b3

X
‘ "‘é‘f

iy TP
BIRZEIT UNIVERSITY

EVENTS

Shadi Daana

https://students-hub.com

Interrupts

* Interrupt is a mechanism that allows the processor to temporarily
suspend its current execution of instructions and switch to a different
set of instructions in response to a specific event or condition

* Interrupts are a common feature available in almost all
microcontrollers.

* Interrupts are usually generated from on-chip peripherals (e.g., a
timer) or external inputs (e.g. a tactile switch connected to a GPIO),
and in some cases they can be triggered by software

STUDENTS-HUB.com

https://students-hub.com

Interrupts

STM32F40xxx LQFP

o
’._ - -
= 222 8 . Point at which
3.3y >>00m . interrupt occured
selE-oLH-n Program execution
64 63 62 61
VBAT []1 flow
PC13 2
o PC14 3
X PC15 4 ~N
o PHO s » [Subprogram where
PH1 e interrupt is
NRST 7 3
RCO L& - = - processe
PC1 9 i.e. (ISR)
PC2 110
FB PC3 [
VSSA 3 !
VDDA E continuation of the
PA0O_WKUP [] normal program
PA1 [execution Return from ISR
. PA2 [
)
a ¥

STUDENTS-HUB.com

https://students-hub.com

Interrupts

* When a peripheral or hardware needs service from the processor,
typically the following sequence would occur:

1. The peripheral asserts an interrupt request to the processor

2. The processor suspends the execution of the current task, saves its
context (that is, its stack pointer)

3. The processor starts the execution of an Interrupt Service Routine
(ISR) to handle the interrupting event

4. The processor resumes the previously suspended task

STUDENTS-HUB.com

https://students-hub.com

Interrupts and Polling

* Interrupts and polling are two different approaches used in computer
systems to handle external events, particularly in the context of input
and output operations or event-driven processing.

* Polling is a technique where the program actively checks the status of
a condition or device in a loop, while interrupts are events that
prompt the program to respond immediately without actively
checking.

* Polling can introduce delay and inefficiency, especially when dealing
with infrequent events, while interrupts provide real-time
responsiveness and efficient resource utilization.

STUDENTS-HUB.com

https://students-hub.com

Interrupts and Polling

Perform processing in
response lo state change

When

Using :
Interrupts
[GPIO input value change from O to 1 Perform processing in
. response to state change
: — IR — R — -
When T ; S . S
Using Checkstates 1Checkstates iCheckstater 1 Checkstatet
Polling - . b 3 8 -

Source: https://www.renesas.com/

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-H

Interrupts and Polling

int main(void)

{

while (1)
{

}
void xxx_IRQHandler(void)

{
if(GPIO_Pin == GPIO _PIN_9))
{

HAL_GPIO_TogglePin(GPIOA, GPIO PIN_8);

B.com

int main(void){

while (1){
if(HAL_GPIO ReadPin (GPIOA, GPIO_PIN 9)){
HAL_GPIO TogglePin(GPIOA, GPIO PIN 8, GPIO_PIN SET);

}

* You can program your interrupt handlers or Interrupt
Service Routines (ISR) as normal C routines/functions.

* The ISR is automatically called when an interrupt
event occurs. It is not called from the main function or
any other functions!!

https://students-hub.com

Interrupt Masking

e Cortex-M processors have different numbers of interrupt sources
including GPIO pins, timers, resets, and more.

* In most microcontrollers, there are often interrupt mask registers
associated with each interrupt source.

* These registers allow you to enable or disable specific interrupts at
the hardware level

* When an interrupt is masked (disabled), it won't be recognized or
serviced by the processor, even if the corresponding event occurs

* You need to enable (unmask) the interrupt before it can be used.

