

Chapter one : 1.1: system of linear equations:

A linear equation : a1x1+a2x2+......+anxn=b, where x are variables, a,b are real numbers.

2x1-x2+x3=5X1+3x2+x3=6Is 2x3 linear system. m X n => number of unknowns (variables). number of equations. A non linear system : at least one of the equations in the system are nonlinear : Exp>> x+y=1X+v=5 Remark : in general there are three possibilities for 2x2 linear system: 1- the lines intersect at a point (unique solution). 2- they are parallel (no solution). 3- both equations represent the same line (infinite solution). Remark : in general there are three possibilities for mxn linear system: 1- (unique solution). - المالك ملخاري) > المعلك منع المعلى (2) + الماري المالي -Fxp=) + 4x1 - 2x2=6 2- (no solution). 3- (infinite solution). tree L X2+2X-3 Reading. Let X1+t or then X2+2t-3 The solution set of (0. V2). (t. 26-31) of e C R m x n In Consistent Consistent 5 V No solution Unique Infinite Solution Solution Equivalent systems : Two systems of equations are called equivalent systems if they have the same variables (unknowns) and the same solution set. Square system: If m=n and it is called an nxn linear system. Menna Tullah Jayousi Uploaded By: Menna Tullah Jayousi STUDENTS-HUB.com

Strict triangular form : 1- nxn system .
coefficient of sky is nonzero (k=1,2,3,,n)
Exp:
X1+x2+x3=8
-0 + 2X2 + X3 = 5 0 + 0 + x3 - 9
This example is strict triangular form.
1- the system is strict triangular form is easy to solve and has a unique solution.
برجع رجوع بالحل. 2- we have the system by backward substitution method برجع رجوع بالحل.
How to transform a system in strict triangular form?
1- interchange two rows Augmented matrix = [A:b]
2- multiply a row by a nonzero constant
o- replace a row by its sum with a multiple of another row.
بكتب معاملات الاكسات كمصفوفة >>>> Coefficient matrix = [A]
7. The two systems
$2x_1 + x_2 = 3$ and $2x_1 + x_2 = -1$
$4x_1 + 3x_2 = 5 \qquad \qquad 4x_1 + 3x_2 = 1$
have the same coefficient matrix but different right-
eliminating the first entry in the second row of the
augmented matrix
and then performing back substitutions for each of the columns corresponding to the right-hand sides.
ine containing to the right hand shares.
$(k_{2} \rightarrow -)$
$\frac{2}{2} - \frac{1}{2} = 3 = 3 \left(\frac{1}{2} - \frac{2}{2} \right) = 2 \left(\frac{1}{2} + \frac{3}{2} - \frac{1}{2} - \frac{3}{2} \right) \left(\frac{1}{2} - \frac{2}{2} \right)$
Menna Tullah Jayousi

1.2: Row Echelon Form(REF)

1- the first nonzero entry in each nonzero row is 1 called the leading one or the pivot 1.

2- the leading 1 in the k row is do the right of the leading 1 in the (k-1) row.

3- zero rows are below the nonzero rows.

is not REF. EXP= 000 246 => is not REF. =) is REF. Gaussian elimination method (REF) Gaussian Jordan elimination method (RREF) 1- the matrix is in REF. 2- the first nonzero entry in each row 1's is the only nonzero entry in its column. IS RREF. 120 0 0000 I is RREF. 100 (is Not RREF C = 0 Under determined : m<n Over determined : m>n 5 5 No solution No solution Infinite Unique Infinite Homogeneous system : Ax=0 Homogeneous system is always consistent since there is a solution called the zero solution or the trivial solution Under determined homogeneous linear system has always infinite solution

Menna Tullah Jayousi

$$\begin{bmatrix} 0 & 1 & 0 & 12 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{1} 1 = t \xrightarrow{1} 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{1} 1 = t \xrightarrow{1} 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{1} 1 = t \xrightarrow{1} 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{1} 1 = t \xrightarrow{1} 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{1} 1 \xrightarrow{1} 1 \\ 1 & 2 & 5 & 3 & 0 \end{bmatrix} \xrightarrow{1} 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{1} 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{1} 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{1} 1 \\ 1 & 1 & 0 & 0 \\ 1 &$$

