
INTERRUPTS AND
EVENTS
Shadi Daana

STUDENTS-HUB.com

https://students-hub.com

Interrupts

• Interrupt is a mechanism that allows the processor to temporarily
suspend its current execution of instructions and switch to a different
set of instructions in response to a specific event or condition

• Interrupts are a common feature available in almost all
microcontrollers.

• Interrupts are usually generated from on-chip peripherals (e.g., a
timer) or external inputs (e.g. a tactile switch connected to a GPIO),
and in some cases they can be triggered by software

STUDENTS-HUB.com

https://students-hub.com

Interrupts

STUDENTS-HUB.com

https://students-hub.com

Interrupts

• When a peripheral or hardware needs service from the processor,
typically the following sequence would occur:

1. The peripheral asserts an interrupt request to the processor

2. The processor suspends the execution of the current task, saves its
context (that is, its stack pointer)

3. The processor starts the execution of an Interrupt Service Routine
(ISR) to handle the interrupting event

4. The processor resumes the previously suspended task

STUDENTS-HUB.com

https://students-hub.com

Interrupts and Polling

• Interrupts and polling are two different approaches used in computer
systems to handle external events, particularly in the context of input
and output operations or event-driven processing.

• Polling is a technique where the program actively checks the status of
a condition or device in a loop, while interrupts are events that
prompt the program to respond immediately without actively
checking.

• Polling can introduce delay and inefficiency, especially when dealing
with infrequent events, while interrupts provide real-time
responsiveness and efficient resource utilization.

STUDENTS-HUB.com

https://students-hub.com

Interrupts and Polling

Source: https://www.renesas.com/
STUDENTS-HUB.com

https://students-hub.com

Interrupts and Polling

…...

int main(void)

{

…...

 while (1)

 {

…...

 }

}

void xxx_IRQHandler(void)

{

 if(GPIO_Pin == GPIO_PIN_9))

 {

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_8);

 }

}

…...

int main(void){

…...

 while (1){

 if(HAL_GPIO_ReadPin (GPIOA, GPIO_PIN_9)){

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);

 }

…...

 }

}

• You can program your interrupt handlers or Interrupt
Service Routines (ISR) as normal C routines/functions.

• The ISR is automatically called when an interrupt
event occurs. It is not called from the main function or
any other functions!!

STUDENTS-HUB.com

https://students-hub.com

Interrupt Masking

• Cortex-M processors have different numbers of interrupt sources
including GPIO pins, timers, resets, and more.

• In most microcontrollers, there are often interrupt mask registers
associated with each interrupt source.

• These registers allow you to enable or disable specific interrupts at
the hardware level

• When an interrupt is masked (disabled), it won't be recognized or
serviced by the processor, even if the corresponding event occurs

• You need to enable (unmask) the interrupt before it can be used.

STUDENTS-HUB.com

https://students-hub.com

Interrupt Masking

• Some interrupts cannot be disabled by software; these are referred
to as Non-Maskable Interrupts (NMIs)

• These are high-priority interrupts that are used for critical events like
hardware faults, system resets, and emergencies that need
immediate attention

STUDENTS-HUB.com

https://students-hub.com

Interrupt Priority

• Most of interrupts have programmable priorities, and a few system
interrupts have fixed priority

• What do we mean by the priority of an interrupt?

• The priority of an interrupt determines the order in which interrupts
are handled when multiple interrupts occur at the same time or when
an interrupt occurs while another one is already being processed.

• Each programmable interrupt can be assigned a priority level, where a
value of '0' represents the highest priority

STUDENTS-HUB.com

https://students-hub.com

Interrupt Types in Cortex M

• Cortex-M interrupts can fall into the following categories:
▪ IRQs (Interrupt Requests): generated by peripherals such as timers, I/O ports,

and communication interfaces (e.g., UART, I2C).

▪ Non-Maskable Interrupt (NMI): generated from internal peripherals (e.g.
watchdog timer).

▪ SysTick (System Tick) timer interrupt.

▪ System exceptions.

STUDENTS-HUB.com

https://students-hub.com

Interrupt Types in Cortex M

Source: Yiu, Joseph. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors. Germany: Elsevier Science, 2013.
STUDENTS-HUB.com

https://students-hub.com

Nested Vectored Interrupt Controller (NVIC)

• Inside Cortex processors, there is a hardware component called Nested
Vectored Interrupt Controller (NVIC) that is responsible for managing
and prioritizing interrupt requests from various sources

• How does the processor
manage interrupts from
different sources ?

Source: Yiu, Joseph. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors. Germany:
Elsevier Science, 2013.

STUDENTS-HUB.com

https://students-hub.com

Nested Vectored Interrupt Controller (NVIC)

• The NVIC controls how interrupts are handled, their priorities, and
the order in which they are executed

• The term "nested" reflects the ability to manage interrupts in a
layered manner

• The term “vector” in nested vector interrupt control refers to the way
in which the CPU finds the program, or ISR, to be executed when an
interrupt occurs.

STUDENTS-HUB.com

https://students-hub.com

Vector Table

• In order to understand how interrupts are managed, let’s take a
review of the memory map of ARM cortex M4 microcontrollers.

