic Right Shifts

• Arithmetic Right Shifts behave like dividing the contents of a register 
by 2s where s is the shift amount, if you assume the contents of the 
register are signed

• MOV R0,R0,ASR 2

STUDENTS-HUB.com

https://students-hub.com


Logical shift and rotation – Rotate Right Shift

• Rotating Right Shifts have no arithmetic analogy. However, they don’t 
lose bits like both logical and arithmetic shifts

• MOV R0,R0,ROR 2

STUDENTS-HUB.com

https://students-hub.com


Exercise 1- Setting a bit

• Set bit #5 in a register (assume R0) without affecting the other bits.

• a|= (1<<5);

• Use LSL to access the bit location

STUDENTS-HUB.com

https://students-hub.com


Exercise 2- Clearing a bit

• Clear bit #5 in a register (assume R0) without affecting the other bits.

• A &= ~(1<<5);

• Use LSL to access the bit location

STUDENTS-HUB.com

https://students-hub.com


Exercise 3- Toggling a bit

• Toggle bit #5 in a register (assume R0) without affecting the other 
bits.

• A^ = (1<<5);

• Use LSL to access the bit location

STUDENTS-HUB.com

https://students-hub.com


Branches

• Branches (aka Jumps) allow us to jump to another code segment. 
This is useful when we need to skip (or repeat) blocks of codes or 
jump to a specific function. 

• The best examples of such a use case are conditional statements (if 
statements) and Loops (while and for)

STUDENTS-HUB.com

https://students-hub.com


Branches

STUDENTS-HUB.com

https://students-hub.com


Branches

STUDENTS-HUB.com

https://students-hub.com


Conditions in Assembly

STUDENTS-HUB.com

https://students-hub.com


Branches

STUDENTS-HUB.com

https://students-hub.com


Branches

STUDENTS-HUB.com

https://students-hub.com


Stack Instructions- PUSH/ POP

• Stack Memory is part of the main memory
reserved for the temporary storage of data
(transient data), mainly used in function call,
interrupt/exception handling.

• Stack Memory is accessed in Last In First Out
LIFO manner.

• Addition and removal takes place only at one end,
called the top.

• The stack can be accessed using PUSH, POP or
memory instructions such as LDR, STR.

STUDENTS-HUB.com

https://students-hub.com


Stack Instructions- PUSH/ POP

• The stack is traced by the Stack Pointer (SP), and is used to save
below information:
▪ Temporary storage for processor register values

▪ Temporary storage for local variables of functions

▪ Save the context of the current executing code before moving to exception/ 
interrupt handing routine

• The ARM Cortex-M processor uses a full descending stack. This means the stack 
pointer indicates the last stacked item on the stack memory. When the processor 
pushes a new item onto the stack, it decrements the stack pointer and then 
writes the item to the new memory location

STUDENTS-HUB.com

https://students-hub.com


Stack Instructions- PUSH/ POP

Source: https://www.codeinsideout.com/blog/stm32/stack-memory/#stack

STUDENTS-HUB.com

https://students-hub.com


Stack Instructions- PUSH/ POP

• The ARM Cortex-M processor uses a full descending stack.

• This means the stack pointer indicates the last stacked item on the stack 
memory.

• When the processor pushes a new item onto the stack, it decrements the stack 
pointer and then writes the item to the new memory location

STUDENTS-HUB.com

https://students-hub.com


Stack Instructions- PUSH/ POP

STUDENTS-HUB.com

https://students-hub.com


Questions?