STUDENTS-HUB.com

https://students-hub.com

Interrupt Masking

 Some interrupts cannot be disabled by software; these are referred
to as Non-Maskable Interrupts (NMls)

* These are high-priority interrupts that are used for critical events like
hardware faults, system resets, and emergencies that need
immediate attention

STUDENTS-HUB.com

https://students-hub.com

Interrupt Priority

* Most of interrupts have programmable priorities, and a few system
interrupts have fixed priority
* What do we mean by the priority of an interrupt?

* The priority of an interrupt determines the order in which interrupts
are handled when multiple interrupts occur at the same time or when
an interrupt occurs while another one is already being processed.

* Each programmable interrupt can be assigned a priority level, where a
value of '0' represents the highest priority

STUDENTS-HUB.com

https://students-hub.com

Interrupt Types in Cortex M

* Cortex-M interrupts can fall into the following categories:

= |RQs (Interrupt Requests): generated by peripherals such as timers, 1/O ports,
and communication interfaces (e.g., UART, 12C).

= Non-Maskable Interrupt (NMI): generated from internal peripherals (e.g.
watchdog timer).

= SysTick (System Tick) timer interrupt.
= System exceptions.

STUDENTS-HUB.com

https://students-hub.com

Interrupt Types in Cortex M

STUDENTS-HUB.com

Exception
Type

W N =

7-10
11

12

13
14

15

16-255

Name

Reset

NMI

Hard fault
MemManage

BusFault

Usage fault

SVC

Debug
monitor

PendSV
SysTick

IRQ

CMSIS-Core
Exception Enum

NonMaskablelnt_IRQn
HardFault_IRQn
MemoryManagement_IRQn

BusFault_IRQn

UsageFault_IRQn

SVCall_IRQn

DebugMonitor_IRQnN

PendSV_IRQn
SysTick_IRQn

(device specific)

Table D.1 Quick Summary of Cortex®-M3/M4 Exception Types and their Configurations

Priority

(Level Address)

-3

-2

-1

Programmable
(SCB-=SHP[0], 0xEOODED18)

Programmable
(SCB-=>SHP[1], OxEOOOED19)

Programmable
(SCB-=>SHP[2], OxEOQOOED1A)

Programmable
(SCB-=>SHP[7], OxEOOOED1F)

Programmable
(SCB-=>SHP[8], 0xEQCOEDZ20)

Programmable
(SCB-=>SHP[10], OxEOOOEDZ22)
Programmable

(SCB-=SHP[1], OxEOQOOEDZ23)
Programmable

(NVIC-==1P[n], 0xEQOOE400)

Enable

Always

Always

Always

SCB->5HCSR (0xEOOOEDZ24)
bit[16]

SCB->SHCSR (0xEODOED24)
bit[17]

SCB->5HCSR (OxEODOED24)
bit[18]

Always

CoreDebug-=>DEMCR
(OxEOOOEDFC) bit[16]

Always

SysTick-=>CTRL (0xEOOOEQ10)
bit[1]
NVIC-=ISER] (0xEOO0E100)

Source: Yiu, Joseph. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors. Germany: Elsevier Science, 2013.

https://students-hub.com

Nested Vectored Interrupt Controller (NVIC)

Microcontroller
Cortex-M processor
Peripheral » NMI / |\
* How does the processor — (/| Progessor
. =
manage interrupts from Peripherals y NG
. F » IRQs <— system
different sources ? < €| Excoptions
4 /O port T
SysTick timer
4 1O port

Source: Yiu, Joseph. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors. Germany:
Elsevier Science, 2013.

* Inside Cortex processors, there is a hardware component called Nested
Vectored Interrupt Controller (NVIC) that is responsible for managing
and prioritizing interrupt requests from various sources

STUDENTS-HUB.com

https://students-hub.com

Nested Vectored Interrupt Controller (NVIC)

* The NVIC controls how interrupts are handled, their priorities, and
the order in which they are executed

* The term "nested" reflects the ability to manage interrupts in a
layered manner

* The term “vector” in nested vector interrupt control refers to the way
in which the CPU finds the program, or ISR, to be executed when an

Interrupt occurs.