• The address space is 4 GB wide.

• It is organized into several subregions such as code, SRAM,
peripherals, external memory, system memory, etc.

• The code memory region contains an interrupt vector table (IVT).

• When an interrupt occurs, the processor looks up the address of the
corresponding ISR in the vector table and jumps to that address to
execute the interrupt service routine

STUDENTS-HUB.com

https://students-hub.com

Vector Table

STUDENTS-HUB.com

https://students-hub.com

What Happens When an Interrupt Occurs?

STUDENTS-HUB.com

https://students-hub.com

What Happens When an Interrupt Occurs?

• The processor finishes or terminates the current instruction

• Microcontroller pushes registers R0, R1, R2, R3, R12, LR, Program
counter (PC), and program status register (PSR) onto the stack

• The processor reads the interrupt number from the xPSR register
and finds the corresponding address of the ISR from the vector
table.

• The processor then starts to execute ISR instructions and uses the
registers that were previously pushed to stack

• The last step is exiting the ISR, popping all eight registers from the
stack, and returning to the same instruction where the ISR occurs

• Note: The interrupt service routines or exception handlers in ARM Cortex-M4
microcontrollers do not use R4-R11 registers during ISR execution

Stacking

ISR Excecution

Return

STUDENTS-HUB.com

https://students-hub.com

Writing Your ISR Implementation

• You don’t need to manage the low-level interrupt handling
process directly.

• You can focus on implementing your own ISR logic for specific
actions.

• Usually, the HAL library (or other frameworks) takes care of the
underlying details.

• The library also provides the necessary ISR definitions you can
use.

STUDENTS-HUB.com

https://students-hub.com

Writing Your ISR Implementation

• Before diving into ISR implementation, it's important to
understand how the STM32 handles interrupts from external
sources.

• Inside the microcontroller, each input line is connected to special
circuit that is designed to detect changes in input signals and
handle external interrupts and events.

• This circuit is called the External Interrupt/Event Controller
(EXTI).

STUDENTS-HUB.com

https://students-hub.com

Writing Your ISR Implementation

• When we say EXTI detects changes in input signals, what does it actually detect?
▪ It monitors signal transitions on its connected GPIO pins.

▪ Rising Edge: The signal changes from low (0) to high (1).

▪ Falling Edge: The signal changes from high (1) to low (0).

▪ Both Edges: The signal changes in either direction.

• The EXTI allows you to configure which type of edge it should detect for each
interrupt source.

• When the configured edge is detected (button presses, sensor signals, etc.), the
EXTI generates an interrupt.

STUDENTS-HUB.com

https://students-hub.com

External Interrupt/Event Controller (EXTI)

EXTI consists of up to 23
edge detectors for
generating
event/interrupt requestsEXTI just tells the NVIC

that an interrupt has
occurred on line x

STUDENTS-HUB.com

https://students-hub.com

External Interrupt/Event Controller (EXTI)

STUDENTS-HUB.com

https://students-hub.com

Interrupt Handling Using STM32 HAL

• STM32's HAL driver provides an interrupt handler function for each
peripheral

• (e.g.,EXTIx_IRQHandler for external inputs, TIMx_IRQHandler for
timers, USARTx_IRQHandler for UART, etc.).

• These handlers are predefined by the HAL and automatically call and
execute when the corresponding interrupt occurs.

• Within these interrupt handlers, the HAL usually includes calls to
specific callback functions that the user can override.

STUDENTS-HUB.com

https://students-hub.com

Callback Functions

• For example, in the STM32Cube framework EXTIx_IRQHandler()
calls HAL_GPIO_EXTI_IRQHandler()which calls HAL_GPIO_EXTI_Callback(GPIO_Pin)

• HAL_GPIO_EXTI_Callback() has "weak linkage", meaning you can override by defining your own
version.

STUDENTS-HUB.com

https://students-hub.com

Overriding Interrupt Callback Functions

• Override means you include your own implementation of a function to replace the default behavior
provided by a library

int main(void)

{

…...

 while (1)

 {

…...

 }

}

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){

// Your code here, for example, toggle an LED or perform any
other action.
 if (GPIO_Pin==GPIO_PIN_0) {
 HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_12);
 }

}

• Whenever an interrupt occurs, the callback
function is executed automatically

• The user implementation defines the
actions that will take place inside the
function

• Here, whenever an interrupt detected on
the EXTI line 0, the pin PD12 will toggle

• There is no explicit call to
HAL_GPIO_EXTI_Callback
in the main function

STUDENTS-HUB.com

https://students-hub.com

Key Considerations for Interrupt Configuration

• You should enable (unmask) the interrupt before using it.

• You need to define the interrupt priority (highest priority is 0).

• The priority of each interrupt should be unique

• The ISR should be kept as simple and brief as possible (Do not write
long code inside the ISR).