1.3 : Matrix arithmetic

mxn is the size (order) or the dimension of Amxn For similarity we use the notation : A=aij: i=1,2,...,n J=1,2,...,nColumn vector is an mx1 matrix. =) $A = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$. Row vector is an 1xn matrix. B=[1. 3. 4. 7.] $R = \begin{bmatrix} 1 & 0 & 5 & 7 \\ 2 & 13 & 6 \end{bmatrix}$ $R = \begin{bmatrix} 0 & 5 & 7 \\ 2 & 13 & 6 \end{bmatrix}$ The equality matrices : two matrices A and B are equal iff they have the same size and aij=bij.

Properties of addition and scalar multiplication:

1-k(A+B)=kA+kB.2 - (k r)A = r(kA) = k(rA). 3-A+B=B+A. 4 - A + (B + C) = (A + B) + C.5- A+0=0+A=A. 6- A-A=A+(-A)=0. -A is called the additive inverse of A.

When I want to multiply two matrices A and B they should have the same size.

A= [13] 2 per B= [1 5 2] 6 -1 2xp2	= by the exp
اللي 2 سَتَحَ	
AB≠BA	
	Menna Tullah Jayousi

STUDENTS-HUB.com

If it is told me to write the system in a matrix form :

$$\begin{aligned} 4\chi_{1+2}\chi_{2} + \chi_{3} = 1, \\ 5\chi_{1} + 3\chi_{2} + 7\chi_{3} = 2, \\ f = 3, \\ f$$

STUDENTS-HUB.com

Properties of the transpose :
$1-(\overline{A})=A.$
2-(A+B)=A+B.
3- (KA)=KA
4-(AB)=BA.
5- If A ,B are symmetric, then A+B is symmetric. $\Rightarrow (A + B)^{T} = A^{T} + B^{T} = A + B$.
6-If A is symmetric, then kA is symmetric. $\Rightarrow (\alpha A)^T = \alpha A^T = \alpha A$ is symmetric.

Menna Tullah Jayousi

STUDENTS-HUB.com

1.4:Matrix algebra:
$-A^{n} \cdot \begin{bmatrix} 2^{n-1} \\ 2 \end{bmatrix}$
$\left[2^{n-1} 2^{n-1}\right]$
The identity matrix: \rightarrow $f = \begin{cases} 1 & i \neq i = j \end{cases}$ chample \rightarrow $f_{3,5} = \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}$
nxn معفوطة مربعة المربعة معفوطة مربعة axi المربق المربعة مربعة المربعة IB=BI=B
Matrix inversion :
An nxn matrix A is said to be invertible if there exists a matrix B such that AB=BA=I, the matrix B is called the inverse or multiplicative inverse of A denoted by A, If A does not exist, then A has no inverse(A is called singular or invertible).
$A' \neq \frac{1}{A}$
How to find the inverse of 2x2?
$A = \begin{bmatrix} a & b \end{bmatrix} \implies \alpha = ad - bc \neq o then A' = \int \begin{bmatrix} d & -b \end{bmatrix} = \\ \alpha & \begin{bmatrix} c & d \end{bmatrix}$
If ct=0, the A is singular.
xAA ^T =I
If A and B are nonsigular nxn matrices ,then AB is also nonsigular and : $A\beta^{1} = \beta^{1} A^{1}$.
Algebraic rules for inverses:
1-The inverse of A if exists is unique. 2- $(\vec{A}) = A$. 3- $(kA) = 1/k [A^{-1}]$
4- If A is invertible then \vec{A} is invertible and $(\vec{A} = (\vec{A}))^T$ 5-[(AB)]=(\vec{A})(\vec{B}).

Menna Tullah Jayousi

1.5: elementary matrices :

A matrix E is called an elemantary matrix if it is obtained from the identity In by performing exactly one row operations.