STUDENTS-HUB.com

https://students-hub.com

Vector Table

* In order to understand how interrupts are managed, let’s take a
review of the memory map of ARM cortex M4 microcontrollers.

* The address space is 4 GB wide.

* It is organized into several subregions such as code, SRAM,
peripherals, external memory, system memory, etc.

* The code memory region contains an interrupt vector table (IVT).

* When an interrupt occurs, the processor looks up the address of the
corresponding ISR in the vector table and jumps to that address to
execute the interrupt service routine

STUDENTS-HUB.com

https://students-hub.com

Vector Table

0xAQ000000
OxSFFFFFFF

0x60000000
OXSFFFFFFF

0x20000000
Ox1FFFEFFF

0x00000000

STUDENTS-HUB.com

Option bytes

System memory
(boot loaders)

External RAM

Peripheral

SRAM

1GB

Reserved

0.5GB

0.5G8

Flash

Code Area

0.5G8

Reserved

Aliased to Flash, System
memory or SRAM depending
on BOOT configuration

Ox1FFFFFFF
Ox1IFFFX000

Ox1FFFX000

Ox080X0000

0x08000000

0x00000000

Exception number IRQ number Offset

16+n

S Yy
o = MW kR @ N

= MW BB o 3 N ® W

-1
-2

5

0x0040+4n

0x004C
0x0048
0x0044
0x0040
0x003C
0x0038

0x002C

0x0018
0x0014
0x0010
0x000C
0x0008
0x0004
0x0000

Vector

IRQN

i

IRQ2

IRQ1

IRQO

Systick

PendSV

Reserved

Reserved for Debug

SVCall

Reserved

Usage fault

Bus fault

Memory management fault

Hard fault

NMI

Reset

Initial SP value

https://students-hub.com

What Happens When an Interrupt Occurs?

Microcontroller

Cortex-M processor

Peripheral » NMI
o — - >
> NvIC \
Peripherals :
= » IRQs o
3 > b E—
» o E—
I/O port T
SysTick timer
/O port

g

Processor
Core

System
Exceptions

The peripheral asserts an interrupt request

STUDENTS-HUB.com

(For example, IRQO)

MCU pushes
registers onto FLASH
the stack
SP—
PSR 3 PC main (){

X —— initialization();
PC doStuff();
LR b
':32 — PC

—>{IRQO Handler (){
R2 ------
R1 h
SP ——> RO 4
IRQ2
: IRQ1
Contains the address
of the ISR SysTick
SRAM
Hard fault
NMI
Reset

Initial SP value

https://students-hub.com

What Happens When an Interrupt Occurs?

* The processor finishes or terminates the current instruction

* Microcontroller pushes registers RO, R1, R2, R3, R12, LR, Program Stacking
counter (PC), and program status register (PSR) onto the stack

* The processor reads the interrupt number from the xPSR register
and finds the corresponding address of the ISR from the vector

table. ISR Excecution

* The processor then starts to execute ISR instructions and uses the
registers that were previously pushed to stack

* The last step is exiting the ISR, popping all eight registers from the
stack, and returning to the same instruction where the ISR occurs Return

* Note: The interrupt service routines or exception handlers in ARM Cortex-M4
microcontrollers do not use R4-R11 registers during ISR execution

STUDENTS-HUB.com

https://students-hub.com

Writing Your ISR Implementation

* You don’t need to manage the low-level interrupt handling
process directly.

* You can focus on implementing your own ISR logic for specific
actions.

e Usually, the HAL library (or other frameworks) takes care of the
underlying details.

* The library also provides the necessary ISR definitions you can
use.

STUDENTS-HUB.com

https://students-hub.com

Writing Your ISR Implementation

* Before diving into ISR implementation, it's important to
understand how the STM32 handles interrupts from external
sources.

* Inside the microcontroller, each input line is connected to special
circuit that is designed to detect changes in input signals and
handle external interrupts and events.

* This circuit is called the External Interrupt/Event Controller
(EXTI).