• The global variables that are modified by interrupts should be
volatile

STUDENTS-HUB.com

https://students-hub.com

Example: Configure EXTI to toggle a LED when a
user button is pressed

• Create a new STM32CubeIDE project

STUDENTS-HUB.com

https://students-hub.com

Example: Continued

• Configure a button pin (PA0) as GPIO_EXTI

STUDENTS-HUB.com

https://students-hub.com

Example: Continued

• Configure the LED pin (PD12) as GPIO_Output

STUDENTS-HUB.com

https://students-hub.com

Example: Continued

• Select GPIO configurations and the
edge detection mode

• Enable the interrupt for EXTI!!

STUDENTS-HUB.com

https://students-hub.com

Example: Continued

• Set the priority of the interrupt

• If you have multiple interrupt
sources, each must have a unique
priority number

• Generate the code

STUDENTS-HUB.com

https://students-hub.com

Example: Program Code

…...

int main(void)

{

…...

 while (1)

 {

…...

 }

}
…...
/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
 if (GPIO_Pin == BluePushButton_Pin){
 HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_12);
 }
}
/* USER CODE END 4 */
…...

STUDENTS-HUB.com

https://students-hub.com

Example: Practical Version

…...
/* USER CODE BEGIN PD */
#define DEBOUNCE_TIME 100

/* USER CODE END PD */
…...
/* USER CODE BEGIN PV */
volatile uint32_t currentTick=0;
volatile uint32_t previousTick=0;
volatile uint8_t toggleFlag=0;
/* USER CODE END PV */

int main(void)

{

…...

 while (1)

 {
 if (toggleFlag==1){
 HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_12);
 toggleFlag=0;
 }

 }

}
…...

…...

/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
 if (GPIO_Pin == BluePushButton_Pin) {
 currentTick = HAL_GetTick();
 if ((currentTick - previousTick) > DEBOUNCE_TIME)

{
 toggleFlag=1;
 }
 previousTick = currentTick;
 }

}
/* USER CODE END 4 */

…...
This code handled the bouncing, it
won't consider any changes for some
period of time (DEBOUNCE_TIME)

Gets the current system tick count in
milliseconds (each time the interrupt
occurs, we record the time)

If the button press is valid (meaning
it passed the debounce check),
toggleFlag is set to 1

STUDENTS-HUB.com

https://students-hub.com

HAL interrupt handler and callback functions

• Besides the APIs, HAL peripheral drivers include:
▪ HAL_PPP_IRQHandler() peripheral interrupt handler that should be called from stm32f4xx_it.c

▪ User callback functions.

• The user callback functions are defined as empty functions with “weak” attribute.
They have to be defined in the user code.

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc);

HAL_PPP_EventTypeCallback

STUDENTS-HUB.com

https://students-hub.com

Questions?

STUDENTS-HUB.com

https://students-hub.com

References

• Yiu, Joseph. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4
Processors. Germany: Elsevier Science, 2013.

• Motion Control Tips. (n.d.). What is nested vector interrupt control
(NVIC)? Retrieved from https://www.motioncontroltips.com/what-is-nested-
vector-interrupt-control-nvic/

• Renesas. (n.d.). MCU programming: Peripherals - 04. Interrupts.
Retrieved from https://www.renesas.com/en/support/engineer-school/mcu-
programming-peripherals-04-
interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW
1En

STUDENTS-HUB.com

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/
https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://www.renesas.com/en/support/engineer-school/mcu-programming-peripherals-04-interrupts?srsltid=AfmBOooaPIEDO5nE4bsR0lUf9D5JhGniBHTyLNPy6sjqHIOky3bWW1En
https://students-hub.com

	Slide 1: Interrupts and Events
	Slide 2: Interrupts
	Slide 3: Interrupts
	Slide 4: Interrupts
	Slide 5: Interrupts and Polling
	Slide 6: Interrupts and Polling
	Slide 7: Interrupts and Polling
	Slide 8: Interrupt Masking
	Slide 9: Interrupt Masking
	Slide 10: Interrupt Priority
	Slide 11: Interrupt Types in Cortex M
	Slide 12: Interrupt Types in Cortex M
	Slide 13: Nested Vectored Interrupt Controller (NVIC)
	Slide 14: Nested Vectored Interrupt Controller (NVIC)
	Slide 15: Vector Table
	Slide 16: Vector Table
	Slide 17: What Happens When an Interrupt Occurs?
	Slide 18: What Happens When an Interrupt Occurs?
	Slide 19: Writing Your ISR Implementation
	Slide 20: Writing Your ISR Implementation
	Slide 21: Writing Your ISR Implementation
	Slide 22: External Interrupt/Event Controller (EXTI)
	Slide 23: External Interrupt/Event Controller (EXTI)
	Slide 24: Interrupt Handling Using STM32 HAL
	Slide 25: Callback Functions
	Slide 26: Overriding Interrupt Callback Functions
	Slide 27: Key Considerations for Interrupt Configuration
	Slide 28: Example: Configure EXTI to toggle a LED when a user button is pressed
	Slide 29: Example: Continued
	Slide 30: Example: Continued
	Slide 31: Example: Continued
	Slide 32: Example: Continued
	Slide 33: Example: Program Code
	Slide 34: Example: Practical Version
	Slide 35: HAL interrupt handler and callback functions
	Slide 36: Questions?
	Slide 37: References