STUDENTS-HUB.com

https://students-hub.com

	Slide 1: Microcontroller Architecture  
	Slide 2: Microcontroller 
	Slide 3: Microcontroller Components
	Slide 4: The processor (CPU)
	Slide 5: I/O Peripherals
	Slide 6: Memory 
	Slide 7: Microcontroller Components
	Slide 8: Supporting Elements 
	Slide 9: ARM® Cortex®  
	Slide 10: ARM® Processor  Vs Intel Processor  
	Slide 11: ARM® Processor  Vs Intel Processor  
	Slide 12: ARM® Cortex®  
	Slide 13: ARM® Cortex®  
	Slide 14: ARM® Cortex®  
	Slide 15: ARM® Cortex®
	Slide 16: Microcontroller Architecture base ARM® Cortex® 
	Slide 17: ARM® Cortex® M4 Harvard architecture
	Slide 18: ARM® Cortex® M4 Harvard architecture
	Slide 19: ARM® Cortex® M4 Harvard architecture
	Slide 20: ARM® Cortex® M4 Harvard architecture
	Slide 21: AHB-Lite Bus 
	Slide 22: AHB-Lite Bus 
	Slide 23: ARM® Cortex® M Bus interfaces  
	Slide 24: ARM® Cortex® M Bus interfaces  
	Slide 25: Memory Space   
	Slide 26: Memory Map    
	Slide 27: Memory Map    
	Slide 28: Memory Map    
	Slide 29: Memory Map- STM32F40xx Example     
	Slide 30: Cortex-M Core Registers 
	Slide 31: Cortex-M Core Registers 
	Slide 32: Cortex-M Core Registers 
	Slide 33: Cortex-M Core Registers 
	Slide 34: Instruction Set Architecture 
	Slide 35: Instruction Set Architecture 
	Slide 36: Instruction Format 
	Slide 37: Instruction Format 
	Slide 38: Instruction Format 
	Slide 39: Instruction Format 
	Slide 40: Instruction Format (Example)
	Slide 41: Addressing Modes (ARM)
	Slide 42: Addressing Modes (ARM)
	Slide 43: Addressing Modes (ARM)
	Slide 44: Addressing Modes (ARM)
	Slide 45: Addressing Modes (ARM)
	Slide 46: Addressing Modes (ARM)
	Slide 47: Addressing Modes (ARM)
	Slide 48: ARM Cortex M Assembly Programming 
	Slide 49: ARM Cortex M Assembly Programming 
	Slide 50: ARM Cortex M Assembly Programming 
	Slide 51: The Move Instruction 
	Slide 52: The Move Instruction 
	Slide 53: The Move Instruction 
	Slide 54: The Move Instruction 
	Slide 55: The Move Instruction 
	Slide 56: The Move Instruction 
	Slide 57: Summary 
	Slide 58: Load/ Store Instructions 
	Slide 59: Load/ Store Instructions 
	Slide 60: Load/ Store Instructions 
	Slide 61: Bitwise Instructions – OR 
	Slide 62: Bitwise Instructions – OR 
	Slide 63: Bitwise Instructions – OR 
	Slide 64: Bitwise Instructions – OR 
	Slide 65: Bitwise Instructions – AND 
	Slide 66: Bitwise Instructions – AND 
	Slide 67: Bitwise Instructions – AND 
	Slide 68: Bitwise Instructions – AND 
	Slide 69: Bitwise Instructions – BIC 
	Slide 70: Bitwise Instructions – BIC 
	Slide 71: Bitwise Instructions – EOR 
	Slide 72: Summary 
	Slide 73: Arithmetic Instructions- ADD   
	Slide 74: Arithmetic Instructions- ADD   
	Slide 75: Arithmetic Instructions- ADD   
	Slide 76: Arithmetic Instructions- Multiplication  
	Slide 77: Arithmetic Instructions- Division   
	Slide 78: Arithmetic Instructions- Division   
	Slide 79: Arithmetic Instructions- Division   
	Slide 80: Arithmetic Instructions- Division   
	Slide 81: Arithmetic Instructions- Division   
	Slide 82: Logical shift and rotation – Left Shift
	Slide 83: Logical shift and rotation – Right Shift
	Slide 84: Logical shift and rotation – Arithmetic Right Shifts
	Slide 85: Logical shift and rotation – Rotate Right Shift
	Slide 86: Exercise 1- Setting a bit  
	Slide 87: Exercise 2- Clearing a bit  
	Slide 88: Exercise  3- Toggling a bit  
	Slide 89: Branches 
	Slide 90: Branches 
	Slide 91: Branches 
	Slide 92: Conditions in Assembly
	Slide 93: Branches 
	Slide 94: Branches 
	Slide 95: Stack Instructions- PUSH/ POP  
	Slide 96: Stack Instructions- PUSH/ POP  
	Slide 97: Stack Instructions- PUSH/ POP  
	Slide 98: Stack Instructions- PUSH/ POP  
	Slide 99: Stack Instructions- PUSH/ POP  
	Slide 100: Questions? 

