Superscalar Processors

ENCS5331:. Advanced Computer Architecture

Fall 2023/2024

Instructor: Dr. Ayman Hroub

Special Thanks to Dr. Muhamed Mudawar (KFUPM) and Dr. Onur Mutlu
(ETHZ) for most of the Slides

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Superscalar
Overview
—

different from the
different pipelines program order

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Making the Pipeline Superscalar

¢ Pipelines studied so far are scalar
< Fetch, decode, and dispatch one instruction per cycle

< Write-back and Commit one instruction per cycle
“* Fundamentally limited to CPI = 1

¢ Superscalar pipelines can do more ...
< Can fetch, decode, and dispatch multiple instructions per cycle
< Can execute, write-back, and commit multiple instructions per cycle
< Can reduce the CPI below 1 (CPI < 1)
< IPC = Instructions per Cycle =1/ CPI

< Two types of superscalar processors

< In-order execution: based on program order

< Out-of-order execution: based on data dependences
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Superscalar Execution

B Idea: hardware Fetches, decodes, executes, retires
multiple instructions per cycle

1 N-wide superscalar = N instructions per cycle
B Need to add the hardware resources for doing so

B Hardware performs the dependence checking between
concurrently-fetched instructions

B Superscalar execution and out-of-order execution are
orthogonal concepts

O Can have all four combinations of processors:

[in-order, out-of-order] x [scalar, superscalar]

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

In-Order Superscalar Processor Example

» Multiple copies of datapath: Can fetch/decode/execute multiple
instructions per cycle

*»» Dependencies make it tricky to issue multiple instructions at
once

CLK

CLK

PC

RD
A

Instruction
Memory

1

STUDENTS-HUB.com

CLK CLK CLK

[1] [T]

Al
A2
A3

A4
A5
A6

WD3
WD6

RD1
RD4

Register
File RD2
RD5

Al RD1
Data
Memory

wD1

\./

WD2

Here: Ideal IPC = 2 Uploaded By: Jibreel Bornat

In-Order Superscalar Performance Example

lw $t0, 40(%$s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3
and $t3, $s3, $s4
or $t4, $s1, $s5
sw $s5, 80($s09)

1 2 4 5 6 7 8

3
R $50
lw $t0, 40($s0) o | [o—
IM RF [ss1

>

Time (cycles)

Y Mso
DM RF
add $t1, $s1, $s2 add 552 I
M 5517 M Moo
sub $t2, $sl1, $s3 sub { $s3 :B— S
M RF[ss3 DM ool R
and $t3, $s3, $s4 and -[$s4 :B— -
Y $s1f Y M st
or $t4, $sl, $s5 = { $s5 EI= {1
M RF [5s0 $D'V; RF
S
sw $s5, 80($s0) =[] [|

sTUDENTS-HUBAGEuUal IPC = 2 (6 instructions issued in 3 cycles)oaded By: Jibreel Bornat

Superscalar Performance with Dependencies

lw $t0, 40(%$s0)
add $t1, $to, $si
sub $t0, $s2, $s3
and $t2, $s4, $to
or $t3, $s5, $s6
sw $s7, 80(%$t3)
1 2 3 4 5 6 7 8 9
Time (cycles)
s $s0R) Msto
1w 0, 40($s0 Le =
vt (5s0) " }:RF 20 :B_ DM A
_ . 5 o“ S0
add $tl, , $sl addv[s; { s;‘ N —vstl
M RF [oaa| | [RF 5oz DM RF
sub $t0, $s2, $s3 = [$53 $s3 2
| Stall | | |
N $s4R M M
2, , and| and | [Y]5t2
and $t IM M }:RF zzg oM sea|
or or | | t
or $t3, $s5, $s6 | I $s6“:B i |
$t3
sw $s7, 80() = V{ 8; V%Biv $s7_V
M RF OM RF
i A

STUDENTS-HUBAGEuUal IPC = 1.2 (6 instructions issued in 5 cycl@sdded By: Jibreel Bornat

Intel Core Microarchitecture

L1 Instruction Cache <
Shared
* Bus
Instruction Fetch and PreDecode |« IntS:iice
* Branch
Instruction Queue Prediction
* Unit
A
Microcode
ROM [Decode
L > v
¢ Shared L2 Cache
Up to 10.7 Gbps
Rename/Alloc FSB
v Y
Retirement Unit
(Re-Order Buffer)

v

Scheduler/Reservation Station

lPort 0 lPort 1 lPort 2 lPort 3 iPort 4

Integer ALU Integer ALU Integer ALU Load Unit Store Unit
Branch FPAdd FPMul
MMX/SSE MMX/SSE MMX/SSE
FPmove FPmove FPmove Memory Ordering Buffer

LI I

L1 Data Cache and DTLB

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Superscalar Execution Tradeoffs

B Advantages
O Higher IPC (instructions per cycle)

B Disadvantages
O Higher complexity for dependency checking

BRequire checking within a pipeline stage

BRenaming becomes more complex in an Oo0O
processor

J More hardware resources needed

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Superscalar Complexities

*» Must fetch a group of instructions each cycle (not just one)
<> An accurate branch predictor is essential for correct fetching
*+ Must decode a group of instructions each cycle
<> Must check dependences between instructions in a single group
¢ Must dispatch a group of instructions each cycle
< Requires more read ports for the register file and reorder buffer
< Read ports increases with the number of dispatched instructions
¢ Must write multiple results each cycle
< Requires multiple result busses (not just one common data bus)
< Requires multiple write ports for the ROB (not just one)
<> More comparators for tag matching in reservation stations
¢ Must commit multiple results each cycle

< Requires multiple write ports for the register file
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example: Intel Core i7 Pipeline Structure

Pipeline depth = 14 stages
Branch penalty = 15 cycles

Intel x86 instructions translated
Into micro-operations

Micro-ops: RISC-like instructions
4 instructions decoded per cycle
Loop stream detector and buffer
36-entry centralized RS

Six independent function units

Up to 6 micro-ops can be
executed per cycle

STUDENTS-HUB.com

'~ 128-Entry
inst. TLB |-
(four-way)

Instruction
fetch
hardware

Micro
-code

Retirement
register file

ALU
shift

SSE
shuffle
ALU

128-bit
FMUL
FDIV

| 32 KB Inst. cache (four-way associative) |«

16-Byte pre-decode + macro-op
fusion, fetch buffer

18-Entry instruction queue

Simple

Complex Simple Simple
macro-op macro-op macro-op macro-op
decoder decoder decoder

decoder

28-Entry micro-op loop stream detect buffer

Register alias table and allocator
128-Entry reorder buffer

36-Entry reservation station

ALU Load Store Store ALU
shift address = | address data shift
SSE SSE
shuffle Memory order buffer shuffle
ALU ALU
128-bit 128-bit
FMUL Store FMUL
FDIV & load FDIV

512-Entry unified
L2 TLB (4-way)

64-Entry data TLB |
(4-way associative) | cache (8-way associative)

256 KB unified 12
cache (eight-way)

32-KB dual-ported data

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling and
clock/power state differences)

Uploaded By: Jibreel Bornat