There are three types :

1- interchanging any two rows of In.

2- multiplying any row of In by a nonzero constant.

3- adding a multiple of one row of In to another row of In.

If E is an elementary matrix, then E is nonsingular (invertible) and \vec{E} is an elementary of the same type .

A matrix B is row equivalent to a matrix A : $B = E_{R} = E_{R-1} \dots E_{r} A$.

Example =, if we have
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 3 \\ 2 & 2 & 6 \end{bmatrix}$
find an elementary matrix E such that $EA = B =$ Bis row equivalent to F

اؤل معنى فى A لم م B ، ى يعنى مصف م هست بدى المومدار عالمي المربط د A ما م المرجور B مست بلا حل ذا عجم المحاف الأول والمالك فى A مليس نفس المطرال المون الى فى B => 500 | 5 = 3 غير المان الأول والمالات [6 0] -A د بر این از از ایس

If A is row equivalent to B, then B is row equivalent to A. If A is row equivalent to B and B is row equivalent to C, then A is row equivalent to C.

The system Ax=b, where Anxn, has a unique solution, iff A is nonsingular (The solution is $x=\vec{Ab}$).

To find the inverse for 3x3 matrix and above :

If he tolds me to solve the system Ax=b using the inverse of A:

$$\begin{array}{c}
FA \mid F_{2} \end{bmatrix} = \begin{bmatrix}
1 & 2 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 & 0 \\
2 &$$

C= [0 2 0] Diagonal: x Every Diagonal is than gular. STUDENTS-HUB.com D= [0 0 0] diagonal and thrangular. Menna Tullah Jayousi Uploaded By: Menna Tullah Jayousi

LU factorization : (Triangular factorization) $A = I \square$ *not every matrix has an Lil factorization. الطريقة الأجعبورالأطول: = على الراع وال E3 $f \in \mathbb{Z}$ $E_1 = f \in \mathbb{Z$. E3, E2 ~ ~ W (mie) . EZELEI A- LI $A_{2} \left(E_{3} E_{2} E_{1} j^{-1} \sqcup \right).$ $A_{3} E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} \sqcup .$ Auf of lines [FII]

1- if A has an LU factorization , then A is nonsingular iff L is nonsingular. False because L is always nonsingular.

2- if A has an LU factorization , then A is nonsingular iff U is nonsingular. True.

3- if A has an LU factorization , then A is row equivalent to U. True.

Menna Tullah Jayousi

STUDENTS-HUB.com

2.1:The determinant of a matrix

If A was 2x2 matrix then the det(A) or the IAI is =
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & b \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} \Rightarrow \begin{bmatrix} a & c & c \\ c & d \end{bmatrix} \Rightarrow$$

Menna Tullah Jayousi

STUDENTS-HUB.com

2.2: Prosperities of determinants:

Row operations : How operations. 1- IBI=-IAI. => $A = \begin{bmatrix} 2 & 4 \\ 6 & 5 \end{bmatrix} = B = \begin{bmatrix} 2 & 5 \\ 2 & 4 \end{bmatrix}$ 2- IBI=KIAI =) $A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} = B = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix} = B = 2|A|.$ 3- IBI=IAI => $A = \begin{bmatrix} 1 & 4 \\ 5 & -5 \end{bmatrix} => B = \begin{bmatrix} 1 & 4 \\ 0 & -25 \end{bmatrix} => B = \begin{bmatrix}$ -5R1+R-Let E be an elementary matrix then : |E| = 1 - (-1) if E is of type 1. = 2- k≠ 0 if E is type of 2. =) الحدا ----- المجمد الثان = 3- (1) if E is type of 3. $+|kA| = k^{n}|A|$. + []=1 A EA = IE A # IFA and B matrices then => IABI= IAI IBI. *If A is singular, then IAI=0 and so AB is singular, therefore IABI=0 = IAI IBI. * الحدرة لشغصلين في الحج = 1A +B1 + IAI + IB| * $|A^{-1}| = \frac{1}{|A|} = 5$ A is nonsingular. * IF AT A = I, then $|A| = F | = |A^TA| = |I|$ JAL (A) = 1 $|A| |A| = |A|^2 |A| = |A| = |A|$ A If he told me to use elemination Method to evaluate det(A). REF Menna Tullah Javousi