STUDENTS-HUB.com

https://students-hub.com

Writing Your ISR Implementation

* When we say EXTI detects changes in input signals, what does it actually detect?

" [t monitors signal transitions on its connected GPIO pins.
= Rising Edge: The signal changes from low (0) to high (1).
* Falling Edge: The signal changes from high (1) to low (0).
= Both Edges: The signal changes in either direction.

* The EXTI allows you to configure which type of edge it should detect for each
interrupt source.

 When the configured edge is detected (button presses, sensor signals, etc.), the
EXTI generates an interrupt.

STUDENTS-HUB.com

https://students-hub.com

External Interrupt/Event Controller (EXTI)

Figure 41. External interrupt/event controller block diagram

EXTI just tells the NVIC
that an interrupt has
occurred on line x

STUDENTS-HUB.com

AMBA APB bus

A

y

PCLK2 —»|

Peripheral interface

F 3

23 23 23 23 23
r
Pending Interrupt Software Rising Falling
request mask interrupt trigger trigger
register register event selection selection
register register register
A
To NVIC interrupt 23 23 23 23
controller s
<
z q=
Sulse /7_ Edge detect Input
23 generator | 23 i \\—5 23 circuit]Ime

Event
mask
register

MS32662V1

EXTI consists of up to 23
edge detectors for
generating
event/interrupt requests

https://students-hub.com

External Interrupt/Event Controller (EXTI)

EXTIO[3:0] bits in the SYSCFG_EXTICR1 register

STUDENTS-HUB.com

PA0 O—»
PB0 O———»
PCO0 O——»
PDO0 O———»
PE0 O——»
PFO O———»
PG0 O——»
PHO O———»
PI0 O———»
PJO O—»
PKO O——»

\

The seven other EXTI lines are connected as follows:
. EXTI line 16 is connected to the PVD output

/

EXTIO
—»

EXTI1[3:0] bits in the SYSCFG_EXTICR1 register

PA1
PB1
PC1
PD1
PE1
PF1
PG1
PH1

PI1
PJ1
PK1

. EXTI line 17 is connected to the RTC Alarm event

. EXTl line 18 is connected to the USB OTG FS Wakeup event

¢ EXTI line 19 is connected to the Ethernet Wakeup event
e EXTI line 20 is connected to the USB OTG HS (configured in FS) Wakeup event

¢ EXTIline 21 is connected to the RTC Tamper and TimeStamp events

e EXTIline 22 is connected to the RTC Wakeup event

N

EXTI1

)/

PA15 O——»
PB15 O——»
PC15 O———»
PD15 O——»
PE15 O———»
PF15 O———»
PG15 O———»
PH15 O———»
PJ15 O———

EXTI15[3:0] bits in the SYSCFG_EXTICR4 register

N

EXTI5
—»

https://students-hub.com

Interrupt Handling Using STM32 HAL

 STM32's HAL driver provides an interrupt handler function for each
peripheral

* (e.g.,EXTIx_IRQHandler for external inputs, TIMx_ IRQHandler for
timers, USARTx_IRQHandler for UART, etc.).

* These handlers are predefined by the HAL and automatically call and
execute when the corresponding interrupt occurs.

* Within these interrupt handlers, the HAL usually includes calls to
specific callback functions that the user can override.

STUDENTS-HUB.com

https://students-hub.com

Callback Functions

* For example, in the STM32Cube framework EXTIx_IRQHandler()
calls HAL_GPIO EXTI_IRQHandler()which calls HAL GPIO EXTI_Callback(GPIO Pin)

 HAL _GPIO EXTI Callback() has "weak linkage", meaning you can override by defining your own
version.

