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Superscalar
Overview
—

different from the
different pipelines program order
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Making the Pipeline Superscalar

¢ Pipelines studied so far are scalar
< Fetch, decode, and dispatch one instruction per cycle

< Write-back and Commit one instruction per cycle
“* Fundamentally limited to CPI = 1

¢ Superscalar pipelines can do more ...
< Can fetch, decode, and dispatch multiple instructions per cycle
< Can execute, write-back, and commit multiple instructions per cycle
< Can reduce the CPI below 1 (CPI < 1)
< IPC = Instructions per Cycle =1/ CPI

< Two types of superscalar processors

< In-order execution: based on program order

< Out-of-order execution: based on data dependences
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Superscalar Execution

B Idea: hardware Fetches, decodes, executes, retires
multiple instructions per cycle

1 N-wide superscalar = N instructions per cycle
B Need to add the hardware resources for doing so

B Hardware performs the dependence checking between
concurrently-fetched instructions

B Superscalar execution and out-of-order execution are
orthogonal concepts

O Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]
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In-Order Superscalar Processor Example

*»* Multiple copies of datapath: Can fetch/decode/execute multiple
instructions per cycle

*»» Dependencies make it tricky to issue multiple instructions at
once
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In-Order Superscalar Performance Example

lw $t0, 40(%$s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s09)
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Superscalar Performance with Dependencies

lw $t0, 40(%$s0)
add $t1, $to, $si
sub $t0, $s2, $s3
and $t2, $s4, $to
or $t3, $s5, $s6
sw $s7, 80(%$t3)
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Intel Core Microarchitecture
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Superscalar Execution Tradeoffs

B Advantages
O Higher IPC (instructions per cycle)

B Disadvantages
O Higher complexity for dependency checking

BRequire checking within a pipeline stage

BRenaming becomes more complex in an Oo0O
processor

J More hardware resources needed
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Superscalar Complexities

*» Must fetch a group of instructions each cycle (not just one)
<> An accurate branch predictor is essential for correct fetching
*+ Must decode a group of instructions each cycle
<> Must check dependences between instructions in a single group
¢ Must dispatch a group of instructions each cycle
< Requires more read ports for the register file and reorder buffer
< Read ports increases with the number of dispatched instructions
¢ Must write multiple results each cycle
< Requires multiple result busses (not just one common data bus)
< Requires multiple write ports for the ROB (not just one)
<> More comparators for tag matching in reservation stations
¢ Must commit multiple results each cycle

< Requires multiple write ports for the register file
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Example: Intel Core i7 Pipeline Structure

Pipeline depth = 14 stages
Branch penalty = 15 cycles

Intel x86 instructions translated
Into micro-operations

Micro-ops: RISC-like instructions
4 instructions decoded per cycle
Loop stream detector and buffer
36-entry centralized RS

Six independent function units

Up to 6 micro-ops can be
executed per cycle
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| 32 KB Inst. cache (four-way associative) |«
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Simple
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28-Entry micro-op loop stream detect buffer

Register alias table and allocator
128-Entry reorder buffer
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shift address = | address data shift
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shuffle Memory order buffer shuffle
ALU ALU
128-bit 128-bit
FMUL Store FMUL
FDIV & load FDIV

512-Entry unified
L2 TLB (4-way)

64-Entry data TLB |
(4-way associative) | cache (8-way associative)

256 KB unified 12
cache (eight-way)

32-KB dual-ported data

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling and
clock/power state differences)
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