STUDENTS-HUB.com

2.3 : Additional topics and applications :

The adjoins of a matrix: adj (A) = [Au A12 An Azı A22 A20 Ani Anz- Ann *hij = (-1) 1+1 |Mij]. * ladiA = \Al^-1 * A adj (A) = IAI In. * $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$ * $(\operatorname{adj} A)^{-1} = |A^{-1}| |A| = \operatorname{adj}(A^{-1})$ * $\operatorname{adj}(\operatorname{adj} A) = |A|^{n-2} |A|$ A clemmer's Rule =) Ki= Ail , i= 1,2,, n example= x1+212+ x3=5. A= 121 F=J 221 2×1 +2×2+ ×3=8. X1 + 2x2 + 3x3=9. 2 1 2 1 2 3 حوض الناج في المود الأول ب وهکزا، <u>۲۰۱</u> = ۲۱ د. x Evaluate the following determinant. Wite your answer as a poly nomial in X:- a-X b C. $|A| = (a-x) \begin{vmatrix} -x & o \\ 1 & -x \end{vmatrix}$ - b 10 0-X $(a-x) x^2 - b (-x) + c$ $= -K^{3} + aK^{2} + bK + C$ * If A is singular then A cody A = ?? A adjAs IAI I if A is singular IAI=0 so adj(A)=0. Menna Tullah Jayousi

STUDENTS-HUB.com

3.1:Definitions and examples:

Na is a vector space is a set of elements together with the operations of addition and scalar multiplication Ci:- if XEV and x is scalar, then XXEV "closed under scalar multiplication" $(2: if X, y \in V, then X + y \in V$ "closed under addition". All X + y = y + X. Av: (x+y)+z=x+1y+z1. Az: I an element OEV such that X+0=0+X=X, UKEV. Ay: VXEV, J-XEU such that X+-X=0. $A_5: \alpha(x+y) = \alpha x + \alpha y$. Ab. (X+B/X=XX+BX. $A7: (\alpha B) x = \alpha (Bx).$ =) No tation (U, + , .) AS: 1X = X. =) VIZUE2'(=) ID (IR, to,) =) "R with usual addition and multiplication is a ve ctol space !! 2 V= R2 with yourd + and is a vector space where (a,b) + (rod)=(a+r, b) $\alpha(a,b) = (\alpha a, \alpha b)$ 3 Mmxn = R^{mxn} is the set of all mxn matrices with real entries under addition and scalar multiplication is a vector space. I The set of all real valued functions under+ and .:- $\int \frac{1}{4} + g \left[\frac{1}{2} \right] = F(x) + g(x)$ $\left(L_{\alpha} f \right) (x) = \propto f(x).$

5 C[a,b]:= {F: [a,b]->R: fis continuous on [a,b] $L_{3}\left(F_{+q}\right)\left(\chi_{1}=F(\chi)+T(\chi)\right).$ $|\alpha f| (x) = \alpha f(x)$

STUDENTS-HUB.com

عقة المم ١٧ $\begin{array}{c} \hline \left[\begin{array}{c} \mathcal{L}[a,b] = \begin{array}{c} \mathcal{L}[a,b] \rightarrow \mathbb{R} \end{array} \right] : \begin{array}{c} \mathcal{L}[n] \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] = \begin{array}{c} \mathcal{L}[a,b] \rightarrow \mathbb{R} \end{array} : \begin{array}{c} \mathcal{L}[n] \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] = \begin{array}{c} \mathcal{L}[a,b] \rightarrow \mathbb{R} \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array}$ \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \mathcal{L}[a,b] \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ $\begin{array}{c} \hline Pn = \begin{array}{c} F(x) = q_{n-1} & \chi^{n-1} & f & \cdots & f & q_{n} \\ \hline (F+q) & ix_{1} = \begin{array}{c} F(x) + q(x) \\ \hline (\chi) & = \chi & f(x) \end{array} \end{array}$ rillationales =1 (JZ, J3, e, T, ...). is not a vector space.