L stm32fdxx_hal_gpio.c

GPIC Pin Specifies the pins connected EXTI lin

__ weak|void HAL GPIO EXTI Callback(uintlé t GPIC Pin)

Frevent unused argument (3) compilation warning

UNUSED (GPIO Pin);

STUDENTS-HUB.com

https://students-hub.com

Overriding Interrupt Callback Functions

* Override means you include your own implementation of a function to replace the default behavior
provided by a library

STUDENTS-HUB.c

int main(void)

{

while (1)
{

}

void HAL_GPIO EXTI_Callback(uintl6_t GPIO Pin){

// Your code here, for example, toggle an LED or perform any
other action.
if (GPIO_Pin==GPIO PIN 0) {
HAL_GPIO TogglePin(GPIOD, GPIO_PIN 12);
}
}

m

There is no explicit call to
HAL_GPIO EXTI_Callback
in the main function

Whenever an interrupt occurs, the callback
function is executed automatically

The user implementation defines the
actions that will take place inside the
function

Here, whenever an interrupt detected on
the EXTI line O, the pin PD12 will toggle

https://students-hub.com

Key Considerations for Interrupt Configuration

* You should enable (unmask) the interrupt before using it.
* You need to define the interrupt priority (highest priority is 0).

* The priority of each interrupt should be unique

* The ISR should be kept as simple and brief as possible (Do not write
long code inside the ISR).

* The global variables that are modified by interrupts should be
volatile

STUDENTS-HUB.com

https://students-hub.com

Example: Configure EXTI to toggle a LED when a
user button is pressed

CTRAIT O

* Create a new STM32CubelDE project [sTM32 Project

Setup 5TM32 project

[§ sTv32 Project O X

Target Selection
Select STM32 target or STM32Cube example Project Mame: InterruptClass I

B Use default location

| MCU/MPU Selectar

- - i STM32 Fa— 120 Prowe
"MCU/MPVU Fiters Location: Ci/Users/ShadiDaana/5TM32CubelDE/workspace_1.12 Browse...
@ Eﬂ' O Feat... Block Diag... Docs & Resour... CAD Resour... |j Datas... .. Options
Commercial j STM32F4 Series
Part Number |,|5””32f‘*'“hgtﬁ - Yy . Targeted Language
High-performance foundation line, Arm Cortex-M4 OC OC+
Q | v] - 31V EPIZOIAY R (M core with DSP and FPU, 1 Mbyte of Flash memory,
. 168 MHz CPU, ART Accelerator, Ethernet, FSMC Targeted Binary Type
h
PRODUCT INFO Unit Price for 10kU (USS): 5.8519 b, 0O Executable () Static Library
Segment > .
Targeted Project Type
Series > MCUs/MPUs List: 3 items M Export o STMIZ2Cube D Empty
Line > . P P—
Marketing Status > Yr STM32... STM32... Active 5.8519 LQFP ... 1024 k.. 192 kB... 82 168 MHz
) 7 STM32...STM32__ 5TM32. . Obsolete NA LQFP ... 1024 k... 192 kB... 82 168 MHz
Price ’ v STM32.. STM32.._ Active 5.8519 LQFP . 1024 k.. 192 kB.__ 82 168 MHz
Package ?

® < Back Mext = Cancel

® < Back Finish Cancel

STUDENTS-HUB.com

https://students-hub.com

Example: Continued

* Configure a button pin (PAO) as GPIO_EXTI

Reset_State

ADC1_INO
PQ aoc2 mo
ADC3_INO
PQ et crs
SYS_WKUP
Pg T2 cHi
VDD — TIM2 ETR

TIMS_CH1
. R38 L TIM3_ETR
Not Fitted 100 «

o
C38 IJ
100nF

R35 e §
PAD PAO .

SB20 3y GPIO_EXTIO

:R39
>220K

UART4 TX
VS USART2_CTS
GFIO_Input
VR GPIO_Qutput
GPIO_Analog
EVENTOUT

BT

SW-PUSH-CMS’

AAA

USER & WAKE-UP Button

STUDENTS-HUB.com

https://students-hub.com

Example: Continued

STUDENTS-HUB.com

GPIO_Output

07VGTXx
2100

* Configure the LED pin (PD12) as GPIO_Output

LED4

LED3

LEDS

LED6

LD4
(xreen
[PDI2 S RvA. N
510
LD3
()range
(D13 PDI3 N
LDS
Red
[PDI4 e &3}. ! N
680
LD6
Blue
[PDIS ERa %ﬁ : N
= 680

https://students-hub.com

Pinout & Configuration Clock Configuration

v Software Packs

GPIO Mode and Configuration

Categories Configuration
System Core b |Grnup By Peripherals w
. FY
Example: Continue [
[] e Search Signals
NVIC [Sea HHF O Show only Modified Pins
g‘?’g IGPIO mode|GPIO Pull.. |[Maximum.. | User Label
WWDG SAD-WVWEUP nfa nfa External |_.. Mo pull-u_.. n/a BluePush__.
- - : PD12 nfa Low Cutput P... Mo pull-u__. Low O
Pinout & Configuration Clock Configu Analog 5
v Software P|
Q & GPIO Mode and Configuration Timers >
o e i i
Confguration Comectity > * Select GPIO configurations and the
System Core b |Group By Peripherals ~ | .
edge detection mode
$ Multimedia b g
DMA NVIC Interruct Table
% EXTI line interrupt 0 0 Security 5
NVIC
RCC Computing >
SYS -PAQ-WKUP Configuration -
WWDG

Middleware and S... »

* Enable the interrupt for EXTI!!

GPIO mode ‘External Interrupt Mode with Rising edge trigger detection ~ |

GPIO Pull-up/Pull-down |N|:| pull-up and no pull-down V|

STUDENTS-HUB.com User Label BluePushButton |

https://students-hub.com

Pinout & Configuration Clock Configuration
v Software Packs
V| {8 NVIC Mode and Configuration

Configuration

Example: Continued

System Core hd
a Priority Group [Sort by Premption Priority and Sub Priority [Sort by interrupts names
DMA, : -
GPIO Search @ Show |ava|lable interrupts V| Force DMA channels Interrupts
IWDG
mvie
e Set the priority of the interrupt RCC Non maskable interrup 0 0
‘USWEDG Hard fault interrupt 0 0
. . Memaory management fault 0 0
¢ If YOU h ave m u |t| p | e I nte rru pt Pre-fetch fault, memory access fault 0 0
H Undefined instruction or illegal state 0 0
Sou rcesl eac h m USt have a u n I q u e Analog ’ System service call via SWI| instruction 0 0
H H] Debug monitar 0 0
>
p r IO rlty n u m be r Timers Pendable request for system senice 0 0
Connectivt 5 Time base: System tick timer 15 0
° Gener‘ate the COde 4 PVD interrupt through EXTI line 16 O o 0
Multimedia 5 Flash global interrupt O o 0
RCC global interrupt O o 0
Security 5 EXTl lineD interrupt 0 0 |
FPU global interrupt O o 0

Computing >

Middleware and S.._ >

STUDENTS-HUB.com

https://students-hub.com

Example: Program Code

STUDENTS-HUB.com

int main(void)

{

while (1)
{

}

/* USER CODE BEGIN 4 */
void HAL_GPIO EXTI_Callback(uintl6 t GPIO Pin) {
if (GPIO _Pin == BluePushButton Pin){
HAL_GPIO TogglePin(GPIOD, GPIO PIN 12);
}
}
/* USER CODE END 4 */