*Let U be avector space then:-1001= 3, VUE U. 12 17 ×+y=3, then y=-X. 13 -1. J=-U, YURU.

Menna Tullah Jayousi

STUDENTS-HUB.com

3.2:Subspace and spanning sets:

A Subspace -> O X+y ES. DXX ES. BOES, Sto " Let S and T be subspace of avector pare V then ... I SAT is subspace I SUT is not always is a subspace of V. 3 StT is subspace of V. * Nullspace => AX=0. (RREF). => is a subspace of R >- بطاح الحالم من عمل من عرف الحالي المعادلات الموالي المعام من عرف الحالي المعادلات المعادلات المعام عامل من عرف المعاد المعادلين المعادلات المعادلين المعادلات المعادلين المعادلات ال المعادلات المعادلات المعادلات المعادلات المعادلات المعادلات المعاد المعادلات المعادلات المعادلات المعادلات المعاد * Linear combination: - CIUI + C2U2+ + CNUN =) is a subspace of V. La span (UI, UZ, -..., UK). $\begin{array}{c} example = 1 \quad \cup = \binom{2}{3} \quad , \ \cup : \left(\binom{1}{6} \right) \quad , \ \cup : \binom{1}{1} = 1 \quad \forall = c: \lor + c_2 \cup 2 \quad ; \ z : i + c_2 = 2 \quad ; \ z : i = -1 \quad ; \\ \binom{2}{3} = c: \binom{1}{6} + c_2 \binom{1}{1} \quad \binom{2}{7} \quad c_2 = 3 \quad (c_2 = 3) \quad ; \\ \end{array}$: V= - U1+3U2/Vis alinear combination of span (U1, U2) r spanning set :- if V = span (u, ..., uk). = consistent [] vigter; D A Science sen ? is the standard spanning set for R? $X = X_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + X_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + X_n \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ * $\{1, \chi, \chi^2, \chi^3\}$ is a spanning set for Py.

Menna Tullah Jayousi

STUDENTS-HUB.com

K standard spanning for R242 are:- $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

A Let A be a 4X3 matrix and let b E R. Now many possible solutions could the system AX=b have if N(A)=572 Answer the same question in the case N(A) + for . Explain your answer LBIT N(A)=0 then y=X0+E)=0 so y=X0 therefore. AX=b has no solution of a unique solution. DIP N(A) to then y=X0+E)= 50 y to therefore AX=b. has no solution of infinite solutions.

*Let { *1, x2,...., Xky be a spanning set for a vector space V. Ly if we add another vector Xk+1, to the set, will we still have a spanning set? => Yes

est we delete one of the vector say Xx from the sets will we still have aspanning set => No. \$ (1,0,0), (0,1,0)? (0,0,1) => spans to R³ but \$ (1,0,0), (0,1,0)? does not.

Menna Tullah Jayousi

STUDENTS-HUB.com

3.3:linear independence:

> We called about V is linearly independent: $s C(V) + c_2V_2 + \dots + c_n V_{n=0} =) \{ C = c_2 = \dots = c_n = 0 \}$ other wise, shey are linearly defendant. =) $Ts \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ Linearly independent?? $Ci\begin{pmatrix} 1 \\ 1 \end{pmatrix} + c2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \Rightarrow 0 = C2, Ci field Zhendent??$ La R F F AIT the system was under determined homogeneous =s it has infinite solution. Lo so it is always Linearly dependent. Theorem []: A set of vectors in R" are linearly independent iff the matrix A = [UI U2 Un] is nonsingular. L, Renark=> IAI => linearly independent. are nin city is theorem is a = Pa of Tieger Fully billsla EXP > R(X)= 2x2 + x+8, R2(X)= X2 + 8x+73, P3= X2-2X+3. $L_{1} = c_{1} P_{1}(x) + c_{2} P_{2}(x) + c_{3} P_{3}(x) = 0$ $C((2x^{2}+X+8)+Cz(x^{2}+8x+7)+Cz(x^{2}-2x+3)=0$ Lyz terms, X terms, constant terms + relies 2 CI 4 C2 4 C3=0 => yelles pus files C1+802-207=0 Sci+ FC2 +3(3=0. Theorem I (*