https://students-hub.com

Example: Practical Version

e Gets the current system tick countin
/* USER CODE BEGIN PD */

#define DEBOUNCE TIME 100 milliseconds (each time the interrupt
/* USER CODE END PD */ occurs, we record the time)
/* USER CODE BEGIN PV */
volatilefjuint32 t currentTick=0;
volatilefjuint32_t previousTick=0; /* USER CODE BEGIN 4 */
volatileluint8 t toggleFlag=9; void HAL _GPIO EXTI_Callback(ujnti6_t GPIO Pin) {
/* USER CODE END PV */ if (GPIO_Pin == in) {
int iin(void) currentTick = L GetTick();
int main{voli . . . if ((currentTick - previousTick) > DEBOUNCE_TIME
(If the button press is valid (meaning { ((:) -)
it passed the debounce check), » toggleFlag=1;
toggleFlagissetto 1 }
. previousTick = currentTick;
while (1) l/ }
{ }
if (toggleFlag==1){ /* USER CODE END 4 */
HAL_GPIO_TogglePin(GPIOD, GPIO_PIN 12);
toggleFlag=0;
j This code handled the bouncing, it
} won't consider any changes for some
} period of time (DEBOUNCE_ TIME)
STUDENTS-HUB.com

https://students-hub.com

HAL interrupt handler and callback functions

e Besides the APIs, HAL peripheral drivers include:

= HAL PPP_IRQHandler() peripheral interrupt handler that should be called from stm32f4xx_it.c
= User callback functions.

* The user callback functions are defined as empty functions with “weak” attribute.
They have to be defined in the user code.

HAL PPP_ Callback

void HAL GPIO EXTI Callback(uintl6_t GPIO Pin);

void HAL UART RxCpltCallback(UART HandleTypeDef *huart);
void HAL UART TxCpltCallback(UART HandleTypeDef *huart);
void HAL TIM PeriodElapsedCallback(TIM HandleTypeDef *htim);
void HAL_ADC ConvCpltCallback(ADC_HandleTypeDef *hadc);

STUDENTS-HUB.com

https://students-hub.com

Questions?

https://students-hub.com

References

* Yiu, Joseph. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4
Processors. Germany: Elsevier Science, 2013.

 Motion Control Tips. (n.d.). What is nested vector interrupt control

(NVIC)? Retrieved from https://www.motioncontroltips.com/what-is-nested-
vector-interrupt-control-nvic/

* Renesas. (n.d.). MCU programming: Peripherals - 04. Interrupts.
Retrieved from https://www.renesas.com/en/support/engineer-school/mcu-
programming-peripherals-04-

interrupts?srsltid=AfmBO00aPIEDOSnE4bsROIUFID5IhGniBHTYLNPY6SsjqHIOKY3bWW
1En

STUDENTS-HUB.com

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/
https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://students-hub.com

	Slide 1: Interrupts and Events
	Slide 2: Interrupts
	Slide 3: Interrupts
	Slide 4: Interrupts
	Slide 5: Interrupts and Polling
	Slide 6: Interrupts and Polling
	Slide 7: Interrupts and Polling
	Slide 8: Interrupt Masking
	Slide 9: Interrupt Masking
	Slide 10: Interrupt Priority
	Slide 11: Interrupt Types in Cortex M
	Slide 12: Interrupt Types in Cortex M
	Slide 13: Nested Vectored Interrupt Controller (NVIC)
	Slide 14: Nested Vectored Interrupt Controller (NVIC)
	Slide 15: Vector Table
	Slide 16: Vector Table
	Slide 17: What Happens When an Interrupt Occurs?
	Slide 18: What Happens When an Interrupt Occurs?
	Slide 19: Writing Your ISR Implementation
	Slide 20: Writing Your ISR Implementation
	Slide 21: Writing Your ISR Implementation
	Slide 22: External Interrupt/Event Controller (EXTI)
	Slide 23: External Interrupt/Event Controller (EXTI)
	Slide 24: Interrupt Handling Using STM32 HAL
	Slide 25: Callback Functions
	Slide 26: Overriding Interrupt Callback Functions
	Slide 27: Key Considerations for Interrupt Configuration
	Slide 28: Example: Configure EXTI to toggle a LED when a user button is pressed
	Slide 29: Example: Continued
	Slide 30: Example: Continued
	Slide 31: Example: Continued
	Slide 32: Example: Continued
	Slide 33: Example: Program Code
	Slide 34: Example: Practical Version
	Slide 35: HAL interrupt handler and callback functions
	Slide 36: Questions?
	Slide 37: References