Theorem D. - A set of vectors are linearly dependent if f one of them is a linear combination of the remaining set of vectors. since us= u1 + u2 => (Uz is a linear combination of u1 and u2)

STUDENTS-HUB.com

Theorem [3]: - A set of vectors are linearly independent iff every vector is uniquely whithen as a linear combination of U, 12, ..., UK.

whe vector space C'La, w W(4, 5,..., fn) on [a, b] by:- $W(f_1, \dots, f_n) = |f_1, \dots, f_n|$ $W(onskian of f_1, \dots, f_n) = |f_1, \dots, f_n|$ $W(onskian of f_1, \dots, f_n) = |f_n|$, if w(thota,..., tha) (xo) = o then & ti,..., that are linearly independent *If fir for an are linear dependent then w(firm,fn) =0. if w(fi, f2, ..., fn) =0 we can't say about any thing. =) cisted 2054 avi + c2 v2 and thing. KIS we add a vector X K+1 +> 500 fX1, X2, - , Xn2, The set fX1, X2, ..., Xn, XK+12 may of may not be a linear independent set. alf we delete XK from {X1, X2,, XK}, will still be linear independent. * any nonempty subset of alinearly independent set of vectors fur..., un fis also linearly independent. * Let Abe an mxn, show that if A has linearly independent column vector, then N(A) = 30% => linearly dependent=) CIX + C2Y=0, where C1, c2 are not =0. Lo X= - Ce y. => both vectors (kandy) placed at the origin, they will lie along the same line, but if they are linearly independent will not lie at the same line. Menna Tullah Jayous

If the matrix was not square we can not use the det:

1- we use homogeneous

2-REF if x involve free variables, if they are not trivial solution, then the vectors are linearly dependent, if there are no free variables then c=0 is the only solution and hence the vectors must be linearly independent.

Menna Tullah Jayousi

STUDENTS-HUB.com

3.4:basis and dimension: D span V 2 Linearly independent The zero vector space for has dimension zero basis p. □ dim R^=n. □ dim Pn=n. □ dim R^{m Xn}= m.n. ⊡ dim §03=0. 国dim R=1. 团dim C[®][aob]= 03.

Theorem Li- Let & VI, UZ,, Un? be a spanning set for V. If w1, w2, ..., wk EV, K7n. then winwy, , where linearly dependent Ly example - \$ (2), (4) & is aspanning set for R² S(2), (3), (-7) 2 are linearly dependent.

Theorem 2: Let gui,..., un 3 and gui,, why be two bases for avector space V. then

Theorem 3: - Let V be a vector space with dim V=n then the foll wing are equivalent. Lo D fui, ..., ung is a basis. III Jui,, un & span v. (iii) Jui, oun & linearly independent.

Summery => dim V=n then:-DA set U.,, UK, KZn linearly dependent. DA set UI,, UK, K<n Can Not Span V. [] If k=n and u,, uk are linearly independent of span V, then & V, u2,, VKY is a basis for V. I A spanning set of VI, 12,, VK, K 71 can be reduced (Pured down) to a basis for V. 5 A linearly independent set un. uk, Kich can be extended to a basis for U. L Examples: $\begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}, \begin{vmatrix} 2 \\ 3 \\ 0 \end{vmatrix}, \begin{vmatrix} 4 \\ 5 \\ 5 \\ 6 \end{vmatrix}$ 2, 47, 47 0, 3, 5, 8 0, 6, 8 A basis for spans for R3, but Linearly independ but not span for Rª it is linew by dependent. STUDENTS-HUB.com Uploaded By: Menna Tullam Jayousi

A find a basis and dimension f:- $5 = 3 (a + 3b + c), 2a + 6b + c)^{T} : a, b, c \in \mathbb{R}^{3}$ a(1,2,0) + b(3,6,0)+c(1,0,1) Notice that uz=301 =) the jubuzous? linearly dependent. : S= span & ({}), ({}) ~ tors . linearly independent. dimension-2 => The standard basis for R3 is fer, e2, e32 =) The steendard basis for Pn = j la X, x,, x-12. =) since they are linearly independent, they form a basis for :-N(A) - MRREF ساولهم بالعفر. [2] ال (لم) لم . =) If V is a vector space of dimension nyo, then :-I any set of a linearly independent vector space V. Dany n vectors that spans I are linearly independent.

Uploaded By: Menna Tullah Jayousi

Menna Tullah Javous

3.5:change of basis:

* E= Sui, uz, ..., un Ya basis of V then any vev can be whitten uniquely as :- $V = \alpha U_1 + \alpha U_2 + \alpha U_3 + \dots + \alpha V_n$ a = (x1, x2,, xn) coordinate of V with respect to a basis E. + [V] = or VE - [V] = [X] AIF E is astandard basis for usector space R then IVIE = V, YUER. + U is called Hansition matrix from the basis -- $F = \frac{1}{2} 41, 42 \frac{2}{7}$ [41,42] ____ [e1,e2] S=1, 4 \$ Eurovil & * VB= PR->B [V]R , VB= PB=B [V]B. =) Transition matrices=> PB-B flom B' to B. , PO'+B => [B IB'] RREF. PB-B'=J [B'|B]RREF JII BOD J JII ASI] [T]=)[2x-1,2X+1] = tansition with a cold in the $X = C_1 (2X - 1) + C_2 (2X + 1) = 1 C_1 - 2 C_2 RL$ 1= c1 (2X-1) + C2 (2X+1)=) C1, C2 24 Menna Tullah Javousi

STUDENTS-HUB.com

it Let V be a finite dimensional vector space with dim V-ngit E [VI, N2,, UN], F= [WI, W2,, WN] be two basis. Then the transition matrix from the basis E into the basis f is the nXn ronsingular matrix. $\prod \left[\bigcup_{i=1}^{n} \left[$ DUI, U2,, UK are linearly independent iff JujEg- --- LUKJE are livearly independent. * $[X]F = S_{F \to F} [X] = (U_2^{-} U_1) [X]F$ EXIFULIDATE STRANDE Menna Tullah Javous

3.6:row space and column space : basis for the null space => 1. REF. , 2-, unless 1. KIN2 ... 3-. KIN2 ... I Row space= 1. REF= L lient B (L)= R(A) = the nonzero rows is a basi's for R(A) (2) is a law in the ronzero rows is a basi's for R(A) Bow space lo slo al is a column space. A is is set if is column space is column space.

3) The nullity => Nulli(A) = dim N(A).

1) Cank of A => Cank(A) = dim(A).

* Ranklal+ Null (Al=n, => (an k + din (N(A)) = n. ان أكت القولية اواى عدد ما دخل الع space was Black معادلة وها و تحسب من ال لا العادة العربية مع الا ل وسى 1 روح ال A -* It man matrix, the dimension of the row space of A = the dimension of the columns space of A. Las Aax2, Capt=2. [] Axab is consistent iff bis in the column space of A. 12] Ax=b is consistent iff the column vectors of A span R. -> The Ax=b has at most one solution iff A is linearly independent. BINXN, A is nonsingular iff the column vector of A form a basis for Rⁿ.

· column space is now space is the dimension i the ist + REF ML

(I IVELE IL and ela Be IL space Ja al aliminiation of the second

* How many solutions will the lineal system AX=b have it b is in the column space of A and the column vectors of A are linearly dependent. Lo II b C (A), then the system is consistent. If the column vector of A are linearly dependent. then the system will have infinitely many solutions.

tlet A be an MXN matrix with myn, Let b e R and suppose ghat N(A) = \$07. D What can you conclude about the column vector of A? Are they linearly independent? Do they span R"? Explain L, N(A) = go3 => Nulity => rank(A)=n. A has n columns and the dimension of its column space =n =) The columns are linearly independent. Pimension of RM=m and m7n. Therefore, columns of A can't span Rm. I How many solutions with the system Ar n=b have if b is not in the column space of A? How many solutions will shere be it b is in the column space of A? Ly If b doesn't belong in the column space of A, system AX = b is in consistent, and has no solutions. If b belongs in the column spaces, Ax=b is consistent and has infinetly many solutions.

* Let A be 4X4 mat Nix with RREF given by => $\begin{bmatrix} J = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ if $a_1 = \begin{bmatrix} -3 \\ -3 \\ 2 \\ -1 \end{bmatrix}$ and $a_2 = \begin{bmatrix} 4 \\ -3 \\ 7 \\ -1 \end{bmatrix}$ find as and $a_4.$ 43-241+ 42. $\{ U_{y} = U_{1} + Y_{2} \}$ az = 2a1 + a2 $a_{4} = a_{1} + 4a_{2}$ - proved . lad se

* A and B are non mattices N(A-B)= R" then A=B.

* AB=0 it's the column space of B is asubspace of null space of A. * AB=0 then the sum of the Panks of A and B cannot exceed n.

Menna Tullah Jayousi

STUDENTS-HUB.com

4.1) Lineal Transformation iff L:V=W , II L (U1+ U2/= L (U1)+L (v2), Ju, v2 GU. Z Laul = allul, VVEV, VXER. =) If V= W then L: V -> V is said to be linear operator. =) L; V = W is almear Transformation iff :- $L(dv_1 + Bv_2) = \alpha L(v_1) + B L(v_2).$ => Kernal and Images (Range);- $L_{A}W = L_{A}U$ L(U) = OwNUS111 image lie , Ub. إذاطلع الجواه معز onto alphi igu L = L(K) = (K)= X1 1 one-one dim ternali - Image_si ge يعو لمالصورة الى معطن المها بالسخال راوى بالهنف وبولم الفتم بعدها بر 20 للا حل نومها de la apis fil alle Lly] $E_{\text{Xample:-}} L \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ الے لیے ف کورتہ ت (1a) Ulupl) X100 151 (X1)= (0) $\frac{1}{2} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 0 \\ X_2 \end{pmatrix} = \begin{pmatrix} 0 \\ X_2 \end{pmatrix}$ en colo

$$\begin{bmatrix} \overline{L} \overline{L} \\ \rightarrow \\ Figgi values and Eigen vectors
A $\overline{L} = Av$

$$=) A \overline{L} = (A - AI) = 0$$

$$=) U(A - AI) \neq Sol = A - AI is simular.$$

$$\begin{vmatrix} 3 & -2 & -4 \\ 3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -4 \\ -3 & -2 & -5 \\ -3 & -5 \\$$$$

Menna Tullah Jayousi

STUDENTS-HUB.com

Trace denoted tr(A): is the sum of all entries on the main diagonal. $\Rightarrow A = 1 + 1 + 2 + \cdots + 1 = 0$ $\Rightarrow + r(A) = 1 + 1 + 1 + 1 + 1 = 0$ $ A = 1 + 1 + 1 + 1 + 1 = 0$
Let A be an nxn matrix, then A is singular if is an eigenvalue of A.
Let A be an nxn matrix, then A and \tilde{A} have the same eigenvalue.
$= \lambda A^n \vee = \lambda A \vee = $
Eigenvalue for triangular : will be the main diagonal A
Let A be an nxn nonsingular matrix. If \neg is an eigenvalue of A, then \bot is an eigenvalue for A with the same eigenvectors. $\Rightarrow A^{-1}V = \bot V$.
~
Menna Tullah Jayousi

